
Otsu, Taisuke; Pesendorfer, Martin; Takahashi, Yuya

Article

Pooling data across markets in dynamic Markov games

Quantitative Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Otsu, Taisuke; Pesendorfer, Martin; Takahashi, Yuya (2016) : Pooling data across
markets in dynamic Markov games, Quantitative Economics, ISSN 1759-7331, The Econometric
Society, New Haven, CT, Vol. 7, Iss. 2, pp. 523-559,
https://doi.org/10.3982/QE612

This Version is available at:
https://hdl.handle.net/10419/150416

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/3.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/QE612%0A
https://hdl.handle.net/10419/150416
https://creativecommons.org/licenses/by-nc/3.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Quantitative Economics 7 (2016), 523–559 1759-7331/20160523

Pooling data across markets in dynamic Markov games

Taisuke Otsu
Department of Economics, London School of Economics

Martin Pesendorfer
Department of Economics, London School of Economics

Yuya Takahashi
Department of Economics, Johns Hopkins University

This paper proposes several statistical tests for finite state Markov games to ex-
amine whether data from distinct markets can be pooled. We formulate homo-
geneity tests of (i) the conditional choice and state transition probabilities, (ii) the
steady-state distribution, and (iii) the conditional state distribution given an ini-
tial state. The null hypotheses of these homogeneity tests are necessary conditions
(or maintained assumptions) for poolability of the data. Thus rejections of these
null imply that the data cannot be pooled across markets. Acceptances of these
null are considered as supporting evidences for the maintained assumptions of
estimation using pooled data. In a Monte Carlo study we find that the test based
on the steady-state distribution performs well and has high power even with small
numbers of markets and time periods. We apply the tests to the empirical study
of Ryan (2012) that analyzes dynamics of the U.S. Portland cement industry and
assess if the data across markets can be pooled.

Keywords. Dynamic Markov game, poolability, multiplicity of equilibria, hypoth-
esis testing.

JEL classification. C12, C72, D44.

1. Introduction

This paper proposes several statistical tests for finite state Markov games to examine
whether data from distinct markets can be pooled. Data pooling is employed in a num-
ber of empirical applications of the two-step estimation methods for dynamic games
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recently developed.1 These two-step estimators estimate players’ policies and state tran-
sition probabilities in a first stage directly from the data as functions of observable state
variables. The second stage conducts a search for the structural model parameters that
best rationalize observed behaviors of players and state transitions using the first-stage
policy estimates as estimates for the equilibrium beliefs. A typical application may not
have long time series data for a single market. Researchers are tempted to pool data from
different markets (or games) to perform the first-stage policy function estimation. To do
so, researchers assume that the data are generated from a single and identical equilib-
rium in every market. This assumption has become popular in a number of recent pa-
pers.2 To be more precise, the assumption commonly imposed requires that the game
describing players’ behavior is identical in all markets and that a single and identical
equilibrium of that game is played in all markets. It also requires that the econometric
model controls for all observable or unobservable market-level elements. A violation of
the assumption results in inconsistent policy estimates and inconsistent structural pa-
rameter estimates. A violation of the assumption can arise because of equilibrium mul-
tiplicity. The single and identical equilibrium assumption may be very restrictive even if
the markets are identical as multiplicity of equilibria is a well known feature inherent to
games. Incorrectly imposing this assumption leads to erroneous inference.

A maintained assumption for estimation based on the pooled data is that the data
generating processes are identical across markets. We propose three tests to assess ho-
mogeneity of the data generating processes. The first test compares directly the set of
conditional choice or state transition probabilities estimated from the pooled (across
markets) sample with those estimated from each market separately. The second test is
based on the result that there is a unique steady-state distribution associated with a
transition matrix of states under the assumption of communicating states. Based on this
result, the second test compares the steady-state distribution estimated from the pooled
sample with that from each market. Our third test statistic is based on the conditional
state distribution given the initial (observed) state. We contrast the observed relative fre-
quencies of states to the theoretical predictions given the initial state. It turns out that
the third test does not require several assumptions on Markov chains that are imposed
for other tests. Each test has its own advantage. One advantage across all three tests is
that we do not need to impose any mixing structure.

1Several papers, including Jofre-Bonet and Pesendorfer (2003), Aguirregabiria and Mira (2007), Bajari,
Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007), Pesendorfer and Schmidt-Dengler (2008),
Arcidiacono and Miller (2011), Kasahara and Shimotsu (2012), and Srisuma and Linton (2012), proposed
two-step estimation methods for dynamic Markov games under varying assumptions. They led to a num-
ber of empirical papers that apply these methods to empirically analyze dynamic interactions between
multiple players.

2Examples include Beresteanu, Ellickson, and Misra (2010), Collard-Wexler (2013), Dunne, Klimek,
Roberts, and Xu (2013), Fan and Xiao (2014), Jeziorski (2014), Lin (2015), Maican and Orth (2014),
Minamihashi (2012), Nishiwaki (2015), Ryan (2012), Sanches and Silva Junior (2013), Snider (2009), Suzuki
(2013), and Sweeting (2013). They impose the assumption of a single and identical equilibrium in all mar-
kets either explicitly or implicitly. The empirical sections of Aguirregabiria and Mira (2007) and Arcidiacono,
Bayer, Blevins, and Ellickson (2015) and the Monte Carlo exercise in Arcidiacono and Miller (2011) also im-
pose the same assumption.
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Since the null hypotheses of our homogeneity tests are necessary conditions or
maintained assumptions for estimation based on pooled data across markets, a rejec-
tion of the null suggests that the data cannot be pooled. A violation can arise because
(i) multiple equilibria are played across markets, (ii) the game form describing play-
ers’ behavior and interactions differs across markets, and (iii) the specified model is not
sufficiently rich as it does not control for all observable or unobservable market-level
heterogeneity adequately. It is difficult to distinguish these alternative explanations al-
though we shall illustrate tests accounting for unobservable market-level heterogeneity
as in Arcidiacono and Miller (2011) in more detail below. Our test is aimed at checking
the validity of the maintained assumption for data pooling commonly imposed in the
literature. A rejection of the null points to an inconsistency of the first-stage estimates
that arises from pooling different markets. Naturally, since the framework of this paper
nests single agent settings as a special case with only one player, our tests can also be
thought of as testing whether data can be pooled in the single agent case.

To illustrate the finite sample performance of our tests, we first apply the tests to sim-
ulated data using an example of multiple equilibria in Pesendorfer and Schmidt-Dengler
(2008). Our tests, particularly the one based on the steady-state distribution, perform
well and have high power even with small numbers of markets and time periods. We
then apply our tests to the empirical study of Ryan (2012) that analyzes dynamics of the
U.S. Portland cement industry. Our tests reject the null hypothesis that the data from
distinct markets are generated from an identical data generating process.

To the best of our knowledge, this is the first paper that proposes tests to assess
the validity of data pooling in a general class of dynamic Markov games. Our tests may
give a researcher guidance on whether she can pool different markets to estimate pol-
icy functions in the first stage. A rejection of the null hypothesis suggests that one or
more modeling assumption differs across markets. In the context of static games with
incomplete information, de Paula and Tang (2012) propose a test of multiplicity of equi-
libria that requires conditional independence between players’ actions. Since our tests
exploit the panel structure of the data and rely on the way that the game and states
evolve, our tests are fundamentally different from theirs. One notable difference is that
while de Paula and Tang (2012) maintain the assumption of independent-across-players
private shocks, we can allow for within-period correlation in players’ actions and for un-
observed state variables.

This paper is organized as follows. Section 2 lays out a class of general dynamic
Markov games we work with and provides some background on Markov chains. Sec-
tion 3 proposes several test statistics. In Section 4 we conduct a Monte Carlo study to
examine finite sample properties. Section 5 applies our tests to data of Ryan (2012). Sec-
tion 6 concludes. The Appendix contains technical details. Replication files are available
in a supplementary file on the journal website, http://www.qeconomics.org/supp/612/
code_and_data.zip.

2. Model

This section describes elements of a general dynamic Markov game with discrete time
t = 1�2� � � � . We focus on the description of players’ state variables and actions. These

http://www.qeconomics.org/supp/612/code_and_data.zip
http://www.qeconomics.org/supp/612/code_and_data.zip
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states and actions are the observable outcome variables for some underlying dynamic
game, which we do not observe. We leave the details of the game unspecified. Instead we
shall focus on testable implications of the observed outcomes. Our setting includes the
single agent case as a special case when there is one agent per market. We first describe
the framework, which applies for all markets j = 1� � � � �M .

Players. A typical player is denoted by i= 1� � � � �N . The single agent case arises when
N = 1. The number of players is fixed and does not change over time. Every period the
econometrician observes a profile of states and actions described as follows.

States. Each player is endowed with state variables sti ∈ {1� � � � �L} in finite support.
The state variable sti is publicly observed by all players. We maintain the assumption
that the econometrician also observes sti . The vector of all players’ public state variables
is denoted by st = (st1� � � � � s

t
N) ∈ S = {1� � � � �L}N whose cardinality is ms = LN . In Sec-

tion 3.5, we discuss the case where some of the public state variables are unobservable
by the econometrician.

Actions. Each player chooses an action ati ∈ {0�1� � � � �K} in finite support. The deci-
sions are made after the state is observed. The decisions can be made simultaneously or
sequentially. The decision may also be taken after an idiosyncratic random utility (or a
random profit shock) is observed. We leave the details of the decision process unspeci-
fied. Our specification encompasses the random-utility modeling assumptions, and al-
lows for within-period correlation in the random utility component across actions and
across players. The vector of joint actions in period t is denoted by at = (at1� � � � � a

t
N) ∈

A = {0�1� � � � �K}N whose cardinality is ma = (K + 1)N . We assume actions are publicly
observed by all players and the econometrician.

Choice probability matrix. Letσ(a|s)= Pr{at = a|st = s} denote the conditional prob-
ability that an action profile a will be chosen conditionally on a state s. Throughout the
paper, we assume that σ is time invariant and is conditionally independent from other
past actions and states. The matrix of conditional choice probabilities is denoted by σ ,
which has dimensionms × (mams). It consists of conditional probabilities σ(a|s) in row
s, column (a� s), and zeros in row s, column (a� s′) with s′ �= s.

State–action transition matrix. Let g(s′|a� s) = Pr{st+1 = s′|at = a� st = s} denote the
state–action transition probability that a state s′ is reached when the current action pro-
file and state are given by (a� s). We also assume that g is time invariant and is condition-
ally independent from other past actions and states. We use the symbol G to denote the
(mams)×ms-dimensional state–action transition matrix in which column s′ ∈ S consists
of the vector of probabilities {g(s′|a� s)}a∈A�s∈S.

State transition matrix. Under the above assumptions on σ and G, the state variables
st obey a (first-order) Markov chain with the (stationary) state transition matrix P = σG
whose dimension isms×ms . A typical elementp(s′|s)= ∑

a∈A σ(a|s)g(s′|a� s) of P equals
the probability that state s′ is reached when the current state is given by s. Hereafter we
focus on the first-order Markov chain. However, our testing procedures can be extended
to higher-order Markov chains since higher-order Markov chains can be reformulated
as first-order ones by modifying the state space (see, e.g., Billingsley (1961)).

Limiting steady-state distribution. When the limit exists, letQ(s′� s)= limT→∞ T−1 ×∑T
t=1 1{st = s′� s0 = s} denote the long run proportion of time that the Markov chain
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P spends in state s′ when starting at the initial state s0 = s, where 1{·} is the in-
dicator function. Suppose the unconditional long run proportion of time Q(s′) =
limT→∞ T−1 ∑T

t=1 1{st = s′} that the Markov chain P spends in state s′ satisfies Q(·) =
Q(·� s) for all initial states s. Then the ms-dimensional row vector of probabilities
Q = {Q(s)}s∈S is called the steady-state distribution of the Markov chain. Observe that
the state space is finite and Q describes a multinomial distribution.

The properties of Markov chains are well known. We next describe some property
useful for our purpose. To do so, we introduce the concept of communicating states.

Communicating states. We say that a state s′ is reachable from s if there exists an
integer T so that the chain P will be at state s′ after T periods with positive probability.
If s′ is reachable from s, and s is reachable from s′, then the states s and s′ are said to
communicate.

Lemma 1. Suppose all states of the Markov chain P communicate.3 Then the steady-state
distribution Q exists and is unique. It satisfiesQ(s) > 0 for all s ∈ S and Q = QP.

This lemma guarantees existence and uniqueness of the steady-state distribution,
and states that the long run proportion of time that the Markov chain P spends in state
s is strictly positive for any state s ∈ S and the equation Q = QP must hold. A proof of
the above properties is given in Levin, Peres, and Wilmer (2009, Proposition 1.14 and
Corollary 1.17), for example.

Communicating states are typically invoked in applied work; see Ericson and Pakes
(1995). Communicating states naturally emerge in dynamic discrete choice models us-
ing a random utility specification; see McFadden (1973). The random component having
full support in the real numbers implies that all actions arise with strictly positive prob-
ability for any state s ∈ S. Thus, states will communicate if the state–action transition
matrix allows that state s′, respectively s, can in principle be reached when starting from
state s, respectively s′, for any pair of states s� s′ ∈ S.

The feature that all states communicate may also emerge when actions are chosen
with probability 1 for some (or all) states. Our setup includes these settings as well. What
is required for states to communicate in this case is that there exists a sequence of state–
action profiles {(a1� s1)� � � � � (at � st )} so that the chain starting at state s will be at state s′
after t periods for any s� s′ ∈ S.

3. Homogeneity tests for poolability

This section describes hypotheses that we aim to test and proposes statistical tests for
those hypotheses. For each market j, a sequence of action–state profiles (atj� stj)t=1�����T
is observed, where T is the length of time periods in the data set. Our null hypothesis is
that the observed profiles are generated from an identical data generating process in all
markets, and the alternative is that the data generating process is distinct for some mar-
kets. This null hypothesis is a maintained assumption for estimation based on pooled
data. Based on the setup described in the previous section, the data generating process

3This is also called that the Markov chain P is ergodic or irreducible.
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of the profiles (atj� stj)t=1�����T is characterized by the conditional choice probability ma-
trix σ j and state–action transition matrix Gj that imply the transition matrix of states
Pj = σ jGj . In particular, we focus on homogeneity of σ j and Pj across markets, and test
the null hypotheses

Hσ
0 : σ 1 = · · · = σM�

(1)
HP

0 : P1 = · · · = PM;
the alternatives are their negations. The null hypothesis Hσ

0 is based on the idea that the
equilibrium choice probabilities are identical across markets. The null HP

0 has a similar
motivation given that the state–action transition is identical across markets. Economic
models may have the feature that the state–action transition matrix G is exogenously
given and by construction is identical across markets. In such cases, testing the con-
ditional choice probabilities has the same interpretation as testing the state transition
probabilities. However, in general, the tests may not be equivalent. A rejection of the null
HP

0 could arise either because of nonidentical choice probabilities σ j or because of het-
erogeneous state–action transition matrices Gj . Which test is most suitable depends on
the economic application at hand and each test has its own rationale.

If all states of the Markov chain P communicate, then by Lemma 1, there exists
a unique steady-state distribution Q and the identical equilibrium hypothesis may be
tested by homogeneity of the steady-state distribution,

HQ
0 : Q1 = · · · = QM� (2)

As discussed in the next subsection, if the cardinality of the action or state space is large,
then the power of the test for Hσ

0 or HP
0 tends to be low relative to that for HQ

0 because a
decrease in the degrees of freedom can be expected. Thus, the power of the homogeneity
test can be increased by testing the steady-state distribution.

Lemma 1 says that the null HP
0 of equal transition matrices implies the null HQ

0 of

equal steady-state distributions. Thus, a rejection of HQ
0 provides strong evidence for a

rejection of HP
0 . By testing HQ

0 first, we may exploit the property that the power of testing

the null HQ
0 is typically higher than the power of testing the null HP

0 . However, it should
be noted that the converse is not true: the equivalence of the steady-state distribution
across markets does not necessarily imply that of the transition matrix.

To test the above hypotheses, we consider the situation where for each market j, we
observe the action–state profiles (atj� stj)t=1�����T with sufficiently large T . The test proce-

dures discussed in the next subsection are theoretically justified when the time length T
increases to infinity. However, the researcher may face the situation where the length of
time periods T is relatively short compared to the number of markets M . In such a sce-
nario, it would be natural to treat the action–state profiles with fixed T across markets
as an independent and identically distributed (i.i.d.) sample (over j = 1� � � � �M) from
the distribution parametrized by a common choice probability σ or a common transi-
tion matrix P. For example, testing may be based on the conditional state distribution
st |s1 = s given the initial state s for t = 2� � � � �T . By conditioning on the initial state we do
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not require that states communicate so that the industry at hand can reach the steady-
state distribution. This situation arises naturally in new or growing industries. Using the
transition matrix P, the conditional distribution st |s1 = s is described by ι′sPt , where ιs

takes 1 at the element corresponding to s and 0 otherwise. There are many ways to com-
pare the vector of conditional probabilities {Pr{st = s′|s1 = s}}s′∈S with the theoretical
prediction ι′sPt . For example, at a given initial state s, we can consider the null hypothe-
sis in the form of

Hs
0 :

{
1

T − 1

T∑
t=2

Pr
{

st = s′|s1 = s
}}

s′∈S

= 1
T − 1

T∑
t=2

ι′sPt � (3)

The left hand side is a vector of model-free conditional probabilities. The right hand
side is the model-based prediction for those probabilities. Note that the hypothesis Hs

0
is implied from two assumptions: (i) the data (stj)t=1�����T for j = 1� � � � �M are i.i.d. over
j, which allows us to express the hypothesis Hs

0 without using a market index j, and
(ii) the Markov chain is first-order and time-homogeneous. Thus, a rejection of Hs

0 may
be interpreted as violation of the i.i.d. assumption (perhaps associated with multiplicity
of equilibrium) or misspecification of the Markov chain (such as time inhomogeneity or
higher order).

The left hand side denotes the empirical frequency (across markets) of visiting state
s′ in periods t = 2� � � � �T conditional on the initial state s1 = s. The right hand side is the
theoretical predicted counterpart under the null of homogeneity across markets. A vi-
olation of (3) would indicate that the empirical frequency distribution (across markets)
differs from that predicted by the theoretical model. Hypothesis (3) focuses on the aver-
age probabilities of visiting each state given the initial state s. We may do so for selected
initial states. Alternatively, one may consider all possible initial states jointly by testing
the null H0 : Pr{st = s′|s1 = s} = ι′sPt for all s ∈ S and t or its linear combinations. We
note that the null Hs

0 tests the validity of the i.i.d. parametric model for (sj)j=1�����M with
sj = (s1

j � � � � � sTj ) for fixed T .
As mentioned above, a rejection of the null can arise from multiple equilibria, the

game form differing across markets, and/or unobservable market-level heterogeneity.
Our framework nests single agent settings as a special case. In case of rejection, the first
possibility (multiple equilibria) is naturally excluded so the interpretation of the rejec-
tion would be simpler. Therefore, our tests can be thought of as testing whether richer
heterogeneity among agents should be considered in the single agent case.

3.1 Testing choice and transition probabilities

Let us first consider testing for Hσ
0 and HP

0 in (1) based on the conditional choice and
transition probabilities, respectively. We form a generally applicable chi-squared test
statistic based on the conditional choice or transition probability, that is

TP =
M∑
j=1

∑
d∈D

Wj(d)
{
P̂j(d)− P̂(d)}2

� (4)
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where P̂j(d) is a nonparametric estimator of the probability of interest for a market j
without imposing the null hypothesis of interest, P̂(d) is another nonparametric esti-
mator under the null of homogeneity of P̂j(d) across markets, and Wj(d) is a weight or
standardization to obtain a standard limiting distribution.

For example, to test homogeneity of the conditional choice probabilities Hσ
0 , we set

d = (a� s) and D = A × S. Let fj(a� s)= ∑T
t=1 1{atj = a� stj = s} be the frequency of action–

state profile (a� s) in market j and let fj(s)= ∑T
t=1 1{stj = s} be the frequency of state s in

market j. Then we estimate the conditional choice probabilities for the action profile a
given the current state s in market j, σ j(a|s), by the relative frequencies

P̂(d)=

M∑
j=1

fj(a� s)

M∑
j=1

fj(s)

� P̂j(d)= fj(a� s)
fj(s)

� (5)

with and without imposing Hσ
0 , respectively. To obtain the chi-squared limiting distri-

bution, we set the weight asWj(d)= fj(s)/P̂(d).
Also, to test the equivalence of the transition matrices HP

0 , we set d = (s′� s) and

D = S × S. Let f 1
j (s

′� s) = ∑T−1
t=1 1{st+1

j = s′� stj = s} and f 1
j (s) = ∑T−1

t=1 1{stj = s}. Then we
estimate the transition probability pj(s′|s) by

P̂(d)=

M∑
j=1

f 1
j

(
s′� s

)
M∑
j=1

f 1
j (s)

� P̂j(d)= f 1
j

(
s′� s

)
f 1
j (s)

� (6)

with and without imposing HP
0 , respectively. The weight is set asWj(d)= f 1

j (s)/P̂(d).
The limiting null distribution of the statistic TP is obtained in the following proposi-

tion (see Appendix A.1 for the proof).

Proposition 1. Consider the setup of Section 2. Suppose that all states of the Markov
chain Pj communicate for each j = 1� � � � �M and that the observations (atj� stj)t=1�����T are

mutually independent over j = 1� � � � �M . Then under Hσ
0 (or, respectively, HP

0 ), the statis-
tic TP converges in distribution to the chi-squared distribution with degrees of freedom
(M − 1)ms(ma − 1) (or, respectively, (M − 1)ms(ms − 1)) as the length of time periods T
increases to infinity.

Bootstrap critical value. The chi-squared limiting distributions of the statistic TP
gives us critical values to control the asymptotic null rejection probabilities. Alterna-
tively one may compute critical values by some bootstrap method.

For example, to test the null HP
0 , we can randomly pick an initial state s0 ∈ S and

then draw the bootstrap counterpart f 1�b
j (s′� s) of f 1

j (s
′� s) from the estimated condi-

tional probability P̂(d) in (6) for s� s′ ∈ S, j = 1� � � � �M , and b = 1� � � � �B. Note that we



Quantitative Economics 7 (2016) Pooling data across markets 531

start the sampling process only after a certain number of time periods so as to neutral-
ize the effect of the arbitrary choice of the initial state. Then the bootstrap counterpart
T bP of the statistic TP is given by replacing f 1

j (s
′� s) and f 1

j (s) in (6) with f 1�b
j (s′� s) and

f 1�b
j (s), respectively.

Also, to test the null Hσ
0 , we can use the fact that action profiles a ∈ A conditional on

a state s ∈ S are multinomially distributed with probabilities σ j(a|s) in market j. State
s ∈ S occurs with frequency fj(s) and the probability of observing action–state profiles
(a� s) from fj(s) trials is given by the multinomial{

fj(a� s)
}

a∈A|fj(s)∼ Multinomial
(
fj(s)�

{
σ j(a|s)}a∈A

)
for each j = 1� � � � �M . We can use this distribution to implement a parametric boot-
strap. More precisely, we fix s ∈ S and draw the bootstrap counterpart {f bj (a� s)}a∈A of
{fj(a� s)}a∈A for b = 1� � � � �B from the multinomial distribution with the number of tri-
als fj(s) and the weight vector {P̂(a� s)}a∈A in (5). Then the bootstrap counterpart T bP is
given by replacing fj(a� s) in (5) with f bj (a� s). Here we only resample f bj (a� s) and the
number of trials fj(s) is held fixed by the original sample. Based on an argument similar
to Andrews (1997, Corollary 1), we can see that the (1 −α)th quantile of T 1

P � � � � �T BP is an
asymptotically valid critical value.

Similarly, to test the null HP
0 on the transition matrices, we draw a bootstrap counter-

part {f 1�b
j (s′� s)}s′∈S of {f 1

j (s
′� s)}s′∈S from the multinomial distribution with the number

of trials f 1
j (s) and weight vector {P̂(s′� s)}s′∈S in (6). Then the bootstrap counterpart T bP

is given by replacing f 1
j (s

′� s) in (6) with f 1�b
j (s′� s).

Optimal test statistic. The test statistic TP is constructed by measuring the chi-
squared distance between the nonparametric estimators P̂(d) and P̂j(d) for the discrete
distribution over D with and without imposing the null hypothesis, respectively. There
are many other ways to measure the discrepancy between the single market and full
sample estimates. For example, we can measure discrepancy of conditional probabili-
ties by the (weighted) Kullback–Leibler divergence

T ∗
P = 2

M∑
j=1

∑
d∈D

Wj(d)P̂j(d) log
P̂j(d)

P̂(d)
� (7)

To test the null hypothesis Hσ
0 on the conditional choice probabilities, we can set

d = (a� s) and D = A × S, and estimate P̂j(d) and P̂(d) as in (5). Also, to test the null
hypothesis HP

0 on the transition probabilities, we set d = (s′� s) and D = S × S, and then
estimate P̂j(d) and P̂(d) as in (6). For both cases, we set the weight as Wj(d) = fj(s) to
obtain the chi-squared limiting distribution. The test statistic T ∗

P is a likelihood ratio ver-
sion of the chi-squared statistic TP . These statistics are asymptotically equivalent under
the null and local alternative hypotheses (e.g., van der Vaart (1998, Lemma 17.3)).

On the other hand, in the literature of hypothesis testing for multinomial distribu-
tions, Hoeffding (1965) discovered that the likelihood ratio statistic for the simple hy-
pothesis on multinomials enjoys some global power optimality that is not shared by the
chi-squared statistic. In particular, under some restriction on the convergence rate of
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the type I error probability, the likelihood ratio statistic achieves the highest power un-
der fixed alternatives. This optimality is called the generalized Neyman–Pearson opti-
mality and has been extended to several contexts (see Gutman (1989)). By extending the
argument in Gutman (1989) to our setup, we derive the following optimality for T ∗

P (see
Appendix A.1 for the proof).

Proposition 2. Under the same setup of Proposition 1 with fixed initial states (s0
1� � � � �

s0
M), consider the statistic T ∗

P with Wj(d)= fj(s) and (5) to test Hσ
0 . There exists a positive

sequence δT =O(T−1 logT) such that

lim
T→∞

1
T

log Pr
{
T ∗
P ≥ 2T(α− δT ) : Hσ

0
} ≤ −α (8)

for α> 0, and that for any test statistic TA for Hσ
0 satisfying

lim
T→∞

1
T

log Pr
{
TA rejects Hσ

0 : Hσ
0
} ≤ −α� (9)

it holds that

Pr
{
T ∗
P ≥ 2T(α− δT ) : Hσ

1
} ≥ Pr

{
TA rejects Hσ

0 : Hσ
1
}

(10)

for all T large enough.
The same result also holds for the statistic T ∗

P with Wj(d)= fj(s) and (6) to test HP
0 by

replacing Hσ
0 , Hσ

1 , and T with HP
0 , HP

1 , and T − 1, respectively.

This proposition says that in the class of test statistics satisfying the restriction on
the exponential decay rate of the type I error probability in (9), the Kullback–Leibler
statistic T ∗

P attains the highest power. This optimality result is a natural extension of the
generalized Neyman–Pearson optimality analysis to homogeneity testing of conditional
choice or transition probabilities.

Parametric model for σ and P. Suppose we parametrize the choice probability σ j
or transition matrix Pj by a parametric model σ(a|s;θj) or p(s� s′;θj), such as logit.
We assume that the functional forms are identical across markets and that the differ-
ent equilibria are characterized by different parameter values of θj . In this case, the null
hypothesis of interest can be written as

Hθ
0 : θ1 = · · · = θM�

Since this is a parameter hypothesis for a discrete parametric model, standard maximum
likelihood theory applies. In particular, the score test would be convenient since the test
statistic requires only the full sample estimator.

Comment on the large-T asymptotics. The asymptotic analysis for the test based on
TP (and TQ in the next subsection) is conducted under the framework of T → ∞ whileM
is fixed. As far as the researcher is interested in consistency of the parameter estimates
as T → ∞, we do not need to pool the data across markets. However, if the researcher
is concerned with efficiency of the estimates, the test based on TP would be a useful
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diagnostic to decide whether she can increase the sample size by pooling. Indeed there
are some empirical examples where T is not small but the researchers are tempted to
pool the data across markets, such as Ryan (2012) and Collard-Wexler (2013).

Also, we note that the large-T asymptotic analysis above is basically for convenience
to obtain the critical value. Although it is computationally too expensive to implement
in our typical examples, in principle it is possible to conduct an exact (i.e., fixed T ) test
based on TP by adapting the simulation-based approach of Besag and Mondal (2013).

Large number of markets M . The asymptotic distribution of the test statistic TP is
derived under the assumption that the number of marketsM is fixed. However, there are
some cases where M is large relative to the length of time T (e.g., Collard-Wexler (2013)
and Dunne et al. (2013)). When M is large, it may be useful to investigate the limiting
behavior of the statistic TP as both M and T diverge to infinity. Let {MT } be a sequence
satisfying MT → ∞ and MT/T → 0 as T → ∞. In this case, intuitively, the degree of
freedom for the limiting distribution of TP grows to infinity. Thus after standardization,
the limiting distribution of TP is characterized by the standard normal. For example, the
test statistic for Hσ

0 based on (5) satisfies

TP − (MT − 1)ms(ma − 1)√
2(MT − 1)ms(ma − 1)

d→N(0�1)�

as T → ∞ under Hσ
0 . A similar result applies for the test of HP

0 .
Comparison with de Paula and Tang (2012). Note that our test can allow for within-

period correlation. In the context of static games with incomplete information, de Paula
and Tang (2012) test conditional independence between players’ actions to check if
there is more than one equilibrium in the data generating process. This test relies on the
assumption of independent-across-players actions conditional on state variables. For
example, this may arise if there is a utility component in payoffs that is unobserved by
the econometrician but known to players.4 Our test is more flexible and permits within-
period correlation in players’ actions conditional on state variables. The permissible in-
formation structure and set of games our framework can deal with is more general. Our
tests explore the way that the game and states evolve, and require repeated observations
for each market.5

4For example, suppose the random profit shocks are correlated across players within a time period. Then
σ(a1|s) · · ·σ(aN |s) �= σ(a|s) even under Hσ

0 . Two-step methods work in a similar manner as in the case of
i.i.d. profit shocks; a researcher would have to estimate the choice probability of action profile a instead of
each player’s conditional choice probabilities separately. The inference of the underlying structural param-
eters can then be based on the joint choice probability estimates and the appropriate equilibrium condi-
tions.

5Tests of independence are used in various contexts to find evidence for unobserved variations in data
that nontrivially affect agents’ actions. For example, Chiappori and Salanié (2000) test the conditional inde-
pendence of the choice of better coverage and the occurrence of an accident using automobile insurance
data, and attribute a violation of the conditional independence to the existence of asymmetric informa-
tion between customers and insurance companies. de Paula and Tang (2012) assume independent private
shocks in games with incomplete information and regard additional variations (after controlling for ob-
servable covariates) as coming from multiple equilibria being played in data. On the other hand, Navarro
and Takahashi (2012) interpret a violation of the conditional independence as a rejection of models of pure
private shocks.
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3.2 Testing steady-state distribution

We now consider testing of HQ
0 in (2), which examines the steady-state distribution in

individual markets and compares it to the average (across markets) steady-state distri-
bution. Under the null hypothesis of identical steady-state distributions, the market-
specific and average market distributions are close to each other. The test statistic is
more intuitive in the sense that it compares two steady-state distributions directly. How-
ever, the test requires that the steady-state distributions exist and that the Markov chain
is in the steady state; see Lemma 1. That is, regardless of which hypothesis is true, we as-
sume that all states in the chain Pj communicate for all markets j. The relative frequen-
cies Q̂j = {T−1fj(s)}s∈S are nonparametric estimates of the steady-state distribution Qj .
By Billingsley (1961, Theorem 3.3), the limiting distribution of Q̂j is obtained as

T 1/2(Q̂j − Qj)
d→N(0�Vj)� (11)

where the asymptotic variance Vj is defined in Appendix A.2. Since rank(Vj) =ms − 1,

we can obtain a test statistic for HQ
0 as

TQ = T
M∑
j=1

(Q̂j − Q̂)′V̂−(Q̂j − Q̂)
d→ χ2((M − 1)(ms − 1)

)
� (12)

under HQ
0 , where Q̂ = M−1 ∑M

j=1 Q̂j and V̂− means a generalized inverse of V̂, which
is defined in Appendix A.2. Although this statistic validates the use of the chi-squared
critical value for the asymptotic test, the estimator V̂ may not be easy to compute and
requires a bandwidth choice. Thus in our simulation and empirical studies below, we
replace V̂ in (12) with the identity matrix and employ some bootstrap critical value.

3.3 Testing conditional state distribution given the initial state

Our final test does not require that the Markov chain has a unique steady-state distri-
bution or that all states communicate. Such situations may arise in new or growing in-
dustries when the steady state has not been reached yet. It may also arise in situations
when there is no unique steady-state distribution. For example, it may arise when some
states are absorbing. These situations share the feature that the limiting state distribu-
tions may depend on the initial state. To develop a test for this case we consider the con-
ditional state distribution given the initial state. We assume that the number of markets
M is large (and the length of time periods T can be short).

To describe a suitable test statistic, we treat the state profiles across markets as an
i.i.d. sample from the distribution parametrized by the transition matrix P, and propose
a test for the null hypothesis Hs

0 in (3). Let P̂ be the frequency estimator of the state

transition matrix based on the whole state profiles. Also let Q̂t
s = {

∑M
j=1 1{stj=s′�s1

j=s}∑M
j=1 1{s1

j=s} }s′∈S

be the relative frequency estimator for the vector of conditional probabilities {Pr{st = s′|
s1 = s}}s′∈S for t = 2� � � � �T for a given initial state s. If our model parametrized by P is
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correct, the contrast between Q̂t
s and ι′sP̂t should be close to zero for all t = 2� � � � �T . We

evaluate the contrast C′
s = (T − 1)−1(

∑T
t=2 Q̂t

s − ι′s
∑T
t=2 P̂t). The test statistic satisfies

Ts =MC′
sV̂−

s Cs
d→ χ2(ms − 1) (13)

as M → ∞ with fixed T under Hs
0, where V̂−

s is a generalized inverse of an estimator of
the asymptotic variance of

√
MCs under Hs

0.6 As in (12), the estimator V̂s may not be
easy to compute. Thus in our simulation and empirical studies below, we replace V̂s in
(13) with the identity matrix and employ some bootstrap critical value.

The test based on Ts requires T ≥ 3. The standard argument implies that it has non-
trivial power against local alternatives approaching the null at the

√
M rate. The local

power function is characterized by a noncentral χ2 distribution. As T increases, both the
noncentrality parameter and the degree-of-freedom increase. Thus, overall the effect of
T on local power is indeterminate.

We note that a rejection by the statistic Ts occurs typically in two scenarios. First,
even though the state profile (stj)t=1�����T is i.i.d. over j = 1� � � � �M , a violation of the first-
order time-homogeneous Markov chain assumption yields a large value of Ts. Second,
if the state profile (stj)t=1�����T is not i.i.d. over j = 1� � � � �M , then there is no guarantee

that Q̂t
s and ι′sP̂t converge to the same limit7 and the statistic Ts tends to be large.8 Al-

though we cannot distinguish these sources of rejection, we argue that the second type
of rejection can be associated with multiplicity of equilibria.

3.4 Relationships among test statistics

The three test statistics provided in the previous subsections have different advantages
depending on the application and the type of data. Given that in standard dynamic dis-
crete models, player’s behavior is described in the form of conditional choice probabil-
ities, the test based on Hσ

0 (TP and T ∗
P using (5)) would be a natural starting point. It is

also reasonable to use the test based on HP
0 . Under the assumption that Gj is identical for

all markets j, testing HP
0 plays a similar role to testing Hσ

0 . In general, however, rejecting
the null HP

0 may also arise because of differences in Gj even if Hσ
0 holds.

Homogeneity of data generating processes across markets can also be tested by the
null hypothesis HQ

0 using the steady-state distribution test statistic TQ. Since the dimen-
sion of the hypothesis decreases, we expect it to have higher power compared to TP .

6We can also consider the hypothesis

Hs�T
0 : Pr

{
st = s′|s1 = s

} = ι′sPt for all t = 2� � � � �T�

Under Hs�T
0 , the Wald statistic for this hypothesis will converge to χ2(T(ms − 1)) as M → ∞ with fixed T .

Also its normalized version converges to the standard normal distribution asM�T → ∞ but T/M → 0.
7Similar to existing specification test statistics with the parametric rate, it is possible that the probability

limits of Q̂t
s and ι′sP̂t coincide under the alternative. This issue is known as the implicit null hypothesis (see,

e.g., Mizon and Richard (1986)). The statistic Ts has no power in such a situation. To alleviate this issue, the
statistic Ts may be calculated for different initial states.

8For example, consider the case where {(stj)t=1�����T }M/2j=1 and {(stj)t=1�����T }Mj=M/2+1 are i.i.d. samples follow-

ing distinct Markov chains. In this case, we can see that Q̂t
s and ι′sP̂t converge to distinct limits.
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It should also be emphasized, however, that there is a region where homogeneity is vi-
olated but the test based on TQ is not able to detect. Put differently, if the test based

on TQ rejects the null hypothesis HQ
0 , we conclude that the maintained assumption for

poolability is violated; on the other hand, if it does not reject the null, there may still
be multiple equilibria or some misspecification that would invalidate pooling (as two
distinct transition matrices may yield the same steady-state distribution). Therefore, we
recommend the following procedure in practice. First, the test of HQ

0 based on TQ is ap-

plied to take advantage of its desirable power property. If the null HQ
0 is rejected, then

we stop and conclude that the maintained assumption for estimation using pooled data
is violated. If the test does not reject the null HQ

0 , then we proceed to apply TP for Hσ
0

or HP
0 . By proceeding in this way, we can make sure that the tests are consistent and the

power property of TQ can be exploited.
There are also situations where states do not communicate or where initial condi-

tions matter. In such cases, the conditional state distribution test Ts can be used. It is
also worth emphasizing that Ts is suitable when M becomes large, while T is fixed (i.e.,
short panel). Some empirical applications in Industrial Organization (IO) have this data
structure (e.g., Collard-Wexler (2013) and Dunne et al. (2013)).

3.5 Unobservable state variables

This subsection considers the situation in which the public state variables have two
components, st = (st1� st2). The component st1 is observed by the econometrician but the
component st2 is not. Arcidiacono and Miller (2011) consider this framework with a para-
metric model of unobserved state variables with known finite support. They propose an
estimation strategy based on the expectation-maximization (EM) type algorithm. Our
testing procedures presented above can be extended to this framework as follows.

First, we note that the null of homogeneity of the joint transition Pr{st+1 = s′|st = s}
implies the homogeneity of the marginal transition Pr{st+1

1 = s′
1|st1 = s1}. Thus, if the re-

searcher is willing to assume that all states of the Markov chain Pj communicate, then

our tests for HP
0 , Hσ

0 , and HQ
0 presented in Sections 3.1–3.3 can be applied to the ob-

servable component st1. These tests using only st1 can be interpreted as the ones for ho-
mogeneity of the marginal transition Pr{st+1

1 = s′
1|st1 = s1}, which is implied from homo-

geneity of the joint transition Pr{st+1 = s′|st = s}. Therefore, a rejection by TP using only
st1 implies a rejection of homogeneity of Pr{st+1 = s′|st = s} even though the econome-
trician does not observe st2. On the other hand, an acceptance by TP using only st1 does
not necessarily imply an acceptance of homogeneity of Pr{st+1 = s′|st = s}. Similar com-
ments apply to the tests of Hσ

0 and HQ
0 .

Second, a researcher may be interested in situations in which the unobserved com-
ponent has a permanent time-invariant market level variable (sometimes called market
level unobserved heterogeneity). We shall illustrate how our test statistics can be mod-
ified to allow for an unobservable time-invariant state variable s2 with a known finite
support. Suppose s2 is binary for simplicity. We can modify the null hypothesis Hs

0 in
(3) by setting the transition matrix as a mixture P = πP(a) + (1 − π)P(b). Under Hs

0 with
certain regularity conditions, we can estimate (π�P(a)�P(b)) based on the pooled sample



Quantitative Economics 7 (2016) Pooling data across markets 537

across markets by applying the methods in Arcidiacono and Miller (2011) and Kasahara
and Shimotsu (2009). Based on these estimates, we obtain an estimator of P, say P̃. Then
we can apply the test statistic Ts in (13) by replacing P̂ with P̃, that is,

T̃s =MC̃′
sṼ−

s C̃s� (14)

where C̃′
s = (T −1)−1(

∑T
t=2 Q̂t

s − ι′s
∑T
t=2 P̃t ) and Ṽ−

s is a generalized inverse of an estima-
tor of the asymptotic variance of

√
MC̃s under Hs

0. Similar to Ts, this statistic converges
to a χ2 distribution under Hs

0 asM → ∞ while T is fixed.
Third, we illustrate how to extend the test for HP

0 in (1) to accommodate unobserv-
able time-invariant state variables. Again, for simplicity of exposition suppose s2 is bi-
nary. We can modify the null hypothesis as

H̃P
0 : sj is a Markov chain from P(a) or P(b) for all j�

As M → ∞, we can consistently estimate P(a) and P(b) using the pooled sample across
markets by applying Arcidiacono and Miller (2011) or Kasahara and Shimotsu (2009). Let
P̃(a) and P̃(b) be such estimators. On the other hand, as T → ∞, the estimator P̂j defined
in (6) consistently estimates the transition for each market j and thus converges to P(a)

or P(b) under H̃P
0 . Based on these observations, a test statistic for H̃P

0 may be constructed

as T̃P = ∑M
j=1 T̃P�j , where

T̃P�j = min
{( ∑

s′�s∈S

f 1
j (s)

P̃(a)
(
s′� s

){
P̂j

(
s′� s

) − P̃(a)(s′� s
)}2

)
�

(15)( ∑
s′�s∈S

f 1
j (s)

P̃(b)
(
s′� s

){
P̂j

(
s′� s

) − P̃(b)(s′� s
)}2

)}
�

This construction of the test statistic (i.e., aggregate the statistic T̃P�j over cross-section
units j = 1� � � � �M) appears often in the literature of large-T panel data analysis (see, e.g.,
Baltagi (2008, Chapter 12)). In this literature, it is common to take the sequential limits
(i.e., take T → ∞ first to derive the limiting distribution of T̃P�j for each j, and then take
M → ∞ to establish the limiting distribution of T̃P ) to analyze the asymptotic properties
of test statistics, such as panel unit root tests. Phillips and Moon (1999) provided addi-
tional requirements to strengthen the sequential limit theory to the joint one, where T
and M can grow in an arbitrary way. However, in our setup, the statistic T̃P�j for market
j depends on both M (for P̃(a) and P̃(b)) and T (for P̂j(s)). Therefore, the existing tech-
niques of large-T panel data analysis are not directly applicable. Although the complete
analysis of the asymptotic theory for T̃P is beyond the scope of this paper, we can ad-
just the construction of the test statistic to fit into the sequential asymptotic framework.
To this end, we choose the sample size to estimate P̃(a) and P̃(b) as a function of T , say
CT . Also we assume CT/T → ∞ as T → ∞, which guarantees that the estimation er-
rors P̃(a) −P(a) and P̃(b) −P(b) are negligible. Since P̃(a) and P̃(b) are typically computed
by a pooled sample across markets, the requirement CT/T → ∞ is mild. Under these
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additional requirements, the statistic T̃P�j depends only on T and satisfies

T̃P�j = min
{( ∑

s′�s∈S

f 1
j (s)

P̃(a)
(
s′� s

){
P̂j

(
s′� s

) − P(a)(s′� s
)}2

)
�

( ∑
s′�s∈S

f 1
j (s)

P̃(b)
(
s′� s

){
P̂j

(
s′� s

) − P(b)(s′� s
)}2

)}
+ op(1)

d→ χ2
ms(ms−1) as T → ∞ under H̃P

0

for every j. Therefore, we can obtain the limiting distribution of T̃P = ∑M
j=1 T̃P�j under

the sequential limit, that is,

T̃P −Mms(ms − 1)√
2Mms(ms − 1)

d→N(0�1)

as T → ∞ followed by M → ∞ sequentially. This sequential limiting result may be
strengthened to the joint result by verifying additional conditions in Phillips and Moon
(1999, Lemma 6).

In practice, the test for H̃P
0 based on T̃P is used as follows. If we reject H̃P

0 , the main-
tained assumption for pooling the whole data is violated and it is recommended to look
for a subset that preserves homogeneity. On the other hand, acceptance of the null H̃P

0 is
considered as supporting evidence for the researcher to pool the data across markets to
implement two-step estimation for parameters, where the first-step estimates are con-
structed by using P̃(a) and P̃(b).

4. Monte Carlo

This section examines the practical aspects of the proposed tests in a Monte Carlo study.
We consider a simple and transparent dynamic oligopoly game with multiple equilib-
ria. The game was illustrated and analyzed in more detail in Pesendorfer and Schmidt-
Dengler (2008). It has the following features.

There are two players: binary actions ati ∈ {0�1} and binary states sti ∈ {0�1}. The dis-
tribution of the profitability shocks is the standard normal. The discount factor is fixed
at 0�9. The state transition law is given by st+1

i = ati . Period payoffs are symmetric and
parametrized as

π(ai�aj� si)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if ai = 0; si = 0,
0�1 if ai = 0; si = 1,
π1 − 0�2 if ai = 1; aj = 0; si = 0,
π2 − 0�2 if ai = 1; aj = 1; si = 0,
π1 if ai = 1; aj = 0; si = 1,
π2 if ai = 1; aj = 1; si = 1,

where π1 = 1�2 and π2 = −1�2. The period payoffs can be interpreted as stemming from
a game with switching costs and/or as entry/exit game. A player who selects action 1
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receives monopoly profits π1 if she is the only active player, and she receives duopoly
profits π2 otherwise. Additionally, a player who switches states from 0 to 1 incurs the
entry cost 0�2, while a player who switches from 1 to 0 receives the exit value 0�1.

Multiplicity. The game illustrates the possibility of multiple equilibria, which is a
feature inherent to games. The following analysis focuses on two asymmetric equi-
libria of the three equilibria described in Pesendorfer and Schmidt-Dengler (2008).
In equilibrium (i), player two is more likely to choose action 0 than is player one
in all states. The ex ante probability vectors for both players are given by σ(a1 = 0|
s1� s2)= (0�27�0�39�0�20�0�25) and σ(a2 = 0|s2� s1)= (0�72�0�78�0�58�0�71), where the or-
der of the elements in the probability vectors corresponds to the state vector (s1� s2) ∈
{(0�0)� (0�1)� (1�0)� (1�1)}.

In equilibrium (ii), player two is more likely to choose action 0 than is player one in
all states with the exception of state (1�0). The probability vectors are given by σ(a1 = 0|
s1� s2)= (0�38�0�69�0�17�0�39) and σ(a2 = 0|s2� s1)= (0�47�0�70�0�16�0�42).

Design. The simulated data are generated by randomly drawing a time series of ac-
tions from the calculated equilibrium choice probabilities described above for each of
the equilibria (i) and (ii), respectively. The initial state is taken as (0�0) and we start the
sampling process after 100 periods. The number of markets and the length of the time
series is varied in the experiment with the aim of staying close to typical industry appli-
cations. We choose M = 20�40� � � � �640 and T = 5�10� � � � �640. The parameter λ denotes
the fraction of markets that adopt equilibrium (i), while 1 − λ denotes the fraction of
markets that adopt equilibrium (ii).

Implementation. The Monte Carlo study considers the conditional choice probabil-
ity multiplicity test by TP , its optimal version by T ∗

P , the steady-state distribution test
by TQ, and the conditional state distribution test by Ts as described in Section 3. In this
example, at = st+1 and the state transition probabilities P equal the conditional choice
probabilities σ . Therefore, the null hypotheses Hσ

0 and HP
0 and their tests are identical.

To implement TP in (4) and T ∗
P in (7), we employ the formula in (6).9 The steady-state

probabilities Q are estimated by the relative frequencies. For the steady-state distribu-
tion test by TQ, we use the identity matrix for the variance matrix in (12). For the condi-
tional state distribution test by Ts, we consider the sum TS = ∑

s∈S Ts instead of focusing
on a particular initial state. To compute Ts, we replace the variance matrix V̂s in (13) with
the identity matrix.

The critical values of these test statistics are calculated using a bootstrap procedure.
For every bootstrap iteration b, we simulate choice/state profiles {sbj } from the transition

matrix based on P̂(d) defined in (6) for every market j. For the first three tests (i.e., the
tests by TP , T ∗

P , and TQ), as in the data generating process, the initial state is taken as
(0�0) and we start the sampling process after 100 periods. For the test by Ts, for each
market, we use the same initial state as is observed in the simulated sample and start the
game from that state. The bootstrap counterparts of the test statistics are calculated for
b= 1� � � � �B. The critical values are obtained by the 95th percentile of the bootstrapped
statistics.

9When
∑T
t=1 1{stj = s} = 0 (or

∑M
j=1

∑T
t=1 1{stj = s} = 0), we remove such states from the summand of the

test statistics.
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Results. The experiment is based onB= 999 repetitions for the bootstrap sample and
1,000 Monte Carlo repetitions. Tables 1–4 report the results of the experiments. These
tables report the percentages of rejections of our tests for selected values ofM , T , and λ.

We first study the size properties of our tests. Tables 1 and 2 consider the cases of
λ= 1 and λ= 0, respectively. For these cases, there is a unique equilibrium and the null
hypotheses are satisfied. All tests perform reassuringly well leading to a 5% rejection
frequency as T and/orM increase.

We next assess the power properties of our tests. Table 3 considers the case of λ= 0�5,
where the first and second equilibria arise with equal probability. It shows that as the
number of time periods T and/or markets M increases, all the tests typically reject the
null more frequently. The two conditional choice probability tests (TP and T ∗

P ) and the
steady-state distribution test (TQ) perform better than the conditional state distribution
test (Ts) for moderate values of M (e.g., M = 20 or 40). When M becomes large (M =
320 or 640), Ts dominates TP and T ∗

P especially when T is relatively small. Comparing
the conditional choice probability tests and the steady-state distribution test, we find
that TQ performs better than TP and T ∗

P . A possible reason is that TQ uses fewer cells
than TP and T ∗

P . Test TQ is based on ms cells while TP and T ∗
P are based on (msma) cells.

Table 3 also illustrates that for a typical industry application with about 40 markets and
20 time periods the performance of TQ is satisfying. Also the test by TP and the optimal
test by T ∗

P have similar performance. For a better comparison based on the result in
Proposition 2, we compute the size-adjusted power for TP and T ∗

P . We find that the size-
adjusted power for T ∗

P is higher than that for TP in most cases.10 To further investigate
the power properties of these tests, Table 4 considers the case of λ= 0�9. That is, the first
equilibrium is played in 90% of M markets. While all the tests have lower power than in
Table 3, the relative performances of these tests appear the same. Test TQ still has the
best performance among all tests.

Overall, our Monte Carlo study illustrates that the steady-state distribution test by
TQ performs well for moderate sample sizes of T and M . It seems well suited for typical
industry applications.11,12

10For example, when M = 40, T = 20, and λ = 0�5, Table 3 suggests that the power for TP is higher than
the power for T ∗

P . On the other hand, the size-adjusted power for TP is 16�1, while the size-adjusted power
for T ∗

P is 21�8.
11The number of markets M and time periods T in several important papers in the literature are (M =

1,600, T = 24) in Collard-Wexler (2013), (M = 639, T = 5) in Dunne et al. (2013), (M = 23, T = 19) in Ryan
(2012), and (M = 102, T = 4) in Sweeting (2013).

12We also check the performance of T̃s and T̃P using the following simple simulation design. Suppose
there are only two states. Consider the three state transition matrices

P(a) =
(

0�3 0�7
0�3 0�7

)
� P(b) =

(
0�7 0�3
0�7 0�3

)
� P(c) =

(
0�8 0�2
0�8 0�2

)
�

Under the null, each market follows P(a) or P(b) with equal probability. Under the alternative, each market
follows P(a) or P(b) with probability 0�25, and follows P(c) with probability 0�5. We compute the size and
power of the two test statistics with varying numbers of markets and time periods. Overall, the size ap-
proaches 5% quickly for both statistics. For the power, T̃P performs better than T̃s. For example, the power
of T̃P when (M = 500, T = 10), (M = 500, T = 30), and (M = 500, T = 50) is 9�3, 80�1, and 99�7%, respectively.
On the other hand, the corresponding figures for T̃s are 5�0, 7�0, and 9�1%, respectively. The details of this
exercise are available upon request.
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Table 1. Monte Carlo results: λ= 1.

M T TP T ∗
P TQ Ts

20 5 13�2 5�9 1�3 3�2
20 10 7�0 4�5 2�5 3�9
20 20 4�4 5�0 3�5 4�9
20 40 5�1 6�2 4�3 4�0
20 80 5�7 6�6 5�0 2�9
20 320 4�4 4�4 4�8 3�4
20 640 6�1 5�3 4�9 3�5

40 5 6�5 2�3 1�3 3�7
40 10 3�8 2�7 2�9 5�0
40 20 4�3 3�4 3�5 4�1
40 40 4�5 5�3 3�4 4�8
40 80 5�3 5�3 5�7 3�0
40 320 5�2 5�4 4�5 5�3
40 640 5�3 5�4 4�9 4�4

80 5 5�3 1�5 1�2 4�8
80 10 3�2 1�2 2�5 4�8
80 20 5�2 3�5 2�5 4�3
80 40 3�9 3�9 3�5 5�7
80 80 4�7 4�6 5�0 4�7
80 320 4�9 5�5 5�4 5�1
80 640 4�2 4�1 5�3 5�7

160 5 4�9 0�6 2�0 5�1
160 10 3�4 0�9 2�1 4�2
160 20 3�3 2�4 4�1 4�5
160 40 4�8 4�8 3�9 3�3
160 80 4�5 4�6 5�4 4�7
160 320 5�4 5�7 6�2 3�8
160 640 4�7 4�2 5�3 4�4

320 5 5�0 0�5 1�4 4�5
320 10 3�6 0�8 3�2 4�5
320 20 4�3 1�9 3�8 5�3
320 40 4�5 4�6 3�9 5�4
320 80 4�8 4�1 4�3 5�3
320 320 4�8 5�6 5�0 5�1
320 640 6�0 5�8 5�6 5�7

640 5 4�3 0�4 0�7 4�2
640 10 3�2 0�9 1�9 4�3
640 20 4�7 2�9 3�6 5�3
640 40 4�8 4�3 4�4 3�4
640 80 5�4 4�8 4�0 5�0
640 320 5�1 4�9 4�4 4�5
640 640 5�6 5�5 5�7 4�3
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Table 2. Monte Carlo results: λ= 0.

M T TP T ∗
P TQ Ts

20 5 13�5 12�7 0�5 4�8
20 10 7�9 8�4 2�5 4�3
20 20 5�8 7�1 3�4 5�3
20 40 4�8 5�4 3�6 3�8
20 80 5�1 5�2 4�4 5�5
20 320 5�0 4�9 5�9 5�4
20 640 3�5 3�6 4�7 4�4

40 5 8�0 6�4 1�2 4�7
40 10 5�2 4�9 2�3 5�2
40 20 6�2 6�9 3�5 4�0
40 40 3�9 5�3 3�6 3�7
40 80 5�6 4�5 3�8 3�9
40 320 5�0 4�7 5�2 5�7
40 640 5�1 5�2 4�2 4�0

80 5 4�6 3�7 1�6 5�2
80 10 5�6 5�1 1�9 4�7
80 20 4�9 5�7 3�8 5�5
80 40 4�7 5�1 3�1 4�4
80 80 5�3 5�0 4�8 4�8
80 320 3�3 3�7 4�5 4�7
80 640 4�0 4�1 4�3 3�8

160 5 4�0 1�4 1�3 5�1
160 10 4�7 3�9 2�6 6�0
160 20 4�5 4�5 2�9 3�7
160 40 6�3 5�5 3�3 5�1
160 80 5�5 5�2 3�4 4�9
160 320 4�6 4�8 3�3 5�1
160 640 5�3 5�1 4�1 4�2

320 5 4�1 1�7 0�8 4�9
320 10 4�8 2�8 1�4 5�6
320 20 4�6 3�6 3�8 4�4
320 40 5�0 4�4 3�8 6�0
320 80 5�8 6�1 4�5 6�1
320 320 6�4 6�5 4�2 6�0
320 640 5�2 5�5 5�3 4�7

640 5 4�2 2�2 1�2 5�8
640 10 4�9 2�0 1�7 5�0
640 20 4�0 3�9 3�2 4�8
640 40 5�3 4�6 3�7 6�0
640 80 4�4 4�8 4�9 6�0
640 320 4�7 4�5 3�5 6�3
640 640 5�2 5�6 5�1 5�3
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Table 3. Monte Carlo results: λ= 0�5.

M T TP T ∗
P TQ Ts

20 5 10�3 8�3 2�9 5�9
20 10 6�5 7�4 20�2 13�7
20 20 27�8 27�4 63�9 23�5
20 40 79�7 76�1 97�9 47�7
20 80 99�9 99�8 100�0 72�4
20 320 100�0 100�0 100�0 97�1
20 640 100�0 100�0 100�0 98�2

40 5 4�7 4�1 6�9 8�1
40 10 7�4 5�5 37�8 15�8
40 20 44�6 36�2 89�0 36�5
40 40 97�4 94�3 99�9 64�4
40 80 100�0 100�0 100�0 83�8
40 320 100�0 100�0 100�0 98�1
40 640 100�0 100�0 100�0 99�8

80 5 3�3 2�3 12�4 10�3
80 10 10�8 5�8 64�3 27�9
80 20 68�5 55�5 99�1 53�2
80 40 100�0 99�9 100�0 84�3
80 80 100�0 100�0 100�0 95�8
80 320 100�0 100�0 100�0 99�9
80 640 100�0 100�0 100�0 99�9

160 5 2�9 0�9 22�8 18�7
160 10 12�4 5�8 89�5 48�9
160 20 92�3 78�6 100�0 82�6
160 40 100�0 100�0 100�0 95�9
160 80 100�0 100�0 100�0 99�5
160 320 100�0 100�0 100�0 100�0
160 640 100�0 100�0 100�0 100�0

320 5 2�2 1�1 44�9 35�2
320 10 20�8 6�8 99�5 77�1
320 20 99�7 96�3 100�0 98�0
320 40 100�0 100�0 100�0 100�0
320 80 100�0 100�0 100�0 100�0
320 320 100�0 100�0 100�0 100�0
320 640 100�0 100�0 100�0 100�0

640 5 1�5 0�6 78�0 69�3
640 10 33�2 10�5 100�0 98�0
640 20 100�0 100�0 100�0 100�0
640 40 100�0 100�0 100�0 100�0
640 80 100�0 100�0 100�0 100�0
640 320 100�0 100�0 100�0 100�0
640 640 100�0 100�0 100�0 100�0
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Table 4. Monte Carlo results: λ= 0�9.

M T TP T ∗
P TQ Ts

20 5 10�7 6�0 2�4 6�4
20 10 6�5 4�8 11�4 14�7
20 20 11�7 12�8 30�1 20�0
20 40 32�7 35�3 64�6 29�2
20 80 75�8 76�5 94�2 44�6
20 320 100�0 100�0 100�0 71�5
20 640 100�0 100�0 100�0 82�9

40 5 4�5 2�5 3�1 10�0
40 10 5�4 4�2 19�0 17�0
40 20 16�0 14�8 45�5 26�0
40 40 49�0 50�1 87�1 41�5
40 80 93�5 92�5 99�9 58�8
40 320 100�0 100�0 100�0 89�4
40 640 100�0 100�0 100�0 94�2

80 5 3�4 1�7 4�3 10�7
80 10 5�9 3�2 28�9 21�1
80 20 23�3 19�7 71�3 33�9
80 40 72�8 73�2 98�0 53�5
80 80 99�7 99�6 100�0 73�2
80 320 100�0 100�0 100�0 95�2
80 640 100�0 100�0 100�0 98�4

160 5 4�0 0�9 8�8 16�8
160 10 6�0 2�1 46�6 28�9
160 20 38�2 30�6 92�5 47�0
160 40 93�4 92�4 100�0 68�1
160 80 100�0 100�0 100�0 85�7
160 320 100�0 100�0 100�0 98�9
160 640 100�0 100�0 100�0 99�5

320 5 2�9 1�0 14�7 22�2
320 10 9�1 3�7 73�3 45�0
320 20 60�2 49�7 99�9 68�6
320 40 99�8 99�7 100�0 88�4
320 80 100�0 100�0 100�0 96�7
320 320 100�0 100�0 100�0 99�7
320 640 100�0 100�0 100�0 100�0

640 5 2�7 0�5 32�1 40�9
640 10 12�3 4�8 93�3 69�9
640 20 86�6 77�2 100�0 91�0
640 40 100�0 100�0 100�0 98�2
640 80 100�0 100�0 100�0 100�0
640 320 100�0 100�0 100�0 100�0
640 640 100�0 100�0 100�0 100�0
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5. Empirical application

Recently, a number of empirical papers have applied a dynamic game to data and es-
timate parameters of the game using two-step methods. These papers include Ryan
(2012), Collard-Wexler (2013), Sweeting (2013), Beresteanu, Ellickson, and Misra (2010),
and the empirical section of Aguirregabiria and Mira (2007), among others. Panel data
frequently contain a number of markets over a relatively short time period. Researchers
tend to pool different markets together to estimate policy functions in the first stage. To
do this pooling, an important assumption is that a single equilibrium is played in every
market. This section tests the homogeneity hypotheses for poolability using the data of
Ryan (2012). We chose Ryan (2012) because it is one of a few papers already published
and because the number of state variables is relatively small so that it fits our illustrative
purpose well.

To evaluate the welfare costs of the 1990 Amendments to the Clean Air Act on
the Portland cement industry in the United States, Ryan (2012) develops a dynamic
oligopoly model based on Ericson and Pakes (1995) and estimates the model using a
two-step method developed by Bajari, Benkard, and Levin (2007). In his application,
there are 23 geographically separated markets. To estimate firms’ policy functions in the
first stage, Ryan (2012) assumes that the data are generated by a single Markov perfect
equilibrium. We apply our test to check this assumption. One caveat is that we use a
discrete state space framework, while Ryan (2012) uses a continuous state space. Thus,
we have to discretize the state variables in Ryan’s (2012) application to perform the test.
For a fine grid, however, little differences between the two frameworks are expected in
practice.

We first summarize Ryan’s (2012) model. Then we explain the procedure of our test
in this context.

5.1 Ryan’s (2012) model

Ryan (2012) assumes that N firms play a dynamic oligopoly game in each regional ce-
ment market. Firms make decisions to maximize the discounted sum of expected prof-
its. The timing of the decisions is as follows. At the beginning of each period, incumbent
firms draw a private scrap value and decide whether to exit the market or not. Then po-
tential entrants receive a private draw of entry costs and investment costs. At the same
time, incumbent firms that have not decided to exit the market draw private costs of
investment and divestment. Then all entry and investment decisions are made simul-
taneously. Firms compete in the product market and profits are realized. Finally, firms
enter and exit, and their capacity levels change according to the investment/divestment
decisions in this period.

Let s = (s1� � � � � sN) ∈ S be the capacity levels ofN firms and let εi be a vector of all pri-
vate shocks to firm i. Assuming that εi is i.i.d. over time and focusing on pure Markovian
strategies, firm i’s strategy is a mapping from states and private shocks to actions. The
game payoff for firm i is defined as the discounted sum of expected period payoffs given
the beliefs now and in the future. The collection of strategies and beliefs is a Markov per-
fect equilibrium if (i) for all i, firm i’s strategy is a best response to its rivals’ strategies
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given the beliefs at all states s ∈ S and (ii) for all i, the beliefs of firm i are consistent with
the strategies. The existence of pure strategy equilibria in a class of dynamic games is
provided in Doraszelski and Satterthwaite (2010). The model of Ryan (2012) also falls in
this class. Furthermore, multiplicity of equilibria is prevalent.

Ryan (2012) follows the two-step method developed by Bajari, Benkard, and Levin
(2007). In the first stage, Ryan (2012) estimates the entry, exit, and investment policies
as a function of states. Because of the issue of multiplicity, different equilibria may be
played in different markets. However, since Ryan (2012) has only 19 years of time series
compared to a large state space, estimating policy functions market by market is not
practical. Thus, he imposes the following assumption:

Assumption 1. The same equilibrium is played in all markets.

Based on this assumption Ryan pools all markets when estimating policy functions.
Our aim is to test the validity of this assumption.

In addition to Assumption 1, Ryan (2012) assumes flexible functional forms for the
policy functions. First, the probability of entry is modeled as a probit regression,

Pr{firm i enters in period t|si = 0� s}
(16)

=�
(
ψ1 +ψ2

(∑
j �=i
stj

)
+ψ31{t > 1990}

)
�

where �(·) is the cumulative distribution function (c.d.f.) of the standard normal. The
dummy 1{t > 1990} is introduced to account for the change in firms’ behavior after the
introduction of the 1990 Amendments.

Second, the exit probability is also modeled as a probit,

Pr{firm i exits in period t| si > 0� s}
(17)

=�
(
ψ4 +ψ5s

t
i +ψ6

(∑
j �=i
stj

)
+ψ71{t > 1990}

)
�

Finally, the investment policy is modeled using the empirical model of the (S� s) rule
by Attanasio (2000). Specifically, firms adjust the current capacity level to a target level
of capacity when current capacity exceeds one of the bands around the target level. The
target level s∗ti is given by

ln s∗ti = λ′
1b1

(
sti

) + λ′
2b2

(∑
j �=i
stj

)
+ u∗t

i � (18)

where u∗t
i is i.i.d. normal with zero mean and a homoscedastic variance, and the func-

tions b1(·) and b2(·) denote a cubic b-spline, which is to capture flexible functional forms
in the variables sti and

∑
j �=i stj , respectively. The lower and upper bands are given by

sti = s∗ti − exp
(
λ′

3b1
(
sti

) + λ′
4b2

(∑
j �=i
stj

)
+ ubti

)
(19)
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and

sti = s∗ti + exp
(
λ′

3b1
(
sti

) + λ′
4b2

(∑
j �=i
stj

)
+ ubti

)
� (20)

where ubti and ubti are assumed i.i.d. normal with zero mean and equal variance. It is as-
sumed that the upper and lower bands are symmetric functions of the target capacity.
To estimate (18), Ryan (2012) simply replaces ln s∗ti with ln st+1

i and runs ordinary least
squares (OLS) using the sample with sti �= st+1

i . To estimate parameters in (19) and (20),
Ryan (2012) regresses ln |st+1

i − sti | on b1 and b2 using the sample with sti �= st+1
i . The im-

plicit assumption here is that the level of capacity observed before the change (i.e., sti )
is equal to either the lower or the upper bands, depending on whether the investment
is positive or negative.13 To estimate the variances of u∗t

i , ubti , and ubti , Ryan (2012) cal-
culates the sum of the squared residuals at the estimated parameters and divides it by
(n − kλ), where n is the sample size used in least squares and kλ is the number of pa-
rameters in λ for each equation.

Once all these parameters are estimated, the value functions can be computed by
forward simulation. If Assumption 1 holds and the functional forms are flexible enough,
the first stage delivers consistent estimates of choice probabilities associated with the
equilibrium that is played in the data. However, if there is more than one equilibrium in
the data, estimates of choice probabilities are not consistent, and estimates of structural
parameters in the second stage are not consistent either.

The model specified above implies the Markov transition probability P and the cor-
responding steady-state distribution Q. Although Ryan (2012) uses a parametric spec-
ification in his first-stage estimate for feasibility reasons, we apply our test directly to
P and Q. It is a major advantage of our tests that the model’s details do not have to be
specified.

5.2 Data

We download the data from the Econometrica web page. The data set contains informa-
tion on all the Portland cement plants in the United States from 1980 to 1998. Following
Ryan (2012), we assume that every plant is owned by a different firm. For each plant, we
observe the name of company that owns the plant and the location of the plant. A plant
consists of several kilns. For each kiln, we observe the fuel type, process type, and the
year when the kiln was installed. We organize the data in the following way. The capacity
of a plant is simply defined as the sum of capacity of all kilns that are installed in the
plant. Plants sometimes change their company name. One reason is that plants are sold
to a different company. Another possibility is that two or more firms merge and names
change accordingly. In such cases, it appears as if the old plant exits the market and a
new firm (plant) enters the market at the same time. To deal with such spurious entry
and exit, we check information on kilns (fuel type, process type, year of installation) in-
stalled in the plant that changed the company name, and if that information has not

13For an interpretation and justification of this implicit assumption, see Attanasio (2000).
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Table 5. Summary statistics of plant-level data.

Min Mean Max Std. Dev. Sample Size

Quantity (1,000 tons) 177 699 2,348 335 2,233
Capacity (1,000 tons) 196 797 2,678 386 2,233
Investment (1,000 tons) −728 2�19 1,140 77�60 2,077

changed at all, we assume that the plant stays in the market (we assume that no entry
and exit took place associated with this name change).

As a result, we obtained the same plant-level data as Ryan (2012). Table 5 shows the
summary statistics.

5.3 Homogeneity tests for poolability

Ryan’s (2012) panel data contain states and actions over 19 years for 23 different mar-
kets.14 Since our Monte Carlo study indicates that the steady-state distribution test by
TQ performs better than the other tests when the number of markets is small, we first
apply the steady-state distribution test to Ryan’s (2012) data. Then to account for the
possibility that homogeneity is violated but the test based on TQ is not able to detect,
we also apply the state transition probability test by TP and its optimal version T ∗

P . For
the sake of completeness, we apply the test based on Ts as well. The original state space
of Ryan (2012) consists of firm-level capacities. We focus on a lower-dimensional state
variable consisting of the total market-level capacity stj obtained by summing capacity

levels across firms, that is, stj = ∑
i s
it
j . Hereafter we consider testing the null hypotheses

HQ
0 , HP

0 , and Hs
0 based on stj . Note that a rejection of the null based on the market-level

capacity implies a rejection of the null for the full model with firm-level capacities, but
the converse is not true.

Our test proceeds as follows. Ryan (2012) assumed that the same equilibrium was
played in all markets before 1990 and that another identical equilibrium was played in
all markets after 1990. We test these hypotheses in different time periods by the statistics
TQ, TP , T ∗

P , and Ts .
To implement these tests, we discretize the support of stj into 50 bins with equal in-

tervals of 250 thousand tons (0–250 thousand tons, 250–500 thousand tons, and so on).
Figure 1 depicts the discretized state distributions before and after 1990.

14Ryan’s (2012) Java code, which is available at the Econometrica website, generates only 22 markets,
while his first-stage estimation appears to be using 23 markets (23 markets times 18 years equals 414 obser-
vations). One natural way to increase the number of markets is to disaggregate one large market into two. In
California, we can observe two clusters of plants: one in Northern California around the San Francisco area
and another in Southern California around the Los Angeles area. These two clusters are remote by more
than 350 miles. Thus, we believe that Northern and Southern California can be considered two separate
markets.
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Figure 1. Steady-state distribution of total capacity (1,000 ton).

For these samples, the steady-state distributions are estimated by the relative fre-
quencies

Q̂before
j (s)= 1

Tbefore

1990∑
t=1980

1
{
stj = s} for s ∈ {1� � � � �50} and j = 1� � � � �23�

Q̂after
j (s)= 1

T after

1998∑
t=1991

1
{
stj = s} for s ∈ {1� � � � �50} and j = 1� � � � �23�

Then the test statistic TQ is obtained as

T lQ = T l
23∑
j=1

50∑
s=1

{
Q̂lj(s)− Q̂l(s)}2

(21)

for l = {before�after}. Also for d = (s′� s) ∈ {1� � � � �50}2, the state transition probabilities
are estimated by

P̂before
j (d)=

1989∑
t=1980

1
{
st+1
j = s′� stj = s}

1989∑
t=1980

1
{
stj = s} for j = 1� � � � �23�

P̂after
j (d)=

1997∑
t=1991

1
{
st+1
j = s′� stj = s}

1997∑
t=1991

1
{
stj = s} for j = 1� � � � �23�
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Table 6. Baseline results.

TP T ∗
P TQ Ts

Before 1990
Test statistics 199�481 159�426 101�549 273�867
5% critical value 174�548 144�663 113�454 292�766
p-value 0�009 0�010 0�330 0�125

After 1990
Test statistics 89�430 90�579 81�032 131�867
5% critical value 93�275 91�780 95�543 179�406
p-value 0�089 0�055 0�599 0�619

and P̂before(d) and P̂after(d) are defined as in (6). The test statistic TP is obtained as

T lP =
23∑
j=1

∑
d∈D

W l
j (d)

{
P̂lj(d)− P̂l(d)}2

for l= {before�after}� (22)

whereW l
j (d)= ∑T l−1

t=1 1{stj = s}/P̂l(d). The test statistic T ∗
P is given by

T ∗l
P = 2

23∑
j=1

∑
d∈D

W l
j (d)P̂

l
j(d) log

P̂lj(d)

P̂l(d)
for l= {before�after}� (23)

Finally, the test statistic Ts is defined accordingly as in (13).15

The bootstrap critical values for the first three tests are computed as follows. For each
bootstrap iteration b, we simulate the game for 19 years and 23 markets. More precisely,
we draw an initial state from the distribution M−1 ∑M

j=1 Q̂
before
j (·) and generate Markov

chains by the transition matrix P̂before(·) for t = 1980� � � � �1990. In the same way, we use
M−1 ∑M

j=1 Q̂
after
j (·) and P̂after(·) to generate a sequence of states for t = 1990� � � � �1998.

For the simulated bth bootstrap sample, we estimate {Q̂l�bj (s)� P̂l�bj (d)� P̂l�b(d)� f l�bj (s)} for

all j = 1� � � � �23, l = {before�after}, s = 1� � � � �50, and d ∈ {1� � � � �50}2. We then compute
the bootstrap counterparts T bQ , T bP , and T ∗b

P using (21), (22), and (23), respectively. For
the test by Ts, all steps are the same as other tests. The number of bootstrap iterations is
B= 999.

Table 6 summarizes the test results. Tests TP and T ∗
P imply that we reject the homo-

geneity hypothesis at the 1% significance level for the period before 1990 and at the 10%
significance level for the period after 1990. The fact that the test by TQ does not reject the
null, while the tests by TP and T ∗

P reject it may suggest that distinct conditional choice
probabilities have similar (or perhaps identical) steady-state distributions. The result of
the test by Ts may be because the power is low under the current sample size.

To perform the above tests, we implicitly assume that the relevant state variable is
firm-level cement capacity only. However, regional markets differ significantly in their
size. Therefore, the rejection of the null hypothesis of homogeneity may simply have

15We replace the variance matrix with the identity matrix.
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Table 7. Test conditional on market size.

TP T ∗
P

Before 1990 After 1990 Before 1990 After 1990

Small markets
Test statistics 25�269 12�122 20�455 15�955
5% critical value 26�778 21�435 26�589 22�532
p-value 0�074 0�469 0�241 0�293

Medium markets
Test statistics 47�910 10�902 37�288 11�708
5% critical value 51�765 16�691 43�010 17�449
p-value 0�089 0�285 0�144 0�311

Large markets
Test statistics 25�918 13�409 26�353 15�150
5% critical value 23�601 15�550 20�963 16�577
p-value 0�023 0�121 0�003 0�093

come from the large amount of observable heterogeneity. To capture such market-
level heterogeneity, we control for the size of population of each market following Ryan
(2012).16 Specifically, we calculate the average (over 19 time periods) population size by
market, and divide 23 markets into 7 “small” markets, 8 “medium” markets, and 8 “large”
markets. For each of these subgroups of markets, we apply the tests by TP and T ∗

P .
Table 7 summarizes the results of the tests on subgroups of markets. This sug-

gests that while our tests do not reject the hypothesis HP
0 of homogeneity for small and

medium markets, they still reject the null hypothesis for the group of large markets, es-
pecially for the period before 1990.

Finally, we use T̃s in (14) and T̃P in (15) to account for potential unobserved het-
erogeneity. The parameters in P̃, that is, π and the elements in P(a) and P(b), are esti-
mated by the maximum likelihood estimator (MLE). To compute the critical value, the
parametric bootstrap is employed as before. Table 8 summarizes the results. The up-
per panel of the table shows the test results based on the full sample. The tests based
on transition probability matrices do not reject the null of homogeneity across markets
at the 5% significance level. However, if we control for the size of population, a slightly
different picture emerges. The lower panel shows the test results when we focus on the
subsample of large markets. As in Table 7, the test based on T̃P rejects the null hypoth-
esis of homogeneity at the 5% significance level for the period before 1990. In addition,
the test based on T̃s supports the same conclusion.

Our result suggests that the data should not be pooled even if a researcher accounts
for two unobservable market types and uses an appropriate method (e.g., Arcidiacono
and Miller (2011)). Since we assume that unobserved heterogeneity follows a finite-
mixture model with only two components, the rejection of our tests may point to the
existence of more general types of unobserved heterogeneity, the presence of multiple

16Ryan (2012) tried controlling for regional population in one of his specifications of policy function
estimation, but did not include it in his preferred specification.



552 Otsu, Pesendorfer, and Takahashi Quantitative Economics 7 (2016)

Table 8. Test accounting for unobserved types.

T̃s T̃P

Before 1990 After 1990 Before 1990 After 1990

Full sample
Test statistics 295�754 153�537 76�702 29�306
5% critical value 308�187 190�933 83�030 33�576
p-value 0�094 0�412 0�084 0�150

Large markets
Test statistics 89�083 51�096 8�170 0�375
5% critical value 84�475 61�145 8�051 4�085
p-value 0�018 0�324 0�046 0�675

equilibria within a group of markets of the same type, or both. One caveat is that the size
of the tests may not have converged quickly enough. Therefore, given the small sample
size in this application, our results should be treated as suggestive.

6. Conclusion

This paper proposes several statistical tests for finite state Markov games to examine
whether the data from distinct markets can be pooled. The tests are based on homo-
geneity (across markets) of the conditional choice and state transition probabilities, the
steady-state distribution, and the conditional state distribution. We perform a Monte
Carlo study and find that the steady-state distribution test works well and has high
power even with a small number of markets and time periods. We apply our tests to
the empirical application of Ryan (2012) and reject the null hypothesis of homogeneity,
which is a maintained assumption for estimation using pooled data.

Two caveats need to be emphasized. First, in case of rejection, researchers may be
tempted to apply the tests repeatedly to subsamples until the null hypothesis is no
longer rejected. While this exercise may be informative for identifying the cause of the
rejection, it is not statistically justified. In general, if the same test is applied to the sub-
sample after a rejection based on the full sample, the test statistic should be modified to
incorporate the fact that the test rejects the null with the full sample. Such a sequential
testing procedure would involve more sophisticated statistical theory and is beyond the
scope of our paper.

Second, our test statistics are proposed within the finite state discrete time Markov
class. The theory of finite state Markov chains is well developed and allows us to borrow
well known results from the probability theory literature. To extend the tests to a richer
state space, we would need to borrow results from a more involved statistical literature,
making the tests perhaps less accessible to researchers. However, we believe that our
tests cover a wide class of dynamic games that are used in the empirical IO literature.
With a bounded state space, as is typically the case in IO applications, the observable
difference between games with a finite state and games with a continuous state space
seem superficial and not essential as in practice the data are finite. Researchers may use
a finer grid when the data become richer.
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Appendix

A.1 Proofs

Proof of Proposition 1. We first consider the statistic TP for Hσ
0 defined by (5), that is,

TP =
M∑
j=1

∑
(a�s)∈A×S

{
fj(a� s)− fj(s)σ̂(a|s)}2

fj(s)σ̂(a|s) �

where σ̂(a|s)=
∑M
j=1 fj(a�s)∑M
j=1 fj(s)

. Let ξj(a� s) = {fj(a� s)− fj(s)σ j(a|s)}/fj(s)1/2 and define the

(mams)-dimensional vector ξj = {ξj(a� s)a∈A}∈s∈S. Since atj|stj is conditionally indepen-
dent from past values, the Markov chain P is stationary, and all states of P communicate,
the same argument in the proof of Billingsley (1961, Theorem 3.1) implies

ξj
d→N

(
0�diag

{
Vj(s)

}
s∈S

)
for each j = 1� � � � �M , where [Vj(s)](k�l) = 1{k = l}σ j(ak|s) − σ j(ak|s)σ j(al|s) for k� l =
1� � � � �ma. Thus, we obtain

∑
(a�s)∈A×S

{
fj(a� s)− fj(s)σ j(a|s)}2

fj(s)σ j(a|s)
d→ χ2(ms(ma − 1)

)
(24)

for each j = 1� � � � �M . Note that under the setup of Section 2, σ̂(a|s) is the maximum
likelihood estimator of σ(a|s) under Hσ

0 : σ 1 = · · · = σM = σ using the full sample
(atj� stj)t=1�����T for j = 1� � � � �M . Therefore, based on (24), the asymptotic theory of the
chi-squared statistic (e.g., Lemma 17.3 of van der Vaart (1998)) implies the conclu-
sion.

We now consider the statistic TP for HP
0 defined by (6), that is,

TP =
M∑
j=1

∑
(s′�s)∈S×S

{
f 1
j

(
s′� s

) − f 1
j (s)p̂

(
s′|s)}2

f 1
j (s)p̂

(
s′|s) �

where p̂(s′|s)=
∑M
j=1 f

1
j (s

′�s)∑M
j=1 f

1
j (s)

. In this case, Billingsley (1961, Theorem 3.1) directly implies

the asymptotic normality of {f 1
j (s

′� s)− f 1
j (s)pj(s

′|s)}/f 1
j (s)

1/2. Thus, a similar argument
yields the conclusion. �

Proof of Proposition 2. We prove the optimality for T ∗
P to test HP

0 . The case for testing
Hσ

0 is shown in the same manner although the notation becomes more complicated.
Let ωj = (s1

j � � � � � sTj ) ∈ Ωj and Ω = Ω1 × · · · × ΩM be the sample space of the ob-
servables ω = (ω1� � � � �ωM). The sample space Ω is partitioned into different types
{Λl}l=1�����L, where {Λl}l=1�����L is a collection of disjoint subsets of Ω satisfying Ω =
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l=1Λl and any element in Λl yields the same joint counts {f 1

j (·� ·)}j=1�����M . A test is de-
fined as a partition (ΩA�ΩR) ofΩ, whereΩA andΩR mean the acceptance and rejection
regions, respectively.

First, we show that for any test (ΩA�ΩR), there exists a test (Ω̃A� Ω̃R) based only on
the joint counts {f 1

j (·� ·)}j=1�����M such that

lim
T→∞

1
T − 1

log Pr
{
Ω̃R : HP

0
} ≤ lim

T→∞
1

T − 1
log Pr

{
ΩR : HP

0
}
�

(25)

lim
T→∞

1
T − 1

log Pr
{
Ω̃A : HP

1
} ≤ lim

T→∞
1

T − 1
log Pr

{
ΩA : HP

1
}
�

Note that the subset ΩA or ΩR contains at least half of the elements in Λl for each
l = 1� � � � �L. Thus, for any (ΩA�ΩR), we can define (Ω̃A� Ω̃R) as follows. For each l =
1� � � � �L, if ΩA (or respectively ΩR) contains at least half of the elements in Λl, then let
Ω̃A (or respectively Ω̃R) include all elements inΛl. Observe that (Ω̃A� Ω̃R) depends only
on {f 1

j (·� ·)}j=1�����M by construction. Now pick any type Λl such that Λl ⊂ Ω̃R. It holds

Pr
{
ΩR : HP

0
} ≥ Pr

{
ΩR ∩Λl : HP

0
} ≥ 1

2
Pr

{
Λl : HP

0
}

(26)

= 1
2

M∏
j=1

Pr
{
Λl�j : HP

0
}
�

where the first inequality follows from the set inclusion relationship, the second inequal-
ity follows from the facts that at least half of elements of Λl is contained in ΩR (due to
Λl ⊂ Ω̃R) and that all elements in Λl occur with same probability, and the equality fol-
lows from independence of (ω1� � � � �ωM) and Λl = Λl�1 × · · · × ΛM . By Gutman (1989,
Lemma 1), if the initial values (s0

1� � � � � s0
M) are fixed, for any probability measure P on Ω

given by a Markov chain, there exists a positive sequence δT =O(T−1 logT) such that

exp
(−(T − 1)

{
K(qj�l�p)+ δT

}) ≤ Pr{Λl�j : P}
(27)

≤ exp
(−(T − 1)

{
K(qj�l�p)− δT

})
�

where qj�l(·� ·) is the two-period joint empirical measure given by the type Λl�j , p(·� ·) is
the two-period joint measure given by P , and

K(qj�l�p)=
∑
s∈S

qj�l(s)
∑
s′∈S

qj�l
(
s′|s) log

qj�l
(
s′|s)

p
(
s′|s)

is the Kullback–Leibler divergence for qj�l and p. Combining (26) and (27),

Pr
{
ΩR : HP

0
} ≥ 1

2
exp

(
−(T − 1)

{
M∑
j=1

K(qj�l�p)+ δ1T

})
(28)
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for some δ1T = O(T−1 logT). Here p is the common joint measure under HP
0 . Thus, we

have

Pr
{
Ω̃R : HP

0
} = Pr

{
ΩR : HP

0
} +

∑
l:Λl⊂Ω̃R

Pr
{
ΩA ∩Λl : HP

0
}

≤ Pr
{
ΩR : HP

0
} +

∑
l:Λl⊂Ω̃R

exp

(
−(T − 1)

{
M∑
j=1

K(qj�l�p)− δ2T

})

≤ Pr
{
ΩR : HP

0
} +

∑
l:Λl⊂Ω̃R

Pr
{
ΩR : HP

0
}

exp
(
(T − 1)δ3T

)
= Pr

{
ΩR : HP

0
}{

1 +LR exp
(
(T − 1)δ3T

)}
for some δ2T �δ3T =O(T−1 logT), where the first equality follows from the construction
of Ω̃R, the first inequality follows from Pr{ΩA ∩Λl : HP

0 } ≤ Pr{Λl : HP
0 } and (27), the sec-

ond inequality follows from (28), and the last equality follows from the definition ofLR =∑L
l=1 1{Λl ⊂ Ω̃R}. Therefore, the first inequality in (25) follows by (T − 1)−1 logLR → 0.

The second inequality in (25) is obtained in the same manner (by replacing Ω̃R,ΩR, and
HP

0 with Ω̃A, ΩA, and HP
1 , respectively). By (25), we can focus on the test defined by the

joint counts {f 1
j (·� ·)}j=1�����M .

Next we show (10). Pick any test (Ω̃A� Ω̃R) based only on {f 1
j (·� ·)}j=1�����M that satis-

fies (9). Then there exists δ4T =O(T−1 logT) such that

e−α(T−1) ≥ Pr
{
Ω̃R : HP

0
} =

∑
l:Λl⊂Ω̃R

M∏
j=1

Pr
{
Λl�j : HP

0
}

(29)

≥ exp

(
−(T − 1)

{
M∑
j=1

K(qj�l�p)+ δ4T

})

for any l satisfying Λl ⊂ Ω̃R and all T large enough, where the first inequality follows
from (9), the equality follows from independence of (ω1� � � � �ωM) and Λl = Λl�1 × · · · ×
ΛM and the fact that Ω̃R depends only on the types, and the second inequality follows
from (27). Thus, if the rejection by Ω̃R occurs, then the observed joint empirical mea-
sure {qj}j=1����M satisfies (29), and setting p as the joint empirical measure qtotal(·� ·) =

1
M(T−1)

∑M
j=1 f

1
j (·� ·) in (29) implies

α− δ4T ≤
M∑
j=1

K(qj�qtotal)= T ∗
P

2(T − 1)

for all T large enough, and (10) follows.
Finally, we show (8). Define the entropy of a two-period joint measure q(·� ·) as

H(q)= −
∑
s∈S

q(s)
∑
s′∈S

q
(
s′|s) logq

(
s′|s)�
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Then by the definition ofK(·� ·), the test statistic is written as

T ∗
P

2(T − 1)
=MH(qtotal)−

M∑
j=1

H(qj)� (30)

Let Ω∗
R be the rejection region of the test 1{T ∗

P ≥ 2(T − 1)(α− δ4T )}. Also let q
ωj
j (·� ·) be

the two-period joint empirical measure based on ωj and qωtotal(·� ·)=M−1 ∑M
j=1 q

ωj
j (·� ·).

We have

Pr
{
Ω∗
R : HP

0
} =

∑
ω∈Ω∗

R

M∏
j=1

Pr
{
ωj : HP

0
}

≤
∑
ω∈Ω∗

R

exp
(−(T − 1)MH

(
qωtotal

))

≤ exp
(−(T − 1)(α− δ4T )

) ∑
ω∈Ω∗

R

exp

(
−(T − 1)

M∑
j=1

H
(
q
ωj
j

))

≤ exp
(−(T − 1)(α− δ4T )

) M∏
j=1

∑
ωj∈Ωj

exp
(−(T − 1)H

(
q
ωj
j

))
≤ exp

(−(T − 1)(α− δ4T )+ (T − 1)O
(
T−1 logT

))
�

where the equality follows from independence of (ω1� � � � �ωM), the first inequality fol-

lows from the fact that under HP
0 the log likelihood

∑M
j=1 log Pr{ωj : HP

0 } of observed ω is

maximized by qωtotal with maximum −M(T − 1)H(qωtotal), the second inequality follows

from ω ∈Ω∗
R and (30) (i.e.,MH(qωtotal)− ∑M

j=1H(q
ωj
j )≥ 2(α− δ4T )), the third inequality

follows from the Jensen inequality and Ω∗
R ⊂Ω, and the last inequality follows from the

upper bounds of the entropy and number of types of Markov chains in Davisson, Longo,

and Sgarro (1981, Theorem 1 combined with Eq. (4)). Therefore, (8) follows. �

A.2 Detail for the test statistic TQ

The asymptotic variance Vj in (11) has the (k� l)th element

v
j
kl = 1{k= l}qjk − qjkqjl + qjk

∞∑
m=1

(
p
j(m)
kl − ql

) + qjl
∞∑
m=1

(
p
j(m)
lk − qk

)
�

q
j
k is the kth element of Qj , and pj(m)kl is the (k� l)th element of (Pj)m. It should be noted

that rank(Vj) = ms − 1 due to the linear constraint (1� � � � �1)′Fj = T − 1. Under HQ
0 , it

holds that V = V1 = · · · = VM and the common asymptotic variance V can be estimated
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by, for example, Newey and West’s (1987) estimator V̂ whose (k� l)th element is defined
as

v̂kl = 1{k= l}̂qk − q̂kq̂l + q̂k
bT∑
m=1

(
p̂
(m)
kl − q̂l

) + q̂l
bT∑
m=1

(
p̂
(m)
lk − q̂k

)
�

where q̂k is the kth element of 1
M(T−1)

∑M
j=1 Fj , p̂(m)kl is the (k� l)th element of P̂m, and P̂ =

{ 1
M(T−1)

∑M
j=1 f

1
j (s

′� s)}s�s′∈S. Also the bandwidth bT satisfies bT → ∞ and T−1/2bT → 0.
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