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We experimentally study the Gale and Shapley (1962) mechanism, which is uti-
lized in a wide set of applications, most prominently the National Resident Match-
ing Program (NRMP). Several insights come out of our analysis. First, only 48% of
our observed outcomes are stable, and among those a large majority culminate at
the receiver-optimal stable matching. Second, receivers rarely truncate their true
preferences: it is the proposers who do not make offers in order of their preference,
frequently skipping potential partners. Third, market characteristics affect behav-
ior: both the cardinal representation and core size influence whether laboratory
outcomes are stable. We conclude by using our controlled results and a behavioral
model to shed light on a number of stylized facts we derive from new NRMP sur-
vey and outcome data, and to explain the small cores previously documented for
the NRMP.
Keywords. Deferred acceptance, stability, experiments, centralized matching.

JEL classification. C78, C90, D47.

1. Introduction

Many two-sided matching markets function through centralized clearinghouses: med-
ical residents to hospitals, children to schools, commissioned officers to military posts,
college students to dorms, and so forth. All use highly structured procedures to generate
matches. In principle, clearinghouses have the advantage that they can be designed to
implement desirable outcomes at the market level. In particular, many extant clearing-
houses aim to implement stable outcomes.1
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1Stable matchings are characterized by two conditions: (i) no agents prefer to remain by themselves over
their allocated match and (ii) no two agents prefer to match to one another over their allotted partners.
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Among centralized clearinghouses, the best known is the National Resident Match-
ing Program (NRMP), which matches physicians and residency programs in the United
States. The algorithm used by the NRMP to match the participants is a form of what
is commonly called deferred acceptance (DA, henceforth), which was first described in
a paper by Gale and Shapley (1962). All participants, on both sides of the match, pro-
vide rankings of the other side. The DA algorithm functions by assigning market sides
to the roles of proposers (physicians in the NRMP) and receivers (hospitals/programs),
and then automating a sequence of proposals and conditional acceptances by receivers
according to the submitted rankings until a final outcome is reached, which is then in-
stituted. The DA process has the property that if both sides rank the other truthfully, the
resulting outcome will be stable. Moreover, for one side of the market—the proposers—
submitting a true ranking to the algorithm is incentive compatible. For the other side—
the receivers—straightforward ranking is not in general incentive compatible.

In contrast with the theoretical predictions, data from the NRMP’s physician survey
suggest that physicians do not rank hospitals or programs truthfully. Many participants
state that concerns over the likelihood of matching within the algorithm lead them to
modify their ranking, while a smaller fraction explicitly state that they rank programs
solely based on the likelihood of matching. The published data on NRMP outcomes re-
veal that close to half of all matches are of physicians to their top-ranked program. If
physicians rank programs truthfully, this would imply physicians’ most-preferred pro-
grams have strong negative correlations—in opposition to classic assortative models
where participants have common agreement on programs’ desirability.

Our paper is an experimental investigation of behavior in a dynamic variant of the
DA mechanism. We study the effects of an array of market features—including the num-
ber of stable matchings, the cardinal representation of preferences in the market, the
fragility of stable matchings to simple manipulations, etcetera—on both behavior and
outcomes. In our laboratory experiments, subjects on two sides of a matching market
with known payoffs go through each step of the matching algorithm (paralleling the
rhetoric used in Roth and Sotomayor (1990) to introduce the DA mechanism to read-
ers). In each step, unmatched proposers first choose the identity of their next proposal,
sequentially revealing their preference over those they have not proposed to. As in the
DA algorithm, receivers take the next step and choose among any new proposals for the
one they like best, similarly revealing their preferences at each step.

The behavior we observe in our experiment mirrors NRMP survey responses. Par-
ticipants in physicians’ (proposers’) roles “skip” down their preference rankings. If the
participant on the opposite side of the market who provides them their best-case payoff
does not rank them highly in return, subjects skip down, proposing instead to a lower-
payoff participant on the other side who does rank them highly. On the receiving side of
the market, which in the context of the NRMP would correspond to the hospitals, we do
not observe substantial departures from truth-telling, and the deviations we do observe
are not those often suggested in the literature as simple and useful. These observed be-
haviors lead to some stark outcomes; in particular, half of our experimental markets pro-
duce unstable outcomes. Moreover, for those experimental markets with multiple stable
outcomes, where the experimental outcome is stable, the specific matching selected is
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not the outcome associated with truth-telling, which leads to smaller gains for receivers
when they deviate from a straightforward response.

In more detail, our experimental markets are each comprised of 16 individuals, with
8 subjects on each market side, where all participants have complete information on ev-
eryone else’s payoffs.2 Our subjects participate in a variety of markets, differing in several
theoretically motivated characteristics: (i) market complexity, as captured by the num-
ber of stable matchings (either one, two, or four), and the number of turns required for
the DA algorithm to converge under truth-telling; (ii) incentives to manipulate or report
non-straightforwardly, captured through the number of stable matchings and the de-
gree of manipulation required by the receiving side to produce their preferred match-
ing; and (iii) the markets’ cardinal representation of preferences, controlled by the payoff
differences corresponding to different matches.

Several findings emerge from our analysis: First, as mentioned above, stable match-
ings are not the norm, with only one-half of our markets ending at a stable outcome.
Moreover, in markets with multiple stable outcomes, a large majority of stable outcomes
we observe (71 percent) are not those associated with truth-telling. Which specific sta-
ble matching is selected in a clearinghouse is of particular importance for applications.
For instance, the NRMP initially used the DA algorithm with hospitals in the role of pro-
posers, which results in the hospital-optimal stable matching under truth-telling. The
algorithm was then modified in 1998 to have residents serve as proposers (among other
changes). Our findings challenge the notion that the receiving side (the residents in the
original version of the NRMP) were disadvantaged in terms of the selected matching,
and suggest instead that changes to the algorithm might have made the residents worse
off.

Second, market characteristics are important in determining outcomes. For instance,
the cardinal representation has a significant effect on whether outcomes are stable and
on the overall distance of the observed outcomes from the core. Where incentives are
weak, the outcomes are far less likely to be stable, so instability is more likely to be an
issue when different match partners are closer substitutes. Similarly, the degree of trun-
cation required by receivers is highly predictive of which stable matching is chosen.

Third, individual behavior exhibits consistent patterns. Proposers are not straight-
forward, and receivers do not optimally truncate. We find that proposers “skip down”
their preference lists: for example, a proposer might propose to her third-best receiver,
skipping the favorite and the second favorite; then, if rejected by her third favorite, the
proposer might skip down to her fifth favorite and so on. This behavior is clearly at odds
with the theory, but tallies with NRMP survey responses. In contrast, for receivers, we do

2Having complete information serves as a natural first step in understanding participants’ response to
incentives, void of issues pertaining to belief updating and learning that would arise in environments with
incomplete information. While in reality information frictions are likely, we suspect that participants have
some information about the “segment” of the market that is relevant to them (for example, highly ranked
hospitals may have knowledge about similarly ranked hospitals and the top students in the market). Fur-
thermore, the underlying theoretical framework is well understood when information is complete, while
the theoretical literature on matching with frictions (informational and other) is arguably in its inception.
Indeed, most extant theoretical work assumes agents possess complete information (a recent exception is
Liu, Mailath, Postlewaite, and Samuelson (2014); see also our literature review below).
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not observe substantial deviations from straightforward play; they typically choose the
best alternative out of any set of proposals. They do not strategically reject proposals,
but instead reject fairly consistently those offers from proposers with the lowest payoff,
with little reaction to market structure.

Our analysis does suggest that proposers are sophisticated in their “skipping” behav-
ior. Proposers consider how a target receiver perceives them—their position in that re-
ceiver’s preference list—when making a proposal decision. For example, if a proposer’s
first-best receiver ranks her as largely undesirable, that proposer is less likely to propose
to him. Proposers are therefore much more likely to skip receivers who are not stable
matches, and in some cases skip the most-preferred stable match receiver, tending in-
stead toward the least-preferred stable match receiver, who receives a relatively higher
payoff from matching to them.

One might wonder about the importance of our dynamic implementation of DA for
our results. Though some clearinghouses have scramble components that are inherently
dynamic, many are like the NRMP, where participants make a single static decision: a
ranking of all potential matches. This ranking is then used by the algorithm to simulate
a sequence of proposals and acceptances/rejections, terminating in the final matching.
Rather than eliciting the entire ranking and running the algorithm, our experiment in-
stead asks subjects to make choices as needed at each step. If they do not have a current
partner, subjects on the proposing side are asked who they would like to make an offer
to, while those on the receiving side are asked which (if any) of their received proposals
they would like to accept. Under some fairly standard assumptions, we show that these
dynamic and static implementations are theoretically equivalent. Our choice to use the
dynamic implementation makes the mechanics of the DA algorithm clearer. By making
the connection between choices and outcomes more transparent, we hope to give the
theory its best chance. Furthermore, especially in complete information matching mar-
kets such as ours, a static implementation of DA would essentially require us to provide
participants with preferences and then ask them to report back these preferences. Such
an implementation is likely to suffer from experimental demand and results in the treat-
ments would be difficult to interpret. Our dynamic implementation circumvents this
hurdle.

The difference between the DA and our dynamic implementation is motivated by
the concerns we have laid out. We argue that three types of evidence suggest our results
are not driven merely by the dynamic implementation in our experiments, but describe
more general phenomena present in other implementations of the DA. First, we intro-
duce a static “bounded-rationality” model (quantal response equilibrium) to the match-
ing literature. Calibrating the model to a single parameter and using only the final full
matching in each experimental market, we validate the model using several nonfitted
facets of our data. The model therefore formalizes an entirely static explanation for our
experimental findings.

Second, we examine evidence derived from field data on the NRMP. Here we show
that our behavioral model not only provides a good fit to our experimental data, but it
also matches behavioral statements from NRMP surveys (response to the likelihood of
matching with submitted rankings). Furthermore, its predicted outcomes strongly mir-
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ror a pattern in the available data on NRMP outcomes: a surprisingly high frequency of
proposer matches to their top-ranked program. When measured according to the sub-
mitted ranking, 42 percent of simulated outcomes are to the top-ranked match (in com-
parison with 16 percent that would be induced by truthful behavior and stable match-
ings being implemented). In addition, studies that had access to the rankings submitted
to the NRMP indicate that, given the physicians’ rankings, hospitals have little to gain
by deviations from truth-telling (that is, markets seem to have small cores; see Roth and
Peranson (1999)). Simulations of our behavioral model lead to similar conclusions.

Third, in our review of the literature, we show that elements consistent with our re-
sults have appeared in static implementations of DA (albeit mostly in contexts some-
what different than ours). Similar findings with static implementations suggest the dis-
tinction between dynamic and static implementations might not be the first-order rea-
son for the observed departures from theory. Our paper, with its larger variation across
market characteristics, serves to systematize and enhance these prior findings by allow-
ing us to identify a channel for what might be driving the deviations from stability in
centralized clearinghouses.

Taken together—our experimental results, the behavioral model and its parallelism
to the field, and the prior literature’s results—there exists the case for a persistent heuris-
tic in matching problems: the conflation of ex ante likelihoods of matching and the pref-
erences for a particular match.

1.1 Related literature

Laboratory experiments focusing on two-sided matching have been relatively scarce.
Haruvy and Ünver (2007) studied repeated interactions between receivers and pro-
posers, and inspected the predictive power of the DA (rather than strategic behavior
within the DA algorithm). They ran a version similar to our sequential game in 4 × 4
markets. However, in their design, (i) proposers were allowed to repeat offers, thereby
creating a larger wedge between the game played and the DA algorithm, (ii) proposers
and receivers were paid for the results in every turn of the sequence (not only the ul-
timate matching), and (iii) in some sessions there were automated respondents, who
automatically accepted the best offer. They found a substantial number of repeat offers
(that most centralized clearinghouses do not allow) and significantly less skipping by
proposers than we find.

Harrison and McCabe (1992) implemented the preference-revelation DA mecha-
nism in one 3 × 3 (three proposers and three receivers) market and one 4 × 4 market.
They had subjects play a market repeatedly and replaced many market roles with com-
puters programmed to play truthfully. In their environment, outcomes are more in line
with the theoretical predictions than ours. However, they do observe a small degree of
skipping, as well as receivers failing to successfully manipulate the mechanism.

A number of experimental papers seek to compare the different centralized mecha-
nisms that are used in practice. Chen and Sönmez (2006) compare DA with the Boston
and the top trading cycle mechanisms. Their focus is on the school-choice problem;
hence they have strategic agents on only one side of the market. Chen and Sönmez im-
plemented a preference-revelation design in which agents knew their own preferences,
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but not those of other participants (not even statistically).3 In terms of manipulation,
they find that proposers do misrepresent their preferences in DA, but less so than in the
other mechanisms. Featherstone and Niederle (2011) also compare DA with the Boston
mechanism.4 They too find that proposers do not necessarily follow their dominant
strategy to truthfully reveal and do skip highly ranked potential matches that are very
unlikely to accept them. However, they attribute the effect to weak market-specific in-
centives for the skipping player. Our own experiments indicate that this effect is more
systematic across a larger range of markets. Additionally, by having the subjects engage
with the DA mechanism more directly, we show that the effect is less likely to be due to
confusion as to how the algorithm works, and more likely due to heuristics and beliefs
that subjects bring to this type of matching problem.

Pais and Pintér (2008) test DA, Boston, and the top trading cycles mechanisms in the
laboratory under incomplete information. Automating the proposing side of the mar-
ket to reveal truthfully, they also find greater manipulation by subjects in the Boston
mechanism. Furthermore, the top trading cycle mechanism dominates the other two
procedures when assessed over both truth-telling and the efficiency of matches. Krishna
and Ünver (2008) compare the DA mechanism with the bidding mechanisms commonly
used for allocating students to courses in business schools. They show the superiority of
the DA mechanism in terms of efficiency (and get frequencies of truthful revelation by
proposers, which they focus on, comparable to those observed in our data). Wang and
Zhong (2012) examine the random serial dictator and Boston mechanisms for school
choice. Their results indicate a large degree of skipping behavior in the serial dictator
mechanism, where participants rank schools they perceive as “safer” higher up their
lists than theory would predict.5

Pais, Pintér, and Veszteg (2011a) may be the closest to the current paper in that they
consider two-sided matching through the Gale and Shapley algorithm. However, they
consider school and teacher matching. Their experimental design entails five teach-
ers and three schools, where two of the schools both have two positions available. In
other words, some subjects who represent these two schools are to be matched with two
teachers each (and teachers are indifferent between which of the two positions they re-
ceive in those schools). This generates a rather different strategic setting than the one we
study. The paper considers only one constellation of preferences. They also find limited
truth-telling even when information is complete.

Our paper provides two important methodological innovations for the centralized
matching literature. First, we consider a rich set of markets that allow us to study the
selection of stable matchings that emerge organically as well as the impacts different
market attributes have on outcomes: core size, cardinal presentations, number of stages

3Using a similar design, Calsamiglia, Haeringer, and Klijn (2010) experimentally examine school choice,
where the submitted preference lists are constrained in length.

4Also see Featherstone and Mayefsky (2011), who examine this comparison under incomplete informa-
tion on the preferences of others.

5Eriksson and Strimling (2009) test a new matching game, which they term the cocktail game, and also
report deviations from truth-telling under their rules of interactions.
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required for the DA algorithm to end, and sensitivity to truncations. Second, we in-
troduce a behavioral model to the matching literature, and show that its predictions
are consistent not only with behavior in our experiments, but also with data from the
field.

Finally, a few papers analyze experimentally decentralized markets. Echenique and
Yariv (2013) examine behavior in decentralized markets and find that outcomes are in
most cases stable.6 Their study focuses on selection, and they find that the median stable
matching tends to emerge. Featherstone and Mayefsky (2011) and Kagel and Roth (2000)
analyze the transition from decentralized matching to centralized clearinghouses, when
market features lead to inefficient matching through unraveling. Nalbantian and Schot-
ter (1995) analyze several procedures for matching with transferable utility, decentral-
ized matching among them, where agents are informed of their own payoffs, but not of
anyone else’s.7

2. Dynamic design of centralized matching

Our design has subjects going through the steps of the DA algorithm instead of submit-
ting preferences. It has the advantage of being more transparent for the subjects and of
alleviating concerns over experimenter demand. The game we induce in the laboratory
is described in Roth and Sotomayor (1990, p. 79):

(i) Actions in the market are organized in stages. Each stage is divided into two pe-
riods. Within each period, each proposer and receiver must make decisions without
knowing the decisions of other proposers and receivers in that period.

(ii) In the first period of the first stage, each proposer may make at most one proposal
to any receiver he chooses (and is also free to make no proposal). Proposals can only be
made by proposers.

(iii) In the second period of the first stage, each receiver who has received proposals
may freely reject any or all of them immediately. A receiver may also keep at most one
proposer “engaged” by not rejecting her proposal.

(iv) In the first period of any stage, any proposer who was rejected in the preceding
stage may make at most one proposal to any receiver he has not previously proposed
to (and been rejected by). In the second period, each receiver may reject any or all of
these proposals, including that of any proposer who proposed in an earlier stage and
was kept engaged. A receiver may keep at most one proposer engaged by not rejecting
his proposal.

(v) If, at the beginning of any stage, no proposer makes a proposal, then the market
ends and each proposer is matched to the receiver he is currently engaged with. Pro-

6Also see Pais, Pintér, and Veszteg (2011b), who show that search costs and imperfect information can
impede this finding.

7There is also some recent theoretical work analyzing matching in decentralized markets; see, for exam-
ple, Haeringer and Wooders (2011), Hoffman, Moeller, and Paturi (2013), and Niederle and Yariv (2011).
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posers who are not engaged to any receivers and receivers who are not engaged to any
proposers remain unmatched.8

The game imitates the steps within the DA algorithm, see the Appendix (avail-
able in a supplementary file on the journal website, http://qeconomics.org/supp/496/
supplement.pdf) for a description. In most centralized matching markets, proposers
and receivers submit preferences to a central matching authority (as is the case in the
National Residents Matching Program). The authority then uses the submitted prefer-
ences as inputs to the DA algorithm, instituting the resulting matching. In contrast, in
the game above, proposers and receivers decide on proposals at each step; a matching
emerges sequentially through their actions.

Roth and Sotomayor present the game as an introduction to strategic issues in
matching. There is a notion of “straightforward behavior” in the game. A proposer
behaves straightforwardly if her proposals go from the most-preferred receiver to the
second-most-preferred receiver, then to the third-most preferred, and so on. A re-
ceiver behaves straightforwardly if at each step he accepts the most-preferred proposal.
Straightforward behavior corresponds naturally to truthful behavior in the centralized
mechanism.9

We directly adopt the above game within our experimental design (detailed in Sec-
tion 3). Roth and Sotomayor’s use of this game is pedagogical; our reasons are similar.
We want subjects to grasp the relation between their actions and the resulting outcomes.
Subjects best understand the incentives they face when directly experiencing the steps
involved in the matching process. In contrast, with the preference-revelation game, sub-
jects need to map each declared profile into an outcome of the algorithm: This map is
complicated, and it is difficult to ensure that laboratory subjects have a clear under-
standing of the DA algorithm in the lab.

A second reason for adopting the above game is related to experimenter demand
(see Zizzo (2010)): If we provide subjects with a preference ranking and then proceed to
ask them to submit a preference ranking, we worry that subjects will infer the experi-
menters’ goals.10 They may, as a result, act with a different motivation from that which
we sought to induce. By asking them to present a preference, we present a cue that the
experiment is assessing whether they will behave truthfully or not. This cue may trig-
ger behavior related to the consequences of lying, and/or complying with the exper-
imenters’ expectations. The resulting experimenter-demand effect is unclear—toward
more truth-telling or away from it—and is inseparable from the behavior we wish to
assess.

8Our one change to the above game is that we recast the men/women in Roth and Sotomayor as pro-
posers/receivers.

9We will reserve the word “truthful” for when we talk about data or simulations with the static preference
submission mechanism, and the word “straightforward” for when we talk about our dynamic implementa-
tion.

10Private correspondence with the authors of Calsamiglia, Haeringer, and Klijn (2010) indicates this con-
cern is justified by subject behavior in the direct mechanism. In interviews after their experiment, subjects
explicitly mention the idea that they thought they should lie.

http://qeconomics.org/supp/496/supplement.pdf
http://qeconomics.org/supp/496/supplement.pdf
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Moreover, though the main NRMP match is implemented with a direct-revelation
approach, extant clearinghouses have begun to use dynamic implementations. A no-
table example is the second stage of the NRMP match (the Secondary Supplemental Of-
fer and Acceptance Program, the “scramble”) introduced in 2012, which uses a multiday
dynamic approach.11 In addition, certain markets that are thought of as decentralized
resemble the type of clearinghouses we implement, when norms of behavior put enough
structure on each side’s offers and responses. For instance, consider the academic job
market in economics. Offers made by departments for tenure-track positions are rarely
reneged on, so proposals made can be considered as commitments to match. Candi-
dates can hold on to offers (for a short period at least) while they wait to receive other
proposals. Combined with the idea that departments do not make repeat offers to the
same candidate, this decentralized market has a similar structure to our experiments.

Theoretically, under some plausible restrictions on behavior, the dynamic game and
the direct-revelation game induced by the DA algorithm are effectively equivalent. In the
Appendix, we describe some of the theoretical background for our investigation as well
as the formal requirements for this equivalence.12

3. Experimental design

Our experimental sessions implemented a sequence of markets involving two sides,
which we neutrally labeled as colors and foods in the experiment. Herein we will refer
to two sides of the market as workers and firms.13 There were 8 roles in each group, to-
taling 16 subjects in a market. Subjects could match with at most one subject from the
opposite group, deriving different monetary payoffs from each match.

Subjects were fully informed on all the potential payoffs for every possible match in
the market through a table on their computer screens, as depicted in Table 1, where the
first number in each cell is the corresponding worker’s payoff in cents and the second

Table 1. Example of market payoffs.

f1 f2 f3 f4 f5 f6 f7 f8

w1 (360�125) (210�175) (60�375) (110�425) (160�475) (10�425) (310�475) (260�325)
w2 (160�475) (360�125) (260�275) (210�475) (60�225) (110�175) (10�225) (310�475)
w3 (260�375) (110�325) (360�125) (310�325) (210�425) (60�475) (10�375) (160�375)
w4 (310�325) (160�425) (110�225) (360�125) (260�275) (10�275) (60�425) (210�175)
w5 (260�275) (310�275) (160�425) (60�175) (360�125) (10�375) (210�275) (110�225)
w6 (10�425) (210�375) (60�325) (160�375) (310�375) (360�125) (110�175) (260�425)
w7 (110�225) (260�225) (160�175) (60�275) (210�325) (310�325) (360�125) (10�275)
w8 (260�175) (210�475) (310�475) (10�225) (160�175) (110�225) (60�325) (360�125)

11See www.nrmp.org/residency/soap/ for details.
12In effect the required assumptions are tantamount to selecting Markov-like behavior in the dynamic

game alongside a variation of independence of irrelevant alternatives.
13In the experiment, specific roles on one side were labeled as red, blue, etcetera; on the other side as

apple, banana, etcetera.

http://www.nrmp.org/residency/soap/
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number is the corresponding firm’s payoff.14 Remaining unmatched resulted in a payoff
of 0.

In each experimental market, subjects interacted within a protocol that mimics
the DA mechanism with one of the market sides (either the workers or the firms)
proposing—the Roth–Sotomayor game discussed in Section 2. Subjects on differing
sides of the market took turns, each composed of two periods. In the first period of the
first turn, each proposer could make (at most) one proposal to any one receiver. In the
second period of the first turn, each receiver with proposal(s) could hold on to at most
one, rejecting all others. In subsequent turns, proposers who did not have a held pro-
posal from a previous turn could again make offers in the first period. In the second pe-
riod of subsequent turns, receivers with new proposals chose at most one offer to hold
among the new proposals and held proposal, rejecting all others.

In each proposing period, the proposing subjects had 30 seconds to decide whether
to propose, and if so to whom.15 Receivers had 25 seconds to respond to their offers
(with a failure to respond to any proposal within the time limit interpreted as a rejection
of all new proposals).

To induce the Roth–Sotomayor game, we imposed a restriction that proposers may
not repeat proposals. So, after proposing to and getting rejected by a particular receiver,
the proposer could not make subsequent proposals to that same receiver. Each experi-
mental market ended whenever there were no new proposals within a proposing stage.16

As markets progressed, turn by turn, the subjects observed only their own interac-
tions; they did not observe any proposals/rejections in which they were not directly in-
volved. Subjects in the proposer role knew the precise turn and order in which they had
made proposals to the chosen receivers, and similarly the precise turns they were re-
jected in. They did not, however, observe who else proposed to a particular receiver at
any time, which other proposers the receiver had rejected, and so forth. Similarly, re-
ceivers observed only the proposals made to them and their own hold/reject behavior.
When the market ended, each held proposal became a match, and the receivers and
proposers received their corresponding payoffs (according to the match-payoff table).

Each experimental session was composed of 2 unpaid practice markets followed by
a sequence of 15 paid markets. Each market used match payoffs corresponding to one
of six preference profiles for the participants.17 A detailed summary of the markets used
in the sessions, as well as these markets’ characteristics, appears in Table 2. The number
of times each market was run appears under the N column.

The markets were designed to vary over the following dimensions.

14Full instructions and a list of all markets used are described in the Appendices, available in a supple-
mentary file on the journal website, http://qeconomics.org/supp/496/code_and_data.zip.

15Failure to propose in a turn did not alter the proposer’s ability to propose in future rounds unless her
nonproposal caused one of the market’s end conditions to be met (see footnote 16 below).

16 This end condition can have three potential causes: (i) all proposers have held proposals and therefore
none is available to make an offer; (ii) all proposers without held proposals have no receivers to whom they
have not made a proposal, so no unheld proposer can make an offer; (iii) some proposers without a held
proposal choose not to make a proposal in this turn, and the remaining proposers have no new proposals
to make.

17Rows and columns were randomly permuted so as to disguise obvious patterns such as the one ap-
pearing in the main diagonal of Table 1.

http://qeconomics.org/supp/496/code_and_data.zip
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Table 2. Markets used.

Stable
Matchings

Truncation Core Span Avg. Payoff
DA

TurnsMarket Arrangement R Optimal Unstable P R P R N

I W–F 1 – 1 – – $2�50 $2�50 8 4

II W–F 1 – 7 – – $2�50 $3�48 8 8
F–W 1 – 1 – – $3�48 $2�50 2 4

III W–F 2 5 8 1�00 1�75 $2�85 $2�73 4 4
W–F Dev 1 1 – 5 – – $2�85 $2�79 4 8
W–F Dev 2 1 – 8 – – $2�60 $3�60 8 8

F–W 2 4 5 1�75 1�00 $3�60 $2�35 1 4

IV W–F 2 1 4 1�00 5�13 $3�60 $1�25 1 8
F–W 2 7 8 5�13 1�00 $3�81 $3�10 11 8

Va W–F 2 1 3 1�75 2�00 $3�10 $2�00 5 28
W–F Dev 1 1 – 3 – – $2�53 $2�85 15 8

F–W 2 4 5 2�00 1�75 $3�00 $2�22 6 16
F–W Dev 1 1 – 5 – – $2�85 $2�53 6 8

VI W–F 4 7 7 1�00 0�75 $3�35 $3�10 3 4

All 1�67 1�83 4�77 1�21 1�23 $3�04 $2�64 6�1 120

Note: aThis market was run with marginal payoffs of 20� and 50� for both the W–F and F–W arrangements.

Market “complexity”

All but one of our markets have either a unique stable matching or two disjoint, stable
matchings. We designed the markets to vary in the number of turns (each two periods,
proposal/response) required for the DA algorithm to converge under truth-telling, as
well as the sensitivity of outcomes to truncation by receivers (the receiving side of the
market). The latter is captured in two ways. First, in the column “R Optimal” we cal-
culate the minimal number of proposers who receivers must truncate so as to achieve
the receiver-preferred stable matching, assuming that proposers behave straightfor-
wardly.18 Second, in the column “Unstable” we calculate the minimal number of pro-
posers who receivers must truncate (jointly and uniformly) to generate an unmatched
partner.

Cardinal representation

Match payoffs in cents are constructed from each market’s ordinal preference profile.
The marginal decrease between an agent’s nth and (n + 1)th favorite partners is fixed
at 50� in the majority of markets. So as to gauge the effects of cardinal representations

18We compute the minimal number t ∈ {1� � � � �8} such that if one receiver truncates the bottom t pro-
posers, then the receiver-optimal stable matching is implemented assuming proposers behave straightfor-
wardly. Smaller truncation values t correspond to smaller necessary deviations from straightforward reve-
lation to implement the receiver-optimal stable matching.
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within our markets, we use marginal decreases of just 20� in our baseline market, Mar-
ket V.19 The average payment across agents (and across stable matchings when there
were two) is between $2�50 and $3�20.20 The average payoffs for proposers and receivers
under the proposer-optimal stable matching, which would have been generated under
straightforward play by all participants, are given in the “Average Payoff” column for
proposers and receivers. Given straightforward behavior, proposers should earn an ex-
tra 40� per market, varying between $1�00 less than receivers through to $2�35 more, de-
pending on the specific market.

Incentives to manipulate and core size

Three markets with multiple stable matchings (Markets III, IV, and V) are run under both
the worker- and firm-proposing arrangements.21 This provides information on the ef-
fects from being the proposing side under DA, keeping constant each sides’ preferences.
The reversed markets are indicated in the “Arrangement” column of Table 2, where W–F
is the worker-proposing arrangement and F–W is the firm-proposing arrangement. In
addition, we alter two of our markets (III and V) by switching the position in the ranking
of two potential matches for just one participant, keeping constant all other preferences.
Through this small change we induce a similar market with a unique stable outcome.
For Market III, two different modifications are introduced to make the worker-optimal
and firm-optimal stable matchings from the original market the unique stable outcome
(with resulting markets denoted by W–F Dev 1 and W–F Dev 2, respectively, each run
with workers proposing). For Market V, we introduce a modification to make the origi-
nal worker-optimal stable matching the unique stable outcome. We run this deviation
in both the worker-proposing and firm-proposing orientations, which we refer to as W-F
Dev 1 and F-W Dev 1, respectively.

Markets also differ in the size of the core. For each proposer we calculate the distance
in rank position between her best and worst stable partners, and average these values
across all eight proposers. We call the resulting number the proposers’ core span. The
analogous calculation is also given for receivers. Core spans vary between 0 (when the
stable matching is unique) and 5�13.22 A larger core span for one side corresponds to
greater incentives to achieve that side’s optimal stable matching.

Our sessions were run at the California Social Science Experimental Laboratory
(CASSEL) and implemented using a variation of the Multi-Stage software. In total, 128
subjects were recruited; all were UCLA undergraduates and each subject participated in
just one session. The average payment per subject was $41 (with a standard deviation of
$5), combined with a $5 show-up payment.

19In theory, payoff representations of preferences do not affect incentives in the complete information
DA mechanism; nor do they matter for the set of stable matchings.

20For each profile of preferences, we chose payoffs to minimize this average under two constraints: (i) the
average is above $2�50 and (ii) each subject’s payoffs from any match exceeds 5�.

21We also do this for Market II, which has only a single stable match.
22When there are two stable matchings, they were designed to be disjoint—that is, every proposer’s and

receiver’s best and worst stable partners are different—so the core span is at least 1 in these markets.
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Table 3. Aggregate outcomes.

� Payoff

Market Arrangement Stable P Optimal (Closer) Distance Unmatched P R Turns N

I W–F 25�0% – 0�71 6�3% −3�3� 3�3� 9�3 4

II W–F 50�0% – 0�92 1�6% 0�0� −17�5� 8�9 8
F–W 25�0% – 1�41 9�4% −22�4� 8�6� 9�0 4

III W–F 50�0% 50�0% (50%) 0�78 3�1% −22�6� −53�2� 7�3 4
W–F Dev 1 37�5% – 1�03 1�6% −8�7� 15�1� 6�0 8
W–F Dev 2 87�5% – 0�69 0�0% 0�0� −5�5� 8�4 8

F–W 50�0% 50�0% (25%) 0�84 6�3% −58�3� −11�7� 8�0 4

IV W–F 62�5% 0�0% (0%) 1�79 6�3% −62�5� −4�1� 4�0 8
F–W 62�5% 100�0% (100%) 1�20 0�0% −22�7� −58�6� 8�0 8

V W–F 53�6% 0�0% (7�1%) 1�01 3�1% −64�3� −5�7� 10�7 28
W–F Dev 1 62�5% – 1�13 4�7% −2�5� 0�8� 8�3 8

F–W 18�8% 33�3% (37�5%) 0�86 3�1% −39�5� −25�2� 11�4 16
F–W Dev 1 25�0% – 1�52 6�3% −44�1� 34�2� 10�1 8

VI W–F 75�0% 66�7% (75%) 0�20 0�0% −15�6� −29�7� 3�5 4

All 48�3% 28�6% (18�3%) 1�05 3�3% −26�2� −10�6� 8�8 120

4. Aggregate outcomes

In this section we outline the results from our sessions at the aggregate market level;
Table 3 reports a number of aggregate statistics. First, we discuss one of the main mo-
tivations for using the DA algorithm in centralized markets—stability of the resulting
outcome. Our results demonstrate that stable matchings are not the typical outcome.
Moreover, we will demonstrate that the specific unstable matches our experimental
markets arrive at suggest that proposers, rather than receivers, are the side behaving
non-straightforwardly. Second, we examine those markets with multiple stable match-
ings and investigate the selected matchings. In line with subjects not behaving straight-
forwardly, we see a large majority of markets end up close to the receiver-optimal sta-
ble matching. Finally, we study some tangible outcomes experienced by subjects in our
markets, namely time spent and payoffs earned.

4.1 Proximity to stable matchings

Our experimental markets do not consistently produce a stable outcome. In fact, just
half of the markets result in a stable matching—48 percent for the markets with a unique
stable outcome and 49 percent for those with multiple stable outcomes. The “Stable”
column in Table 3 provides the fraction of markets that terminated at a stable matching,
broken down by market arrangement. The table illustrates that the prevalence of unsta-
ble outcomes holds across our experimental markets and is not driven by any particular
market.
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Markets that culminate in an unstable outcome have, by definition, at least one
blocking pair for the observed matching. The average unstable matching in our data
has 2�9 blocking pairs, and the largest number of blocking pairs in any particular market
is 11.23

Blocking pairs can be classified into two types. First, there are markets with avail-
able blocking pairs: blocking pairs that could still form at the final stage of the market,
but do not. This type of blocking pair necessarily involves unmatched subjects.24 Alter-
natively, there are unavailable blocking pairs: blocking pairs that cannot form because
the proposer in the pair was either previously rejected by the receiver in the pair or is
held by another receiver and subsequently has no agency to make a proposal to form
the blocking pair.

For the 62 unstable markets, 29 have unmatched subjects (see column “Unmatched”
in Table 3), while the remaining 33 markets have all the participants matched (with an
average of two blocking pairs per unstable market). Of the 29 markets in which some
subjects end the process unmatched, just 8 markets had an available blocking pair; in
the remaining 21 markets, the unmatched proposers were rejected by every blocking
receiver.

The observation that most blocking pairs are unavailable suggests that instability is
not due to an early termination of the process (say, due to subjects failing to respond
in time or preferring an early close of the market).25 The high rates of unstable out-
comes are by and large due to deviations from straightforward play by some participants
in the market. Consider a proposer–receiver blocking pair (w� f ) for some matching μ.
The blocking pair must be formed as the result of one of two possible deviations from
straightforward play: (i) the receiver f previously rejected w (equivalent to f submitting
a preference report ranking his ultimate match μ(f ) as preferable to w) or (ii) proposer
w never proposed to receiver f (equivalent to w stating the current match μ(w) as pre-
ferred to f ). Of the 181 blocking pairs, 57�5 percent have blocking pairs corresponding to
category (ii), where proposers have necessarily misstated their preferences. This is sug-
gestive of the substantive misreporting by proposers in our markets. We further examine
the behavior that produces these results in Section 5.

Given the prevalence of markets culminating in unstable matchings, it is interest-
ing to see how far the resulting matchings are from the set of stable matchings. We use
subjects’ preference rankings to create a distance measure for all markets at an unsta-
ble outcome. Specifically, we measure the average distance in ranking for each individ-
ual between his/her final match (defining the unmatched outcome as rank 9) and the

23An alternative way to quantify this distance from stability is to count the number of participants who
are part of some blocking pair, rather than the overall number of possible blocking pairs (that could entail
overlaps in participants). If we were to do that, for markets culminating in an unstable outcome we have
an average of 4�0 participants who are part of some blocking pair (the mode is two participants in a single
blocking pair, in 22 of the 62 unstable markets).

24This must be a pair comprised of an unmatched proposer and a receiver such that (i) the receiver had
not rejected the proposer and (ii) the receiver is either unmatched or prefers the proposer to her current
match.

25In fact, as we show below, our experimental markets lasted, on average, a longer number of stages than
would be prescribed by the DA algorithm when preferences are reported straightforwardly.
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closest rank of a stable-match partner. The results are in the column titled “Distance”
in Table 3. On average, subjects were approximately one position away from a stable-
match partner across all unstable matches, corresponding to an approximate loss of 50�
per person (the exception being those markets with lower marginal differences between
partner payoffs, where this loss was 20�).26

4.2 Selection of stable matchings

The selection of stable matchings is of particular importance to applications. For exam-
ple, the NRMP started out following the hospital-proposing DA algorithm. However, af-
ter much debate in the medical community, in May of 1997 the board of directors of the
NRMP voted to replace the existing matching algorithm with a newly designed, resident-
proposing algorithm (that was put into action in 1998); see details in Roth and Peranson
(1997). Our experimental data are useful in identifying the role played by each side of
the market, since underlying preferences are observed.

We examine those markets that have multiple stable matchings and ask which
matching the observed outcome is closest to. The “P Optimal” column in Table 3 gives
the fraction of stable outcomes at the proposer-optimal stable outcome. The figure in
parentheses is the fraction of markets in which the outcome was closer to the proposer-
optimal outcome than the receiver-optimal, measured the same way as the “Distance”
column.

For the markets with multiple stable matchings that produced a stable outcome,
28�6 percent are at the proposer-optimal stable matching, the outcome that would re-
sult from straightforward play in the DA mechanism. Furthermore, in markets in which
roles were reversed (Markets III–V), if anything it is the receiving side in the algorithm
that is more likely to achieve their preferred stable outcome.

We note, however, that there is large variation across market arrangements. Mar-
ket IV provides particularly stark observations: all stable outcomes correspond to the
receiver-optimal stable matching when the workers propose; when firms propose, all
the stable outcomes are the proposer-optimal stable matchings (i.e., conditional on
achieving a stable matching, the same matching is selected in both markets, regardless
of the side proposing). To glean insight into what is driving these differences across mar-
kets, consider the truncation column in Table 2. For this particular market, we see that
the worker-proposing arrangement (W –F) is particularly sensitive to truncation, reach-
ing the receiver-optimal stable matching under very small truncations by receivers. Con-
versely, attaining the receiver-optimal outcome in the F–W arrangement requires ex-
treme truncation by the receivers. Inspection of other markets suggests this as a gen-
eral trend: When truncation requirements are low, the stable matching implemented is
the receivers’ best. With moderate levels of truncation required, both stable matchings
emerge experimentally. When the (collective) truncations required by receivers are ex-
treme, the stable matching generated is the proposers’ best.

26The overall distance measure for each market arrangement (the average distance in ranking for each
individual between his/her final match and the closest rank of a stable-match partner, across all realized
matchings) may be calculated by multiplying our distance number by the percentage of unstable matchings
in the market, as all stable matchings are by definition a distance 0 from a stable matching.
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4.3 Tangible outcomes: Time and payoffs

4.3.1 Time to termination On average, each market takes approximately nine turns to
finish (see the column “Turns”), with the average turn taking 21�5 seconds.

Comparing the number of turns observed to the number predicted by truth-telling
behavior in the DA mechanism, experimental markets take an extra 2�5 turns to finish;
only 24 out of 120 markets end within the truth-telling number of turns. One simple
conjecture to explain skipping by proposers is that subjects are trying to shorten the time
before a final matching is achieved. These results suggest, however, that any behavior
intended to shorten time spent in the experiment was unsuccessful.

4.3.2 Average payoffs Consider the average proposer in our average market. Condi-
tional on the proposer-optimal outcome being chosen, her expected payoff is $3�02
per market; if the receiver-optimal stable matching is chosen, her corresponding ex-
pected payoff is $2�57. The observed figures are closer to the latter, lower, prediction:
the average payoff of a proposer in our markets is $2�66. Conducting the same exer-
cise for the receivers’ side of the market, the average receiver’s expected payoff varies
between $2�66 per market if the proposer-optimal outcome is selected, and $3�09 un-
der the receiver-optimal stable matching. The observed value is $2�91, in between these
two figures.27 These figures are consistent with our observations regarding the selection
of stable matchings. In particular, payoffs do not coincide with those generated by the
proposer-optimal stable matching.

The column “� Payoff” provides the average difference in the actual payment from
that of the best outcome by market side (that is, the subcolumn corresponding to pro-
posers contains the difference between the average realized proposer’s market payoff
and the payoff under the proposer-optimal stable matching; similarly for the subcol-
umn corresponding to receivers).28 This column contains similar information to the
“Distance” and “P Optimal” columns, but provides additional insights that will tie to
the individual-behavior analysis below. In some markets the average matched receivers
achieve better outcomes than their most-preferred stable match partner. In these mar-
kets, there is a unique stable outcome, and the average matched proposer is faring
worse. As will be echoed in the individual analysis below, the reason for these results
is that proposers in these markets propose to a receiver who is ranked below their stable
match partner, one that values them more highly. In payoff terms, conditional on being
matched, receivers earn, on average, 6� more than the stable-outcome payoff in those
markets with a unique stable matching. In markets with multiple stable outcomes, both
sides fare poorly, though receivers are closer in dollar and relative terms to their most-
preferred stable outcomes. In fact, at the end of the experiment, we asked subjects to
reflect on the experiment and express their preference over having the role of proposer
or receiver: 79�6 percent expressed a preference for the receiver role.

27Accounting for unmatched subjects raises these observed averages by approximately 8�.
28These averages are conditional on agents being matched.
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Table 4. Descriptive outcome regressions.

Blocking Stable Closer to
Turns Distance Pairs Outcome P Optimal

Market No. −0�058 −0�176 0�161 0�005 −0�004∗
(0�082) (0�137) (0�126) (0�005) (0�002)

Low marginals for proposers 0�001 0�101∗∗∗ 0�116∗∗ −0�390∗∗∗ −0�001
(0�025) (0�030) (0�053) (0�024) (0�202)

Low marginals for receivers 0�065∗∗∗ −0�028∗ −0�026∗∗ 0�107∗∗∗ 0�274∗∗∗
(0�015) (0�013) (0�010) (0�023) (0�053)

Proposer core span 0�145∗ −0�046 −0�011 0�037 0�102∗∗∗
(0�080) (0�138) (0�118) (0�049) (0�044)

Receiver core span −0�096 0�002 0�060 0�024 −0�048
(0�056) (0�091) (0�078) (0�020) (0�055)

R-best truncation −0�109 −0�039 −0�094 −0�017 0�135∗∗∗
(0�066) (0�125) (0�100) (0�037) (0�032)

N 120 120 120 120 72

Note: The columns “Stable Outcome” and “Closer to “P Optimal” give the marginal effects from a probit regression; all
other columns are elasticities obtained from an ordinary least squares (OLS) regression. Standard errors are given in paren-
theses below the estimates, and are clustered by market. Significance levels are indicated as follows: ∗∗∗—99%, ∗∗—95%, and
∗—90%.

4.4 Market characteristics and outcomes

The previous discussion suggests that there are aspects of the market that predict which
stable matching is produced. In particular, the manipulation difficulty for receivers (as
measured by the level of truncation required to establish their preferred matching) is
a good predictor of whether the market ends at the proposer- or the receiver-optimal
stable outcome. We now formalize this idea, and inspect other market characteristics
that affect outcomes. Table 4 provides results from descriptive regressions seeking to
explain different dimensions of the observed market outcomes, using the characteris-
tics outlined in Section 3 as regressors. The first regression column outlines the effect
these design metrics have on a market’s duration, the observed number of turns. The
next three measures relate to stability: the distance to a stable outcome, the number of
blocking pairs, and a dummy variable indicating whether the final outcome was stable
or not. Finally, the last column looks at the proximity to the proposer-optimal matching,
where the dependent variable is a dummy indicating that the market outcome is closer
to the proposer-optimal stable matching, where we restrict the regression to those mar-
kets with multiple stable outcomes.

We use the following regressors: “Market No.” takes values from 1 to 15 and repre-
sents the position in the sequence of markets within an experimental session: the first
paid market takes value 1; the last market takes value 15. The next two regressors are
dummies indicating lower 20� marginals (as opposed to the standard 50�) in the market,
for each of the two sides. The final three regressors are metrics from Table 2 that corre-
spond to the average distance (core span) between the extremal stable matchings, for
proposers and receivers, respectively, and the truncation required by receivers to pro-
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duce the receiver-optimal stable matching if proposers act straightforwardly (“R Opti-
mal” from Table 2).

We first note that “Market No.” does not have much explanatory power in our regres-
sions, indicating limited learning or convergence throughout an experimental session.

In terms of market attributes, the different columns highlight several points. First,
the only significant effect on the number of stages taken to conclude a market are the
incentives of receivers to truncate—the smaller the marginal incentive, the greater the
number of stages.29

Second, the regressions on measures of market stability indicate that low-powered
incentives seem to have a strong effect: Low marginals for proposers significantly in-
crease instability across all three measures; low marginals for receivers have the opposite
effect, increasing outcome stability. We return to the link between payoffs and outcomes
in Section 6.

Finally, consistent with the observation in Section 4, we find that the greater are the
required truncation levels and the weaker are the receiver’s incentives, the more likely it
is that the observed outcome is closer to the proposer-optimal matching. Greater pro-
poser incentives (namely, a larger distance between the two stable matchings for the
proposers) have the same effect.

The theoretical framework underlying stable predictions, as decentralized core out-
comes or as outcomes of a centralized clearinghouse à la deferred acceptance, is inher-
ently ordinal. In many applications matchings are associated with cardinal outcomes
for the participating individuals: wages in labor markets, school performance, commute
time from home for school assignments, and so forth. Our observations suggest that car-
dinal specifications may have an important role in determining outcomes.

5. Individual behavior

The previous section depicts aggregate market outcomes, frequently corresponding to
instability. But these aggregate measures are the product of 16 individuals’ choice se-
quences within each market. We now analyze response within the experiment at the
market participant level.

An important finding of the paper is that proposers do not behave straightforwardly,
in the sense defined in Section 2. That is, their proposals do not track their preference
rankings. Receivers’ behavior, on the other hand, is largely straightforward: receivers
(tentatively) accept proposals from the most-preferred proposers in the vast majority of
cases. Figure 1 presents the empirical distribution for straightforward play by proposers
and receivers, where each data point represents the fraction of interactions in which a
specific subject makes choices according to his/her induced preference.30

29This, again, suggests that subjects are not following strategies intended to shorten the length of play.
Lower marginal payoffs would, if anything, lead truncation (or skipping) to be less costly. Thus, if impa-
tience were driving results, we would expect these variables to be associated with shorter market activity.

30An alternative measure for straightforward play is the Kemeny distance between the revealed and the
induced preference. Calculating this measure at the individual level (where each observation is a subject
market), the results are qualitatively similar to those shown in Figure 1, with the same pattern of stochastic
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Figure 1. Distributions of straightforward/truthful play.

The results are striking. The theory predicts that proposers will straightforwardly
reveal their preferences and receivers will strategically misrepresent to achieve better
outcomes, most notably (and simply) by truncating preference orderings. In our exper-
iment, over half the subjects acting as receivers behave straightforwardly in all their
experimental interactions within this role, with two-thirds reporting straightforwardly
more than 90 percent of the time. The distribution of truth-telling for proposers is more
uniform—and stochastically dominated by that for receivers—with approximately one-
third of the proposers behaving straightforwardly less than half of the time. In what fol-
lows we analyze individuals’ behavior in detail.

5.1 Truncation and skipping

If any single receiver (or a group of receivers jointly) were to truncate preferences be-
low the receiver-optimal stable match—listing any proposers ranked below this point
as unacceptable—then if other market participants play straightforwardly, the resulting
outcome is the receiver-optimal stable matching. Given our data, we can check for the
extent of the truncation receivers are using by direct inference: when an unmatched re-
ceiver rejects all those proposing in a turn, this is equivalent to stating that the proposals

dominance. However, the results for the Kemeny measure are less skewed, reflecting the fact that though
subjects deviate from straightforward play, the size of this deviation is generally small with respect to the
induced preference.
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all came from (purportedly) unacceptable proposers. We do not observe truncations in
any other case. For instance, consider the worker-proposing situation where two work-
ers, w and w′ have proposed to a particular firm on the same turn, and w′ is accepted. In
this situation we cannot use revealed preference to infer whether w was acceptable or
not, only that w′ is preferred to w and that w′ is preferred to no match.

Table 5(a) presents the probability of rejecting all those proposing, conditional on
the true ranking of the best proposer. That is, for any rank k, we track all the events at
which a receiver (with no tentative acceptances) receives proposals, the best of which is
from their kth ranked partner. The number of these events across all turns is given in the
fourth data column, and the number in the first turn of the market is given in the fifth
data column. We calculate the fraction of times that all these proposals were rejected,
both across turns and in the very first turn. When the proposer is the receiver’s first-
best (rank 1) choice, this figure is close to zero. In fact, truncations within the upper half
of the preference ordering are rare. As the ranking of the best proposal falls (toward 8),
the truncation probability increases, reaching a rejection rate of 58�2 percent when the
highest ranked proposer is the worst partner. This truncation behavior does not qualita-
tively differ between the first and subsequent turns: both exhibit large probabilities only
in the final two positions of the preference ordering. The results could, in principle, be
influenced by the large number of observations in particular markets (for instance, the
two arrangements W–F and F–W of Market V). Analyzing each of the markets separately
does not drastically change our results.31

However, the use of truncation strategies does not provide the complete story. The
theory makes clear that proposers have a dominant strategy to straightforwardly reveal
their preferences. We now analyze whether proposers follow this dominant strategy and
move in sequence through their preference list. Table 5(b) details the probability with
which proposers act non-straightforwardly, that is, where they do not propose to the
highest ranked receiver available. The overall probability is 33�8 percent, consistent with
our initial observations that a substantial number of proposers do not make offers in
order of their true preferences. The table also indicates how non-straightforward play
varies with how the proposer is ranked by the straightforward receiver. Specifically, we
report the rate at which proposers with an active choice skip their most-preferred avail-
able receiver, conditioning on how that receiver ranks the proposer.32 To provide some
control over any time effects within a market, we again report separately the probabil-
ities for the first turn within a market (with the fourth and fifth data columns denoting
the number of observations over all turns and over the first turn, respectively).

The results illustrate a clear pattern in proposal behavior: proposers are not follow-
ing their dominant strategy. Instead, proposers are skipping highly ranked receivers who

31For Market V, the probability of truncating within the top half of the preference ordering is 3�2 percent
for the W–F treatment, 3�3 percent in the F–W treatment, and 2�4 percent for all other markets. For the
bottom half, the respective percentages are 31�2, 46�2, and 30�6.

32For instance, the first row of the table, corresponding to a proposer ranked 1st, details the probability
with which the proposer skips down below the best-ranked receiver that has not been ruled out, where that
receiver ranks them as their best possible match. When the proposer’s rank is 8th, the proposer’s straight-
forward proposal ranks them as the worst outcome among all eight proposers.
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Table 5. Non-straightforward play.

(a) Receiver Truncation

Best Proposal
Ranked as

Prob. of Rejecting All (%) Subsample Size

All Turns First Turn All First

1st 0�2 0�0 551 80
(0�2) (–)

2nd 1�1 0�0 472 118
(0�5) (–)

3rd 3�2 4�5 402 132
(0�9) (1�8)

4th 8�8 12�2 317 115
(1�6) (3�0)

5th 21�0 19�4 119 36
(3�7) (6�6)

6th 21�8 20�0 87 15
(4�4) (10�3)

7th 45�6 63�6 57 11
(6�6) (14�5)

8th 58�2 50�0 55 22
(6�7) (10�7)

All 7�2 9�1 2,060 529

(b) Proposer Skipping

Best Receiver
Ranks Proposer

Prob. of Skip (%) Subsample Size

All Turns First Turn All First

1st 6�5 3�1 92 32
(2�6) (3�1)

2nd 21�6 13�9 208 79
(2�9) (3�9)

3rd 33�1 18�4 317 141
(2�6) (3�3)

4th 23�4 24�7 487 186
(1�9) (3�2)

5th 38�4 40�9 383 154
(2�5) (4�0)

6th 27�6 39�4 351 94
(2�4) (5�1)

7th 37�9 61�9 314 42
(2�7) (7�5)

8th 53�4 60�8 483 176
(2�3) (3�7)

All 33�8 35�1 2,635 904
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are likely to reject them. This pattern is qualitatively similar for behavior in the first turn
of a market, matching our stationarity assumptions.33 Skipping behavior is reduced by
8�6 percent when we compare the first and last five markets in an experimental session
(where these blocks of five have an identical sequence of markets within them), so sub-
jects do learn to skip less as the experiment proceeds. However, quantitatively, the frac-
tion of turns where proposers skip is still large.

In many instances this skipping behavior would be inconsequential for outcomes:
for instance, if every proposer were to skip down to her most-preferred stable part-
ner, the game would end in a single turn and yield that stable matching. However, in
the first turn 19�5 percent of proposers skip down below their optimal stable partner,
and 10�2 percent skip down to receivers ranked below their worst stable partner. Across
all turns, conditioning on the availability of the stable partners, 17�2 percent of pro-
posers skip below their own proposer-optimal partner, and 8�5 percent skip below their
receiver-optimal partner. We see no qualitative difference between the first and subse-
quent turns.34

6. Noisy equilibrium

One possible explanation for observed behavior is that subjects are trying to optimize,
but are making mistakes. When mistakes are not very costly, they are less likely to be
corrected through play. To our knowledge there has been little research on the ques-
tion of robustness for centralized mechanisms: when are small mistakes on the part
of participants likely to lead to unstable/undesirable outcomes? In this section we will
define a quantal response equilibrium (QRE) for our matching game—a solution con-
cept incorporating both best response and noise, which has been used extensively to
explain nonequilibrium behavior.35 After calibrating the model’s noise parameter to our
outcome data, we will show that the QRE’s predictions mirror the patterns of behavior
within our data. Outside of helping to understand our experimental results, this behav-
ioral model provides a potentially useful tool for market designers, allowing a way to
examine robustness of new clearinghouses to a structured form of mistake by partici-
pants.

To illustrate the noisy equilibrium concept we will use Market V as a running ex-
ample. Suppose all proposers and receivers with the exception of w7 truthfully reveal
their preference order. Worker w7 has the underlying true ranking f8 � f7 � f1 � f6 �
f2 � f3 � f5 � f4 � w7. Her most-preferred stable-match partner is f7, while her least-
preferred stable partner is f6. Given others’ truthful behavior, if w7 were to skip down

33Rates of non-straightforward behavior in the first round are not significantly different overall, for either
proposers or receivers. Conditioning on how a receiver ranks them, we do find significant differences for
proposer skipping only at the reflected ranks of 3rd, 6th, and 7th.

34Proposer skipping has also been observed in the direct-revelation mechanism (cf. results in Harrison
and McCabe (1992) and Featherstone and Mayefsky (2011)). This behavior is not the focus of their analyses,
but their reported results make its presence clear and at nonnegligible frequencies.

35For literature on QRE, see McKelvey and Palfrey (1995, 1998) and references there. These papers also
demonstrate the existence of a QRE in our environment by finiteness of our dynamic game (players,
choices, and round after which it must end) and our choice of error distribution.
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her preference order and omit her overall most-preferred firm f8 (reporting the pref-
erence f7 � f1 � f6 � f2 � f3 � f5 � f4 � w7), her final match outcome under deferred
acceptance would still be f7. Skipping down to the most-preferred stable-match partner
has no effect on her final match: if others report truthfully, f7 will still be her matched
outcome. More generally, any group of proposers can omit any number of nonstable-
match partners and the resulting outcome will still be the same proposer-preferred sta-
ble matching, as long as receivers truthfully rank.

However, if worker w7 were to skip down just below her most-preferred stable part-
ner f7 (for example, providing the ranking f6 � f2 � f3 � f5 � f4 �w7), the final outcome
if all others report truthfully switches to the least-preferred stable matching, and w7’s
matched partner is f6. Skipping down the true order even further yields a strictly worse
match than f6, where the resulting matching will always be unstable. In general, given n

stable matchings in any finite matching market, the matchings possess a well known lat-
tice structure and can be jointly ordered by the proposing side from best to worst. Mea-
sure the size of each proposers’ contiguous skips by the number of stable-match part-
ners omitted from the ranking, k, and look for the maximal skip over all proposers k. The
final outcome under DA will be the proposers’ (k+1)th most-preferred stable matching,
as long as k< n.

This process is illustrated in the upper-left panel of Figure 2. For each worker wi in
Market V, the array illustrates the outcome if the workers idiosyncratically skip their k-
most-preferred partner(s) when all other participants truthfully reveal their preference
order. Each cell’s shading indicates the resulting match outcome, with darker shading
for final matches to more-preferred partners and lighter shading for less-preferred part-
ners.36

In addition, in the first panel, a black circle in a cell indicates where the worker’s
most-preferred stable partner is. For worker w7, the black dot appears in the second cell
(corresponding to firm f7, his/her second most-preferred partner). Skipping down to
the black dot does not change the outcome when others truthfully reveal: the shading
remains constant up to this point for all workers, but it will lighten directly after in the
third slot, indicating where the most-preferred firm has been skipped.

A white dot in a cell represents the critical location for the worker’s least-preferred
stable partner. For w7 this is the fourth location, corresponding to firm f6 being the top
of the provided ranking. Skipping to this point leads to the least-preferred stable partner
when others straightforwardly reveal; skipping below this point leads to a strictly worse
outcome, as is indicated by the progressively lighter shading for all workers as they skip
below the least-preferred stable partner.

Truthful revelation is a weakly dominant strategy for proposers under DA, so the
payoff from skipping down the order must be less than or equal to the payoff from be-
having straightforwardly. Moreover, payoffs are weakly decreasing in the size of the skip,
so the cell shading necessarily gets lighter as we move from left to right, regardless of
other participants’ play. However, under truth-telling the pattern revealed in the figure
indicates the indifference over skips up to the most-preferred parter, and then again a
constant payoff in skips between stable partners.

36A completely white cell represents the worst outcome in this market, remaining unmatched.
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Figure 2. Payoffs in noisy equilibria. Shading represents expected payoff from the correspond-
ing skip/truncation (payoffs are degenerate in the truth-telling arrays and derived from a simu-
lation of size 1,000 in the QRE panels). Darker shades represent higher normalized payoffs. Black
circles correspond to critical points for skipping/truncation beyond which the most-preferred
stable-match partner will be skipped/truncated; white circles represent the same critical point
for the least-preferred stable-match partner.

The bottom-left panel of Figure 2 provides payoff information for the proposal-
receiving side in Market V. The array illustrates the gain/loss to firm fi from truncat-
ing the true preference ordering from below by k places. Unlike the proposers, receivers
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do not have a dominant strategy to straightforwardly reveal, and truncating can both

improve or harm their final outcome. For example, firm f5 has an underlying prefer-

ence w2 � w8 � w3 � w5 � w1 � w4 � w6 � w7 � f5, with stable-match partners w5 and

w6. Truncating her preference and dropping the worst-ranked worker w7 has no effect

when others are truthful (the shading in spots 0 and 1 is identical), and the matched

partner is w6, the truth-telling outcome. The firm obtains a better outcome when she

truncates the least-preferred stable partner w6, shortening her ranking by two workers

to w2 � w8 � w3 � w5 � w1 � w4 � f5 and obtaining her most-preferred stable partner.

However, if f5 truncates too much and removes the most-preferred stable partner w6

(truncating five spots and ranking w2 � w8 � w3 � f5), then her payoff is reduced and

she will necessarily be unmatched. Similar to the above panel for proposing workers,

cells with black and white circles in them represent the critical locations for truncation

when others are truthful—the ranking position of the firm’s most- and least-preferred

stable-match partners, respectively. The array’s shading illustrates the pattern in payoffs,

with just three levels per firm: the least-preferred stable partner if they do not truncate

enough; an increase to the best stable partner when the firm truncates the least- but

not the most-preferred stable parter; and a decrease to being unmatched if the most-

preferred stable-match partner is truncated.

Truth-telling by all participants is not an equilibrium outcome when there are mul-

tiple stable matchings. To examine how best response changes as others play with noise

we use a modified notion of QRE, where we limit the available strategies to block skips

or block truncations of the true preference by proposers and receivers of proposals, re-

spectively.37 Using a logistic-error structure, we assume that if worker wi expects to get

a payoff of πW
ij from skipping at level j ∈ {0� � � � �7}, then she will play this skip strategy

with probability

pW
ij

(
ΠW ;λ) = exp

{
λ ·πW

ij

}
7∑

k=0

exp
{
λ ·πW

ik

}
�

where λ is a parameter capturing the noisiness of play (a value of zero produces random

play, while as λ → ∞ behavior tends to best response) and ΠW is the matrix with generic

37So if the true ranking is w : f1 � f2 � · · · � fn � w, we allow for stated preference fi � fi+1 � · · · � fn �
w � fi−1 ∼ fi−2 ∼ · · · ∼ f1. Similarly, for the firms we only allow truncations of the true preference f : w1 �
· · · � wn to the truncated preference w1 � · · · � wn−i. Each worker/firm therefore has 8 available strategies,
in comparison to the 9! possible preference orderings available in the game. This restriction will retain
much of the strategic nature of the game, and mirrors observed features in our data, while making the
model tractable. We will refer to skipping at level 0 as truthfully listing the preferences, while level 7 will refer
to only listing the worst outcome as acceptable. Similarly, truncation at level 0 will be listing the underlying
preference, and level 7 will refer to only listing the most-preferred partner as acceptable.
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elementπW
ij . Similarly the probability of firm fi using a truncation level j will be assumed

to be

pF
ij

(
ΠF ;λ) = exp

{
λ ·πF

ij

}
7∑

k=0

exp
{
λ ·πF

ik

}
�

where πF
ij represents firm fi’s expected payoff from truncation at level j in cents and

where πF
ij is a generic element of the matrix ΠF .

An equilibrium discipline on the outcome comes from forcing the payoff matrices
ΠW and ΠF to be expectations under a consistent set of beliefs over other participants’
skips/truncations. Given the mixed strategies used—the matrices PW (ΠW ) and PF(ΠF),
calculated via the logistic-error assumption according to the believed payoff matrices—
we can calculate the expected payoffs using the deferred-acceptance algorithm. We will
denote the map from probabilities over rankings to expected payoffs for each strategy
and role as [Π̃W Π̃F ] =φDA(P

W �PF).
A QRE in skipping/truncation therefore boils down to solving the fixed point

[
ΠW ΠF

]
= φDA

(
PW

(
ΠW ;λ)

�PF
(
ΠW ;λ))

�

Fixing the noise parameter λ to be 2�75, the upper- and lower-right panels in Fig-
ure 2 illustrate the expected payoffs to the participants for each skip/truncation strategy
at one such fixed point of the system.38 In contrast to the truth-telling panels, the out-
comes under QRE are stochastic, and expected payoffs are calculated through a simula-
tion of 1,000 (fixed) draws for the payoff-weighted mistakes. The right-most panels illus-
trate two distinct effects: the probability of matching at all and the preference for those
matches, conditional on matching. The probability of matching is indicated by the area
of the cell shaded, where a fully shaded cell indicates a certain probability of matching,
while the smaller the shaded region is, the less likely the participant is to be matched at
all. The conditional expectation of the match value is indicated by the shaded part of the
cell, using the same shading scale as the truth-telling panels.

Comparing truth-telling and QRE for this particular market, we see an increase in
receivers’ expected outcomes under minimal truncation and a corresponding reduction
in the truth-telling payoff for workers. Particular firms (in this case f5 and f7) derive a
slight payoff increase from truncating their least-preferred stable partner, but the gains
are much smaller when compared to the situation where others are truthful. The re-
maining firms get no gain from truncation at any level, though they do not suffer large
losses from truncating at moderate levels. Truncating the most-preferred stable part-
ner still produces a large expected loss, though firms still occasionally match even when
truncating past this extreme (an improvement over the truth-telling panel, where they
would certainly be unmatched if they truncated too much).

38Fixed points are found by iterating to convergence, where the algorithm’s initial condition is truth-
telling by all participants. In principle, there might be multiple fixed points of this system. Our initial con-
dition therefore serves as a consistent selection device.
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The change in payoff patterns for firms stems from both an increased chance that
a firm’s idiosyncratic truncation is unnecessary (the receiver-preferred stable matching
would likely occur anyway because of others’ deviations) and an increased cost of trun-
cation (an increased likelihood that the relevant stable-match proposer might now skip
them).

For the proposing workers there is a corresponding reduction in payoffs when be-
ing truthful or skipping a small number of firms in comparison to the truth-telling ar-
ray. Workers are now mostly indifferent over skips up to or above the receiver-preferred
stable-match partner; they have no strong incentives not to skip down. However, pro-
posers do have a strong preference not to skip below their least-preferred stable part-
ners, as this corresponds to a large drop in final payoff.

The particular value used in the figure, λ = 2�75, matches the value estimated
through our data, obtained through a simulated maximum-likelihood approach. The
likelihood of each marketwide matching in our experiments is measured via simulation,
and this likelihood is maximized over the QRE parameter λ.

The noise parameter λ is fitted with data from 120 marketwide matchings. Table 6
provides results for the data and the model across markets. The table’s first two data
columns present the fraction of matchings in each market that are completely stable
relative to the true preference, in both the observed and fitted QRE model. We have 20
unique markets (taking into account changes in the marginals that affect the QRE pre-
diction), each with at least four experimental observations. Over these 20 markets there
is a correlation of 0�68 between model and data. The next two data columns in Table 6
examine the markets with multiple stable matchings, and provide the fraction of stable

Table 6. QRE model predictions.

Stable Match P Best Core Span (P/R)

Market Arrangement Observed QRE Observed QRE True QRE

I W–F 25% 1% – – 0/0 0/0

II W–F 50% 90% – – 0/0 0/0
F–W 25% 12% – – 0/0 0/0

III W–F 50% 44% 50% 59% 1�00/1�75 0�77/1�15
W–F Dev 1 37�5% 31% – – 0/0 0�17/0�21
W–F Dev 2 87�5% 88% – – 0/0 0/0

F–W 50% 53% 50�0% 4% 1�75/1�00 0�13/0�12

IV W–F 62�5% 91% 0% 0% 1�00/5�13 0�30/0�17
F–W 62�5% 64% 100% 100% 5�13/1�00 5�07/1�04

V W–F 53�6% 33% 0% 0% 1�75/2 0�18/0�28
W–F Dev 1 62�5% 53% – – 0/0 0�11/0�19

F–W 18�8% 27% 33�3% 49% 2/1�75 0�83/0�80
F–W Dev 1 25% 37% – – 0/0 0�19/0�19

VI W–F 75�0% 28% 66�7% 89% 1/0�75 0�62/0�62
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Figure 3. Simulated and observed payoff difference from proposer best matching.

outcomes at the proposer best matching. Again, the model accurately predicts the pre-
cise stable matchings chosen, with a correlation between the observed and simulated
frequency of 0�76. Similar levels of fit (a correlation of 0�77) is found when we examine
stability at the market-participant level, asking how often each particular participant is
matched with one of his/her stable-match partners.

The model has a comparable fit when we examine the payoffs at the participant
level. To difference out levels in induced payoffs, we examine the difference in payoff
between the realized and the proposer best stable-match payoff. Figure 3(a) provides a
scatter plot, where each point in the plot represents a single market participant in one of
the 20 markets, and the location indicates the payoff difference for that participant. The
horizontal axis indicates the expected difference from the QRE model, while the vertical
axis indicates the average difference for that participant within the experimental data.
White circles represent the model-data differences for proposers (eight in each market)
while black diamonds represent the differences for each receiver (eight in each mar-
ket). The 45-degree line therefore indicates perfect agreement between the model and
the data. As the figure indicates, the QRE model’s fit is remarkably good (a correlation of
0�88 across all participants). This bears highlighting. A fully stationary behavioral model,
fitted to a single free parameter using data only from the final market-wide matching
selected in our dynamic clearinghouse, has a near 90 percent fit as an explanation for
market-participant deviations from the truth-telling prediction.

Despite this good fit, the full QRE model might be intractable in many interesting
matching situations. The model requires the calculation of a fixed point, where both the
dimension of the fixed point and the number of steps required to complete the market
algorithm increase substantially with the number of participants. The QRE model might
therefore be impractical for assessing the robustness of the deferred-acceptance algo-
rithm in any large market. Furthermore, QRE requires a large degree of sophistication
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from participants, which may be a shortcoming if considered as a positive behavioral
model. We therefore considered an approximation of the QRE model, which is simple to
calculate by both a market designer assessing a potential clearinghouse and by potential
market participants. Namely, we inspect a model that is based only on unilateral devi-
ations from truthful play (the first step of our QRE estimation algorithm). We calculate
each participants’ payoff under a particular skip/truncation, holding others’ responses
as truthful, and use these payoffs to assess the mixed strategies as before. This process
provides a good first approximation to our QRE model, and can be calculated with far
fewer steps than the fixed-point method, which must be iterated to convergence. As it
turns out, this first-pass model of noisy behavior provides a similar fit to our fixed-point
QRE results.

Figure 3(b) provides the same scatter plot for model-data fit, where we use the “de-
viation from truth-telling” payoff matrix to determine skips and truncations instead of
the fixed-point payoffs. Though there are some small differences between Figures 3(a)
and 3(b), the main pattern—a strong correlation between model and data—is the same.
Similarly, the one-step version of the algorithm produces comparable results for stabil-
ity, stable-matching selection, and core size.

7. Connecting results to the NRMP

The NRMP releases annual reports containing a variety of aggregate statistics on the
matching procedure as well as results from surveys conducted by the NRMP itself.39

These results seem to bear some strong connections with our experimental data.
In 2013, 49�4 percent of U.S. senior applicants and 42�4 percent of independent ap-

plicants filled out the survey administered by the NRMP. When asked to specify different
ranking strategies, 34 percent of U.S. senior respondents (12 percent of independent re-
spondents) confirmed the statement “I ranked one or more less competitive program(s)
in my first-choice specialty as a ‘safety net’.” Similarly, 7 percent of U.S. senior respon-
dents (10 percent of independent respondents) confirmed the statement that “I ranked
one or more program(s) in an alternative specialty as a ‘fall-back’ plan.” In fact, 6 per-
cent of U.S. respondents (22 percent of independent respondents) confirmed the more
global statement regarding the reported preferences that “I ranked the programs based
on the likelihood of matching (most likely first, etc.).” Residents confirm that they ranked
programs in the order of their preference (98 percent of U.S. seniors and 87 percent of
international applicants) but did not rank all of the programs that they are willing to
attend (71 and 47 percent, respectively).

These observations are in line with our experimental observations suggesting that
participants in the DA algorithm may not always report their preferences straightfor-
wardly/truthfully. Furthermore, a substantial number of respondents state that they use
the likelihood of matching as a guide to submit their rankings. This is consistent with our

39See nrmp.org/match-data/main-residency-match-data/ for historical results from each year and for
the 2013 applicant survey.

http://nrmp.org/match-data/main-residency-match-data/
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experimental proposers, whose decision over who to propose to each round is closely re-
lated to how each receiver ranks them, where they skip past receivers who do not rank
them highly.40

A possibly more striking aggregate statistic documented by the NRMP pertains to
the percentage of matches with a resident’s kth ranked hospital. For low k the fraction
of matches is particularly high and fairly constant across recent years. For instance, be-
tween 1997 and 2013, the percentage of U.S. senior applicants being matched with their
first-ranked hospital ranged from 48�8 percent (in 2015) to 59�5 percent (in 2000), the
percentages of matches with second-ranked hospitals ranged from 14�2 (in 2005) to 15�6
percent (in 2015), and the percentage of matches with third-ranked hospitals ranged
from 8�1 percent (in 2004) to 9�8 percent (in 2014). The figures for independent appli-
cants are similar, though lower (as around a half remained unmatched each year).41

To examine how high these numbers are we conducted simulations assuming in-
dependent preferences of both the proposing residents and the receiving hospitals. Us-
ing participant numbers and volume of hospitals and positions derived from the 2013
match, we examined the fraction of first-, second-, and third-ranked matches assuming
truth-telling.42 In our simulations first- through third-ranked positions account for 9�7,
8�7, and 7�7 percent, respectively. Were we to assume positively correlated preferences,
these numbers shrink, as there is more competition for each top-ranked slot. The num-
ber of first-ranked matches indicated by the NRMP survey would seem to come from a
negative correlation in the stated preferences of the residents, a sorting over who pro-
posers are choosing to rank first. This leads either to a conclusion that underlying pref-
erences have a large negative correlation or that the stated preferences of the proposing
side are different from the underlying preferences.

The Roth and Peranson (1999) analysis of NRMP data finds small cores, and lit-
tle scope for manipulation. Their argument that actual preferences exhibit small cores
hinges on similar core spans found through simulations and actual ranking data. Their
simulations assume independent preferences (with the argument that the core would be
even smaller with positively correlated preferences). However, these assumptions would
not explain the high degree of matches between residents and their top-ranked hospi-
tal. Our experimental data and the QRE model both indicate that rank-order lists speci-
fied by participants might exhibit substantial modification to the underlying preference,

40Naturally, there might be selection issues pertaining to the type of residents who choose to respond
to the NRMP survey, which we cannot control for. Furthermore, due to the privacy policies of the NRMP,
we cannot gain access to individual backgrounds of respondents, which could allow us to establish various
correlations between the general tendency to report in a particular way and residents’ attributes.

41In 2015, matches of independent applicants with first-, second-, and third-ranked hospitals occurred
with frequencies of 28�6, 11�5, and 6�7 percent, respectively. Conditional on matching, these numbers are
49�1, 19�7, and 11�5 percent. Qualitatively similar figures occur in the years previous to 2015.

42Our simulations had 36,000 residents proposing to 4,000 hospitals/programs, each with seven slots.
Residents had a uniformly determined preference over 15 hospitals, while hospitals had preferences uni-
formly determined across 60 residents. (These numbers were chosen to approximate aggregate statistics
reported by the NRMP.) We simulated the market outcome 10 times.
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which naturally manifests itself through small measured cores and a higher preponder-
ance of proposers matched to their stated best receiver.43

This proposer-based deviation can produce rankings with smaller cores (reflecting
smaller gains from truncation by the receiving side) as well as high fractions of proposers
matched to their first choices. The last columns in Table 6 provide information on the
core span within our experimental markets, while the penultimate “Induced” column
indicates the core span in each market according to the given payoff matrix (both mea-
sured in terms of the difference in rank between the best and worst stable outcome,
averaged across the eight participants on that market side). For instance in Market V,
the induced preferences yield a core with an average span of 1�75 for the workers and an
average span of 2 for the firms. The last column of Table 6 provides information for the
same markets using the QRE model, where the core-span measure is calculated by simu-
lation. The QRE core spans are much smaller than the induced level in all but one of our
markets with multiple stable matches. In Market V the workers’ QRE rankings would in-
dicate an average core span of just 0�18 for the workers and 0�28 for the firms when run as
worker-proposing, and 0�83 for workers and 0�8 for firms, when run as firm-proposing.

8. Conclusion

The paper reports observations from experiments emulating a highly utilized match-
ing clearinghouse, the deferred-acceptance (DA) mechanism. We studied a large set of
markets, varying in their complexity, incentives to straightforwardly reveal preferences,
and cardinal representations. Several important insights emerge from our experiments.
First, less than half of the markets generated a stable matching. Of those markets with
multiple stable matchings that did end at a stable outcome, over 70 percent are at the
receiver-best stable matching. Since straightforward revelation of preferences generates
the proposer-best outcome, these results are suggestive of manipulation. Our second
set of insights regard the source of deviations from straightforward behavior. Proposers
frequently skipped down their preference ordering, preferring to propose early to those
more likely to accept them. Receivers, however, appeared to by and large behave in an
effectively straightforward manner, accepting the best offer at each point in time. This
is in contrast to the underlying theoretical predictions that proposers behave straight-
forwardly and receivers do not. Last, we show that market attributes have a significant
impact on outcomes. For instance, both the cardinal representation and the core size in-
fluence whether outcomes are ultimately stable. They also impact the overall distance of
observed outcomes from the core and the number of turns it takes markets to converge
to a final outcome.

The study has potentially important practical implications given the wide use of
the DA mechanism, in particular, for the approximately 60,000 participants involved in
medical-residency matching each year in the United States. The behavior we observe in

43Across the 20 different markets in our experiment, 42�0 percent of simulated outcomes under our QRE
model correspond to proposers matched to their stated best receiver. Measured according to the true pref-
erence, just 16�0 percent of the outcomes are between a proposer and their actual best receiver. Under
truth-telling by all participants this figure would be 15�6 percent.
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the lab might mirror medical residents from top programs applying to top-tier residen-
cies, while those from less well regarded schools aiming at middle-ranked hospitals and
below. Naturally, outcomes are then very fragile to mistakes (by residents) regarding how
low to aim with their applications, even if hospitals submit their preferences truthfully.
While the centralized system is designed to generate stable matchings, such behavior
may cause clearinghouses to converge to outcomes that are, in fact, unstable, and for
the data derived from them to look less amenable to manipulation.

To test the DA mechanism in the laboratory, we implemented a dynamic version
of it. Nonetheless, there are several aspects of the data that suggest the results may be
useful for predicting behavior in the field, where a static version of the mechanism is
often used. First, we provide a simple model of behavior in the static mechanism that
fits many facets of our data and allows us to make out-of-sample predictions. Second,
we compare moments generated by the behavioral model to those available in NRMP
field data. That a model of behavior in our experiment is consistent with several stylized
facts from the field suggests our findings might be more widespread.

We note that our results could provide insights on outcomes of particular decentral-
ized matching processes as well. This is the case for markets in which two conditions
hold. First, offers can flow only from one side of the market to the other (say, firms can
make offers to workers but not vice versa). Second, repeat offers are impossible or pro-
hibitively costly. In such markets, our results suggest that outcomes may not be stable,
and their features depend crucially on particular market characteristics.

The paper opens the door for several directions for future research. First, in light
of the behavior we observe, it would be important to formally understand how fragile
outcomes are to particular skipping heuristics by proposers. Second, while the limited-
friction case studied in this paper is a natural first step for inquiry, and fits with much
of the extant theoretical literature, it would be important to determine how certain fric-
tions, particularly those pertaining to incomplete information (regarding others’ prefer-
ences as well as one’s own), may impact behavior and outcomes in centralized clearing-
houses. This may be particularly interesting for larger markets, where complete sharing
of private information would require massive amounts of communication. In fact, in
large markets with incomplete information, other details of the clearinghouse may play
an important role, such as pre-application interviews, which are common, for example,
in the NRMP.
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