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Abstract 

 
 
Stock returns are characterized by extreme observations, jumps that would not occur 

under the smooth variation of a Gaussian process.  We find that jumps are prevalent in most 
countries.  This has been little investigation of whether the jumps are internationally correlated.  
Their possible inter-correlation is important for investors because international diversification is 
less effective when jumps are frequent, unpredictable and strongly correlated.  Public supervisors 
may also mind about widely correlated jumps, as they could bring down certain financial 
intermediaries. We investigate using daily returns on broad equity indexes from 82 countries and 
for several statistical measures of jumps.  Various jump measures are not in complete agreement 
but a general pattern emerges.  Jumps are internationally correlated but not as much as returns.  
Although the smooth variation in returns is driven strongly by systematic global factors, jumps 
are more idiosyncratic and most of them are found in Europe. Some pairs of correlated jumps 
occur simultaneously but not to the extent of correlated returns. 

 
 
 

JEL CLASSIFICATION: G11, G15 
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Non-Technical Summary 

 
Stock returns exhibit jumps relative to the rather smooth variation typical of a normal 

distribution. Jumps might be caused by sudden changes in the parameters of the conditional 

return distribution, extreme events such as political upheavals in a particular country, shocks to 

some important factor such as energy prices, global perturbation of recessions.   

The ubiquity of jumps has important implications for investors, who must rely on 

diversification for risk control.  If jumps are idiosyncratic to particular firms or even countries, 

they might be only a second-order concern.  But if jumps are broadly systematic, unpredictable, 

and highly correlated, diversification provides scant solace for even the best-diversified 

portfolio.  Jumps that affect broad markets are also headaches for policy makers such as financial 

supervisors.     

Little has been previously documented about the international nature of jumps. To this 

end, we compare their prevalence and severity across 82 countries.  We did not weight to 

countries and stock markets by their size and our jumps are not limited to political events and 

natural disasters. While jumps do not span around the globe, many correlated jumps we found 

occurred in the G-20 countries. We also tabulate calendar periods that had the most influence on 

jump correlations and compare them with the most influential periods for return correlations.  

We perform some robustness tests including simulation.  Our general finding is that jumps are 

less correlated across countries than raw returns.  In other words, jumps are less systematic than 

the smoother (non-jump) component of country price indexes.  Almost all the monthly return 

correlations are positive and almost 80% are statistically significant at the 1% level; this is for 

3,321 individual correlation coefficients computed with returns from 82 countries.  But jumps 

are less correlated.  For some of the jump measures, the correlation is very weak and is 

statistically significant in only a few pairs of countries.  This is based on the Barndorff-Nielsen 

and Shephard (BNS) (2006) jump measure.1  Simulations in Section 4 of our paper show that 

BNS performs very well; it does not indicate the presence of correlated jumps when there are 

actually none and it has good power to reject a false null hypothesis of no correlated jumps.  A 

few pairs of countries (which we identify) jumps are relatively idiosyncratic.   This suggests that 

                                                 
1 We also apply the other jump measures including Lee and Mykland (2008), Jiang and Oomen (2008), Jacod and 
Todorov (2009). The results from applying these four jump measures remain intact. 
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jumps are mainly induced by country-specific events such as political events or natural 

disasters.2  They are not often induced by shocks to global factors such as energy or investor 

confidence.   

We also document two other interesting features of jumps: first, we display particular 

calendar periods that contribute the most to international jump correlations.  Perhaps 

surprisingly, these are not usually the same months that are most influential for return 

correlations, though again, there are some differences among the jump measures.  Second, we 

provide information on particular pairs of countries that are most influenced by extreme jumps.   

Another surprise is that the most jump-correlated countries are larger and more developed 

and are mainly in Europe.  Because jumps are more correlated among European neighbors, 

international diversification is less effective in that region.  In contrast, jump co-movement is 

uncommon among developing countries or in non-European developed countries.  The rarity of 

international correlation among jumps suggests they are mostly caused by local influences such 

as political events and not by common global factors such as energy prices.   

Although jumps are frequent in all countries and are probably hard to predict, they are not 

as correlated internationally as returns themselves.  Returns seem to be more driven by global 

systematic influences while jumps are somewhat more idiosyncratic. Diversification might 

provide reasonably satisfactory insurance against jumps; nonetheless, policy makers should not 

be complacent from our results because future crises might be broad and be associated with 

contagion.  

                                                 
2 This conclusion is in full agreement with the recent paper by Lee (2012), who reports that U.S. jumps are mostly  
attributable to events such as Federal Reserve announcements or initial jobless claims (which are mainly 
idiosyncratic from a global perspective) or else are due to clearly idiosyncratic firm-specific events such as earnings 
reports. 
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1 Introduction 

Stock returns exhibit jumps relative to the rather smooth variation typical of a Gaussian 

distribution.3  Jumps might arise for a number of different reasons; to name a few: sudden 

changes in the parameters of the conditional return distribution, extreme events such as political 

upheavals in a particular country, shocks to some important factor such as energy prices, global 

perturbation of recessions.   

The ubiquity of jumps has important implications for investors, who must rely on 

diversification for risk control.  If jumps are idiosyncratic to particular firms or even countries, 

they might be only a second-order concern.  But if jumps are broadly systematic, unpredictable, 

and highly correlated, diversification provides scant solace for even the best-diversified 

portfolio.  Eraker et al. (2003) find that the jumps command larger risk premiums than 

continuous returns. Das and Uppal (2004) examine the portfolio choice problem of an 

international investor when returns are categorized by jumps, leading to systemic risks. Using 

monthly return data for a few developed markets, they measure diversification benefits and the 

home bias. They do not consider a large number of markets and do not apply the jump 

technology in their paper.  Asgharian and Bengtsson (2006) find significant jumps in large 

markets that lead to jumps in other markets. They conclude that markets in the same region and 

with similar industry structures tend to experience jump contagion. Jumps might be more 

prominent in emerging market returns where skewness and kurtosis are widely documented 

(Bekaert, et al. (1998a, b). 

Hartmann, Straetmans, and de Vries (2004) derive nonparametric estimates for the 

expected number of market crashes given that at least one market crashes. Their approach does 

not rely on a specific probability law for the returns and thus has an advantage over the often 

used correlation. They apply their measure to study the comovements of stocks and government 

bond markets during periods of stress. Instead of studying contagion or joint crashes of stocks, 

they investigate the phenomena of flight to quality or a crash in stock markets followed by a 

                                                 
3 See, inter alia, Chernov, et al. (2003), Eraker, et al. (2003), and Huang and Tauchen (2005). 
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boom in government bond markets. Similar to Pukthuanthong and Roll (2009), they agree 

correlation is not a good measure of market integration as it is predisposed toward the 

multivariate normal distribution, which normally underestimates the frequency of extreme 

market spillovers. Similar to this study, they conclude the financial market contagion 

phenomenon may have been overestimated in the literature on financial crisis (see also Forbes 

and Rigobon, 2002). Policymakers should not be complacent from these results since the next 

crisis might be broad and associated with contagion. Poon, Rockinger and Tawn (2004) develop 

tail dependence measure document the widespread asymptotic independence among stock 

market returns, which has been ignored in the finance literature. The omission of asymptotic 

independence can cause estimation errors of portfolio risk and thus suboptimal portfolio choice. 

Consistent with the extant literature, they find dependence between volatilities is strong during 

bear markets than in bull markets. Consistent with our study, the dependence between volatilities 

has increased over time to produce asymptotically dependent stock markets within Europe but 

still asymptotically independent stock markets among other regions. Hartmann, Straetmans, and 

de Vries (2007) apply a multivariate extreme value techniques applied by Hartmann et al (2004) 

and Poon et al (2004) to estimate the strength of banking system risks. Specifically, they apply 

extreme value theory to evaluate the extreme dependence between bank stock returns and 

measure banking system risk.  

These studies apply the novel multivariate extreme value approach to assess the extreme 

dependence between stock returns and to measure system risk. That is, they focus on crisis 

propagations or relations between extremely large negative returns over time while we focus on 

the simultaneous effects of common shocks or jumps on a single day. Our correlated jumps occur 

in one single day and the jump measures are based on daily data. Moreover, we focus on price 
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jumps or discontinuities, which are narrower than the aforementioned studies. Jumps seem to be 

an extreme case of crisis-type propagation. de Bandt and Hartmann (2010) provide a good 

survey on systemic risk including theoretical models and empirical evidence. 

Jumps that affect broad markets are also headaches for policy makers such as finance 

ministers and central bankers.  This is all the more true if jumps are significantly correlated 

internationally, for policy makers will then find it necessary, albeit difficult, to coordinate their 

reactions across countries.   

We present evidence about the international co-movement of jumps across 82 countries.  

Our general finding is that jumps are less correlated across countries than raw returns.  In other 

words, jumps are less systematic than the smoother (non-jump) component of country price 

indexes.  Except for a few pairs of countries (which we identify) jumps are relatively 

idiosyncratic.   This suggests that jumps are mainly induced by country-specific events such as 

political events or natural disasters.4  They are not often induced by shocks to global factors such 

as energy or investor confidence.  This is good news for international investors – diversification 

provides reasonably satisfactory insurance against jumps. Policy makers should not be 

complacent from our results because the future crisis might be broad and be associated with 

contagion. 

 

Little has been previously documented about the international nature of jumps.  To this 

end, we compare their prevalence and severity across countries.  We also tabulate calendar 

periods that had the most influence on jump correlations and compare them with the most 

influential periods for return correlations.  This provides an intuitive depiction of the frequency 

and importance of jumps. 

 

2 Data and Summary Statistics for Returns 

2.1 Data 

                                                 
4 This conclusion is in full agreement with the recent paper by Lee (2012), who reports that U.S. jumps are mostly  
attributable to events such as Federal Reserve announcements or initial jobless claims (which are mainly 
idiosyncratic from a global perspective) or else are due to clearly idiosyncratic firm-specific events such as earnings 
reports. 
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Daily data are extracted for 82 countries from DataStream, a division of Thomson 

Financial.  The data consist of broad country indexes converted into a common currency (the US 

dollar).  Appendix A lists the countries, identifies the indexes, reports the time span of daily data 

availability, and provides the DataStream mnemonic indicator (which could help in any 

replication.)  If the mnemonic contains the symbol “RI”, the index includes reinvested dividends; 

otherwise, the index an average daily price. 

Daily data availability extends back to the 1960s for a few countries but most joined the 

database at a later time.  The latest available date, when all the data were downloaded, is October 

26, 2009 for all countries except Zimbabwe, (which closed its stock market after October 2006.) 

Daily returns are calculated as log index relatives from valid index observations.  An 

index observation is not used if it exactly matches the previous reported day’s index.  When an 

index is not available for a given trading day, DataStream inserts the previous day’s value.  This 

happens whenever a trading day is a holiday in a country and also, particularly for smaller 

countries, when the market is closed or the data are simply not available.  Our daily returns are 

thus filtered to eliminate such invalid observations. 

Using the daily data for valid observations, calendar month and semiannual returns are 

computed by adding together the (log) daily returns.  The subsequent analysis uses these longer-

term returns, which also helps alleviate the effect of invalid daily observations.  In order to be 

included in the computations, a country must have at least ten valid monthly observation or 30 

valid observations within a semester.   

 

2.2 Summary statistics for return correlations 

 Simple product moment correlations are computed for each pair of countries.  Summary 

statistics for the correlations are reported in Table 1, Panel A for monthly correlations and Panel 

B for semiannual.  The number of observations depends on data availability.  The maximum 

number of months is 538, (e.g., Germany and the United Kingdom), and the minimum is eight, 

(e.g., Greece and Zimbabwe.)   Most pairs of countries have at least 100 concurrent monthly 

observations and quite a few have several hundred.  For semiannual periods, the maximum 

number is 90 and the minimum is eight.  Greece and Zimbabwe do not have enough concurrent 

semiannual observations to compute a correlation. 

7



 

As the table reveals, correlations are somewhat higher with semiannual than with 

monthly returns; both the mean and median are higher by about 0.12.   Cross-country-pair 

variation is only slightly higher for semiannual returns as indicated by the standard deviation and 

the mean absolute deviation while the number of highly significant correlations is lower; this is 

probably attributable to the lower sample sizes for semiannual data.  There is no evidence of 

skewness or kurtosis.   

Table 2 provides a list of the single most influential observation for the return correlation 

between each pair of countries.  To obtain these results, we simply computed the de-meaned 

product of returns that was the algebraically largest over all the available observations.  The table 

lists each influential period, the number of country pairs with data available for that period, and 

the fraction of country pairs for which that particular period was the most influential.  Periods are 

omitted if their influential observations amounted to less than one percent of the available 

correlations. 

Perhaps the most striking aspect of Table 2 is the pronounced dominance of October 

2008 for monthly data and the second semester of 2008 for semiannual data.  For 3,240 monthly 

correlation coefficients among the 82 countries, October 2008 was the single most influential 

observation in 2,457, more than 75% of the cases.  The second semester of 2008 was the most 

influential in 87.1% of the 3,240 semiannual correlations.  No other periods even come close.  

The next most influential monthly observation is October 1987, with 16.9% of the 378 

correlations available then.  The next most influential semester was the second half of 1993, a 

paltry 4.86% of the 1,378 available correlations. 

 
3 International jump correlations 

Our approach consists of two steps.  First, we compute the Barndorff-Nielsen and 

Shephard (2006, hereafter BNS) jump statistic “G” over a sequence of fixed-length calendar 

periods within each country.5  Second, for each pair of countries, we correlate the resulting BNS 

G jump statistics across all available periods.  The intuition is simple: if jumps are 

contemporaneous and more intense simultaneously, the BNS jump statistics will be positively 

                                                 
5 The BNS G statistic is based on the difference between “bipower” variation and squared variation; (See Appendix 
B.)  BNS also derive an H statistic based on the ratio of bipower to squared variation.  The G and H statistics 
provide vary similar inferences in all cases.  Full details are available upon request. 

8



 

correlated across time.  Such jump correlations can conceivably have a very different pattern 

than ordinary return correlations.   

 

3.1 The Barndorff-Nielsen and Shephard (2006) statistic 

For each country and each period k, either a calendar month or a semester, the BNS G 

statistic is computed from the daily return observations during the period.  The full tabulation of 

results is available upon request.   

The BNS G statistic is asymptotically unit normal under the null hypothesis of no jumps.  

The alternative hypothesis, that one or more jumps has occurred, tends to make the BNS G 

negative.  Our results reveal that the average value of G is negative for every one of the 82 

countries and all of the T-statistics for the sample mean G indicate significance, most being 

highly significant.  If the underlying returns are independently distributed across time, Barndorff-

Nielsen and Shephard show that their jump statistics are also time-series independent, so the T-

statistics should be fairly reliable.   

Table 3 provides summary statistics for the BNS G measure computed over both monthly 

and semiannual periods.6  For example, the mean over 82 countries of the country mean BNS G 

is -6.799 and the mean country standard deviation is 15.19.  If there had been no jumps, the mean 

and standard deviation should have been approximately zero and 1.0 on average.  The country 

average T-statistic is -5.232.   

Similarly, the average skewness and kurtosis, (which would be approximately zero if 

there were no jumps) are -5.177 and 47.160, both indicating dramatic departure from the 

asymptotic normality that would arise under the null hypothesis of no jumps.  Skewness is 

negative for every country, which shows that some months during the sample have dramatically 

smaller values of the jump measure than could be expected under the null; (recall that negative 

values of G indicate jumps within the month.)   The uniformly large values of kurtosis reveal 

extreme value of G in some months. 

                                                 
6In these averages, measures that exceed 1,000 in absolute value are expunged because they are probably due to data 
errors.  For example, the January 1999 monthly G measure for Ghana is -202,343.  In the original data, the Ghanian 
price index changed only in the seventh significant digit every day in January until the last (typical successive values 
are 426.8350, 426.8352, and so on, up and down.)  Then, on the last day of January, the index shot up to 452.95.  In 
February, the index remained around 452.95 until the last day as well.  It seems likely that no trades occurred on 
most days in these months and the index changed only because of rounding error.   
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The individual monthly and semiannual maxima and minima also indicate the strongly 

negative character of empirical BNS G measures.  Very few individual jump measures are 

positive and the maximum is less than one for both monthly and semiannual periods.  The 

minimum, in contrast, is orders of magnitude larger in absolute value. 

BNS G measures based on semiannual observations are less significant because the 

sample sizes are smaller.  But all indications agree that a null hypothesis of no jumps should be 

rejected for all countries.  Evidently, jumps are ubiquitous.   

Since Table 3 show clearly that jumps are happening all over the globe, the next step is to 

ascertain how correlated they are across countries.  To this end, using the calculated BNS G 

computed for both months and semesters within individual countries, we compute two 

international correlation matrices.  Table 4 provides summary statistics from these two different 

estimates of international jump correlations. 

The international correlations of jump measures reported in Table 4 stand in stark 

contrast with the return correlations reported earlier in Table 1.  The jump measures are simply 

not that correlated.  The mean correlation coefficients are only around 0.01 to 0.03.  Although 

the means are supposedly statistically significant based on the T-statistic for the mean, only a 

modest number of individual correlations have individual T’s greater than 2.0, between six and 

seven percent of them.  This differs dramatically from individual correlations among returns, 

which Table 1 reports have T’s exceeding 2.0 in 60% to 80% of the cases. 

This conclusion is further supported by Table 5, which gives influential months and 

semesters for the correlations among jump measures.  Unlike the influential periods for returns 

(Table 2), there are no grossly dominant periods.  The first semester of 1973 has the largest 

percentage of influential observations, but only 21.9%, in contrast with the 87.1% of influential 

observations exhibited by the second semester of 2008 for return correlations.  Moreover, there 

were many more available pairs during the second semester of 2008, 3,240, versus only 105 in 

the first semester of 1973, so the dominance of 2008 is all the more impressive.   

For monthly jump measures, Table 5 shows that no month reaches even a ten percent 

level as being most influential.  Notice also that the two most dominant months for returns, 

October 2008 and October 1987, do not even appear in Table 5.  Similarly, the second half of 

2008, the main time of the recent financial “meltdown,” does not appear as significantly 

contributing to semiannual jump correlations. 
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Combining the results in Tables 3, 4, and 5, one can only conclude that jumps are 

occurring in all countries but not usually at the same time.  This is good news for investors 

because it seems to suggest that diversification can be effective in protecting against extreme 

movements in prices even though the smooth component of return variation is quite correlated 

internationally.  Evidently, jumps are much more idiosyncratic than normal variation. 

Despite the weak international correlation among jumps, it could still be useful to 

examine special cases of countries that exhibit somewhat more jump co-movement.  Table 6 

presents a list of country pairs whose jump correlations have T-statistics exceeding 3.0 for the 

BNS G measure.  Many of these seem intuitively plausible since they are close neighbors and 

trading partners; indeed, quite a few pairs are countries within the European community.    

There are some, however, that seem a bit odd, particularly for the jump measures 

computed with semiannual data.  Examples are Argentina, partnered with both Bangladesh and 

Kuwait, or China partnered with Jordan, or Brazil with Lithuania.  Perhaps some of these 

oddities are simply attributable to randomness that is the inevitable companion of large-scale 

data comparisons 

Other cases might very well be worthy of a more in-depth investigation.  For example, 

are semiannual jumps correlated between Indonesia and Morocco because their religious faith 

subjects them to occasional common shocks?  Are Israel and Switzerland paired through 

technology?  What is the relation between Kuwait and Romania, South Korea and Sweden, or 

Ecuador and the Philippines?   It would be interesting to know the underlying reasons for such 

connections, if indeed there are any. 

Most countries provide good diversification protection against extreme movements in 

prices.  But there are a few exceptions such as those listed in Table 6.   

 

3.2 Other jump statistics 

In addition to the BNS jump statistic discussed in the previous section whose empirical 

results are reported in Tables 3 to 6, we also investigated three other competing methods of jump 

detection.  These approaches were developed by Lee and Mykland (2008), Jiang and Oomen 

(2008), and Jacod and Todorov (2009).  All three are detailed in Appendix B, but since this is a 

paper about finance and not about statistics and because of limited space, the associated 
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empirical results are not reported in detail but are described briefly below.  All results are 

available upon request.   

The Lee and Mykland (hereafter LM) statistic indicates slightly fewer jumps than the 

Barndorff-Nielsen and Shephard (BNS) statistic but it agrees that jumps are occurring in every 

one of our 82 countries.  LM also indicates that a few countries have correlated jumps.  In 

11.50% of the bi-country comparisons, LM reveals significant jump correlation with a p-value of 

0.05.  This exceeds, though only modestly, what one would expect under the null hypothesis of 

no jump dependence between any two countries.  A majority of these significantly correlated 

pairs involve countries in Europe.  A total of 54 countries had their largest LM statistic in a 

calendar month that was not shared by any other country.  This suggests again that the most 

extreme jumps are relatively isolated and idiosyncratic events. 

The Jiang and Oomen (hereafter JO), statistic contrasts to some extent with BNS and LM.   

Jump correlations based on JO are a bit larger on average, 0.134, and more statistically 

significant.  They are not as significant as correlations between returns but they are closer to 

returns than the jump correlations for BNS and LM. 

JO picks out a few of the same influential months as BNS; e.g., November 1978, and 

January 1991 and 1994.  But it also identifies October 1987 as the most influential jump month 

of all and October 2008 as next most; these are months having the largest influence on return 

correlations.  It thus seems that the JO measure of jumps portrays them as more systematic, 

though not to the same extent as returns, and less idiosyncratic as compared to the BNS and LM 

measures.  According the JO measure of jumps, extreme international correlations do not happen 

for developing countries.  Also, many significant country pairs are European, as they are for the 

LM measure of extreme jump co-movements.   

In agreement with the other statistics above, the Jacod and Todorov (hereafter JT) tests 

suggest that international jumps are frequent.  They are strictly idiosyncratic in more than half 

the country pairs but they do occur jointly on occasion.  There is also essential agreement with 

respect to both the most influential months in the sample and on the pairs of countries that 

exhibit the largest average values.  No month stands out as being overwhelmingly influential; the 

single most prominent month is September 2008, but it was largest for only 197 out of 3281 pairs 

of countries.  There are 45 pairs of countries with significant jump co-movements at the five 
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percent level of significance.  The majority of these (28) are European.  Greece alone figures in 

18 pairs.    

 

3.3 Other tests we do not employ 

While JT tests for cojumps in a pair of returns based on higher order power variation, 

Gobbi and Mancini (2006, 2008) propose a strategy to separate the covariation between the 

diffusive and jump components in a pair of returns.  Using a related method, Bollerslev, Law, 

and Tauchen (2008) do not test for cojumps between a particular pair of returns, but rather in the 

cojumps embodied in a large ensemble of returns. 

Aït-Sahalia and Jacod (2009) and Tauchen and Zhou (2010) propose nonparametric tests 

for presence of price jumps based on high-frequency data.  Also, more recently, Aït-Sahalia, 

Cacho-Diaz, and Laeven (2010) model asset return dynamics with a drift component, a volatility 

component, and mutually exciting jumps known as Hawkes processes.  They use this approach to 

capture adverse mutual shocks to stock markets, with a jump in one region of the world 

propagating a different jump in another region of the world.   

Bollerslev and Todorov (2011a) also focus on high-frequency data and use a threshold 

approach to distinguish jumps from ordinary variation.  In a related paper, Bollerslev and 

Todorov (2011b) estimate risk premia that depend on the existence of jumps in both volatility 

and prices, but they do not derive a separate estimator for jump detection within a sample period. 

Of course, this paper would be unacceptably lengthy if every existing jump test were 

thoroughly examined.  Hence, we selected a single test (BNS) that seemed promising and is 

relatively easy to implement.  Most importantly, in the next section we employ simulations that 

check the test power of BNS, and verify that it seems more than adequate for our application. 

 

4 The Efficacy of Jump Measures for Detecting Correlated Jumps 

 Given the fact that jump statistics have not heretofore been used to assess the 

international correlation of jumps, it is absolutely imperative that we develop some insight about 

test power.  Hence, this section represents an extremely important understructure for the overall 

empirical approach.  Here, we report simulations for which the true nature of correlated jumps is 

known.  We generate artificial data that has a smooth Gaussian variation, including non-zero 

smooth correlation between the two bivariate return series, appended by artificial jumps of 
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various sizes, frequencies, and co-movements.  Using these artificial data, we study the efficacy 

of the BNS jump measure for detecting correlated jumps.  We also describe briefly the relative 

efficacies of the other three jump statistics, LM, JO, and JT and we contrast their test power 

graphically.   

Without loss of generality, our simulated bivariate smooth Gaussian process is specified 

to have mean zero and unit variance for both series plus a pre-specified correlation.  Since the 

average correlation in the monthly international return data is 0.314 (see Table 1, Panel A), we 

take this as an upper bound  because it is also influenced by jumps and not just by smooth 

variation.  In the simulations, we use a value in this general neighborhood, 0.30, and also two 

smaller values, 0.15 and zero. 

The simulated jumps are also Gaussian with mean zero but their strength is modeled by 

specifying their standard deviation as a multiple (such as 5 or 15) of the underlying smooth 

series, whose standard deviations are both 1.0.  Also, jumps arrive randomly with particular but 

rather small frequencies.  For example, with a daily frequency of 0.02 and 21 trading days per 

month, the probability of a jump occurring on some day during the month is 0.42.  The jump 

frequencies are studied over a range from very unlikely to very likely during each month.  These 

frequencies are applied independently to both simulated return series.   

Conditional on a jump arriving in either series on a given day, there is also a specified co-

probability that the same jump will be transmitted to the other series.  This co-probability is a 

key parameter, because it specifies jump co-movement, the object of our study.  In the 

simulations, we allow it to vary from zero (no common jumps) to 0.999 (almost completely 

common jumps.)   Note that the two simulated series can also have common jumps during the 

same month simply because of random arrivals, even though the jumps are not really common.  

The co-probability simply increases their natural commonality. 

In summary, there are four parameters that vary across simulations: (1) smooth 

correlation, (2) jump strength, (3) jump frequency, and (4) jump co-probability. Other parameters 

are held constant: the mean and volatility of the bivariate smooth returns, the type I error (5%), 

and the number of replications for each parameter combination (1,000).  We experimented with 

different replication numbers but they all deliver essentially the same results. 

Each simulation produces an entire probability distribution of the test statistic for 

correlated jumps, but these numbers are too voluminous to report in their entirety.  Instead, we 
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report only a single indication of effectiveness, test power.  When the jump co-probability is 

positive in the simulated returns, (and hence there are genuinely correlated jumps), the test power 

is the fraction of replications that reject the false null hypothesis of no jump co-movement.  In 

the special case when the co-probability is actually zero, and hence jumps are only randomly 

common in the two simulated return series, the test power is the fraction of replications that 

falsely reject the true null hypothesis of no jump co-movement. 

As a base case, we first look at the computed test power when the jump frequency is zero 

for both simulated return series.  Since jumps cannot occur, they cannot be common across the 

two series.  Nonetheless, we compute test power in this case, which is essentially the probability 

of falsely rejecting the true null hypothesis that there are no correlated jumps.  The results are 

plotted in Figure 1 for BNS, LM and JO.7  When the smooth variation correlation is zero, the 

BNS test provides appropriate results: i.e., at a 5% type I rejection level, it rejects (wrongly) in 

the vicinity of five percent of the time.   

As the smooth correlation increases, going from zero in the left panel to 0.15 in the center 

panel and then to 0.30 in the right panel, the BNS test increases the incorrect rejection frequency 

only slightly; i.e., it is behaving well.   

With true co-movements in jumps, Table 7 reports some representative simulation 

results.  The table includes two values of the smooth variation correlation (zero and 0.15), two 

values of jump strength, (5 and 15), two values of jump frequency (0.01 and 0.03), and three 

values of the co-probability of jumps, (0.30, 0.60, and 0.90.)   We actually produced simulation 

results for a variety of other parameter values, but those in Table 7 provide a reasonable 

depiction of the overall results.8 

First notice that BNS seems to provide reasonably reliable results overall.  Its test power 

is higher with more intense jumps and with a higher level of jump co-movement between the two 

simulated series.  This is what one would hope to obtain in a test procedure.  It is interesting 

though, that test power seems to be lower when jumps are more frequent.  At first, this might 

seem surprising but on further reflection, it seems sensible for the following reason: really 

frequent jumps are more or less akin to smooth variation but simply with a higher volatility.  The 

daily jump frequencies in Table 7 are 0.01 and 0.03, which imply monthly jump probabilities of 

                                                 
7 JT is discussed for this case below. 
8 The complete set of results for all parameter values will be provided to interested readers. 
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at least 0.21 and 0.63, respectively.  With a monthly probability of around 0.60, it is highly likely 

that at least one of the two simulated return series will have a jump in a given month and this is 

transferred to the other series with the specified co-probability.  Evidently, the commonality that 

is easiest to detect, at least by the BNS method, involves rather rare jumps. 

In comparison to BNS, the LM test provides relatively weaker test power.  Nonetheless, 

the LM approach seems to have the appropriate pattern; it simply requires very strong and highly 

correlated jumps to have much power. 

The JO test has more power than the LM test at all levels of intensity, frequency, and co-

probability.  However, it has less power than BNS throughout.  Moreover, unlike BNS and LM, 

it tends to detect jumps that do not exist.  When there are no jumps, it incorrectly rejects the null 

hypothesis (no jumps) about 40% of the time for the mid-range smooth correlation of 0.15 and 

almost 90% of the time at the high end, a correlation of 0.30 (See Figure 1.)  Jiang and Oomen 

(JO) assert in their paper that their test is very sensitive to even small jumps.  Evidently, even a 

small amount of smooth correlation leads to an incorrect inference that there are common jumps.   

The JT test never rejects the null hypothesis (no jumps) wrongly, even five percent of the 

time; hence, it actually has too few rejections, the opposite of JO.  However, for high jump 

strength (15) and the high co-probability of jump transmission (0.90), the JT measure achieves 

100% power.  It is perfect.  It does not perform as well when jump strength it lower; at a jump 

strength of 5, its power is negligible unless the co-probability is very high.  It does better when 

the jump frequency is higher, ceteris paribus.  

These results and comparisons are further illustrated in Figures 2 to 4.  Figure 2 shows 

test power for the four jump measures and high jump intensity across three levels of smooth 

correlation.  BNS has the highest power overall.   The test powers of BNS, LM and JO do not 

change much when the smooth correlation goes from zero to 0.30; (the latter value is in the same 

general vicinity as the average smooth correlation in the international index returns.)  However, 

JT’s power increases dramatically, from around 10% to over 70%.   In simulations, Jacod and 

Todorov (2009, Section 6) also find that power is affected by the level of smooth correlation, 

though the effect appears to be less dramatic than in our application here. 

Figure 3 depicts the influence of jump strength.  Again, BNS has good power throughout.  

Its power exceeds 60% even at low levels of intensity (5) and it grows to 80% at an intensity of 

10.   Both LM and JO exhibit strongly increasing power with growing intensity and JO has the 
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higher of these two at all levels but neither reaches the power of BNS.  JT’s power is outstanding 

and the best of all measures at higher jump intensities (10 and 15) but has only about 10% power 

at an intensity of 5. 

Finally, Figure 4 plots the power for each of the four jump measures against jump 

frequency and jump co-movement probability.  BNS, LM and JO have the pattern one would 

expect, very low probability of incorrectly rejecting a true null hypothesis (when the co-

movement probability is zero) and increasing power against a false null hypothesis as the co-

movement probability increases from 0.30 through 0.999.  However, when there is truly some 

jump co-movement, BNS has higher power than LM and JO throughout; (the latter are similar.)  

Notice too that power is generally better for rare jumps, when the frequency is lower, for BNS, 

LM and JO.   The pattern for JT is quite different.  It has virtually no power until the co-

movement probability reaches 0.60 but it has the best power of all when this probability is 0.90 

and above.  Another contrast is that JT’s power is (slightly) better for higher jump frequencies.  

The bottom line from these simulations turns out to be fairly clear-cut.  BNS G, the Barndorff-

Nielsen and Shephard difference jump measure, seems preferable overall for the explicit purpose 

we have here, estimating the co-movement of jumps across international markets.  It performs 

well when there are no correlated jumps and it has acceptable power when there are many such 

jumps.  Although the LM and JO measures display a similar pattern, they have weaker power 

when there are actually jumps.  Moreover, JO (but not LM) incorrectly indicates the presence of 

correlated jumps when there are actually none.  JT has outstanding power at very high levels of 

jump co-movement but performs poorly at lower levels.   

 

5 A Simple Validity Check 

 To this point, our basic inference from the empirical results is that jumps, though 

common in all countries, are mostly idiosyncratic and not very related across countries.  This 

suggests that any well-diversified portfolio should exhibit fewer jumps than any single country 

considered alone.9  This can be readily checked by constructing a globally diversified portfolio 

and estimating the prevalence of jumps by using one of the measures studied above.   Previously, 

Bollerslev, Law, and Tauchen (2008) using the BNS measure, and Lee and Mykland (2008) 

                                                 
9 We are grateful to Hanno Lustig for suggesting this idea. 
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document more frequent and larger sized jumps for the individual stocks as compared to an 

index.  

 We take the simplest possible approach by first constructing an equal-weighted global 

portfolio from the available daily returns of the 82 countries listed in Table 1.  Thus, the 

constructed index is a simple average of the countries already investigated and covers the same 

time period.  Since the previous section’s simulations suggested that the BNS jump measure has 

relatively sound properties, we adopt it for this validity check. 

 Table 8 presents the results.  The first panel is copied from Table 3 and simply provides 

summary statistics for individual countries.  The second panel reports on the BNS G jump 

measure for the global equal-weighted portfolio.  The difference is indeed striking and 

completely supports the notion that jumps are largely diversifiable.   Notice that the mean value 

of individual country BNS G measures is -6.799 while the equal-weighted index’ mean measure 

is only -0.276.  (Recall that large negative values of the BNS G measure reject the null 

hypothesis of no jumps.) 

 Other comparisons in Table 8 also support the same inference.   For example, the index 

has much smaller standard deviation across months, only 0.787 versus 15.190 for countries on 

average.  The minimum monthly value for the index is -9.527 as compared to -102.100 for 

countries.    

 Although the index displays much smaller jump measures, the average jump measure is 

still significantly negative.  The T-value for the sample mean is even larger than for individual 

countries, -8.127 versus -5.232.  This can be attributed to the index having more available 

observations than countries having on average and also to the much smaller variance of the 

index’ jump measure across months.  The bottom line here is that jumps are largely diversified 

away but not completely.  Evidently, country jumps are mostly, but not entirely, idiosyncratic. 

   

6 Conclusions 

The extent of international correlation is very important for diversifying investors and 

government officials attempting to coordinate policies across borders.  In this paper, we examine 

daily data for broad equity indexes from 82 countries and adopt several competing jump 

measures suggested in previous papers.  
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Returns are quite correlated internationally.  Almost all the monthly return correlations 

are positive and almost 80% are statistically significant at the 1% level; this is for 3,321 

individual correlation coefficients computed with returns from 82 countries.  But jumps are less 

correlated.  For some of the jump measures, the correlation is very weak and is statistically 

significant in only a few pairs of countries.  This is based on the Barndorff-Nielsen and Shephard 

(BNS) (2006) jump measure.  Simulations in Section 4 show that BNS performs very well; it 

does not indicate the presence of correlated jumps when there are actually none and it has good 

power to reject a false null hypothesis of no correlated jumps.   

We also document two other interesting features of jumps: first, we display particular 

calendar periods that contribute the most to international jump correlations.  Perhaps 

surprisingly, these are not usually the same months that are most influential for return 

correlations, though again, there are some differences among the jump measures.  Second, we 

provide information on particular pairs of countries that are most influenced by extreme jumps.   

Another surprise is that the most jump-correlated countries are larger and more developed 

and are mainly in Europe.  Because jumps are more correlated among European neighbors, 

international diversification is less effective in that region.  In contrast, jump co-movement is 

uncommon among developing countries or in non-European developed countries.  The rarity of 

international correlation among jumps suggests they are mostly caused by local influences such 

as political events and not by common global factors such as energy prices.   

Jumps estimated in our paper are jumps in equity returns, not real economic output or 

returns of other financial assets. Second, jumps in our paper are different from true crises. 

Although we find most jumps are not globally systematic, jumps are mostly found in Europe. A 

jump is an event of sharp increase or decrease in equity returns whereas true crises or contagion 

of downfall returns are a broader event. Our correlated jumps occur in a single day whereas 

contagion captures a spread of downfall over time. Furthermore, our jump includes both positive 

and negative jumps. We did not exclude positive jumps from our experiment. Future research 

should exclude them and thus the findings will be applied only to true crises. 

Moreover, our approach can be readily adapted to ascertain whether jumps are entirely 

contemporaneous or whether they have a lead/lag relation on occasion.  This interesting issue is 

left for future research. The bottom line is a bit of good news for investors.  Although jumps are 
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frequent in all countries and are probably hard to predict, they are not as correlated 

internationally as returns themselves.   

Returns seem to be more driven by global systematic influences while jumps are 

somewhat more idiosyncratic. 
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Table 5 

Influential periods for inter-country correlations of jumps using the BNS G measure 

An influential observation is defined here as the single calendar period that contributes the most 
to the correlation of jumps between countries.  The Barndorff-Nielsen and Shephard (2006) 
measures are calculated for each period and then correlated over time for all available pairs of 
countries.  For each listed period, the table contains the percentage of country pairs for which 
that period was the single most influential contributor to the estimated jump correlation.  To save 
space, periods are excluded if there are fewer than 100 available pairs of countries or have less 
than two percent of the most influential observations.  The raw data are extracted from 
DataStream, a division of Thomson Financial. 
 

Month/Year Most Influential % 
October/1973 3.810% 

December/1974 2.500% 
April/1975 2.941% 

November/1978 8.824% 
May/1980 2.632% 

February/1983 4.211% 
November/1983 6.667% 

January/1991 6.554% 
January/1994 2.155% 
March/2009 2.161% 

Semester/Year Most Influential % 
1/1973 21.91% 
1/1974 7.500% 
1/1988 7.308% 
1/1991 11.11% 
1/1994 6.061% 
2/2000 6.524% 
1/2002 7.359% 
1/2006 7.377% 
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Table 6 

Country pairs with large jump correlations according to the BNS G measure 

The Barndorff-Nielsen and Shephard (2006) G measure is calculated for each period and then 
correlated over time for all available pairs of countries.  The pairs of countries listed here exhibit 
jump measure correlations with T-statistics of at least 3.0.  The raw data are extracted from 
DataStream, a division of Thomson Financial. 
 

Monthly Jumps Semiannual Jumps 
Belgium France  Argentina Bangladesh 
Belgium Ireland  Argentina Kuwait 
Belgium Netherlands  Austria Spain 
Belgium Switzerland  Bangladesh Kuwait 
Brazil Lithuania  Belgium Netherlands 
Canada Sweden  Belgium Switzerland 
Estonia Israel  Canada Sweden 
Finland Romania  Chile India 
France Germany  China Czech Republic 
France Hungary  China Jordan 
France Italy  Czech Republic Jordan 
France Netherlands  Denmark Nigeria 
France United Kingdom  Denmark Sweden 
Germany Hungary  Ecuador Philippines 
Germany Italy  Finland Ukraine 
Germany Netherlands  France Portugal 
Hong Kong Norway  Germany Netherlands 
Hungary Norway  Germany Switzerland 
Israel Switzerland  Ghana Luxembourg 
Kenya Oman  Ghana Mauritius 
Netherlands Poland  Hungary Poland 
Netherlands Switzerland  Hungary Spain 
Netherlands United Kingdom  Indonesia Morocco 
Portugal Switzerland  Kenya Oman 
Romania Sweden  Kuwait Oman 
Slovenia Tunisia  Kuwait Romania 
South Korea Sweden  Kuwait Sweden 
   Malta Nigeria 
   Netherlands Switzerland 
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Table 7 
 

Simulations to check the power of the BNS G test for 
detecting correlated jumps 

 
The G jump measure derived by Barndorff-Nielsen and Shephard (2006) is described in 
Appendix B.  Simulated bivariate returns have two components, a smooth Gaussian variation 
with unit variance (for both bivariate returns) and a specified smooth correlation plus a Gaussian 
jump component with specified frequency, intensity (strength), and co-movement probability, 
“Co-Prob.”  Jump intensity is in multiple units of the smooth variation volatility. 
 

Smooth correlation = 0.00 Smooth Correlation = 0.15 
Jump 

Strength 
Jump 

Frequency 
Jump 

Co-Prob 
Test 

Power 
Jump 

Strength 
Jump 

Frequency
Jump 

Co-Prob 
Test 

Power 
5 0.01 0.30 27.90 5 0.01 0.30 29.60 
5 0.03 0.30 26.60 5 0.03 0.30 26.10 
5 0.01 0.60 52.40 5 0.01 0.60 55.10 
5 0.03 0.60 43.50 5 0.03 0.60 42.80 
5 0.01 0.90 65.90 5 0.01 0.90 69.50 
5 0.03 0.90 57.20 5 0.03 0.90 52.80 

15 0.01 0.30 44.90 15 0.01 0.30 43.90 
15 0.03 0.30 29.10 15 0.03 0.30 29.70 
15 0.01 0.60 76.10 15 0.01 0.60 77.90 
15 0.03 0.60 49.70 15 0.03 0.60 47.80 
15 0.01 0.90 89.90 15 0.01 0.90 90.00 
15 0.03 0.90 74.10 15 0.03 0.90 73.20 
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Figure 1 

The probability of rejecting a true null hypothesis that there are no jumps in either of two 
simulated return series.  The two return series both have a smooth unit Gaussian variation and a 
specified level of correlation.  The underlying jump measures are those derived by Barndorff-
Nielsen and Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] 
(JO), and Jacod and Todorov [2009] (JT).  The type I rejection level is 5%.  Simulations have 
1,000 replications. 
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Figure 2 

Smooth Correlation and Test Power Against a False Null Hypothesis of No Jump Co-Movement 
for Jump Intensity = 15, Jump Frequency = 0.02, and Jump Co-Movement Probability = 0.90.  
The two return series both have a smooth unit Gaussian variation and a specified level of 
correlation.  The underlying jump measures are those derived by Barndorff-Nielsen and 
Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] (JO), and 
Jacod and Todorov [2009] (JT).  The type I rejection level is 5%.  Simulations have 1,000 
replications. 
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Figure 3 

Jump Intensity and Test Power Against a False Null Hypothesis of No Jump Co-Movement for 
Smooth Correlation = 0.15, Jump Frequency = 0.02, and Jump Co-Movement Probability = 0.90.  
The two return series both have a smooth unit Gaussian variation and the specified level of 
correlation (0.15).  The underlying jump measures are those derived by Barndorff-Nielsen and 
Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] (JO), and 
Jacod and Todorov [2009] (JT).  The type I rejection level is 5%.  Simulations have 1,000 
replications. 
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Appendix B 

Jump Measures 

1. Barndorff-Nielson and Shephard (2006) 

Barndorff-Nielson and Shephard (2006), hereafter BNS, develop a test statistic based on 

comparing bipower variation with squared variation.  To understand their test, consider the 

following notation (that we will adopt throughout the paper.) 

t, subscript for day  

Tk, the number of days in subperiod k 

K, the total number of available subperiods 

Ri,t,k, the return (log price relative including dividends, if any)  

for asset i on day t in subperiod k 

 The BNS bipower and squared variations are defined as follows: 

Bi,k, bipower variation,  
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Si,k, squared variation 
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BNS propose two variants of the quadratic versus bipower variation measure, a 

difference and a ratio.  If the non-jump part of the process has constant drift and volatility, they 

show that (/2)Bi,k is asymptotically equal to the non-jump squared variation.  Consequently, a 

test for the null hypothesis of no jumps can be based on (/2)Bi,k - Si,k, or (/2)Bi,k/Si,k -1.  Under 

the null hypothesis, the standard deviations of this difference and ratio depend on the “quarticity” 

of the process, which they show can be estimated by  
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Define the constant  = (2/4) +  -5.  Then the difference and ratio statistics, 

k,i
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are both asymptotically unit normal. 

These statistics have intuitive appeal because the squared variation (Si,k) should be 

relatively small if there is smooth variation, as with the normal distribution.  On the other hand, 

if the price jumps on some days, those jumps are magnified by squaring and the statistics above 

should be small.  Small values of G and H relative to the unit normal reject the null hypothesis of 

no jumps. 

From our perspective, these statistics also have the benefit that they can be computed 

sequentially over calendar periods of various lengths.12  For example, beginning with daily 

observations, they can be computed monthly or semiannually for each asset.  Subsequently, the 

resulting monthly or semiannual statistics can be correlated across assets to detect whether jumps 

are related.  When the assets are broad country indexes, this provides the opportunity to test for 

internationally correlated jumps.  For example, to check whether countries j and i exhibit 

correlated jumps, one can calculate the correlation over k = 1,…,K between Gi,k and Gj,k.   

In previous papers, Huang and Tauchen (2005) and Andersen, Bollerslev, and Diebold 

(2007) adopt the BNS method and develop a Z statistic for jumps using tri-power quarticity.  The 

latter paper also develops a “staggered” version of bi-power variation to tackle microstructure 

noise that induces autocorrelation in the high-frequency returns.  Zhang, Zhou, and Zhu (2009) 

use the BNS method to identify jump risk of individual firms from high-frequency equity prices 

in order to explain credit default swap premiums.   

 

2. Lee and Mykland (2008) 

Like BNS, Lee and Mykland (2008), (hereafter LM), base their test on bipower variation, 

but it is employed differently.  Bipower variation is used as an estimate of the instantaneous 

variance of the continuous (non-jump) component of prices.  LM recommend its computation 

with data preceding a particular return observation being tested for a jump and the resulting test 

                                                 
12 There is a caveat.  BNS assume that the non-jump part of the process has constant mean and volatility, which rules 
out phenomena such as reductions in volatility with increasing prices, and vice versa.  This should be only a minor 
annoyance, though, when the calendar period is fairly short. 
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statistic is L =  .  Under the null hypothesis of no jump at t+1, LM show that  

converges to a unit normal.13  In addition, if there is a jump at t+1,  is equal to a unit normal 

plus the jump scaled by the standard deviation of the continuous portion of the process. 

LM stress that high-frequency data minimizes the likelihood that a jump will be 

misclassified.  A test might fail to detect an actual jump at t+1 or it might spuriously “detect” one 

at t+1 even though it has not occurred.  Over a sequence of periods, tests might also fail to detect 

any jumps even when one or more have occurred or they may falsely indicate that one or more 

have occurred.  LM provide explicit expressions for the probabilities of such misclassifications. 

Unfortunately, we do not possess international stock index data at frequencies higher than 

daily, so we will have to live with possible misclassifications.  But since our purpose is mainly to 

find evidence about the international correlation of jumps rather than the unambiguous 

identification of a jump at a particular time, occasional misclassification is less of an issue.  We 

also finesse the problem to some extent by using a non-parametric enumeration of the test 

statistic. 

Since the LM test statistic has the return in the numerator, it would not be appropriate to 

simply correlate it across countries.  The resulting statistic would be polluted by the normal non-

jump correlation of returns.  Instead, we first identify periods when the statistic is significantly 

non-normal, thus indicating a likely jump.  Using a simple contingency table test, we then 

ascertain whether these periods are related across each pair of countries. 

 

3. Jiang and Oomen (2008) 

Jiang and Oomen (2008) (hereafter JO) devise a test inspired by the variance swap, a 

contract whose payoff depends on the realized squared returns of an asset at a particular 

frequency and over a specified horizon.  They cite Neuberger (1994) for the continuous 

replication strategy using a “log contract.”  This leads to the idea of swap-based variation, 

defined during period k with our usual notation as  

                                                 
13 For short periods, the mean return is negligible and is ignored in the simplest version of the LM test. 
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where the new superscripts “ar” and “ln” denote, respectively, the arithmetic return (Pt/Pt-1-1) 

and the log return ln(Pt/Pt-1) with Pt as the price (or index value) at time t.  The squared variation, 

already earlier in the Appendix when introducing the BNS statistic, is compared with the swap 

variation in several proposed test statistics based on SWi,k – Si,k, or ln(SWi,k) – ln(Si,k), or a ratio 

test based on 1 – Si,k/SWi,k.
14 

JO argue that these statistics are more sensitive to jumps than the BNS and LM statistics 

described above because they exploit the influence of jumps on the third and higher order 

moments rather than exclusively on the second moment.  JO provide simulations that seem to 

demonstrate that their statistic performs comparatively well. 

Their theorem 2.1, p. 354, states that any of the proposed test statistics are asymptotically 

normal with mean zero under the null hypothesis of no jumps during k.  The variances of the 

tests are unknown but can by estimated by multi-power variations that are consistent and robust 

to jumps during the estimation period. 

For our purpose of correlating jumps across international markets, we do not even need to 

estimate the variances of the JO tests provided that the variance is constant over time, (though 

different across countries.)  Also, we use just the second of JO’s three proposed statistics, 

involving logs of SW and S, simply on the grounds that logs attenuate outliers.       

 

4. Jacod and Todorov (2009) 

The tests devised by Jacod and Todorov (2009), hereafter JT, seem to perfectly fit our 

goal here because they are explicitly intended to detect the common arrival of jumps in two time 

series.  JT actually develop two statistics, one for the null hypothesis that jumps arrive at the 

same instant in both time series (“joint” jumps) and another for the null hypothesis that jumps 

arrive in both time series but not at the same instant (“disjoint” jumps.)   

Within a finite subperiod k, the first JT test asks whether Ri,t,k and Rj,t,k (i ≠ j) both 

experience a jump on the same date t, for at least one t  k.  Given a pair of countries, one can 

compute the first JT test for a sequence of subperiods, k = 1,...,K, and tabulate the frequency of 

                                                 
14 Because JO intend their estimator for very high frequency data, the means are ignored.  De-meaned data can be 
used for lower frequency data. 
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common jumps.  This provides a measure of jump co-movement frequency.  One can also use 

the second test to measure the arrival frequency of disjoint jumps that arrive on different dates 

but both within the same subperiod k. 

The JT tests require that at least one jump occurs in both countries i and j in at least one 

interval k = 1,...,K.  So, the first step in implementing their procedure is to throw out countries 

that never experience a jump during the sample.  The BNS statistics could be used for this 

purpose.  In other words, one could first compute the Gi,k and Gj,k (or Hi,k and Hj,k) according to 

the expressions described above in the Appendix, check whether the means of both G’s (or both 

H’s) fall below some pre-specified threshold, such as the .01 fractile of the unit normal, and 

retain for the JT test only those pairs of countries for which the threshold is breached.  For 

monthly periods, this approach seems unnecessary because failure to reject both the “joint” and 

the “disjoint” jump null hypotheses is tantamount to accepting the hypothesis that the month 

contains no jump of any kind. 

For month k, the monthly return is simply the sum of daily (log) returns,  

,
1

,,, 
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denote as for country i and month k which contains Tk daily returns.  Inserting our return 

notation in JT’s functional representation, we first define a functional sum as 
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for integer   1, where [ . ] denotes the integer part or the argument and the function f(x) takes 

on two forms: a cross-product, fi,j = (xixj)
2 and a quartic, gi = xi

4.  For  = 1, V(f,1) is simply the 

sum of the functions of individual monthly returns.  For  > 1, JT recommend the choices of  = 

2 or  = 3; we will adopt the former and retain it throughout because this maximizes the number 

of terms in the sum, i.e., in [K/].  Consequently, in our application of the JT tests, the second 

sum in V(f,2) will involve bi-monthly returns. 

The JT test statistic for simultaneous (“joint”) jumps is given by 
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and for “disjoint” jumps (non-simultaneous ones), the statistic is  
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JT derive asymptotic properties for both statistics.  When there are joint jumps, (J) 

converges to a Gaussian with mean 1.0 and variance given by their equation 4.1, (p. 1800.)   

When there are only joint jumps, (D) also converges to 1.0, and it generally converges to a 

positive value when there are both joint and disjoint jumps.  When there are uniquely disjoint 

jumps, (D) converges to zero and (J) converges to 2.0.  If there are no jumps at all, (D) should 

also converge to zero, so a test of (D) against a null hypothesis of zero (and perhaps (J) against 

a null hypothesis of 2.0) should be rejected when jumps are joint and thus not idiosyncratic.   
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