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We leverage the assumption that preferences are stable across contexts to par-
tially identify and conduct inference on the parameters of a structural model of
risky choice. Working with data on households’ deductible choices across three
lines of insurance coverage and a model that nests expected utility theory plus a
range of non-expected utility models, we perform a revealed preference analysis
that yields household-specific bounds on the model parameters. We then impose
stability and other structural assumptions to tighten the bounds, and we explore
what we can learn about households’ risk preferences from the intervals defined
by the bounds. We further utilize the intervals to (i) classify households into pref-
erence types and (ii) recover the single parameterization of the model that best fits
the data. Our approach does not entail making distributional assumptions about
unobserved heterogeneity in preferences.

Keywords. Inference, insurance, partial identification, revealed preference, risk
preferences, stability.
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1. Introduction

Economists strive to develop models of decision making that can explain choices across
multiple domains. At a minimum, we ask that a model’s explanatory power extend
across decision contexts that are essentially similar. Stated more formally, we require
that a model satisfy a criterion of stability: a single agent-specific parameterization of
the model should be consistent with the agent’s choices in closely related domains.
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In this paper, we demonstrate how one can exploit the stability criterion to conduct
inference on the agent-specific parameters of a structural model of decision making un-
der risk. We develop an approach that relies principally on the stability criterion and
revealed preference arguments to bound the model parameters. Working with data on
households’ deductible choices across three lines of insurance coverage and a model
that nests expected utility theory plus a broad range of non-expected utility models,
we first show how one can infer household-specific bounds on the model parameters
from a household’s choices and then leverage the stability criterion and other struc-
tural assumptions to sharpen the inference—that is, tighten the bounds. We then show
how one can utilize the intervals defined by the bounds to (i) classify households into
preference types and (ii) recover the single parameterization of the model that best
fits the data. Importantly, our approach does not entail making arbitrary assumptions
about the distribution of unobserved heterogeneity in preferences. Rather, in line with
the partial identification paradigm (e.g., Manski (2003)), it explores what we can learn
about the structure of risk preferences without distributional assumptions that are mo-
tivated by statistical convenience. It thus yields more credible inferences than standard
approaches to identification and estimation that rely on such assumptions (e.g., para-
metric maximum likelihood estimation (MLE) of a random utility model).

In Section 2, we describe our data. The data hail from a U.S. property and casu-
alty insurance company that specializes in personal auto and home coverage. The full
data set comprises annual information on a large sample of households who purchased
auto or home policies from the company between 1998 and 2006. For reasons we ex-
plain, we restrict attention to a sample of 4170 households who purchased both auto and
home policies in the same year, in either 2005 or 2006. For each household, we observe
its deductible choices in three lines of coverage: auto collision, auto comprehensive,
and home all perils. We also observe the coverage-specific pricing menus of premium–
deductible combinations that each household faced when choosing its deductibles. In
addition, we observe the households’ claims histories and an array of demographics for
each household. We utilize the data on claims and demographics to assign each house-
hold a claim probability in each line of coverage.

In Section 3, we outline the model. The model is a generalization of objective ex-
pected utility theory that allows for generic probability distortions through an unspeci-
fied function, Ω(·). The probability distortions in the model are generic in the sense that
they can capture in a reduced form way a wide range of different behaviors, including
subjective beliefs, rank-dependent probability weighting (Quiggin (1982)), Kahneman–
Tversky (KT) probability weighting (Kahneman and Tversky (1979)), Gul disappoint-
ment aversion (Gul (1991)), and Kőszegi–Rabin (KR) loss aversion (Kőszegi and Rabin
(2006, 2007)).1 Consequently, the model offers a parsimonious representation of a num-
ber of different classes of risk preferences.

In Section 4, we develop our approach. We show that a household’s choice of de-
ductible in a given line of coverage implies lower and upper bounds on its distorted

1In using the term probability distortions (or distorted probabilities), we do not mean to imply any neg-
ative connotation. Rather, we use the term probability distortions merely to refer to subjective beliefs or
decision weights that differ from objective claim probabilities (as we estimate them).
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probability of experiencing a claim in that coverage. Because the bounds are defined
in terms of utility differences between options on its pricing menu, the household’s
choice effectively implies a relationship between its utility and probability distortion
functions.2 Because we observe three choices per household (one choice per coverage),
we obtain three pairs of bounds—or intervals—per household (one interval per cover-
age). If a household had the same claim probability in each coverage, we could exploit
the stability criterion to conduct inference in a relatively straightforward way: stability
would require that the household’s three intervals must intersect, and that its probability
distortion function evaluated at this claim probability must be contained in the intersec-
tion. However, because a household’s claim probabilities differ across coverages, each
choice bounds its probability distortion function evaluated at a different point. There-
fore, additional structure on the utility and probability distortion functions is necessary
to give empirical content to the stability assumption.

We make two basic assumptions in addition to stability. The first is constant absolute
risk aversion (CARA), our main restriction on the shape of the utility function.3 Given
CARA, a household’s utility function is characterized by a single parameter, the Arrow–
Pratt coefficient of absolute risk aversion, which we denote by r. The second basic as-
sumption is plausibility: we require that there exist a single coefficient of absolute risk
aversion and three distorted claim probabilities (one per coverage) that together can ra-
tionalize a household’s choices. Altogether, 3629 households satisfy plausibility. Moving
forward, we focus on this subsample of “rationalizable” households. This is out of ne-
cessity: by definition, no parameterization of the model, and thus none of the various
behaviors and underlying models that it nests, can rationalize the choices of a house-
hold that violate plausibility.

In addition to CARA and plausibility, we consider five restrictions on the shape of the
probability distortion function. The principal shape restriction is monotonicity, which
requires that Ω(·) is increasing. It ensures that the model obeys stochastic dominance in
objective risk. It also places restrictions on subjective beliefs, depending on the under-
lying model. For instance, if the underlying model is subjective expected utility theory,
monotonicity restricts subjective beliefs to be monotone transformations of objective
risk. This is less restrictive, however, than the usual approach taken in the literature—
assuming that subjective beliefs correspond to objective risk (see Barseghyan, Molinari,
O’Donoghue, and Teitelbaum (2015b)). While we always consider monotonicity in the
first instance (and generally view the results under monotonicity as our main results),

2For example, if a household chooses a deductible of $200 from a menu of $100, $200, and $250, then,
loosely speaking, the lower bound is a function of the utility difference between the $200 and $250 options
(more specifically, the difference in utility attributable to the difference in price between the $200 and $250
options and the difference in utility attributable to the $50 difference in coverage), and the upper bound is
a function of the utility difference between the $100 and $200 options (more specifically, the difference in
utility attributable to the difference in price between the $100 and $200 options and the difference in utility
attributable to the $100 difference in coverage).

3In Section B of the Supplement, we show that our results are very similar if we instead assume constant
relative risk aversion (CRRA) for reasonable levels of wealth. As we explain in Section 4.1, the utility differ-
ences among deductible options are nearly the same under CARA and CRRA, because the deductibles are
small relative to wealth.
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we often proceed to consider four additional shape restrictions on Ω(·), adding them to
the model sequentially in order of increasing strength. They are quadraticity, linearity,
unit slope, and zero intercept. Together, these additional restrictions reduce the model
to objective expected utility theory.

In Section 5, we use the rationalizable households’ intervals to conduct inference on
r and Ω(·). First, we recover the distribution of the lower bound on r under each shape
restriction on Ω(·). We find, inter alia, that the distribution is skewed to the right under
each shape restriction, and that the median is zero under each nondegenerate shape
restriction. Next, we perform kernel regressions of the lower and upper bounds of the
households’ intervals as a function of their claim probabilities and use the results to
draw inferences about the shape of Ω(·). Under each nondegenerate shape restriction,
the results evince a probability distortion function that substantially overweights small
probabilities. Last, we use the intervals to analyze the benefits (in terms of gains in pre-
cision) and costs (in terms of loss of model fit) of imposing shape restrictions on Ω(·).4

We measure the benefit of a shape restriction by the average reduction in the size of the
households’ intervals due to the restriction. We measure the cost by the average per-
turbations to the households’ intervals that would be required for every rationalizable
household to satisfy the restriction. We conclude the section by drawing a connection
between our cost statistic (which we label Q), which measures the extent to which choice
data violate expected utility maximization as generalized by the probability distortion
model (with CARA utility and a given shape restriction on Ω(·)), and the efficiency index
developed by Afriat (1967, 1972) and Varian (1990, 1993), which measures the extent to
which choice data violate utility maximization (with a concave utility function).

In Section 6, we apply our approach to the problem of classifying households into
preference types, where each type corresponds to a special case of the model. We
find that four in five rationalizable households have intervals (i.e., make choices) that
are consistent with a model with linear utility and monotone probability distortions,5

whereas two in five have intervals that are consistent with a model with concave utility
and no probability distortions (i.e., objective expected utility). Moreover, we find that
nearly one in two rationalizable households requires monotone probability distortions
to explain its intervals, whereas less than one in 20 requires concave utility. However,
we also find that if we restrict the probability distortions to conform to either Gul dis-
appointment aversion or KR loss aversion, then (i) the fraction of rationalizable house-
holds that have intervals that are consistent with the model (with either linear or con-
cave utility) falls to two in five and (ii) the fraction that require probability distortions
to explain their intervals falls to one in 30 (while the fraction that require concave utility
rises to more than one in six), suggesting that other behaviors—namely, subjective be-
liefs or probability weighting—are playing an important role.6 Indeed, when we restrict

4These benefits and costs are transparent and readily quantified under our approach. By contrast, they
are difficult to isolate and measure under standard parametric approaches, because the impact of the shape
restrictions is mediated in a complex way by the distributional assumptions.

5Insofar as the probability distortions reflect rank-dependent probability weighting, this model corre-
sponds to Yaari’s (1987) dual theory.

6To the extent that subjective beliefs obey monotonicity, they cannot be distinguished from probability
weighting in our setting (Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013a)).
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the model to have unit slope probability distortions (which we view as a parsimonious
representation of KT probability weighting), we find that (i) three in five rationalizable
households have intervals that are consistent with the model and (ii) nearly one in five
require unit slope probability distortions to explain their intervals (while one in 10 re-
quire concave utility). At the end of the section, we explore the power of our revealed
preference test, as measured by the success index proposed by Beatty and Crawford
(2011). The results confirm that a model with monotone probability distortions is sub-
stantially more successful than a model with no probability distortions, and that unit
slope distortions are more successful than those implied by Gul disappointment aver-
sion or KR loss aversion.

From the results in Sections 5 and 6 we learn something about the extent and na-
ture of preference heterogeneity among the rationalizable households. In many areas of
research, however, economists study models that abstract from heterogeneity in pref-
erences (e.g., representative agent models) and seek a single parameterization that best
fits the data. In Section 7, we show how one can use the households’ intervals to point
estimate Ω(·). Intuitively, we find the single probability distortion function that comes
closest (in the Euclidean sense) to the monotone households’ intervals. We prove that
under mild conditions (satisfied in our data) the function is point identified, and we
establish the consistency and asymptotic normality of our sample analog estimator.
We then assess model fit given the minimum distance Ω(·). For instance, we find that
the model, when equipped with the minimum distance Ω(·), can rationalize all three
choices of nearly one in five monotone households. We also highlight the fact that, given
the shape of Ω(·), the residual deviation between the intervals and the minimum dis-
tance Ω(·) gives us precisely the lower bound on the degree of heterogeneity in proba-
bility distortions among households.

In Sections 8 and 9, we wrap up our analysis by addressing two issues. First, we
demonstrate a close connection between rank correlation of choices and stability of risk
preferences under the probability distortion model. More specifically, we document that
households’ deductible choices are rank correlated across lines of coverage, echoing a
similar finding by Einav, Finkelstein, Pascu, and Cullen (2012), and we show that it is
the rationalizable households with monotone intervals who are driving these rank cor-
relations. Second, we address concerns that the asymmetric information twins—moral
hazard (unobserved action) and adverse selection (unobserved type)—may be biasing
our results. With respect to moral hazard, we consider both ex ante and ex post moral
hazard, and we conclude that neither is a significant issue in our data. With respect to
adverse selection, we consider two possibilities—(i) there is heterogeneity in claim risk
that is observed by the households but unobserved by the econometrician or (ii) there
is heterogeneity in claim risk that is observed by the econometrician but unobserved
by the households—and we show that our results and conclusions regarding probability
distortions are robust to either possibility.

We offer concluding remarks in Section 10. Additional material is available in supple-
mentary files on the journal website, http://qeconomics.org/supp/511/supplement.pdf
and http://qeconomics.org/supp/511/code_and_data.zip.

http://qeconomics.org/supp/511/supplement.pdf
http://qeconomics.org/supp/511/code_and_data.zip
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1.1 Related literature

This paper builds on the literature on partial identification in econometrics (e.g., Manski
(1989, 2003), Tamer (2010)). Our approach starts by asking what we can learn about
the functionals characterizing risk preferences—in our model, the utility and proba-
bility distortions functions—when only stability and other minimal assumptions are
imposed and revealed preference arguments are used to bound these functionals. We
then sequentially add shape restrictions that increasingly constrain the model, so as
to transparently show the role that each plays in sharpening the inference. To con-
duct statistical inference on the functional of primary interest—the probability dis-
tortion function—we apply recent techniques to build confidence sets for partially
identified functionals (Imbens and Manski (2004), Beresteanu and Molinari (2008),
Stoye (2009)). Next, we extend our approach to the problem of classification: we suppose
that the data comprise a mixture of preference types and use our approach to bound the
prevalence of each type. Last, we show how one can apply our approach to the problem
of point estimation in a representative agent framework, and we develop a consistent
estimator for the parameters of a linear predictor of the probability distortion function.

Our application of the partial identification approach to estimate and conduct infer-
ence on the parameters of a non-expected utility model has no precedent in the empir-
ical literature on risk preferences, including in particular the strand of the literature that
relies on data on market choices.

A handful of prior studies pursue related approaches to infer bounds on a single risk
aversion parameter (e.g., the Arrow–Pratt coefficient of absolute risk aversion) within
an expected utility framework. In particular, Barseghyan, Prince, and Teitelbaum (2011)
and Einav et al. (2012) use data on insurance choices across multiple domains of cover-
age to obtain agent–domain-specific intervals of risk aversion parameters, and then cal-
culate the fraction of agents for whom a single risk aversion parameter can rationalize
its choices across domains.7 Meanwhile, Sydnor (2010) uses data on deductible choices
in home insurance to generate household-specific bounds on risk aversion, and then
argues that the implied levels of risk aversion are implausibly large.

However, the extant papers that study non-expected utility models take a different
approach to identification and estimation: they specify a random utility model, make
statistical assumptions about the distribution of unobserved heterogeneity in prefer-
ences to obtain point identification of a single parameterization of the model, and
estimate the model by parametric or nonparametric methods. For instance, Cicchetti
and Dubin (1994) use data on telephone wire insurance choices to estimate a rank-
dependent expected utility model by parametric maximum likelihood; Jullien and
Salanié (2000) use data on bets on U.K. horse races to estimate a rank-dependent ex-
pected utility model and a cumulative prospect theory model by parametric maximum

7Barseghyan, Prince, and Teitelbaum (2011) use data on choices in three insurance domains. Einav et al.
(2012) use data on choices in five insurance domains. Their data also include choices in one investment
domain. Einav et al. (2012) also pursue a model-free approach in which they rank by risk the options within
each domain and examine the rank correlation of agents’ choices across domains. Observe that Barseghyan,
Prince, and Teitelbaum (2011) and Einav et al. (2012) treat stability as a testable hypothesis, whereas we treat
stability as an identifying restriction.
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likelihood; Kliger and Levy (2009) use data on call options on the S&P 500 index to esti-
mate a rank-dependent expected utility model and a cumulative prospect theory model
by nonlinear least squares; Chiappori, Gandhi, Salanié, and Salanié (2012) use data on
bets on U.S. horse races to estimate a non-expected utility model by nonparametric
regression using generalized additive models (GAMs);8 and Andrikogiannopoulou and
Papakonstantinou (2013) use data on bets in an online sports book to estimate a cu-
mulative prospect theory model by parametric Markov chain Monte Carlo (MCMC).9

 

Andrikogiannopoulou and Papakonstantinou (2013) also estimate a mixture model of
cumulative prospect theory that classifies bettors into preference types; however, they
again estimate the model by parametric MCMC.10

We build directly upon Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013b)
(hereafter, BMOT), who use the same data and model that we use in this paper. Like the
previous studies, however, BMOT assume random utility and make assumptions to ob-
tain point identification of a single parameterization of the model. They then estimate
the model by semi-nonparametric maximum likelihood, parametric maximum likeli-
hood, and parametric MCMC. By contrast, we aim to leverage the stability criterion to
characterize the set of household-specific model parameterizations that are consistent
with their choices across domains.

There are, of course, related empirical studies that adopt a partial identification ap-
proach in other areas of economic research. Examples include, among many others,
Manski (2014), who uses revealed preferences arguments and shape restrictions to par-
tially identify preferences for income and leisure and study their consequences for the
evaluation of income tax policy; Dominitz and Manski (2011), who analyze probabilistic
expectations of equity returns measured at two points in time, and use the partial iden-
tification approach to obtain bounds on the prevalence of expectations types in their
sample; Chetty (2012), who obtains bounds on price elasticities in the presence of fric-
tions such as adjustment costs or inattention; Ciliberto and Tamer (2009), who estimate
payoff functions in a static, complete information entry game in airline markets in the
presence of multiple equilibria; Haile and Tamer (2003), who study an incomplete model
of English auctions and derive bounds on the distribution function characterizing bid-
der demand, on the optimal reserve price, and on the effects of observable covariates on
bidder valuations, and apply their methodology to U.S. Forest Service timber auctions to
evaluate reserve price policy; and Manski and Pepper (2000), who derive sharp bounds
in the presence of monotone instrumental variables, and apply them to a study of the
returns to education.

8Gandhi and Serrano-Padial (2015) use data on bets on U.S. horse races to estimate a cumulative
prospect theory model by parametric maximum likelihood.

9Cohen and Einav (2007) use data on auto deductible choices to estimate an expected utility model by
parametric MCMC. Paravisini, Rappoport, and Ravina (2015) use data on portfolio choices on a person-to-
person lending platform to estimate an expected utility model by ordinary least squares (OLS).

10Bruhin, Fehr-Duda, and Epper (2010) use experimental data (choices over binary money lotteries) to
estimate a mixture model of cumulative prospect theory by parametric maximum likelihood. Conte, Hey,
and Moffatt (2011) use similar experimental data to estimate a mixture model of rank-dependent expected
utility theory by parametric maximum simulated likelihood.



374 Barseghyan, Molinari, and Teitelbaum Quantitative Economics 7 (2016)

This paper also builds on two strands of the literature on revealed preference.11

The first strand pursues nonparametric methods for testing whether choice data are
consistent with utility maximization (e.g., Afriat (1967), Diewert (1973), Varian (1982),
Blundell, Browning, and Crawford (2003, 2008)), including whether such data are con-
sistent with various restrictions on the form of the utility function, such as homo-
theticity, additive separability, infinite differentiability, strict concavity, and quasilin-
earity (e.g., Varian (1983), Chiappori and Rochet (1987), Matzkin and Richter (1991),
Brown and Calsamiglia (2007), Cherchye, Demuynck, and De Rock (2015)), and for es-
timating or otherwise recovering the set of utility functions that are consistent with
choice data (e.g., Varian (1982), Knoblauch (1992), Blundell, Browning, and Crawford
(2003, 2008)).12 Within this strand, our work most closely relates to the papers that study
expected utility maximization and non-expected utility models of decision making un-
der risk or uncertainty (e.g., Varian (1983), Green and Srivastava (1986), Varian (1988),
Green and Osband (1991), Kubler, Selden, and Wei (2014), Echenique and Saito (2015),
Polisson, Quah, and Renou (2015)). In essence, our monotonicity test is a semiparamet-
ric test in the revealed preference tradition of the consistency of individual choice data
with a broad class of models of risky choice.13 An important difference between our work
and these papers, however, is that we study risky choice in a setting with discrete choice
sets while they study settings with continuous choice sets.14 Consequently their tests
typically rely on differentiable demand conditions while our approach does not.

The second related strand of the revealed preference literature comprises papers
that develop measures of goodness-of-fit of revealed preference tests, which assess
the extent to which choice data violate the utility maximization hypothesis (e.g., Afriat
(1972), Houtman and Maks (1985), Varian (1985), Swofford and Whitney (1987), Varian
(1990, 1993), Famulari (1995), Gross (1995)) , as well as papers that develop measures of
the power of revealed preference tests (e.g., Bronars (1987), Beatty and Crawford (2011),
Andreoni, Gillen, and Harbaugh (2013)). As noted above, we develop a measure—our Q
statistic—that assesses the fit of the probability distortion model given different shape
restrictions on Ω(·), and we draw a connection between our Q statistic and the promi-
nent Afriat–Varian efficiency index. Moreover, we employ the Beatty–Crawford success
measure to gauge the power of our tests of shape restrictions on Ω(·).

11For reviews of this literature, see, for example, Varian (2005), Cherchye, Crawford, De Rock, and Ver-
meulen (2009), and Crawford and De Rock (2014).

12Much of the work in this strand contemplates individual, static choice, and linear budget sets. In re-
lated work, researchers pursue revealed preference tests for intertemporal choice (e.g., Browning (1989)),
nonlinear budget sets (e.g., Matzkin and Richter (1991)), market data (e.g., Brown and Matzkin (1996)), and
collective choice (e.g., Chiappori (1988), Cherchye, De Rock, and Vermeulen (2007)). This work is surveyed
by Crawford and De Rock (2014).

13We take a nonparametric approach with respect to the probability distortion function, which is the
object of our primary interest. At the same time, we assume a parametric form (namely, CARA) for the
Bernoulli utility function. This assumption is not very restrictive in our setting, however, as the range of
deductible options in each coverage is not very large and, therefore, assuming a differentiable Bernoulli
utility function, local curvature is what matters.

14A handful of papers study riskless choice with discrete choice sets (e.g., Polisson and Quah (2013),
Forges and Iehlé (2014), Cosaert and Demuynck (2015)).
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2. Insurance data

We acquired the data from a large U.S. property and casualty insurance company. The
company offers several lines of insurance, including auto and home. The full data set
contains annual information on more than 400,000 households who held auto or home
policies between 1998 and 2006. The data contain all the information in the company’s
records regarding the households and their policies.

We focus on three lines of coverage: auto collision coverage, auto comprehensive
coverage, and home all perils coverage. Auto collision coverage pays for damage to the
insured vehicle caused by a collision with another vehicle or object, without regard to
fault. Auto comprehensive coverage pays for damage to the insured vehicle from all
other causes (e.g., theft, fire, flood, windstorm, or vandalism), without regard to fault.
Home all perils coverage pays for damage to the insured home from all causes (e.g., fire,
windstorm, hail, tornadoes, vandalism, or smoke damage), except those that are specif-
ically excluded (e.g., flood, earthquake, or war). For the sake of brevity, we often refer to
home all perils simply as home.

In our analysis, we restrict attention to households who (i) purchased all coverages
(auto collision, auto comprehensive, and home) and (ii) first purchased each coverage
in the same year, in either 2005 or 2006. The former restriction maximizes the number of
choices that we observe per household. The more choices we observe for a household,
the more precise is the inference we can make about the household’s risk preferences.
The latter restriction avoids temporal issues, such as changes in the economic environ-
ment. For households who first purchased their auto and home policies in 2005 and
renewed their policies in 2006, we observe their deductible choices at the time of first
purchase and at the time of renewal. In our analysis, we consider only the deductible
choices at the time of first purchase. This is meant to increase confidence that we are
working with active choices; one might worry that households renew their policies with-
out actively reassessing their deductible choices (Handel (2013)). Together, these restric-
tions yield a core sample of 4170 households.

2.1 Deductible choices and pricing menus

For each household in our sample, we observe its deductible choices in each coverage,
as well as the premium paid by the household in each coverage. Moreover, we observe
the coverage-specific menus of premium–deductible combinations that were available
to each household at the time it made its deductible choices. According to conversa-
tions with the company and an independent agent who sells auto and home policies
for the company, the choice environment is conducive to households making active
and informed deductible choices: there are no default choices, the full pricing menu
of premium–deductible combinations is available to a household at the time it makes
a choice, and a household must choose a deductible separately for each coverage (the
choice made in one coverage does not automatically become the default choice in an-
other coverage).15

15Indeed, the choice set is not exactly the same across coverages (see Table S1 in the Supplement), and
so it could not be the case that the choice made in one coverage automatically becomes the default choice
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In each coverage, the company uses the same basic procedure to generate a house-
hold’s pricing menu. The company first determines a household’s base price p̄ accord-
ing to a coverage-specific rating function, which takes into account the household’s
coverage-relevant characteristics and any applicable discounts. Using the base price,
the company then generates the household’s pricing menu M = {(p(d)�d) : d ∈ D},
which associates a premium p(d) with each deductible d in the coverage-specific set
of deductible options D, according to a coverage-specific multiplication rule, p(d) =
(g(d) · p̄)+ δ, where g(·) is a decreasing positive function and δ > 0. The multiplicative
factors {g(d) : d ∈D} are known as the deductible factors and δ is a small markup known
as the expense fee. The deductible factors and the expense fee are coverage specific but
household invariant.

Table S1 in the Supplement displays the deductible choices of the households in
our core sample. In each coverage, the modal deductible choice is $500. Table S2 in the
Supplement summarizes the pricing menus. For each coverage, it summarizes the (an-
nual) premium associated with a $500 deductible, as well as the marginal cost of de-
creasing the deductible from $500 to $250 and the marginal savings from increasing the
deductible from $500 to $1000. The average premium for coverage with a $500 deductible
is $180 for auto collision, $115 for auto comprehensive, and $679 for home. The average
cost of decreasing the deductible from $500 to $250 is $54 for auto collision, $30 for auto
comprehensive, and $56 for home. The average savings from increasing the deductible
from $500 to $1000 is $41 for auto collision, $23 for auto comprehensive, and $74 for
home.16

2.2 Claim probabilities

For purposes of our analysis, we need to estimate each household’s risk of experiencing
a claim in each coverage. We begin by estimating how claim rates depend on observ-
ables. In an effort to obtain the most precise estimates, we use the full data set: 1,348,020
household-year records for auto and 1,265,229 household-year records for home. For
each household-year record, the data record the number of claims filed by the house-
hold in that year. We assume that household i’s claims under coverage j in year t follow
a Poisson distribution with mean λijt . In addition, we assume that deductible choices
do not influence claim rates, that is, households do not suffer from moral hazard.17 We
treat the claim rates as latent random variables and assume that

lnλijt = X′
ijtβj + εij�

where Xijt is a vector of observables and exp(εij) follows a gamma distribution with unit
mean and variance φj . We perform Poisson panel regressions with random effects to
obtain maximum likelihood estimates of βj and φj for each coverage j.18

in another coverage. That said, we cannot know what advice or guidance a selling agent may or may not
provide to a household about its several deductible choices.

16Tables S1 and S2 also appear in BMOT. They are reproduced in the Supplement for the reader’s conve-
nience.

17We revisit this assumption in Section 9.
18The results of the regressions are reported in Tables A.4 and A.5 of the BMOT Online Appendix.
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Next, we use the regression results to assign claim probabilities to the households in
the core sample. For each household i, we use the regression estimates to calculate a fit-
ted claim rate λ̂ij for each coverage j, conditional on the household’s ex ante observables
and ex post claims experience.19 In principle, during the policy period, a household may
experience zero claims, one claim, two claims, and so forth. In the model, we assume
that a household experiences at most one claim.20 Given this assumption, we transform
λ̂ij into a claim probability μij using

μij ≡ 1 − exp(−λ̂ij)�

which follows from the Poisson probability mass function.
Table S3 in the Supplement summarizes the claim probabilities in the core sam-

ple. The mean claim probabilities in auto collision, auto comprehensive, and home are
0�069, 0�021, and 0�084, respectively. In our analysis, we assume these estimated claim
probabilities are correct in the sense that they correspond to the households’ true claim
probabilities. In Section 9, we revisit this assumption and address the concern that un-
observed heterogeneity in households’ claim risk may be biasing our results.

3. The model

Households have access to three lines of insurance coverage: auto collision (L), auto
comprehensive (M), and home all perils (H). Policies in each line of coverage provide
full insurance against covered losses in excess of a deductible chosen by the household.
We assume that a household treats its deductible choices as independent decisions. This
assumption is motivated by the literature on narrow bracketing (e.g., Read, Loewenstein,
and Rabin (1999)).

In each coverage j ∈ {L�M�H}, household i faces a menu of premium–deductible
pairs, Mij = {(pij(d)�d) : d ∈ Dj}, where pij(d) is the premium associated with de-
ductible d and Dj is the set of deductible options. We assume that the household ex-
periences at most one claim during the policy period, and that the probability of ex-
periencing a claim is μij . We also assume that any claim exceeds the highest available
deductible, payment of the deductible is the only cost associated with a claim, and the
household’s deductible choice does not influence its claim probability.21

19More specifically, λ̂ij = exp(X′
ijβ̂j)E(exp(εij)|Yij), where Yij records household i’s claims experience

under coverage j after purchasing the policy and E(exp(εij)|Yij) is calculated assuming exp(εij) follows a
gamma distribution with unit mean and variance φ̂j .

20Because claim rates are small (85 percent of the predicted claim rates in the core sample are less than
0�1, and 99 percent are less than 0�2), the likelihood of two or more claims is very small. Given this assump-
tion, we could use a binary choice model such as logit or probit instead of the Poisson model. However, this
would lead to a loss of precision in estimation (see, generally, Cameron and Trivedi (1998, pp. 85–87)).

21We make the first assumption more plausible by excluding the $2500 and $5000 deductible options
from the home menu. Only 1�6 percent of households in the core sample chose a home deductible of $2500
or $5000. We assign these households a home deductible of $1000. In this respect, we follow Cohen and
Einav (2007) and BMOT. Including the $2500 and $5000 deductible options in the home menu would not
materially change our results; see Section H of the Supplement.
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Under the foregoing assumptions, the household’s choice of deductible in each cov-
erage involves a choice among lotteries of the form

Lij(d) ≡ (−pij(d)�1 −μij;−pij(d)− d�μij

)
�

To model households’ preferences over deductibles, we adopt the probability dis-
tortion model considered by BMOT. The model is a generalization of objective expected
utility theory that allows for probability distortions. According to the model, a household
chooses deductible d ∈ Dj to maximize

Vij
(
Lij(d)

) ≡ (
1 −Ωij(μij)

)
uij

(
wi −pij(d)

) +Ωij(μij)uij
(
wi −pij(d)− d

)
�

where wi is the household’s wealth, uij(·) is its utility function, and Ωij(·) is its probability
distortion function.22

The probability distortion model has two principal virtues. The first is that it allows
for the possibility that a household’s aversion to risk is driven not only by the shape of
its utility function, but also by the shape of its probability distortion function.23 Stated
another way, the model allows for the possibility that a household’s demand for insur-
ance is driven not only by the way in which it evaluates outcomes, but also by the way
in which it evaluates risk. The second principal virtue of the model is that the proba-
bility distortion function can capture a wide range of different behaviors, including the
following.

• Subjective beliefs: when Ω(μ) �= μ.

• Rank-dependent probability weighting: when Ω(μ) is a probability weighting func-
tion (PWF), that is, an increasing function that maps [0�1] onto [0�1].

• KT probability weighting: when Ω(μ) is a PWF that satisfies overweighting and
subadditivity for small probabilities, as well as subcertainty and subproportional-
ity.24

• Gul disappointment aversion: when Ω(μ) = μ(1 +β)/(1 +βμ), β ≥ 0.

• KR loss aversion: when Ω(μ) = μ+Λ(1 −μ)μ, Λ ≥ 0.25

22Because of the narrow bracketing assumptions, one could argue that the model is not a strict gener-
alization of expected utility theory, on the grounds that expected utility theory requires broad bracketing
(integration of all risky choices into a single, joint decision). However, one could also argue that expected
utility theory is consistent with narrow bracketing and does not necessarily require broad bracketing, par-
ticularly in light of the “small worlds” discussion of Savage (1954). For a thoughtful discussion of this issue,
see Read (2009).

23Under expected utility theory (objective or subjective), by contrast, aversion to risk is driven solely by
the shape of the utility function, which arguably is problematic (Rabin (2000)).

24A PWF Ω(μ) satisfies overweighting if Ω(μ) > μ; satisfies subadditivity if Ω(νμ) > νΩ(μ) for 0 < ν < 1;
satisfies subcertainty if Ω(μ)+Ω(1 −μ) < 1 for 0 <μ< 1; and satisfies subproportionality if Ω(μν)/Ω(μ)≤
Ω(μντ)/Ω(μτ) for 0 <μ�ν�τ ≤ 1. See Kahneman and Tversky (1979).

25In Gul’s model, β captures the degree of disappointment aversion. In KR’s model, Λ effectively captures
the degree of loss aversion. (To be clear, we refer to the version of KR’s model in which the solution concept
is a choice-acclimating personal equilibrium.) For details, see BMOT.



Quantitative Economics 7 (2016) Inference under stability of risk preferences 379

As a result, the model nests a number of underlying models, including the follow-
ing.

• Objective expected utility theory: when Ω(μ) = μ.

• Subjective expected utility theory: when Ω(μ) �= μ.

• Yaari’s dual theory: when u is linear and Ω(μ) is a PWF.

• Rank-dependent expected utility theory: when Ω(μ) is a PWF.26

• Gul’s disappointment aversion model: when Ω(μ) = μ(1 +β)/(1 +βμ), β≥ 0.

• KR’s loss aversion model: when Ω(μ) = μ+Λ(1 −μ)μ, Λ ≥ 0.27

4. Stability and Ω-intervals

The model as presented in Section 3 allows preferences to be context dependent, that
is, Vij(Lij(d)) �= Vik(Lik(d)) for j �= k. Economists, however, desire models of decision
making that obey context invariance, or stability, both because they seek a theory of
decision that can explain choices across multiple domains and because they view sta-
bility as an essential aspect of rationality (Kahneman (2003)).28 Stability requires that
Vij(Lij(d)) = Vi(Lij(d)) for every coverage j. In particular, stability requires that a house-
hold’s utility and probability distortion functions are context invariant.

A0. Stability. Both uij(·) = ui(·) and Ωij(·) =Ωi(·) for all j.

Under stability, the principle of revealed preference implies that Vi(Lij(d
∗)) ≥

Vi(Lij(d)) for every deductible d ∈ Dj when household i chooses deductible d∗ ∈ Dj

under coverage j. It follows that a household’s choice of deductible implies bounds on
its distorted probability Ωi(μij), which bounds are defined in terms of utility differences
among deductible options:

LBij ≤Ωi(μij) ≤ UBij�

where

LBij ≡ max
{

0� max
d>d∗ Δij

}
and UBij ≡ min

{
1� min

d<d∗ Δij

}
26Because all deductible lotteries are in the loss domain, the model also nests cumulative prospect theory

in our setting (Tversky and Kahneman (1992)).
27Observe that the probability distortion function that corresponds to Gul disappointment aversion is a

PWF, but that the probability distortion function that corresponds to KR loss aversion is not a PWF (because
Ω(μ) =μ+Λ(1 −μ)μ can lie outside [0�1] for some μ ∈ (0�1) if Λ is large).

28Of course, nonstable subjective beliefs do not violate rationality (in the sense of Savage). But if sub-
jective beliefs are wholly nonstable—that is, if they are entirely context dependent and lack any domain-
general component—then we have an extreme “small worlds” problem (again, in the sense of Savage). We
cannot hope to develop any model of decision making that can explain choices across multiple domains,
even domains that are closely related or essentially similar. Instead, we can only hope to develop ad hoc
models, each capable of explaining choices within a specific domain.
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and

Δij ≡ (
ui

(
wi −pij(d)

) − ui
(
wi −pij

(
d∗)))

/
{[
ui

(
wi −pij(d)

) − ui
(
wi −pij(d)− d

)]
− [

ui
(
wi −pij

(
d∗)) − ui

(
wi −pij

(
d∗) − d∗)]}�

Let Iij ≡ [LBij�UBij]. We refer to Iij as the household’s Ω-interval for coverage j.
The model under stability has empirical content, but it is limited. Provided that Iij

is nonempty (i.e., LBij ≤ UBij), the model is rejected for a household only if (i) it has
identical claim probabilities in two lines of coverage j and k and (ii) its Ω-intervals for
coverages j and k do not intersect. In general, however, a household’s pricing menus
and claim probabilities differ across coverages. When this is the case, the model cannot
be rejected for the household if its Ω-intervals do not intersect. To increase the model’s
empirical content, it is necessary to impose additional structure on the household’s util-
ity and probability distortion functions. With this additional structure, we can use the
households’ Ω-intervals to conduct inference on ui(·) and Ωi(·) and draw conclusions
about the various behaviors and underlying models that are encompassed by the model.

4.1 CARA and plausibility

In addition to stability, we make two basic assumptions. The first is constant absolute
risk aversion (CARA).

A1. CARA. The ratio u′′
i (wi)/u

′
i(wi) is a constant function of wi.

This is the principal shape restriction on the utility function.29 Assuming CARA
has two key virtues. First, ui(·) is fully characterized by a single household-specific
parameter—the coefficient of absolute risk aversion, ri ≡ −u′′

i (wi)/u
′
i(wi). Second, the

bounds of the Ω-intervals do not depend on wealth wi, which is unobserved:30

Δij = (
exp

(
ripij(d)

) − exp
(
ripij

(
d∗)))

/
{[

exp
(
ripij(d)

) − exp
(
ri

(
pij(d)+ d

))]
− [

exp
(
ripij

(
d∗)) − exp

(
ri

(
pij

(
d∗) + d∗))]}�

CARA is a common assumption in economics. However, the lack of a wealth ef-
fect is troubling to some, particularly those who believe that decreasing absolute risk
aversion is more plausible. This leads some to assume constant relative risk aversion
(CRRA). It is easy to show that for reasonable levels of wealth, the utility differences
among deductible options under CRRA—which assumes that the coefficient of relative

29Observe that CARA implicitly relies on two presumptions: (i) ui(·) is twice differentiable and (ii) u′
i(w) �=

0 for all w. Of course, the latter presumption follows from the fact that ui(·) is a utility function, which
implies that it is increasing.

30If r = 0, then Δij = [pij(d)−pij(d
∗)]/[d∗ − d].
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risk aversion, ρi ≡ wi × ri, is a constant function of wealth—are very similar to those
under CARA. This is because the deductibles are small relative to wealth,31 and thus
what matters is the local curvature of the utility function around initial wealth.32 Conse-
quently, assuming CRRA instead of CARA yields very similar results, as we show in Sec-
tion B of the Supplement.33 We also show that another class of utility functions used in
the literature—namely, those with a negligible third derivative (NTD) (Cohen and Einav
(2007), Barseghyan, Prince, and Teitelbaum (2011))—yields very similar results as well.

The second basic assumption is plausibility.

A2. Plausibility. There exists ri ≥ 0 such that LBij ≤ UBij for all j.

Plausibility requires that there exists a positive coefficient of absolute risk aversion
such that the household’s Ω-intervals are nonempty. Stated another way, it requires that
there exist a concave utility function and three distorted claim probabilities (one for
each coverage) that together can rationalize the household’s choices.34 The requirement
that there exist some ri such that LBij ≤ UBij is a prerequisite for making any inferences
about ui(·) and Ωi(·). Restricting ri ≥ 0 is motivated by the law of diminishing marginal
utility.

In what follows, we also restrict ri ≤ 0�0108. Placing an upper bound on ri is neces-
sary to make checking plausibility computationally feasible. We set the upper bound at
0�0108 for reasons we explain below in Section 5. Increasing the upper bound on ri would
not substantially change our results; see Section C of the Supplement.

Altogether, 541 households (13�0 percent) violate plausibility. Of these households,
virtually every one chose an auto collision deductible of $200. Given the pricing menu
for auto collision coverage, this is an implausible choice for nearly every household. The
intuition is best illustrated in the case of linear utility (r = 0). For auto collision cover-
age, the pricing rule, p(d) = (g(d) · p̄)+ δ, is such that g(100) = 1�15, g(200) = 1�00, and
g(250) = 0�85. For any base price p̄, therefore, the choice of $200 implies

LB = p(200)−p(250)
250 − 200

= 0�15
50

p̄ and UB = p(100)−p(200)
200 − 100

= 0�15
100

p̄�

Hence, the lower bound exceeds the upper bound, whatever the base price. The intu-
ition is straightforward: if a household’s distorted claim probability is high enough that
it prefers a deductible of $200 over a deductible of $250, then it also should prefer $100
over $200. Conversely, if the household’s distorted claim probability is low enough that it
prefers $200 over $100, then it also should prefer $250 over $200. Allowing r > 0 disrupts

31Each of the households in our sample owns a home and at least one auto.
32Note that under CRRA, the household’s absolute risk aversion, ri = ρi/wi, can be driven by its wealth or

its relative risk aversion. Hence, the model implicitly allows for heterogeneity both in wealth and in utility
curvature.

33The CRRA results are robust to substantial changes in wealth. It follows that our results are also robust
to a broader class of risk preferences, hyperbolic absolute risk aversion (HARA), provided that the absolute
value of the additive term is not too large relative to wealth.

34Observe that plausibility embeds a restriction contained in the definitions of LBij and UBij , namely
that the household’s distorted claim probabilities lie between 0 and 1.
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this logic only for absurd levels of absolute risk aversion; see Section C of the Supple-
ment.

We note that violations of plausibility are not an artifact of assuming CARA. We find
very similar violation rates under CRRA and NTD utility. Given this and the fact that
the model nests expected utility theory and several of the leading alternative models, we
treat the households that violate plausibility as nonrationalizable and drop them moving
forward. We refer to the remaining subsample of 3629 households that satisfy plausibility
as the rationalizable households.35

4.2 Shape restrictions on Ω

We complete the model with shape restrictions on the probability distortion function.
The principal restriction is monotonicity, which by itself does not impose parametric

restrictions on Ωi(·).

A3. Monotonicity. If μij ≤ μ̃ij , then Ωi(μij)≤Ωi(μ̃ij).

Monotonicity requires that the probability distortion function is increasing. It is a
standard assumption in prospect theory and other models that feature probability trans-
formations. Kahneman and Tversky (1979, p. 280) go so far as to say that it is a “natural”
assumption. By definition, a probability distortion function that satisfies monotonicity
is a PWF. In the case of our model, monotonicity ensures that the model obeys stochastic
dominance in objective risk (e.g., Ingersoll (2008)). It also places restrictions on subjec-
tive beliefs, depending on the underlying model. For instance, if the underlying model is
subjective expected utility theory, monotonicity restricts subjective beliefs to be mono-
tone transformations of objective risk. This is less restrictive, however, than the usual
approach taken in the literature—assuming that subjective beliefs correspond to objec-
tive risk (see Barseghyan et al. (2015b)).

While we always impose monotonicity in the first instance, we often proceed to con-
sider four additional shape restrictions on Ωi(·), adding them to the model sequentially
in order of increasing strength.

The first two are quadraticity and linearity.

A4. Quadraticity. Ωi(μij)= a+ bμij + c(μij)
2, where b ≥ 0 and c ≥ −b/2.

A5. Linearity. Ωi(μij) = a+ bμij , where b ≥ 0.

35This raises an intriguing question for future research: What model could rationalize the choices of the
households that violate plausibility? There are, of course, numerous other models that one could study.
However, their potential to rationalize the choices of the households in our sample is unclear. Take, for
example, an expected utility model with state-dependent utility (Karni (1985)). While a state-dependent
utility model may be apposite in a number of insurance settings (e.g., flight insurance, life insurance, catas-
trophic health insurance, and disability insurance), we believe it is not well suited to ours. In our setting,
households are not insuring against death or disability, where it seems reasonable that the utility of money
would depend on the state of the world, but rather against damage to replaceable property, where it does
not.
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Quadraticity and linearity require that the probability distortion function be
quadratic and linear, respectively. The parameter restrictions on b and c in A4 and on
b in A5 follow from monotonicity. A quadratic specification parsimoniously allows for
nonlinear distortions; importantly, it is sufficiently flexible to capture the left side of the
classic inverse-S shape. The left side is what is relevant for our data: 98�1 percent of the
claim probabilities in the rationalizable subsample lie between zero and 0�16, and 99�8
percent lie between zero and 0�25. A linear specification is more restrictive, permitting
only linear distortions. It turns out, however, that nearly every household that satisfies
quadraticity also satisfies linearity.36

The final two restrictions are unit slope and zero intercept.

A6. Unit Slope. Ωi(μij) = a+μij .

A7. Zero Intercept. Ωi(μij)= μij .

Unit slope requires that the probability distortion function is linear and perfectly
sensitive to changes in probability. Zero intercept requires unit slope and Ωi(0) = 0. Ob-
serve that imposing zero intercept effectively disallows probability distortions and re-
duces the model to objective expected utility theory.

5. Inference on r and Ω

Table 1, column (a) reports the percentage of rationalizable households that satisfy each
shape restriction on Ωi(·). To be clear, a household satisfies a shape restriction if there
exists some probability distortion function that both satisfies the restriction and is con-
sistent with the household’s Ω-intervals for some ri ∈ [0�0�0108]. Roughly, five in six ra-

Table 1. Shape restrictions on Ω. Rationalizable subsample (3629 households).

(a) (b) (c) (d)
Percent of

Households
Satisfying

Restriction

Ratio of Average Size of
Ω-Intervals to Average

Size of BMOT 95 Percent
Confidence Band

Average Reduction in
Size of Ω-Intervals

Average
Value of
Q (PP)Shape Restriction PP Percent

Monotonicity 84�8 4�4 24�1 3�17 0�6
Quadraticity 82�0 6�2 28�4 2�59 1�9
Linearity 80�4 8�2 41�7 2�06 2�0
Unit slope 61�6 14�0 69�2 0�98 3�6
Zero intercept 39�6 15�6 100�0 0�00 11�9

Note: PP stands for percentage points. In column (b), we calculate the average reduction in the size of the Ω-intervals due
to a shape restriction as follows: (i) we restrict attention to the subsample of rationalizable households that satisfy the shape
restriction and (ii) we compare, for each household in this subsample, the size of its Ω-intervals before imposing any shape
restrictions (calculated at the minimum ri for which the household satisfies plausibility) to the size of its Ω-intervals after
imposing the shape restriction (calculated at the minimum plausible ri for which the household satisfies the shape restriction).
In column (c), we calculate the size of the Ω-intervals under a shape restriction in the same manner.

36See Table 1, column (a).
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tionalizable households satisfy monotonicity; four in five satisfy quadraticity and linear-
ity; three in five satisfy unit slope; and two in five satisfy zero intercept.37

We emphasize that the relatively low success rate of the zero intercept model (i.e.,
the objective expected utility model) is not an artifact of restricting ri ≤ 0�0108. In fact,
this upper bound on ri was chosen to maximize the success rate of the zero intercept
model. What is more, increasing the upper bound on ri would not substantially change
our results. For further discussion, see Section C of the Supplement.

5.1 Minimum plausible r

When a rationalizable household satisfies a shape restriction on Ωi(·), it satisfies the re-
striction for more than one plausible value of ri. We focus on the minimum plausible
ri—that is, the minimum plausible value of ri for which the household satisfies the re-
striction. We focus on the minimum plausible ri for two reasons. The first is the Rabin
(2000) critique, which implies that relying on large values of ri to rationalize aversion
to modest-stakes risk is problematic, because large values of ri imply absurd levels of
aversion to large-stakes risk. The second reason is that once we restrict attention to the
small values of ri for which the household satisfies the restriction, focusing on the small-
est value is effectively without loss of generality; the household’s Ω-intervals are effec-
tively the same whether we fix ri at the minimum plausible value or at some other small
value. Moving forward, we always pin down a household’s Ω-intervals by fixing ri at its
minimum plausible value.

Figure 1 plots, for each shape restriction on Ωi(·), the distribution of the minimum
plausible ri among the rationalizable households that satisfy the restriction. In general,
the figure evinces that there is heterogeneity in the minimum plausible ri across house-
holds (cf. Cohen and Einav (2007)). More specifically, it reveals two important facts. First,
the distribution is skewed to the right under each restriction, and indeed the median is
zero under each restriction, save only zero intercept. This implies that once we allow
for probability distortions (even linear, unit slope distortions), a majority of rationaliz-
able households do not require concave utility to rationalize their choices. Second, the
mean strictly decreases as we relax the shape restrictions on Ωi(·) (i.e., move from zero
intercept to monotonicity). This implies that as we allow for more flexible probability
distortions, the rationalizable households on average require less utility curvature to ra-
tionalize their choices.

Figure 2 displays the percentage of rationalizable households that satisfy each shape
restriction as we increase the upper bound on ri from zero to 0�0108. It reveals two ad-
ditional key facts about the distribution of the minimum plausible ri. First, between 70
and 80 percent of rationalizable households do not require a positive ri to satisfy mono-
tonicity, quadraticity, or linearity, and nearly 50 percent do not require a positive ri to sat-
isfy unit slope. Put differently, even if we impose linear utility, the model can rationalize
the choices of the vast majority of rationalizable households if we allow for monotone,

37Each shape restriction can be represented by a system of linear inequalities. The statistics reported in
the table are constructed by checking for each household whether the implied system of inequalities has a
nonempty solution.
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Figure 1. Distribution of minimum plausble ri. Each graph is a histogram of the minimum
plausible ri for a given shape restriction on Ωi(·).

quadratic, or linear probability distortions, and it can rationalize the choices of nearly a

majority of rationalizable households if we allow for unit slope probability distortions.

By contrast, if we allow for concave utility but do not allow for probability distortions,

the model can rationalize the choices of less than 40 percent of rationalizable house-

holds. Second, as we increase the upper bound on ri above zero, the percentage of ra-

tionalizable households that satisfy monotonicity, quadraticity, linearity, and unit slope

increases by 5–10 percentage points and then levels off once the upper bound on ri sur-

passes about 0�003.38 On the one hand, this confirms that there is important hetero-

geneity in the minimum plausible ri. On the other hand, however, it suggests that once

we allow for monotone, quadratic, linear, or even unit slope probability distortions, we

gain relatively little by admitting this heterogeneity, and almost nothing by allowing for

large values of ri.

38In Section D of the Supplement, we discuss the intuition for why the percentage of rationalizable
households that satisfy monotonicity increases as we increase the upper bound on ri.
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Figure 2. Percentage of rationalizable households that satisfy each shape restriction as we in-
crease the upper bound on ri.

5.2 Ω-Intervals

Figure 3 depicts the average bounds on Ω(μ) under each nondegenerate shape restric-
tion (i.e., A3–A6). In particular, each frame displays, for a given restriction, kernel regres-
sions of the lower and upper bounds of the Ω-intervals as a function of μ for the sub-
sample of rationalizable households that satisfy the restriction.39 We can draw several
conclusions from the Ω-intervals depicted in Figure 3.

First, the Ω-intervals evidence large probability distortions. Under each nondegen-
erate shape restriction, the households’ Ω-intervals are consistent with a probability dis-
tortion function that substantially overweights small probabilities. Under monotonicity,
for instance, the midpoints of the Ω-intervals imply Ω(0�02) = 0�11, Ω(0�05) = 0�17, and

39To lessen the first-order bias term typical of kernel regression, we use a fourth-order Gaussian ker-
nel. The bandwidth used in the regressions is chosen via cross-validation. Specifically, we obtain via cross-
validation an optimal bandwidth for the lower points of the Ω-intervals and an optimal bandwidth for the
upper points of the Ω-intervals. We then use the average of the two bandwidths, which leads to under-
smoothing of the lower bound and some oversmoothing of the upper bound. For the lower bound, un-
dersmoothing obtains that the asymptotic distribution of the estimator is centered at zero (see, e.g., Jones
(1995), Horowitz (2009)). We report confidence bands that (pointwise in μ) cover the estimated regression
intervals with asymptotic probability 95 percent, using the nonparametric bootstrap procedure detailed in
Beresteanu and Molinari (2008, Section 3).
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Figure 3. Average bounds on Ω(μ). Each frame displays, for a nondegenerate shape restric-
tion, kernel regressions of the lower and upper bounds of the Ω-intervals as a function of μ for
the subsample of rationalizable households that satisfy the restriction. We use a fourth-order
Gaussian kernel. The bandwidth is chosen via cross-validation. Specifically, we obtain via cross–
validation an optimal bandwidth for the lower points of the Ω-intervals (0�016) and an optimal
bandwidth for the upper points of the Ω-intervals (0�003). We then use the average of the two
bandwidths. We report confidence bands that (pointwise in μ) cover the estimated Ω-intervals
with asymptotic probability 95 percent, using the nonparametric bootstrap procedure detailed
in Beresteanu and Molinari (2008, Section 3).

Ω(0�10) = 0�25, and indeed even the lower bounds of the Ω-intervals imply Ω(0�02) =
0�07, Ω(0�05) = 0�11, and Ω(0�10) = 0�15.40

Second, the Ω-intervals suggest a probability distortion function that bears a striking
resemblance to the probability weighting function originally posited by Kahneman and
Tversky (1979), in the range of our data. In particular, the Ω-intervals are consistent with
a function that exhibits overweighting and subadditivity for small probabilities, exhibits
mild insensitivity to changes in probabilities, and trends toward a positive intercept as
μ approaches zero (though we have relatively little data for μ< 0�005).

40The results are very similar under quadraticity, linearity, and unit slope. Under quadraticity, for exam-
ple, the midpoints imply Ω(0�02) = 0�11, Ω(0�05) = 0�16, and Ω(0�10) = 0�22, and the lower bounds imply
Ω(0�02) = 0�07, Ω(0�05) = 0�12, and Ω(0�10) = 0�14.
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Figure 4. Inference on Tversky–Kahneman and Prelec PWFs.

Third, if we assume that Ωi(·) has a specific parametric form, we can utilize the Ω-
intervals to conduct inference on the shape parameters. For example, Figure 4 super-
imposes the one-parameter probability weighting functions suggested by Tversky and
Kahneman (1992) (panel A) and Prelec (1998) (panel B), in each case for three parameter
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values γ ∈ {0�40�0�55�0�69}, over the monotone Ω-intervals.41 In the case of the Tversky–
Kahneman PWF, the Ω-intervals favor γ = 0�40. In the case of the Prelec PWF, the Ω-
intervals favor γ = 0�55.

5.3 Benefits and costs of shape restrictions on Ω

A key advantage of our approach is that it makes transparent the benefits and costs of
restricting the shape of Ωi(·). The benefit of adding shape restrictions on Ωi(·) is a gain
in precision—that is, they shrink the Ω-intervals. Table 1, column (b) reports for each
shape restriction the average reduction in the size of the Ω-intervals due to the restric-
tion. It reveals that each shape restriction yields large gains in precision. Monotonic-
ity alone shrinks the Ω-intervals roughly by a quarter. Moving to linearity shrinks them
roughly by two-fifths, and assuming unit slope shrinks them roughly by two-thirds. Of
course, imposing zero intercept collapses the Ω-intervals to points. To put these gains
in precision into perspective, we compare the size of the Ω-intervals under each shape
restriction to the size of the 95 percent confidence bands on Ω(·) that result from semi-
nonparametric MLE of the model, as reported in BMOT. Table 1, column (c) reports,
under each restriction, the ratio of the average size of the Ω-intervals to the average size
of the BMOT 95 percent confidence bands on Ω(·). Roughly, the ratio is three to one un-
der monotonicity, two and a half to one under quadraticity, two to one under linearity,
and one to one under unit slope.

The cost of adding shape restrictions is a loss of model fit, that is, the model can ra-
tionalize the choices of fewer households. The percentage of rationalizable households
that satisfy a shape restriction is a telling measure of model fit. However, it does not take
into account the extent to which violating households fail to satisfy the restriction. For
this reason, we introduce a second measure, tailored to our approach, that accounts for
the extent of the violations. It is constructed as follows. For a given assumption A, we
first assign each rationalizable household a number Qi ≥ 0. For households that satisfy
A for some ri ∈ [0�0�0108], we set Qi = 0. For households that violate A, we fix ri = 0 and
set Qi equal to the solution to the problem

minimize ωiL +ωiM +ωiH

such that i satisfies A with Iij = [LBij −ωij�UBij +ωij] for all j ∈ {L�M�H}�
where ωij =ωij +ωij and ωij�ωij ≥ 0 for all j ∈ {L�M�H}�

Intuitively, we take the household’s Ω-intervals at ri = 0, imagine perturbing them such
that the household satisfies the assumption, and set Qi equal to the minimum required
perturbation.42 We then take the average value of Qi among the rationalizable house-
holds: Q = ∑

i Qi/3629. Table 1, column (d) reports Q for each shape restriction. The

41The Tversky–Kahneman PWF is Ω(μ)= μγ/[μγ + (1 −μ)γ]1/γ with 0 < γ ≤ 1. The Prelec PWF is Ω(μ)=
exp[−(− lnμ)γ] with γ > 0.

42We note that fixing ri = 0 is conservative: it forces Ωi(·) to do all the work of rationalizing the house-
hold’s choices. Of course, one could fix ri at any plausible value. For example, one could fix ri at the relevant
estimate reported by BMOT (0�00049). This would yield very similar results.
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minimum perturbations that would be required for every rationalizable household to
satisfy monotonicity, quadraticity, linearity, and unit slope are relatively small—ranging
from less than one percentage point on average in the case of monotonicity to less than
four percentage points on average in the case of unit slope. By comparison, the mini-
mum perturbations that would be required for every rationalizable household to satisfy
zero intercept are relatively large—roughly 12 percentage points on average.

Although the foregoing cost–benefit accounting does not readily lend itself to a
marginal analysis that selects the optimal shape restriction on Ωi(·), it unequivocally
evidences the importance of probability distortions in general. On the one hand, if we
do not allow for probability distortions, the model not only fails to explain the choices
of three in five rationalizable households, it fails badly according to the Q statistic. On
the other hand, if we allow for probability distortions, we greatly improve the model’s fit
(even permitting only linear, unit slope distortions) and still achieve fairly tight bounds
(even imposing only monotonicity).

5.4 More on Q

There is a noteworthy kinship between the Q statistic and the efficiency index developed
by Afriat (1967, 1972) and Varian (1990, 1993). The Afriat–Varian efficiency index mea-
sures the extent to which choice data violate the Generalized Axiom of Revealed Prefer-
ence (GARP); in other words, it measures the extent to which choice data are inconsis-
tent with utility maximization (with a concave utility function). The Q statistic measures
the extent to which choice data are inconsistent with expected utility maximization as
generalized by the probability distortion model (with a CARA utility function and a given
shape restriction on Ωi(·)). Of course, the Q statistic and the Afriat–Varian efficiency in-
dex have different units of measurement: the Q statistic is denominated in probability
units whereas the Afriat–Varian efficiency index is denominated in budget units (i.e.,
wealth). However, we can readily translate the Q statistic into wealth. For example, sup-
pose that we want to compute the expected wealth loss associated with the deviations
from monotonicity among the rationalizable households in our sample. Equipped with
Iij and ωij (as defined in Section 5.3) for all i and j, we can compute, for each household
and coverage, the smallest difference between the expected value of the household’s ac-
tual choice and the expected value of the household’s predicted choice under the model
with a monotone Ω function.43 Doing this, we find that among the rationalizable house-
holds that violate monotonicity, the average expected wealth loss is $23 (or a 15�1 percent
average expected utility loss).

Furthermore, we can apply a similar logic to measure the extent of the plausibility vi-
olations among the nonrationalizable households in our sample. As noted above, virtu-
ally every nonrationalizable household chose an auto collision deductible of $200, which
is an implausible choice given the menu of prices. Per our model, we can ask, “What
is the smallest deviation from rationality that can explain this choice?” The $200 de-
ductible would be the smallest deviation possible if the household’s optimal deductible
choice was either $100 or $250. Thus, the Ω(μ) at which the expected utility cost of the

43For instance, suppose for a given household i that ωiL > 0, ωij = 0 for j = M�H, and ωij = 0 for j =
L�M�H. The household’s wealth loss is given by (−p(d∗

iL)− LBiLd
∗
iL)− maxdiL {−p(d∗

iL)− (LBiL −wiL)diL}.
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deviation is the smallest is the Ω(μ) at which the household is indifferent between these
deductibles, that is, Ω(μ) = (p(250) − p(100))/(250 − 100).44 Equipped with this Ω(μ),
we can measure the differences in expected utility between choosing a deductible of
$100 or $250, on the one hand, and $200, on the other.45 Doing this, we find that the
average expected utility loss is $9�58 (or 4�7 percent).

In sum, one can use the Q statistic to measure the wealth/utility cost of deviating
from a given model of risky choice. Moreover, for a researcher estimating a model of
risky choice using parametric methods, the Q statistic also provides information that
may be useful in guiding the econometric specification. Under the probability distortion
model, for example, violations of plausibility suggest the need for choice noise (i.e., dis-
turbances to the von Neumann–Morgenstern (vNM) utility function), while violations of
monotonicity suggest the need for choice noise or preference noise (e.g., disturbances to
the Ω function or its parameters), and in either case the Q statistic is informative about
the presence and amount of such noise.

6. Classification

In the previous section, we utilize the rationalizable households’ Ω-intervals—which
come out of stability and revealed preference—to begin to draw conclusions about the
nature of their risk preferences. In this section, we use the Ω-intervals to classify the
rationalizable households into preference types, each of which corresponds to a special
case of the model. In addition to providing evidence about the distribution of preference
types, the classification results reinforce the importance of probability distortions. The
results also reveal, however, that certain forms of probability distortions have more pur-
chase within our application than others. In particular, the results strongly favor the unit
slope form, which we view as a parsimonious representation of KT probability weight-
ing, over the forms that correspond to Gul disappointment aversion and KR loss aver-
sion.

6.1 Concave utility and probability distortions

As a first step, we consider the following set of preference types.

• Expected value theory: when r = 0 and Ω(μ) = μ.

• Objective expected utility theory: when r ∈ [0�0�0108] and Ω(μ) = μ.

• Yaari’s dual theory: when r = 0 and Ω(μ) is a PWF.

• Rank-dependent expected utility theory: when r ∈ [0�0�0108] and Ω(μ) is a PWF.

Expected value theory allows for neither concave utility nor probability distortions.
Objective expected utility theory allows for concave utility but not probability distor-
tions. Yaari’s dual theory allows for monotone probability distortions but not concave
utility. Rank-dependent expected utility theory allows for concave utility and monotone
probability distortions.

44Here we assume that r = 0. The utility cost is the smallest under linear utility.
45It is straightforward to see that with linear utility and this Ω(μ), this utility difference is the same for

both the $100 versus $200 comparison and the $250 versus $200 comparison.
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Table 2. Classification. Rationalizable subsample (3629 households).

Imbens–Manski/Stoye
Lower Upper 95 Percent

Preference Type Limit Limit Confidence Interval

Panel A
Expected value theory [r = 0 & Ω(μ) = μ] 0�00 2�95 0�00 2�96
Objective expected utility theory [0 ≤ r ≤ 0�0108 & Ω(μ)= μ] 1�02 39�63 1�01 39�65
Yaari’s dual theory [r = 0 & Ω(μ) is a PWF] 41�44 80�05 41�42 80�07
Rank-dependent EUT [0 ≤ r ≤ 0�0108 & Ω(μ) is a PWF] 3�78 84�84 3�77 84�86

Panel B
Expected value theory [r = 0 & Ω(μ) = μ] 0�00 2�95 0�00 2�96
Objective expected utility theory [0 ≤ r ≤ 0�0108 & Ω(μ)= μ] 13�39 39�63 13�38 39�65
Gul’s disappointment aversion model with r = 0 2�92 29�15 2�91 29�17

[Ω(μ) = μ(1 +β)/(1 +βμ)]
Gul’s disappointment aversion model 0�44 42�99 0�44 43�01

[0 ≤ r ≤ 0�0108 & Ω(μ)= μ(1 +β)/(1 +βμ)]

Panel C
Expected value theory [r = 0 & Ω(μ) = μ] 0�00 2�95 0�00 2�96
Objective expected utility theory [0 ≤ r ≤ 0�0108 & Ω(μ)= μ] 15�98 39�63 15�97 39�65
KR’s loss aversion model with r = 0 [Ω(μ)= μ+Λ(1 −μ)μ] 1�74 25�38 1�73 25�40
KR’s loss aversion model 0�85 42�22 0�85 42�24

[0 ≤ r ≤ 0�0108 & Ω(μ)= μ+Λ(1 −μ)μ]

Panel D
Expected value theory [r = 0 & Ω(μ) = μ] 0�00 2�95 0�00 2�96
Objective expected utility theory [0 ≤ r ≤ 0�0108 & Ω(μ)= μ] 10�50 39�63 10�48 39�65
Unit slope distortions model with r = 0 [Ω(μ) = a+μ] 18�32 47�45 18�31 47�47
Unit slope distortions model [0 ≤ r ≤ 0�0108 & Ω(μ)= a+μ] 3�64 61�59 3�63 61�61

Panel E
Objective expected utility theory [0 ≤ r ≤ 0�0108 & Ω(μ)= μ] 4�60 39�63 4�59 39�65
Gul’s disappointment aversion model with r = 0 0�17 29�15 0�16 29�17

[Ω(μ) = μ(1 +β)/(1 +βμ)]
KR’s loss aversion model with r = 0 [Ω(μ)= μ+Λ(1 −μ)μ] 0�11 25�38 0�11 25�40
Unit slope distortions model with r = 0 [Ω(μ) = a+μ] 15�90 47�45 15�88 47�47
Percentage consistent with all four models 18�57
Percentage consistent with at least one model 58�58

Note: For each preference type, the upper limit is the percentage of rationalizable households with Ω-intevals that are
consistent with that preference type. For a core preference type (italicized), the lower limit is the percentage of rationalizable
households with Ω-intervals that are consistent with that preference type but are inconsistent with the other core preference
type. For a noncore preference type, the lower limit is the percentage of rationalizable households with Ω-intervals that are
consistent with that preference type but are inconsistent with both core preference types. Imbens–Manski/Stoye confidence
intervals uniformly cover each element of the bound (i.e., [lower limit�upper limit]) on each preference type, with asymptotic
probability 95 percent.

Table 2, panel A reports for each preference type in the set the percentage of rational-
izable households with Ω-intervals that are consistent with that preference type. We re-
fer to this percentage as the upper limit for the preference type, because some rational-
izable households have Ω-intervals that are consistent with more than one preference
type. This occurs for two reasons. First, there are overlaps among the preference types.
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In particular, expected value theory is nested by each of the others; objective expected
utility theory and Yaari’s dual theory are nested by rank-dependent expected utility and
share a degenerate special case (expected value theory); and rank-dependent expected
utility theory nests each of the others. Second, some rationalizable households have Ω-
intervals that are consistent with multiple nonnested preference types, even excluding
common special cases. Specifically, some rationalizable households are consistent with
both objective expected utility theory and Yaari’s dual theory (the only nonnested pair
in the set of preference types), even excluding those that are consistent with expected
value theory.

Looking at the upper limits, we find that 3�0 percent of rationalizable households
have Ω-intervals that are consistent with expected value theory. These households re-
quire neither concave utility nor probability distortions to explain their choices. Further-
more, we find that 39�6 percent of rationalizable households have Ω-intervals that are
consistent with objective expected utility theory, 80�1 percent have Ω-intervals that are
consistent with Yaari’s dual theory, and 84�8 percent are consistent with rank-dependent
expected utility.46 In other words, roughly two in five rationalizable households make
choices that are consistent with a model with concave utility and nondistorted prob-
abilities, four in five make choices that are consistent with a model with linear utility
and monotone probability distortions, and five in six are consistent with a model with
concave utility and monotone probability distortions. Stated another way, concave util-
ity alone is sufficient to explain the choices of roughly two in five rationalizable house-
holds; monotone probability distortions alone are sufficient to explain the choices of
four in five rationalizable households; and concave utility and monotone probability
distortions together can explain the choices of five in six rationalizable households.

Table 2, panel A also reports the lower limit for each preference type in the set. To
understand the lower limits, it is helpful to distinguish between (i) the “core” nonnested
preference types in the set (objective expected utility theory and Yaari’s dual theory)
and (ii) the “noncore” preference types in the set, which are either a degenerate special
case of both core types (expected value theory) or a generalization of both core types
(rank-dependent expected utility theory). For a core preference type, the lower limit is
the percentage of rationalizable households with Ω-intervals that are consistent with
that preference type but are inconsistent with the other core preference type. For a non-
core preference type, the lower limit is the percentage of rationalizable households with
Ω-intervals that are consistent with that preference type but are inconsistent with both
core preference types.

Turning to the lower limits, we find that 1�0 percent of rationalizable households
have Ω-intervals that are consistent with objective expected utility theory but not with
Yaari’s dual theory. In other words, we find that for one in 100 rationalizable households,
(i) they require concave utility to explain their choices and (ii) their choices cannot be
explained solely by monotone probability distortions. In addition, we find that 41�4 per-
cent of rationalizable households have Ω-intervals that are consistent with Yaari’s dual

46Note that the rationalizable households with Ω-intervals that are consistent with rank-dependent ex-
pected utility theory are the same households that satisfy monotonicity in Section 5.
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theory but not with objective expected utility theory. That is, we find that for more than
two in five rationalizable households, (i) they require monotone probability distortions
to explain their choices and (ii) their choices cannot be explained solely by concave util-
ity. Together with the lower limit on rank-dependent expected utility theory (3�8 per-
cent),47 which implies that less than one in 25 rationalizable households requires both
concave utility and monotone probability distortions to explain their choices, these
lower limits imply that concave utility is necessary to explain the choices of less than
one in 20 rationalizable households (4�8 percent), whereas monotone probability distor-
tions are necessary to explain the choices of nearly one in two rationalizable households
(45�2 percent).48

The results clearly evince the importance of probability distortions. The upper limits
imply that probability distortions alone can explain the choices of four in five rational-
izable households, twice as many as can be explained by concave utility alone. At the
same time, the lower limits imply that probability distortions are required to explain
the choices of nearly half of the rationalizable households, almost 10 times as many as
require concave utility to explain their choices. In short, the results indicate that the
marginal contribution of probability distortions is high. Even allowing for concave util-
ity, the gain in explanatory power from allowing for probability distortions is large. By
contrast, the marginal contribution of concave utility is low. Once we allow for probabil-
ity distortions, the gain in explanatory power from allowing for concave utility is small.

6.2 Gul disappointment aversion, KR loss aversion, and unit slope distortions

As noted above, the probability distortion function can capture a wide range of differ-
ent behaviors, depending on the underlying model. We focus on three models, each of
which implies a specific restriction on the probability distortion function: Gul disap-
pointment aversion, which implies Ω(μ) = μ(1 + β)/(1 + βμ); KR loss aversion, which
implies Ω(μ) = μ+Λ(1−μ)μ; and unit slope distortions, which imply Ω(μ) = a+μ, and

47The lower limit for expected value theory is zero by definition, because expected value theory is a de-
generate special case of both core preference types.

48Table 5 also reports Imbens–Manski–Stoye confidence intervals that uniformly cover each element of
the bound on each preference type, with asymptotic probability 1 − α (Imbens and Manski (2004), Stoye
(2009)). Formally, let the bound on each type be [θ̂l� θ̂u], where θ̂l is the lower limit and θ̂u is the upper
limit. Observe that each is a frequency estimator, so the estimator of each of their variances is σ̂2

j = θ̂j(1 −
θ̂j)/n, j = l�u. Then a confidence interval that is asymptotically valid uniformly over a large class of data
generating processes is [θ̂l − (cασ̂l/

√
n)� θ̂u + (cασ̂u/

√
n)], where cα solves

�

(
cα +

√
n(θ̂u − θ̂l)

max{σ̂u� σ̂l}
)

−�(−cα)= 1 − α�

and where � is the standard normal cumulative distribution function. Validity follows because Imbens–
Manski–Stoye assumptions are satisfied in our context, in particular because P(θ̂u ≥ θ̂l) = 1 by construction
and hence uniformly, and therefore Lemma 3 in Stoye (2009) applies. In the case of expected value theory,
in which the lower limit is zero by construction, our confidence intervals are obtained using a one-sided
confidence interval for the upper limit.
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which we view as a parsimonious representation of KT probability weighting.49 Note
that all three models are parameterized with a single parameter.

As a second step, we reclassify households over three additional sets of preference
types. The first set comprises objective expected utility theory and Gul’s disappointment
aversion model with r = 0, as the core preference types, plus expected value theory and
Gul’s model with r ∈ [0�0�0108], as the noncore preference types. The second set com-
prises objective expected utility theory and KR’s loss aversion model with r = 0, as the
core preference types, plus expected value theory and KR’s model with r ∈ [0�0�0108],
as the noncore preference types. The third set comprises objective expected utility the-
ory and the unit slope distortions model with r = 0, as the core preference types, plus
expected value theory and the unit slope model with r ∈ [0�0�0108], as the noncore pref-
erence types.

The results are reported in Table 2, panels B, C, and D, respectively. The results in
panels B and C imply that restricting Ω(·) to conform to Gul’s disappointment aver-
sion model or KR’s loss aversion model has two related effects: it substantially reduces
the model’s explanatory potential and it nearly eliminates the marginal contribution of
probability distortions. As before, the upper limit for expected value theory is 3�0 per-
cent, and allowing for concave utility (i.e., moving to the objective expected utility
model) raises the upper limit to 39�6 percent. However, allowing for Gul disappointment
aversion or KR loss aversion, as the case may be, raises the upper limit only to 29�2 per-
cent or 25�4 percent, respectively. Indeed, even if we allow for (i) concave utility and Gul
disappointment aversion or (ii) concave utility and KR loss aversion, as the case may
be, it raises the upper limit only to 43�0 percent or 42�2 percent, respectively. What is
more, the lower limits imply that only 3�4 percent of rationalizable households require
Gul disappointment aversion to explain their choices, and only 2�6 percent require KR
loss aversion. In short, the results imply that the marginal contribution of these behav-
iors/models is small.

By contrast, the results in panel D imply that unit slope distortions enhance the
model’s explanatory potential and make a substantial marginal contribution. The up-
per limits imply that unit slope distortions alone can explain the choices of nearly half
(47�5 percent) of rationalizable households, 20 percent more than can be explained by
concave utility alone (39�6 percent), and that unit slope distortions in combination with
concave utility can explain the choices of more than three in five (61�6 percent) rational-
izable households. At the same time, the lower limits imply that unit slope distortions
are necessary to explain the choices of nearly a fourth (22�0 percent) of rationalizable
households, almost 60 percent more than require concave utility to explain their choices
(14�1 percent).

As a final step, we reclassify households over a set that includes objective expected
utility theory and each of the Gul, KR, and unit slope models with r = 0, as the core
preference types, but includes no noncore preference types. The results are reported in
Table 2, panel E. In addition to reporting the upper and lower limits, panel E also reports

49It is straightforward to show that the unit slope form with a positive intercept satisfies overweighting
and subadditivity, as well as subproportionality. However, it does not satisfy subcertainty.
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the percentage of rationalizable households that are consistent with all four models and
the percentage that are consistent with at least one model. Again, the results point to
unit slope probability distortions as the behavior/model with the greatest explanatory
potential and marginal contribution. First, while the four models collectively can explain
the choices of nearly six in 10 rationalizable households, the unit slope model alone can
explain the choices of nearly five in 10. Second, unit slope distortions are necessary to
explain the choices of nearly one in six rationalizable households, while fewer than one
in 20 require concave utility to explain their choices, and fewer than one in 100 require
Gul disappointment aversion or KR loss aversion to explain their choices.

6.3 Power of revealed preference test

A question that arises in interpreting the results of this section (as well as the previ-
ous section) concerns the power of our revealed preference test of shape restrictions on
Ωi(·). Of course, the key challenge in measuring the power of any revealed preference
test lies in selecting the alternative model of choice. After all, the power of a test is a
function of the alternative, and there always exist alternatives against which the test will
have low power (Blundell, Browning, and Crawford (2003)). In our setting, for example,
a simple rule of always selecting the minimum deductible option is indistinguishable
from expected utility maximization (with or without probability distortions) with ex-
treme risk aversion, and hence our test of zero intercept (or any other shape restriction)
would have no power against this alternative.

In influential work on the topic of the power of revealed preference tests, Bronars
(1987) proposes uniform random choice as a general alternative to a null of optimiz-
ing behavior.50 Adopting Bronars’ alternative, we perform Monte Carlo simulations to
estimate the probability of satisfying various shape restrictions Ωi(·). More specifically,
we generate 200 simulated data sets, each comprising 3629 observations of three de-
ductibles choices (one for each coverage), where each choice is drawn randomly from
a uniform distribution over the coverage-specific options. We then compute the mean
pass rate of our test across the simulated data sets under five shape restrictions: mono-
tonicity, unit slope, KR loss aversion, Gul disappointment aversion, and zero intercept.
The results are reported in Table 3, column (b).

Computing these pass rates, however, provides only a first step toward the end goal
of assessing the success of the underlying model of choice. To that end, Beatty and Craw-
ford (2011) combine Bronars’ approach with Selten’s (1991) measure of predictive suc-
cess of area theories (i.e., theories that predict a subset of all possible outcomes) to fash-
ion a success measure for models of choice. Essentially, they measure success by the
difference between the test’s pass rate under the null and the pass rate under Bronars’
alternative. The intuition is that “a model should be counted as more successful in sit-
uations in which we observe both good pass rates and demanding restrictions” (Beatty
and Crawford (2011, p. 2785)). After all, if the pass rate under Bronar’s alternative is high,

50Bronars credits Becker (1962) for the basic idea. For a recent application of Bronars’ approach, see, for
example, Choi, Fisman, Gale, and Kariv (2007). For a thorough discussion of the topic, including a review of
Bronars’ approach and suggestions for alternative approaches, see Andreoni, Gillen, and Harbaugh (2013).
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Table 3. Power of revealed preference test. Rationalizable subsample (3629 households).

(a) (b) (c) (d)
Percentage of Households

Satisfying Restriction

Shape Restriction Actual

Uniform Random
Choice

95 Percent
Confidence Interval

Beatty–Crawford
Success Measure

Monotonicity 84�8 38�8 37�2 40�2 46�1
Unit slope 61�6 13�8 12�9 14�9 47�8
KR loss aversion 42�2 11�3 10�3 12�1 30�9
Gul disappointment aversion 43�0 11�4 10�6 12�3 31�6
Zero intercept 39�6 6�3 5�6 7�1 33�4

Note: Column (a) reports results for the actual data. Column (b) reports means across 200 simulated data sets, each com-
prising 3629 observations of three deductible choices (one for each coverage), where each choice is drawn randomly from a
uniform distribution over the coverage-specific options. Column (c) reports 95 percent confidence intervals for the means
reported in column (b). The Beatty–Crawford success measure is the difference between columns (a) and (b).

then the underlying model is not very demanding and consequently the revealed pref-
erence test reveals very little.51

Table 3, column (d) reports the Beatty–Crawford measure of the success of the model
under monotonicity, unit slope, KR loss aversion, Gul disappointment aversion, and
zero intercept. The results indicate that a model with monotone probability distortions
is substantially more successful than a model with no probability distortions (zero in-
tercept). What is more, the results strongly favor unit slope distortions over those im-
plied by KR loss aversion or Gul disappointment aversion. Indeed, the unit slope model
slightly outperforms even the general monotone model, while the KR and Gul models
slightly underperform the zero intercept model.52

7. Point estimation

The classification results provide evidence about the extent and nature of preference
heterogeneity. In many areas of research, however, economists study models that ab-
stract from heterogeneity in preferences (e.g., representative agent models) and seek a
single parameterization that best fits the data. In this section, we show how one can
utilize the Ω-intervals to point estimate the probability distortion function.

Intuitively, we find the Ω function that comes closest (in a sense we make precise) to
the monotone households’ Ω-intervals. More specifically, we find the single Ω function

51In the extreme, if the pass rate under Bronar’s alternative is 1, then the underlying model has no empir-
ical content, as any choice is consistent with the model, and the revealed preference test reveals nothing.

52Dean and Martin (forthcoming) propose a modification of Beatty and Crawford’s approach that, in
our application, calls for replacing Bronars’ alternative of uniform random choice in each coverage with an
alternative of random choice according to the marginal empirical distribution of choices in each coverage.
(Andreoni, Gillen, and Harbaugh (2013) propose a similar approach.) Naturally, under Dean and Martin’s
alternative, which is closer to the null, the pass rates are higher and the Beatty–Crawford statistics are lower
for each shape restriction. Nevertheless, the relative success of the shape restrictions are roughly the same.
See Table S4 in the Supplement.
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Table 4. Minimum distance Ω. Monotone subsample
(3079 households).

Parameter Estimate Std. Err.

a 0�055∗ 0�003
b 2�22∗ 0�14
c −14�88∗ 1�95
d 43�58∗ 8�65
e −54�45∗ 18�59
f 25�73 25�49

Note: 9237 observations (3079 × 3). ∗Significant at the 5 percent level.

that minimizes the average distance between these Ω-intervals and the function. We
then assess how well this minimum distance Ω fits the data. As before, we consider two
notions of fit. The first is the percentage of monotone households that the model can
rationalize when equipped with the minimum distance Ω. The second is the average
distance between the minimum distance Ω and their Ω-intervals.

7.1 Minimum distance Ω

We estimate the best linear predictor,53

Ω̃(μij)= a+ bμij + c(μij)
2 + d(μij)

3 + e(μij)
4 + f (μij)

5�

by finding the value of θ ≡ (a�b� c�d� e� f ) that minimizes, over every choice j of every
monotone household i, the average Euclidean distance between the point Ω̃(μij) and
the Ω-interval Iij .54 This distance is zero if Ω̃(μij) is contained in Iij ; otherwise, it equals
the Euclidean distance to the nearest bound of Iij . As before, we pin down Iij by fixing
the household’s coefficient of absolute risk aversion ri at its minimum plausible value
(here, the minimum plausible value under which the household satisfies monotonic-
ity). In Section F of the Supplement, we prove that under mild conditions (satisfied in
our data) the parameter vector θ is point identified, and we establish the consistency
and asymptotic normality of our sample analog estimator. We also demonstrate that its
critical values can be consistently approximated by nonparametric bootstrap.

The results are reported in Table 4 and depicted in Figure 5. The minimum distance
Ω, which is monotone on the relevant range,55 exhibits substantial overweighting of
small probabilities. For example, it implies that claim probabilities of 2 percent, 5 per-

53We specify a fifth-degree polynomial because it is flexible enough to closely approximate most mono-
tone functions. However, we do not restrict the parameters of the function to impose monotonicity. As it
turns out, the estimated function is monotone on the relevant range (see below).

54For a given point t ∈ R and interval T = [τL�τU ], the Euclidean distance between t and T is given by
d(t�T ) = infτ∈T |t − τ| = max{(τL − t)+� (t − τU)+}, where (z)+ = max(0� z).

55Specifically, it is increasing between 0 and 0�16, wherein lie 98�1 percent of the claim probabilities in
the rationalizable subsample.
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Figure 5. Minimum distance Ω.

cent, and 10 percent are distorted (overweighted) to 9 percent, 14 percent, and 17 per-
cent, respectively. We note that the results are very similar if we instead specify a lower
order polynomial, including even a first-degree function; see Section F of the Supple-
ment.

We emphasize that the minimum distance Ω is obtained without making paramet-
ric assumptions about the distribution of unobserved heterogeneity in preferences. In-
stead, it relies only on the economic model, including the shape restrictions on the util-
ity and probability distortion functions, and the Ω-intervals, which come out of stability
and revealed preference, to recover the probability distortion function that best fits the
data, that is, best describes the probability distortions of the average (representative)
monotone household.

It is useful to contrast this minimum distance Ω with the “maximum likelihood” Ω

estimated by BMOT, which was obtained by sieve MLE of a semi-nonparametric econo-
metric model that assumes random utility with additively separable, independent type 1
extreme value distributed choice noise. As Figure 5 shows, the minimum distance Ω

and the maximum likelihood Ω are remarkably similar. Because they are obtained by
two very different methods, they act as mutual robustness checks and serve to reinforce
each other and increase confidence in their common result.
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Figure 6. Percentage of monotone households that the model can rationalize when equipped
with the minimum distance Ω.

7.2 Model fit

Next, we assess model fit given the minimum distance Ω. First, we consider the percent-
age of monotone households that the model can rationalize when equipped with the
minimum distance Ω. Figure 6 presents the results. With zero tolerance for error—that
is, if we require zero distance between Ω̃ and the Ω-interval—we find that the model can
rationalize all three choices of 18 percent of monotone households, at least two choices
of 42 percent of monotone households, and at least one choice of 72 percent of mono-
tone households. In other words, a single probability distortion function can rational-
ize all three choices of nearly one in five monotone households, at least two choices of
more than two in five monotone households, and at least one choice of more than seven
in 10 monotone households. If we tolerate some error, the percentages increase quite
rapidly. With a tolerance of 2�0 percentage points, for instance, the model can rational-
ize all three choices of nearly two in five monotone households, at least two choices of
more than three in five monotone households, and at least one choice of nearly nine in
10 monotone households.

Second, we consider the average distance between the minimum distance Ω and
the monotone households’ Ω-intervals. This is akin to the Q statistic introduced in Sec-
tion 5. At the minimizer θ∗, the average distance between Ω̃(μij) and Iij is 2�70 percent-
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age points. To gauge the magnitude of this distance, we compare it to the average dis-
tance between μij and Iij , which is 5�82 percentage points. That is to say, on average,
there is a 5�82 percentage point “gap” that is unexplained if we restrict Ω(μij) = μij . The
minimum distance Ω can explain 46 percent of this gap. The remainder is attributed to
heterogeneity in probability distortions.

The last point is worth emphasizing. Suppose we want to measure the heterogene-
ity in probability distortions among the monotone households (or any other subset of
the rationalizable households). Given the specification of Ω̃(μij), the distances between
Ω̃(μij) and Iij give us precisely the lower bound on the degree of heterogeneity, and it
is obtained without making assumptions about the nature of the heterogeneity. By con-
trast, if we estimate the model by maximum likelihood or other parametric methods,
the residuals between the model and the data depend, inextricably and opaquely, on
the parametric assumptions, and consequently the exact nature of the relationship be-
tween these residuals and the degree of heterogeneity is obscured.

8. Rank correlation of choices

In this section, we shift gears to address a puzzle in the recent literature on the stability
of risk preferences. On the one hand, Barseghyan, Prince, and Teitelbaum (2011) (us-
ing data on choices in three insurance domains) and Einav et al. (2012) (using data on
choices in five insurance domains and one investment domain) provide evidence that,
within an expected utility framework, people do not exhibit a stable degree of risk aver-
sion across contexts. At the same time, Einav et al. (2012) provide evidence that people’s
risky choices are rank correlated across contexts, implying that there exists an impor-
tant domain-general component of risk preferences.56 We show that one can resolve
this puzzle with stable probability distortions.

More specifically, we demonstrate that, in our data, there is a close connection be-
tween rank correlation of choices and stability of risk preferences under the probabil-
ity distortion model. First, we document that the rationalizable households’ deductible
choices are rank correlated across lines of coverage. Table 5, column (a) reports, for the
full subsample of 3629 rationalizable households, the pairwise Spearman rank correla-
tions of the households’ deductible choices in auto collision, auto comprehensive, and
home. The rank correlations are positive and range from 0�285 to 0�490, and each is sta-
tistically significant at the 1 percent level. Notably, the results are remarkably similar to
those of Einav et al. (2012), in which the rank correlations between the five insurance
domains range from 0�174 to 0�400.

Next, we show that it is the rationalizable households with stable risk preferences
under the probability distortion model who are driving these rank correlations. Table 5,

56More specifically, Einav et al. (2012) investigate the stability in ranking across domains of an individ-
ual’s willingness to bear risk relative to his or her peers. They rank by risk the options within each domain
and compute the pairwise rank correlations in the individuals’ choices across domains. They find that an
individual’s choice in every domain is positively correlated to some extent with his or her choice in every
other domain. For a more detailed discussion of Barseghyan, Prince, and Teitelbaum (2011) and Einav et al.
(2012), see Teitelbaum (2015).
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Table 5. Rank correlation of deductible choices. Rationalizable subsample (3629 households).

(a) (b)

All Rationalizable
Households
(N = 3629)

Rationalizable
Households That

Satisfy Monotonicity
(N = 3079)

Rationalizable
Households That

Violate Monotonicity
(N = 550)

Auto collision and auto comprehensive 0�490∗ 0�553∗ 0�335∗
Auto collision and home 0�290∗ 0�363∗ −0�019
Auto comprehensive and home 0�285∗ 0�352∗ 0�029

Note: Each cell reports a pairwise Spearman rank correlation coefficient. ∗Significant at the 1 percent level.

column (b) breaks out the rank correlations for the 3079 rationalizable households that
satisfy monotonicity and the 550 rationalizable households that violate monotonicity.
Relative to the overall rank correlations, the rank correlations are stronger among house-
holds that satisfy monotonicity and weaker among households that violate monotonic-
ity. Indeed, among households that violate monotonicity, the rank correlations between
auto collision and home and between auto comprehensive and home are statistically
indistinguishable from zero at conventional levels of significance, suggesting that the
corresponding overall rank correlations are being driven entirely by the households that
satisfy monotonicity.57

In sum, we find that stable probability distortions are the domain-general compo-
nent of risk preferences that account for the rank correlation of choices across contexts
in our data. The choices of the rationalizable households that satisfy stability under the
probability distortion model are strongly rank correlated, while the choices of the ratio-
nalizable households that violate stability are weakly rank correlated, if at all.

9. Asymmetric information

In Section I of the Supplement, we address the concern that the asymmetric information
twins—moral hazard (unobserved action) and adverse selection (unobserved type)—
may be biasing our claim rate estimates and hence our results. With respect to moral
hazard, we consider both ex ante and ex post moral hazard, and we conclude that nei-
ther is a significant issue in our data. With respect to adverse selection, we consider two
possibilities—(i) there is heterogeneity in claim risk that is observed by the households
but unobserved by the econometrician or (ii) there is heterogeneity in claim risk that is
observed by the econometrician but unobserved by the households—and we show that
our results and conclusions regarding probability distortions are robust to either possi-
bility.58

57The results are very similar if we instead look at quadraticity or linearity; see Table S5 in the Supple-
ment.

58In addition, we explore further the sensitivity of our results to our claim risk estimates. In particular,
we consider three alternatives: (i) claim probabilities that are derived from fitted claim rates that do not
condition on ex post claims experience; (ii) claim probabilities that are half as large as our estimates; and
(iii) claim probabilities that are twice as large as our estimates. The results are qualitatively similar.
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10. Concluding remarks

We take a partial identification approach to learning about the structure of household-
specific risk preferences. Our principal identifying restriction is the assumption that
preferences are stable across closely related domains. We show how one can combine
stability and other structural assumptions with revealed preference arguments to con-
duct inference on the functionals of a generalized expected utility model that features
probability distortions. A key advantage of our approach is that it does not entail mak-
ing distributional assumptions to complete the model. It thus yields more credible in-
ferences than standard approaches to identification and estimation that rely on such
assumptions.

In addition to basic inference, we apply our approach to two important problems:
(i) classifying households into preference types, where each type corresponds to a spe-
cial case of the general model that we consider, and (ii) estimating the single parame-
terization of the model that best fits the data. In connection with the latter, we propose
an estimator that suits our approach. Our estimator has several attractive properties,
including notably the fact that, given the form of probability distortions, the resulting
residuals give us precisely the lower bound on the degree of heterogeneity in probability
distortions that is required to explain the data. In connection with the former, we utilize
our approach to bound the prevalence of various types within the class of preferences
that we consider. These bounds serve to quantify not only the explanatory potential of
various models within the class of models that we consider (i.e., the fraction of house-
holds that each model can explain), but also the marginal contribution of each model to
the class (i.e., the fraction of households that only the given model can explain).

The approach we develop in this paper is generalizable to other models or classes
of models and can be readily applied in empirical research that investigates questions
similar to those that we examine herein. In work currently in progress, for instance,
Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2015a) extend the approach devel-
oped here to investigate the question of narrow versus broad bracketing of risky choices.
Using the same data, they study a probability distortion model that allows for the pos-
sibility that a household treats its three deductible choices as a joint decision. They
perform a similar revealed preference analysis (which, under broad bracketing, maps
households’ choices into heptahedrons) and a similar classification exercise so as to
learn about the prevalence of the two forms of choice bracketing.
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