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Abstract

It is well known from time series analysis that shocks to aggregate output
have very persistent effects. This paper argues that the relation between the
expected growth rate of a firm and its size provides a microfoundation for
such aggregate persistence. The empirical evidence indicates that small firms
grow faster than big ones. If this is true, a shock that reallocates units across
sizes will be absorbed, yet at very low decreasing rates. Once the shock hits
the system, firms are reallocated across sizes. If small firms grows faster than
big ones, the shock will then be absorbed. However, fast growing small firms
eventually become big and grow as big firms. Thus the number of small
firms shrinks over time as well as the rate at which the shock is absorbed.
This transmision mechanism reconciles the micro evidence with the observed
degree of aggregate persistence. It requires changes in neither the number of
firms in the market nor the rate of technological progress. It is merely the
result of the cross-sectional heterogeneity that we observe in real economies.

Keywords: Persistence, Gibrat s law, cross-sectional heterogeneity, frac-
tional integration, vintage model.

JEL Classification: C43, E1, E32, L11.



1 Introduction

The time series of (detrended) aggregate output exhibits considerable persis-
tence. Indeed, Nelson and Plosser (1982) have argued that GDP exhibits a
unit root, and therefore that temporary shocks have permanent effect on the
level of output. More generally, persistence is taken to mean that aggregate
shocks propagate at very low rates. Many studies have argued about the
exact degree of aggregate persistence as well as about its driving force. But
what type of firm behavior is consistent with the observed degree of aggregate
persistence? This is the question addressed in this paper.

The main claim of the paper is that the observed empirical relation be-
tween the expected growth rate of a firm and its size provides a microfoun-
dation for aggregate persistence. Gibrat (1931) first investigated the re-
lationship between expected growth rate and firm size measured by either
sales, employment or assets. He claimed the existence of a law, from then
on called Gibrat’s, according to which the expected growth rate of a firm
is independent of its size!. Recent, more comprehensive studies, however,
question Gibrat’s law and show that small firms tend to have higher and
more variable growth rates?.

At first suppose that Gibrat’s law holds. If this is true, an aggregate
shock that reallocates units across sizes has a permanent effect on the level of
output, inducing a unit root in its time series formulation®. Once the shock
hits the system, firms are reallocated across sizes. Then, given Gibrat’s
law, they keep growing at the same rate, perpetuating forever the impact
effect of the shock. On the contrary, in a world where Gibrat’s law fails and
small firms grow faster than big ones, the same shock will be absorbed, yet

at very low decreasing rates. Fast growing small firms eventually become

IThe early literature focused mainly on big and listed firms. See Sutton (1996) for a
survey on this debate.

2See Mansfield (1962), Hall (1987), Evans (1987) and Dunne, Roberts and Samuel-
son (1989). See also Davis, Haltiwanger and Schuh (1993) for empirical evidence to the
contrary. I rationalize this discrepancy in section 5.

3This idea was implicitly contained in Kalecki (1945) as he claimed that “the [standard]
argument [on which Gibrat’s law is based] implies that as time goes by the standard
deviation of the logarithm of the variate considered increases continuosly”. A distinctive
feature of a random walk is indeed that its variance is a linear function of time.



big and grow as big firms. Thus the number of small firms shrinks over
time as well as the rate at which the shock is absorbed. If we keep the
empirical findings on the relation between the expected growth rate of a firm
and its size as maintained assumptions, we conclude that the persistence of
aggregate fluctuations is very high, that shocks are absorbed and that the
rate of absorption is decreasing over the adjustment process.

To give economic content to the claim and explore its theoretical impli-
cations we consider a model and a measure of aggregate persistence. We
analyze a version of the Solow (1960) vintage model. To capture the produc-
tivity benefits of technical change, older capital vintages must be replaced
with the most recent equipment. At each point in time, a firm weighs the
benefits of switching to a better technology, with the opportunity cost (in
terms of forgone profits) of investing part of their capital or labour resources
in technological improvements. These costs may vary across firms and thus
firms using the same vintage can end up adopting different technologies. This
is now a popular and plausible way of modelling the heterogeneity of an eco-

*. In our model, aggregate shocks alter the opportunity cost

nomic system
of all firms in a similar way and cause a reallocation of firms across techno-
logical vintages. The shocks do not affect either the number of firms in the
market or the rate of technological progress.

In the model firms using vintages far away from (close to) the techno-
logical frontier are small (big). Some assumptions on factor allocation are
required to link productivity to size measured by either sales, employment
or assets. In general, if factor markets are not segmented and productivity
increases the marginal revenue of each factor, a productivity ranking corre-
sponds one for one to a size ranking’.

We then introduce a measure of persistence. It is taken from time series
econometrics and is based on the notions of long memory and order of
6

integration of a stochastic process®. In fact formal empirical investigation

has concluded that the low frequency behavior of aggregate time series is the

4See Baily, Hulten and Campbell (1992), Caballero and Hammour (1994, 1996), Aghion
and Howitt (1994) and Mortensen and Pissarides (1998).

’For example, Baily, Hulten and Campbell (1992) and Bartelsman and Dhrymes (1994)
find that employment size and productivity are positively correlated.

See Robinson (1994) for a survey on the topic.



result of long memory processes in which the impact of shocks vanishes at
a very slow hyperbolic rate”. The search for economic mechanisms in which
shocks vanish at a very slow hyperbolic rate turns out to be a formidable
task. In general, the economic theory generates dynamics in which shocks
propagate at constant rates. That is, shocks either have permanent effects
or vanish at the usual exponential rate. Long memory implies, instead, that
shocks propagate at decreasing rather than constant rates and that the rate
of absorption of the shock at each stage n of the adjustment process is a
decreasing function of n.

We show that our model is able to replicate the observed degree of aggre-
gate persistence. What drives the result is the process of ongoing churning
and catching up that takes place in the model as well as in the real economy.
Once the shock hits the system, firms are reallocated across sizes (vintages).
If small firms grow faster than big ones, the shock will be absorbed. However,
fast growing small firms eventually become big and grow as big firms. The
shock will then be absorbed, yet at very low decreasing rates thus replicating
the long memory feature of the data.

The model says also something about the driving force of aggregate persis-
tence. The Real Business Cycle tradition has often argued it is technology®.
That means either that the aggregate shock itself is a technological shock
with a sufficient amount of persistence or that the shock exhibits persistence
because it directly affects technology. Neither is the case in the model anal-
ysed in this paper. The aggregate shocks just alter the opportunity cost
of firms and so they can be read as either productivity or demand shocks.
The shocks affect neither the number of firms in the market nor the rate of
technological progress. Any persistence can therefore be attributed to the
cross-sectional heterogeneity generated by the model.

The main contribution of the paper can be conveniently summarized
as follows. There are two independent strands of the literature. One has

dealt explicitly with cross-sectional heterogeneity in order to provide micro-

"See Diebold and Rudebusch (1989), Gil-Alana and Robinson (1997) and Michelacci
and Zaffaroni (1998).

¥See for example Nelson and Plosser (1982), Rotemberg and Woodford (1996) and Gali
(1996).



foundations of macroeconomics solving explicit aggregation problems®. The
other has analysed firm dynamics, in particular the relation between growth
and firm size. This paper notes that the two independent strands of research
have important implications for the low frequency behavior of aggregate time
series once a standard vintage model is used to combine them. This approach
is able to reconcile the macro and micro evidence. Moreover, models which
do not deal explicitly with cross-sectional heterogeneity seem incapable of
replicating the observed degree of aggregate persistence. Thus, the paper
concludes that the process of ongoing churning and catching-up that takes
place in the economy is a key factor in explaining aggregate persistence.
The remainder of the paper is divided into 4 sections. Section 2 introduces
and justifies our metrics for aggregate persistence. Section 3 lays down the
structure of a stylized vintage model where both the rate of technological
progress and the size of the market are exogenous. It then introduces an
aggregate shock in the model and generalizes some results in the literature
on irreversibilities and Ss adjustment processes'’. Section 4 shows that the
model can replicate the observed degree of aggregate persistence. Section
5 discusses the roles of each assumption while section 6 concludes. The

appendix contains the derivation of most of the results contained in the

paper.

2 General typical spectral shapes: empirical
evidence and meaning

This section reviews first the foundations of the frequency domain approach
to time series, and then the empirical evidence in favor of the typical spectral
shape of an economic variable observed by Granger (1966). We draw on this
empirical evidence to build a measure of aggregate persistence based on the

notion of order of integration of a time series.

9See for example Bertola and Caballero (1990, 1994), Caballero and Engel (1991, 1993,
1994) and Caballero (1992) on the theoretical side and on the empirical side Davis and
Haltiwanger (1990, 1992), Davis, Haltiwanger and Schuh (1993) and Caballero, Engel and
Haltiwanger (1997).

10See for example Bertola and Caballero (1990, 1994), Caballero and Engel (1990) and
Caballero (1992).



2.1 The Frequency Domain Approach to Time Series
Analysis

It is sometimes useful to decompose the dynamics of a time series into differ-
ent periodic components. Consider for example the spectral representation
of a time series X,

X, = / " e 4Z(0,w) = / " lcos(th) +i sin(t9)] dZ(6,0), (1)
where Z(0,w) is a zero-mean orthogonal increment process with the property
that E|dZ(0,w)|* = dF(0), where dF(0) is the spectral density of the pro-
cess. Time series analysis based on representation (1) is called the frequency
domain approach to time series, as it decomposes the variation of the time
series X; into a combination of sines and cosines of different periods. In gen-
eral, the higher the value of dF'(#) the higher is the weight of the periodic
component of period %ﬂ. The representation (1) is a very general one. For in-
stance, Cramer’s theorem!! guarantees that a spectral representation like the
one in (1) holds for any stationary process, while Priestley (1965), Hurwich
and Ray (1994) and Chan and Terry (1995) show how this representation
can be extended for non stationary linear processes. Given a set of obser-
vations x;, where ¢t runs from 1 to 7', the spectral density dF'() is usually
estimated through the periodogram I(6) (or some function thereof) defined

as the modulus of the discrete Fourier transform of the observations'?:

2

1 d itf

Granger (1966) noted that the estimated spectra of most detrended eco-

nomic variables had a shape that he defined to be as typical. It is a monoton-
ically decreasing function with a very pronounced peak in the neighborhood
of the zero frequency. For instance, Figure 1A shows that the level of the
US detrended logged GDP per capita calculated over the period 1870-1994
exhibits the typical spectral shape identified by Granger. Frequency domain

See for example Brockwell and Davis (1991).

12In the case of a stationary process the periodogram is the sample analogue of the
theoretical spectral density dF(6). Therefore the periodogram has a simple method of
moments interpretation.



analysis decomposes the dynamics of a time series into different periodic
components whose weights are given by the spectrum at the corresponding
frequency. Thus, the typical spectral shape identified by Granger implies
that the weight of the components with very long periods is disproportion-
ately large, that is detrended aggregate time series display a very high degree

of persistence.

Fig. A: Typical Spectral Shape Fig. B: Robust Typical Spectral Shape
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Figure 1: Robust Typical Spectral Shapes (US Per Capita GDP,
1880-1994). The figure shows the periodogram of the US linearly detrended
(OLS) logged per capita GDP (1870-1994). The periodogram in figure A is
smoothed making use of an 8th order polynomial. The data are taken from
Maddison (1995). The theoretical spectrum for the AR(1) process is obtained
using a coefficient of first order autocorrelation equal to 0.5.

A class of spectral density functions able to match exactly the spectral

shape!® that arises in the real world is given by

13The exact relation between the spectral density, dF(f), and the periodogram (2) for

6



fO)=dF(6) ~ g(0)67* as 6§ — 07, (3)

where ‘~’ indicates that the ratio of the left- and right-hand side tends to
a bounded quantity, d is a non-negative constant and ¢(#) is a bounded
function bounded away from zero in a neighborhood of the origin'*. The
parameter d represents the order of integration of the time series. If it is
greater than zero, the time series exhibits long memory, while it exhibits
weak memory if the parameter is equal to 0. The parameter d measures
the rate of divergence of the spectrum around zero frequency and thus it
measures how ‘typical’ is the spectral shape. d is our measure of persistence:
the higher the value of d, the higher is the weight of the components with
very long periods and thus the higher is the persistence of the process.

A time domain representation of the time series X;, ¢t > 0, corresponding

to equation (3) is given by the Wold representation'”

t
Xy =Xo+7yt+ Z%Et—m (4)

n=0
with Wold coefficients ¢, = ¢, + dn®' + o ((Eﬁn) , where ¢, is a function
converging to zero at a rate at least as high as the exponential one (that is
‘{bn‘ < Kp", K a bounded quantity, 0 < p < 1), d is the order of integration

of the time series!® while o (éﬁn) indicates a quantity of lower order than g~bn,

non stationary processes (d > % see below) is a topic that goes beyond the scope of this
paper. It seems however that the periodogram behaves without any solution of conti-
nuity in moving from the stationary region (d < %) to the non stationary one (d > 1)
(see Hurwich and Ray 1994, Velasco 1996, Robinson and Marinucci 1997). A possible
solution would therefore consist of defining the theoretical spectral density through the
periodogram, as in Hurwich and Ray (1994). This is implicitly the approach pursued here,
where to safeguard theoretical rigour we speak of empirical spectral shapes rather than
spectra.

14 A slightly more general definition would allow for g(¢) = L(}) where L(-) is a slowly
varying function at infinity (see e.g. Seneta 1976), that is, a positive measurable function

satisfying

L(k0)
L(9)

— 1, as 6§ — oo, forall k > 0.

15Tn particular, this will be the operational definition of fractional integration that we
will use throughout the paper.
161 we allowed for g(f) to be a slowly varying function as in footnote (15), the Wold

7



that is lim,, %2 = 0. The Wold coefficient ¢,, gauges the fraction of the
shock ¢;_,,, n periods ahead, which has not yet been absorbed. Therefore,
the rate of decay of the Wold coefficients measures the persistence of shocks.

A standard trend stationary process with ARM A disturbance exhibits
Wold coefficients ¢,,’s decaying no more slowly than an exponential rate.
This implies that the persistence is low and that the parameter of fractional
integration is equal to zero. This weak memory property of ARM A processes
shows up in the frequency domain under the form of a flat spectral shape
around zero frequency (see for example Figure 1B for the AR(1) case). In
a process with a unit root, temporary shocks have permanent effects on the
level of the time series. That means that the Wold coefficients asymptoti-
cally approach a constant and d is equal to 1. Thus the spectral shape of a
unit root is typical yet particular as it exhibits a very specific rate of diver-
gence around zero frequency. This set of considerations shows how standard
ARIMA processes can not generate arbitrary typical spectral shapes, because
they generate shapes with rate of divergence equal to either that of the unit
root or the flat one.

In fact, in the ARIM A processes shocks can propagate only at constant
(or increasing) rates. For example, an exponential rate of absorption, ¢,, ~
p", means that, at each stage n of the adjustment process, a constant fraction
1—p of the amount of shock still unabsorbed will be absorbed at stage n+1. A
unit root is just a particular case of propagation at constant rates, one where
asymptotically shocks are not absorbed at all so that 1 — p = 0. In contrast,
long memory allows for the possibility of decreasing rates of absorption. In
fact when the rate of absorption is hyperbolic, the Wold coefficients ¢,, behave
like n?7t ~ (1 - 4)(1 — &%) --- (1 — £9)!7. That means that at each
stage n of the adjustment process a fraction i;g of the still unabsorbed part
of the shock will be absorbed by stage n+ 1, that is the rate of absorption of

the shock is a decreasing function of n. In doing so long memory allows for a

coefficients could behave as ¢,, = g?)n +nd 1t 4o (q@n) . If so, the case d = 0 would
correspond to Wold coeflicients ¢,, decaying as % This would imply that the covariances

it would behave as @ for large 7, so that the spectral density dF(f) behaves as the
slowly varying function (In#)? as § — 07, see Granger and Joyeux (1980).
17See for example equation (29) in the appendix for a derivation of the result.



variety of intermediate cases, and thus smoothly bridges the gap between the
spectral shape with the particular slope of the unit root and the flat spectral
shape associated with the absolute lack of memory.

"1 way of estimating the ‘typ-

Given the representation (3), a ‘reasonable
icality’ of the spectrum through the parameter d consists of running a simple
OLS regression of the log of the estimated spectrum (periodogram) over the

log-frequency at around the zero frequency

In[1(#)] = const. — 2d Inf, as 6 € [6;,0,] . (5)

Diebold and Rudebusch (1989) and Michelacci and Zaffaroni (1998) ran re-
gression (5) for the GDP per capita for a set of different OECD economies
and show that the parameter d, the rate of divergence of the periodogram, is
between zero and one. That means that the degree of aggregate persistence
is lower than that associated with a unit root but greater than in the ARMA
weak memory case (see Figure 1B)?. The estimated value of d based on the
log-periodogram regression (5) is reported in table 12.

This suggests that the real GDP per capita of the US is characterized by
a parameter of fractional integration greater than zero and (probably) less
than one. That some form of very slow mean reversion actually takes place in
the data is also confirmed by time domain observation. Jones (1995) shows
how a time trend calculated using data only from 1880 to 1929 forecasts
extremely well the current level of GDP of the US economy (see Figure 2).

This implies that the new information delivered by the Wold innovations e;

18Robinson (1995) proves consistency and asymptotic normality of this estimator orig-
inally proposed by Geweke and Porter Hudak (1983). Giraitis, Robinson and Samarov
(1997) proves that the estimator is rate optimal.

19The semi-parametric nature of the estimator implies that the econometrician is left
with the choice to decide when ‘close’ is sufficiently ‘close’, that is the size of the intervals
[0,6,] and [0, 6;). The number of Fourier frequencies contained in the first interval is called
the trimming coeflicient, while the number of Fourier frequencies contained in the second
is called the bandwidth.

20See also Gil-Alana and Robinson (1997) for further empirical evidence in this direction
based on a different methodology.

21Velasco (1996) shows that the Robinson (1995) log-periodogram estimator is consistent
and normal even for non stationary d. Moreover, in this application, the results are very
robust with respect to both the choice of the trimming coeflicient and/or applying the
log-periodogram regression on the first difference of the data and then adding unity to the
obtained result. The results are available upon request.



Ta
o =

d parameter

Asymptotic S.E.

0.40
0.425
0.45
0.475
0.50
0.525
0.55
0.575
0.60

0.46
0.40
0.47
0.42
0.53
0.68
0.58
0.55
0.60

0.24
0.22
0.21
0.20
0.18
0.17
0.16
0.15
0.14

Table 1: Log-periodogram regression, GDP /L, US, 1870-1994. The
log-periodogram regression (5) is applied on the linearly detrended (OLS)
logged GDP per capita. The trimming coefficient is equal to one while the
bandwidth is set to be equal to T*, where T is the sample size. This implies
that in the log-periodogram regression (5) 7% — 1 Fourier frequencies are
used while the smallest Fourier frequency is dropped. For a discussion of the
estimating procedure see Diebold and Rudebusch (1989) and Michelacci and
Zaffaroni (1998). For a derivation of the theoretical properties of this estima-
tor, originally proposed by Geweke and Porter Hudak (1983), see Robinson
(1995). For an analysis of the properties of the estimator in the non station-

ary case see Velasco (1996).
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is irrelevant for forecasting on very long horizons and is incompatible with a

unit root in output??.

GDP per Capita USA, Jones (1995)

9.8
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ﬁ’. L | L | L | L | L | I | I
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Figure 2: Per Capita GDP in the United States, 1880-1987 (Natural
Logarithm). The Data are from Maddison (1982,1989) as used in Jones
(1996). The solid bold line represents the time trend calculated using data
only from 1880 to 1929.

The empirical evidence shows that the underlying stochastic process for
aggregate GDP exhibits some form of long memory. As a result we would
like to know what economic mechanism can generate typical spectral shapes
similar to the ones observed in the real world. Moreover, as the exact degree
of memory is still uncertain, we would like to find ‘robust’ economic mecha-
nisms: ‘small’ alterations to the basic set-up must not shift the slope of the

spectral shape from the very particular slope associated with the unit root to

22See also Diebold and Senhadji (1996) for similar conclusions based on similar evidence.

11



the flat one corresponding to the weak memory case®®. In this paper we draw
on the observed empirical relation between the expected growth of a firm and
its size to provide a robust microfoundation for the typical spectral shape of
an economic variable. In particular, we argue that the process of ongoing
churning and catching up that takes place in the real economy slows down
the propagation of the shocks and is a key element in explaining aggregate

persistence.

3 A stylized vintage model

This section first lays down the structure of a stylized vintage model. It then

characterizes the dynamics of the system in response to an aggregate shock.

3.1 The Model

Time is discrete and goes from —oo to oo.

The rate of technological progress is exogenous at rate ~.

The number of firms in the economy is fixed with Lebesgue measure equal
to one. We think of this as a free entry condition. In fact, this would be the
equilibrium outcome in a search theoretic framework with fixed amount of
resources, where each operating firm requires a given amount of resources
and non operating firms must wait for these resources to be freed before
using them?*.

The firms in the economy can be in different technological states. In

particular a firm is in state ¢ > 0 at time ¢ if it is using technology t — 1.

23The Real Business Cycle tradition has often argued that technology is the driving force
of the typical spectral shape (Nelson and Plosser 1982, Rotemberg and Woodford 1996,
Gali 1996). Alternatively models with strategic interaction and spillovers have shown their
potential to generate multiple equilibria (see for example Cooper and John 1988). If so,
aggregate shocks that shift the economy from one equilibrium to the other can generate
a typical spectral shape (see Durlauf 1991). In both cases, a temporary shock has a
permanent effect on the level of output. In general standard transmission mechanisms
generate the very particular typical spectral shape associated with the unit root.

24See for example Pissarides (1990). Given these considerations, the model considers as
observationally equivalent the event in which technological adoption takes place through
destruction and successive creation of a new firm to that in which firms live forever.
Mortensen and Pissarides (1998) analyze a vintage model in which firms explicitly face a
trade-off between the two events.

12



Firms using different technologies are able to produce different quantities of
goods, more exactly a firm in state ¢ at time ¢ produces a quantity of goods
equal to y(t —14)*.

We indicate with 7; the vector of countably infinite dimension collecting
the measure of firms in each state. The ith element of the vector m; measures
the number of firms using technology ¢t — ¢ + 1 at time t. m is strictly
positive, bounded between zero and one, with elements summing up to one
and therefore is a probability measure.

This implies that the level of aggregate output at time ¢, Y; is equal to

}/;52775_77;0;

“’” indicates the transpose operator on the given vector usually

where a
taken as a column vector. The vector O indicates a column vector with the
property that its ith element is exactly equal to 7 — 1.

At a given point in time ¢ a firm in state ¢ has two possibilities: either
doing nothing and using the technology ¢ — i so that in the next period the
firm will be in state ¢ + 1, or adopting the leading technology in the economy
so that in the next period the firm will be in state zero. Technological adop-
tion, however, implies some costs. We assume, very parsimoniously, that the
cost of adopting the leading technology in the economy consists of two com-
ponents, ¢; and A, which enter additively. ¢; is a deterministic component
function of the state i of the firm. A is a random variable identically inde-
pendently distributed across units and over time with common distribution
F over the support (possibly unbounded) A C R and zero expected value.
A gauges the firm-specific opportunity cost (in terms of forgone profits) of
investing part of its own capital or labour resources in technological improve-

ments. Therefore it can be read indifferently as either a technological or a

25 All variables are denominated in logs, implying that differences indicate growth rates
while arithmetic averages indicate the logarithm of geometric ones. We are implicitly
assuming that a firm in state ¢ at time ¢ produces a quantity of intermediate goods equal
to expy(t — i) and that, as in Grossman and Helpman (1991), final output is given by the
aggregate production function exp fol ¢;di where ¢; is the amount of intermediate goods
produced by firm i. We do not make these assumptions explicit both because of the space
constraint and to keep notation as simple as possible. In a related paper, we show how the
results extend under the alternative assumption that the intermediate goods produced by
each firm are perfectly substitutable so that aggregate output Y; is equal to fol q:di. See
Michelacci (1998).

13



demand shock?. The value of a firm V (i, ¢, \) in state ¢ at time ¢, whose

cost of adopting the leading technology is ¢;+ A, follows the Bellman equation

V(i t, A) = max y(t—i)—s(a+A)+

+0(1—s)Ve(i+1,t+1)+FsVe(0,t+1). (6)

0 < B < 1 is the discount factor while V* (j, ¢) indicates the expected value
of V (4, t, \) taken with respect to the random variable A\?7. It follows from
dynamic programming arguments that the problem is well defined®®. In
particular the value function V' (i, ¢, ) is linear in ¢, weakly decreasing in A
and finally strictly decreasing in ¢ if i 4 ¢; is strictly increasing in .

In general the firm decides to adjust and chooses s = 1 whenever the

realization of the idiosyncratic shock A is such that

BIVe(O,t+1)—Ve(i+1,t+1)] >+ A\ (7)

That is, the firm weights the benefits of technological adoption 3 [V* (0, ¢ +
1)—Ve (i+1, t+1)] with the associated costs A+-c;. We indicate with 1— p; the
probability that the event (7) occurs?, that is 1— p; is the probability that
a firm in state ¢ will be using the best technology available in the economy
in the next period. Given the assumption that the idiosyncratic shocks are
itd with distribution function F'(-), we obtain that

- pi=FBIVEO, t+1)—Ve(i+1,t+1)]—c), Vi (8)

As a result, the dynamics of the state of a generic firm is fully described by

the infinite dimensional Markov chain P given by

26See for example Aghion and Saint Paul (1993) and Saint Paul (1993).

27 As the random variable \ is independently distributed over time, the expected value
Ve (-, ) does not depend on past realisations of the idiosyncratic shocks.

28Despite the unbounded returns, the linearity of the technological frontier together
with discounting guarantee that there is a one to one correspondence between the solution
to the functional equation (6) and the corresponding sequential problem.

291t follows from the linearity in ¢ of the value function V (i, ¢, €, \;) that the proba-
bilities 1 — p; are well defined and independent of .
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l—po po 0 0 0 0
l—p, 0 pp 0 0 0
1—p2 0 0 P2 0 0

P=119_p, 0 0 0 p;s 0 : (9)
l—ps 0 0 0 0 py

where the rows and columns represent the set of feasible technological states
in the economy while the elements 1— p; indicate the probabilities that a
firm in state i at time ¢ will be on the technological frontier at time ¢t +1. P
is the transmission mechanism in the economy: P maps the cross sectional
distribution m; at time ¢ into the cross-sectional distribution 7;,; at time
t+1.

The next sub-section focus on the steady state properties of the system?’,
while the following one introduces an aggregate shock and analyses dynam-
ics. Some results are of independent interest. In fact, we develop a general
way to model dynamics in an environment with cross-sectional heterogene-
ity. The advantage of the approach derives from dealing directly with the
moving average representation of the process, with the impulse response of
the economy to the shock then arising as a natural outcome of the analysis.
In the next section we draw on this analysis and show under which condi-
tions the model can replicate the observed degree of aggregate persistence, a

parameter of fractional integration between zero and one.

3.2 Structure of the Transmission Mechanism

To characterize both the dynamics and the steady state properties of the
system we focus directly on the structure of the transmission mechanism P,
rather than on the structural parameters of the model given by the distri-
bution function F'(-), the parameters v and 3, and the sequence of struc-
tural costs, {¢;,7 > 0}. This exercise is sensible only if any given arbitrary
transmission mechanism P can be read, for some structural parameters, as
a solution of the firm problem, defined by equations (6) and (8). Lemma 1

guarantees the validity of this ‘semi-structural’ approach: any assumption on

30The next sub-section is technical, and it might be skipped on first reading.
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the transmission mechanism P is the result of a corresponding assumption

on the structural parameters of the model.

Lemma 1 (Validity of the ‘semi-structural’ approach) Given a
distribution function F(-), the parameters vy and (3, and an arbitrary sequence
of probabilities {p;,i > 0} , then there does exist a sequence of structural costs
{ci,i > 0}, whose solution to the firm problem, defined by equations (6) and
(8), delivers the given sequence of probabilities {p;,i > 0}. The sequence
of adjustment costs {c;,i > 0} is uniquely defined given an arbitrary initial

condition cy.
Proof: See appendix.

In general there are no strong theoretical reasons for assuming any a priori
structure on the values of the probability 1— p; defined by equation (8). They
are indeed the outcome of two contrasting forces. On the one hand, the bigger
the technological gap, the greater is the gain to adopt new technologies. On
the other hand, the bigger the technological gap the costlier is technological
adoption. If the first effect dominates, the probabilities 1— p; are increasing
in 7, and firms using obsolete technologies are more likely to end up on the
technological frontier rather than firms close to it*!. Models with switching
costs and human capital specificity suggest, however, why the probabilities
1— p; may be decreasing in 7*2. The cost of adopting the leading technology
¢; is in general positively related to i** and firms using new technologies are
more likely to end up on the technological frontier rather than firms far away

from it. This reflects the fact that the higher the technology gap the more

31For example in Aghion and Howitt (1994), Caballero and Hammour (1994b) and
Mortensen and Pissarides (1996), both the probability distribution of the idiosyncratic
shocks A\ and the cost of adopting the leading technology c¢;, are state independent. As
the gains from technological adoption are always increasing in ¢, the monotonicity of F(-)
implies that the probabilities 1— p; are unequivocally increasing in <.

32Gee for example Acemoglu and Scott (1995), Jones and Newman (1995) and Jovanovic
and Nyarko (1996).

33(Clearly a change in the deterministic component of technological adoption ¢; modifies
the structure of the value function, that is the left hand side of equation (7). Discounting,
B < 1, implies however that induced changes on the left hand side are always smaller than
those on impact on the right hand side of equation (7). As a result an increase in ¢; always
reduces the value of 1 — p;. For a formal proof see equation (20) in the appendix.
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difficult is technological adoption. In order to characterize the transmission
mechanism P we will then draw on a combination of empirical evidence and
theoretical arguments. The ultimate task is to show both that the model can
replicate the observed degree of aggregate persistence and that the required
conditions have a reasonable theoretical and empirical content.

Firms can wait an arbitrarily long time before adjusting, but sooner or
later they must adjust in order to remain in the market. In fact, arbitrarily
inefficient firms would eventually be driven out of business by more efficient
ones**. Therefore, we impose that, whatever its current state, a firm sooner

or later will adjust with probability one.

Assumption 1 Indicate with 3! the probability that a firm starting in
aggregate state j does not adjust before i periods, so that 7 = [T, Pik-
Assume that lim;jo 5 =0, Vj.

The side effect of this assumption is that our framework will exhibit one
and only one recurrent (ergodic) class. That is, there exists only one set of
states, each one of which will be visited infinitely often by the firms in the
economy. The existence of a unique recurrent class is the counterpart in a
stochastic set-up to a unique stable equilibrium. If we start from a situation
where all units are in the set of recurrent states and we perturb the system,
it will converge back to the initial situation with all units being in the initial

set of recurrent states.

Lemma 2 (Uniqueness and Stability of the equilibrium) Under
Assumption 1, the transmission mechanism P has always one and exactly

one recurrent class containing the state zero.
Proof: See appendix.

Lemma 2 shows how our framework rules out multiple equilibria (multiple
ergodic sets) to explain persistence in aggregate fluctuations. In this model a
shock can not move units from one ergodic set to the other and therefore the

persistence generated by the model is not caused by a shift in the ‘equilibrium’

34Gee Jovanovic and Nyarko (1996) for analogous considerations.
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of the economy?’.

We are interested in further characterizing the equilibrium properties of
the system and the structure of the recurrent class. In particular we distin-
guish the case in which the recurrent class consists of an infinite number of
states (irreducible transmission mechanism) from the case in which the class
consists of a finite number of states (reducible transmission mechanism). The
first case implies that each firm will visit infinitely often all the states in the
economy. The second corresponds to a situation where, in the steady state,
firms will end up with probability one in a finite dimensional set close to the

technological frontier.

Assumption 2 i* = min {z B, =0 = Ty pe=0,i> 0}. Assume that
1" < 00.

Assumption 2 means that firms adopting new technologies will adjust in
a finite number of periods and therefore will remain close to the technological
frontier. The observation by Baily, Hulten and Campbell (1992) and Bartels-
man and Dhrymes (1994) that the persistence at the top of the technological
distribution is particularly high, might support this assumption. However,
the empirical evidence is not conclusive on this point and we will discuss
further the role of the assumption in section 5. Assumption 2 guarantees

that the transmission mechanism P is reducible.

Lemma 3 (Reducibility) Under Assumption 1, the transmission mech-

anism P is reducible if and only if Assumption 2 holds.
Proof: See appendix.

In the paper we consider a technical modification of Assumption 2 and
we call it Assumption 2’. It ensures that, once entered in the recurrent class,

units do not jump deterministically from one state to the other.

35Gee Durlauf (1991) for an explanation of aggregate persistence based on multiple
equilibria.

36Relaxing this additional assumption would not affect any results of the paper, except
the one concerning the existence of a steady state distribution.
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Assumption 2’ Assume that Assumption 2 holds and that if * > 1, 3
1<i<i* 2 6, # 1.

Lemma 2 guarantees that if a steady state distribution exists, it is unique
and stable. We are also interested in knowing under which conditions a steady
state distribution does exist. The existence of a steady state distribution
seems to be a reasonable requirement for the plausibility of the theory. The

following lemma answers this question.

Lemma 4 (Existence of a Steady-State distribution) Assumption
1 is giwven. If Assumption 2’ holds, the transmission mechanism is reducible
and aperiodic and a steady state distribution always exists. If Assumption 2
does not hold, the transmission mechanism is irreducible and a steady state

distribution exists if and only if the series > :°,0, converges, where (3, =
37 = Tlizo -

Proof: See appendix.

3.3 An Aggregate Shock with Cross-sectional Hetero-
geneity

We now introduce an aggregate shock ¢, that hits the system at time ¢ and
we characterize the dynamic response of the system. In particular we gauge
the rates at which the aggregate shock propagates in the economic system.
The aggregate shock, ¢;, modifies, in a similar way, the opportunity cost
of adjusting for all the firms in the economy. That means that the cost
of adopting the leading technology for a firm in state ¢ with idiosyncratic
component equal to A becomes equal to ¢; + A + €. Equations (6) and (8)
show how this modifies the problem of the firm. For example, when ¢ > 0
(€; < 0) the cost of technological adoption is bigger (smaller ) and in the next
period we will observe fewer (more) firms adopting the leading technology
relative to the number that would have done so in the absence of the shock

(e, = 0). More formally, when ¢; # 0 a firm in state ¢ will decide to adjust
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whenever the realization of the idiosyncratic component \ is such that37

BIVEO, t+1)—=Ve(i+1,t+ 1] >ci+ N+ e. (7)
We indicate with 1— p; (¢;) the probability that the event (7’) occurs, that is
1—pi(e) =F BV, t+1)=Ve(i+1,t+1)]—c—e), Vi, (8)

is the probability that, when the aggregate shock is equal to €, a firm in
state ¢ will be using the best technology available in the economy in the next
period.

We indicate with P (¢;) the Markov chain analogous to (9) collecting
the probabilities p; (¢;) . The dynamics of the cross-sectional distribution of

vintages currently in use, 7, are therefore described by the equation
Ty = (St + P’T('tfl (10)

where 6; = (P (€) — P)I 7;_1. In the absence of the aggregate shock, P (&) =
P and 6; = 0. In this case the transmission mechanism P maps the cross
sectional distribution 7;_; at time t—1 into the cross-sectional distribution 7,
at time ¢. The infinite dimensional column vector ¢; is simply an error term:
it is equal to the difference between the observed cross-sectional distribution
given by m, = P (et)’ m;_1 and that which would have occurred in the absence
of the aggregate shock, equal to P'm_;.

In this model an aggregate shock drives a reallocation of the technological
positions of firms. The vector 6; measures the size and structure of the
reallocation and has two general properties. Firstly, the sum by column of
its entries, 52, 1 > 1, is exactly equal to 0, that is

U6, =1"(P(e) = P) w1 =0, (11)

where 1 is a vector of ones. That means that a shock simply reallocates units

across technological vintages®®. Secondly, a negative (positive) aggregate

37The aggregate shock considered here is a once and for all shock. In a related paper I
analyze the role of ongoing uncertainty in the model; nothing is modified substantially if
aggregate and idiosincratic shocks are independent. See Michelacci (1998).

380f course, in the real world aggregate shocks might affect both the number of firms
in the market and the rate of technological progress. The assumption that they are both
exogenous, allows us to isolate the contribution of the process of ongoing churning and
catching up in the propagation of the aggregate shock.
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shock fosters (harms) technological adoption. More formally, if we indicate by
I (+) the characteristic or indicator function, it follows from the monotonicity

of p; (€;) with respect to €; that
I(8f>0)=T(=61>0)=1(-e>0),¥[6]|£0, j#1.  (12)

As in Caballero and Hammour (1994b) and Mortensen and Pissarides (1996)
a negative aggregate shock ‘cleanses’ the economy®’, fosters technological
adoption and increases the level of output.

We assume that the reallocation structure 6; has on impact a bounded
effect on the level of aggregate output. For example this is always the case
for ‘finite’ reallocations, that is for reallocation structures 6, where only a

finite number of coefficients 6! are strictly positive.
Assumption 3 Assume that &, O < occ.

Before characterizing the dynamic response of aggregate output, we need
to show that the infinite dimensional matrix products 6, P"O are well de-
fined for all n.

Lemma 5 (Pseudo Wold Coefficients) Under Assumption 3, the prod-
uct 6, P"O 1is bounded ¥Yn and well defined as the matrices associate, that is

6t/ (PnO) = ((St/ Pn)O, Vn.
Proof: See appendix.

We now turn to the question of characterizing the dynamic response of the
economic system to the aggregate shock. The effect of the shock n periods
ahead is given by the difference between the level of output n periods after the
realization of the shock and that which would have occurred in the absence
of the shock. Given an initial distribution m;_; at time ¢t — 1, the level of

output at time ¢ + n is equal to

Yiin =7t +n)—vm 1 PO —~6, P"O (13)

39¢Cleansing’ does not take place necessarily in the recession. For example, if there are
liquidity constraints, the best period for adopting new technologies might be a boom.
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while it would have been equal to
Yiin =7 (t+n) —ym1' PO (14)

in the absence of the shock. The difference between (13) and (14) gauges
the dynamic response of the aggregate economy to the shock €. In other
words the quantities
¢, = — 6, PO, Vn (15)
are analogous to the Wold coefficients analysed in the previous section: ¢,,
gauges the effect in the economic system of the shock €;, n periods ahead.
Therefore as in equation (4) the rate of decay of ¢, measures the persistence
of the shock in the model.
It is interesting to extend the comparison between the Wold coefficients in
(4) and the ‘pseudo’ Wold coefficients in (15). For this purpose only, assume
that aggregate shocks were to occur at different times. If so, the level of

output at time ¢ Y; may be written as

t
Y, =91 O — ymd P'O+~vt+ ) ¢, (16)
n=0
where ¢! = —~6,_, PO, while §,_,, indicates the reallocation structure of

the economy at time t — n. If a steady state distribution exists so that
mo Pt = my’, Vt and we initialize the process at this point, the representation
(16) collapses to

t

Vi=Yo+7t+ > ¢, (17)

n=0
where Yj is the level of output at the starting date normalized to be equal to
0. The representation (17) resembles the Wold representation of a time series
(4). The two representations would indeed be equivalent if for example the
quantity é; ,, could be written as a linear function, that is 6; ,, = d¢; ,,. This
would imply firstly that positive and negative shocks have symmetric effects
on the level of output. Secondly, it would mean that the previous history
of the system synthesized by the current cross sectional distribution m;_,_1
is irrelevant in characterizing the dynamic response of the economy to the

shock 6; ,,. In general, neither is the case in the model analysed here, and an
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interesting but independent issue is in what respect the representation (17)

differs from that of a standard linear process?’.

4 'The Persistence of Aggregate Fluctuations

In this section we assume that some versions of Assumptions 1, 2’ and 3
hold, we measure the degree of persistence of the shock ¢; and we show under
which conditions the model can replicate the observed degree of aggregate
persistence, a value of d between zero and one. Just as in the case of the
Wold coefficients in (4), the rate of decay of the pseudo Wold coefficients ¢,,
in (15) gauges the persistence of the shock in the model. In particular we say
that the transmission mechanism P, together with the reallocation structure
8;, generates a typical spectral shape with order of integration d if ¢, ~ nd=1
as in (4).

Firstly we show under which conditions the model cannot generate a typ-
ical spectral shape in output. If the probabilities 1— p; are increasing in 7,
firms using obsolete technologies are more likely to end up on the technolog-
ical frontier than firms currently in the technological lead. In this case the
hazard function is increasing in the size of technological gap and Proposition

1 shows that no typical spectral shape can be generated by the model.

Proposition 1 (Increasing hazard functions) Suppose that Assump-
tion 27 and 8 hold and that there does exist a state k > i* such that p, < 1
and that the probabilities p; are weakly decreasing for any i > k. Then ag-
gregate output always behaves like a trend stationary process with ARMA
disturbances, that is the quantities ¢,, in (15) decay at least exponentially,

i.e. |¢,| < Kp, 0<p<1, where K is a positive bounded quantity.

Proof: See appendix.

#0A linear process is defined as a process for which the representation (4) holds where
the shock €; are iid. In a companion paper, we analyze the relation between the two
representations and we characterize more formally the properties of the coeflicients d)’;. In
particular we show under which conditions asymmetries and conditional heteroscedasticity
arise in the model. See Michelacci (1998). See also Caballero and Engel (1998).
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In fact, Baily, Hulten and Campbell (1992) find that the probability of
being a relatively high productivity firm in 5 or 10 years time is strongly
increasing in the current level of relative productivity. High rather than low
productivity firms are more likely to be in the technological lead in the next
period, that is the hazard function relative to adopting new technologies
seems to be decreasing in the size of technological gap*'. This reflects the
fact that the bigger the technological gap the more difficult is technological
adoption.

We now draw on the relation between the expected growth of a firm and
its size to show the model may generate typical spectral shapes in output. In
the model firms using obsolete technologies are ‘smaller’ (produce less output)
than firms operating close to the technological frontier. Some assumptions on
factor allocation are required to link productivity to size measured by either
sales, employment or assets. In general, if factor markets are not segmented
and productivity increases the marginal revenue of each factor, a productivity
ranking corresponds one for one to a size ranking*?. We classify as ‘big’ the
firms that are adopting vintages close to the technological frontier, while all
other firms are ‘small’. More specifically, a firm is big if it is in state ¢ < ¢*
where 7* = min {z B, =3 =1l pe =0, i > 0} (see Assumption 2): a big
firm is in the technological lead, it is in ‘steady state’ and it is growing at
the same rate v as the technological frontier. Small firms might grow at
rates different from . In particular a firm in state ¢ either raises output by
v (i 4+ 1) with probability 1 — p; or it keeps output constant with probability
p;. Therefore g; = (1 —p;)(i+1) is the expected growth of a firm in state i*?.
Proposition 2 shows that if all small firms are growing in the same way, i.e.

g; = h~y independent of 7, the model is capable at generating typical spectral

41Estimated hazard functions relative to capital and labour are in general increasing.
That means that the probability of adjusting capital or labour is increasing in the differ-
ence between actual and desired capital or labour, see for example Caballero, Engel, and
Haltiwanger (1997). To the extent that the desired amount of capital and labour is a func-
tion of the technology currently adopted, estimated hazard functions do not address the
question of what is the hazard function relative to adopting new technologies: estimated
hazard functions are distribution functions conditional to a given technology.

*2For example, Baily, Hulten and Campbell (1992) and Bartelsman and Dhrymes (1994)
find that employment size and productivity are positively correlated.

#3Under the conditions analyzed in footnote (25), g; is the expected growth rate of a
firm in state i just as 7y is the growth rate of the aggregate economy.
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shapes in output. h then measures the relative growth of small versus big
firms. Small firms are growing faster (more slowly) than big ones if h >(<)1,

while all firms grow at the same rate if h = 1.

Proposition 2 (Robust typical spectral shapes) Suppose that As-

sumptions 2” and 3 hold. Assume also that
oo 6;?4—2'—&-1‘
=0 i

where s = max{i:1 >0, p; =0} + 1 and that the expected growth of a unit

in state i, g;, is such that, for some arbitrary s*,

gi=1—p)i+1)=hy, Vi>s" h>0. (A5)

Then the order of integration of aggregate output d is equal to 2 — h, that is
the quantities ¢,, in (15) are such that ¢, ~ n?* where d =2 — h.

Proof: See appendix.

Assumption (A4) requires that some units end up in the non recurrent
set (651" £ 0 for some 7). Moreover it puts some boundaries (in addition to
Assumption 3) on the amount of reallocation that is driven by the aggregate
shock. We will discuss further its role in the next section. For example (A4) is
satisfied in the case of ‘finite’ reallocations, that is for reallocation structures

5511 are strictly different from

0; where only a finite number of coefficients
ZEro.

What drives Proposition 2 is the process of initial churning and subse-
quent catching up that takes place in the model. If the Wold coefficients
¢, ~ n? 1 the shock propagates at decreasing rates, in contrast to the
constant rates that would arise in the exponential case, that is n% ! ~
(1-L9(1—42) -+ (1 —L149). Once the aggregate shock ¢ hits the sys-
tem, firms are reallocated across sizes according to the reallocation structure
0;. Whether the shock will be absorbed or not depends then on the rela-

44

tive growth of small versus big firms*. However, fast growing small firms

441t can be noted that Proposition 2 is a case of Galton’s fallacy (see Quah 1993): the
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eventually become big, and grow as big firms. Thus the number of small
firms shrinks over time as well as the rate at which the shock propagates in
the economy. The process of ongoing churning and catching up that takes
place in the model slows down the propagation of the shock and allows the
model to replicate the typical spectral shape in aggregate output observed
by Granger.

Proposition 2 can be summarized as follows:

(7) If small firms grow faster than big ones, 1 < h < 2, the model repli-
cates the order of integration d between 0 and 1 observed in aggregate

output®.

(77) If h < 1, big firms grow faster than small ones and the first difference
of aggregate output exhibits long memory*®. In the limit case, in which
h = 0 (in this case Assumption 1 would not hold) aggregate output is

an integrated process of order 2.

(¢43) A particular case arises if ‘Gibrat’s law’” holds and all firms grow in the
same way, h = 1. In this case the shock has permanent and bounded
effect on the level of output, this is equivalent to a unit root in output,
d=1.

(iv) We conclude that the transmission mechanism P is robust because it
generates typical spectral shapes independently of the relative growth

of small versus big firms.

5 Interpretation of the Assumptions

Proposition 2 is particularly dependent upon Assumptions 2’, (44) and (A5).

We now discuss in more detail their roles.

relative growth of small versus big firms does not say anything on the presence of conver-
gence rather than divergence. In fact, independently of whether small firms are growing
faster or slower than big ones, there is convergence in the cross-sectional distribution of
vintages.

45See Mansfield (1962), Hall (1987), Evans (1987) and Dunne, Roberts and Samuelson
(1989) for empirical evidence in this direction.

10See Davis, Haltiwanger and Schuh (1993) for empirical evidence in this direction.
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Assumption 2’ implies that all firms end up eventually in a finite dimen-
sional set close to the technological frontier, so that in the long run there
is ‘convergence in size’; see Lemma 3. Once we relax this assumption, the
recurrent class is infinite dimensional and firms keep wandering across all
possible states in the economy. In this case it is still true that fast-growing
small firms eventually become big, and grow as big firms, but it is also the
case that big firms eventually become small and grow as small firms. If so, the
impact effect of the shock cannot be amplified without limit and the model
is unable to generate orders of integration greater than one. In other words
Assumption 2’ plays the role of increasing the robustness of the transmission
mechanism*’.

Assumption (A4) requires that some units end up in the non recurrent set
(657 £ 0 for some 7). For example if at time ¢ — 1 the system is in steady
state, assumption (A4) implies that the shock €; is positive. Some units
do not adjust and they end up in the non-recurrent class. This condition
does not look very restrictive. Eventually a positive aggregate shock hits
the economy and some units end up in the non recurrent set. Moreover,
assumption (A4) limits the size of the reallocation driven by the aggregate
shock and it bounds the persistence generated by the model. (A4) is always
satisfied in the case of ‘finite’ reallocations, but the number of entries in
the reallocation structures é; strictly different from zero does not have to be
finite. We consider now a counterexample where (A4) fails. We assume for
example that all firms are initially in the tail of the distribution of vintages,
m_ ~ (3 asi T co. We consider the effect of a negative aggregate shock
€, < 0, so large in absolute value that 6" = —a 3%, a > 0. Proposition 3
shows that in this case the model generate a degree of persistence greater
than before. As a corollary it follows that the degree of persistence generated

by the model is dependent upon features of the reallocation structure 6.

4"In particular, if the transmission mechanism P is irreducible, ~ < 1 implies that
B; ~ i~ asi T oo and no steady state distribution exists by Lemma 4. If 1 < h < 2, the
model still replicates the order of integration d between 0 and 1 observed in aggregate
output. I analyze this case in my Phd dissertation and in a companion paper. See
Michelacci (1998).
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Proposition 3 (Counter-example) Suppose that Assumptions 2° holds.
Assume also that
S =—aB, 0<a<l, Vi (A4)

where s = max {i:i >0, p; = 0} +1 is bounded and that the expected growth

of a unit in state i, g;, is such that

g=01=-p)i+1)=hy, Vi>s, h>2. (A5’)

Then the order of integration of aggregate output d is equal to 3 — h, that is
the quantities ¢,, in (15) are such that ¢, ~ n?=* whered = 3 — h.

Proof: See appendix.

Corollary (The reallocation structure matters) Assumption 1, 2’
and 3 hold. For a given transmission mechanism P, different reallocation
structures 6; can generate different rate of absorption of the shocks as mea-
sured by the quantities ¢,, in (15).

Proof: See appendix.

Proposition 3 is interesting for three reasons. Firstly, it shows that thel
model can generate asymmetric responses to shocks. In fact 6; = (]5 (€) — P) T 1,
and if p, = 1 — ﬂh—l, only a negative shock can generate a difference be-
tween p; (¢;) and p; equal to a constant, which is why a in (A4’) may only be
negative. Secondly, Proposition 3 is an application of the ‘folk wisdom’ claim-
ing a positive relation between amplification and propagation mechanisms:
large shocks are more persistent than small shocks. Finally, Proposition 3 de-
livers an alternative and suggestive characterization of aggregate persistence.

According to this view most shocks generate low persistence®

; sometimes,
however, large negative shocks hit the system when the average productivity
of the economy is low: these are the cause of the spectral shape that we ob-
serve in the real world. This view is not new. Many have noticed that once

we allow for some structural breaks in the time series of US aggregate GDP,

48For example h > 2 does not generate a typical spectral shape under the conditions
assumed in Proposition 2.
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it may be well represented by a standard weak memory process*’. What is
suggestive is that the model might explain why most structural breaks iden-
tified in the literature (the ‘big recession’, World War II, the oil price shock)
are associated with large negative shocks.

Assumption (A5) seems to be very specific. It implies that the adjustment
cost ¢; must grow sufficiently fast when the tecnology gap ¢ increases. A
possible motivation would be that (A5) is consistent with what has been
observed in the data’. That is why we argue that the empirical relation
between expected growth and firm size might provide a microfoundation for
aggregate persistence.

Finally, the literature on the relation between growth and firm size is
itself controversial. We feel however that our reading of the literature is the
closest to the macro approach we are pursuing here. In fact, what makes
the results controversial is the treatment of the sample selection problem®!.
Conditional on survival, small firms grow faster but also tend to die more
often. The question then is what growth we should attribute to a dead firm.
In fact dead firms free resources that potential investors can now exploit,
and therefore in general equilibrium death might be associated with high
growth. Once this concern is taken into account, the empirical evidence
tends to conclude that small firms grow faster than big ones®: this is what
is required to replicate an order of integration between zero and one. If so,

micro and macro evidence match quite closely.

6 Conclusions

Ex ante homogeneous firms end up by having very different histories. This
implies that once we take a picture of the economic system, a lot of cross-
sectional heterogeneity appears. This paper has shown that the mechanism

generating heterogeneity in the real world also generates persistence in aggre-

#9Gee for example Perron (1989).

50See also footnote (25) and (43).

51See Sutton (1996).

52Davis, Haltiwanger and Schuh (1993) attribute a rate of growth of minus two to
dead establishments and conclude that big establishments grow faster. Mansfield (1962),
Hall (1987), Evans (1987) and Dunne, Roberts and Samuelson (1989) address the sample
selection problem and conclude that small firms grow faster than big ones.
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gate fluctuations. In our model aggregate shocks affect neither the number
of firms in the market nor the rate of technological progress. Therefore any
persistence can be attributed to cross-sectional heterogeneity. The paper con-
cludes that cross-sectional heterogeneity is an important transmission mech-
anism with some distinctive properties. We might summarize them by saying
that cross-sectional heterogeneity is a powerful, realistic and robust transmis-
sion mechanism. It is powerful because a sufficient amount of cross-sectional
heterogeneity is able to generate typical spectral shapes without necessarily
relying on technological shocks. It is realistic because the observed empirical
relation between expected growth of a firm and its size provides a microfoun-
dation for the typical spectral shape of an economic variable. It is robust
because ‘small’ alterations to the basic set-up do not shift the slope of the
spectral shape from the very particular slope associated with a unit root to
the flat one corresponding to the weak memory case.

A lot of questions still remain open. In particular, realism does not imply
reality so that further, careful empirical investigation is required to see what
really are the sources of the persistence of aggregate fluctuations. Three ob-
vious candidates come to mind: the dynamics of the leading technology in
the economy (here ), the size of the market (the number of firms in the
market) or cross-sectional heterogeneity. This seems to be a promising ba-
sis for discriminating across different macroeconomic theories. On the one
hand, the Real Business Cycle tradition as well as growth theories based on
learning by doing, would stress that most aggregate persistence would arise
because of the dynamics of the leading technology in the economy. On the
other hand, Neo-Keynesian macroeconomics stressing the role of coordina-
tion failures might argue that most aggregate persistence arise because of
either the dynamics of the size of the market or the fact that multiple er-
godic sets exist in the economic system. This paper has departed from both
these strands of the literature and has drawn on the recent tendency to pro-
vide micro-foundations for macroeconomics by solving explicit aggregation
problems. It has argued that cross-sectional heterogeneity might be a key
element in explaining aggregate persistence and has concluded that the inter-
play between idiosyncratic and aggregate uncertainty shapes the dynamics

of macroeconomic variables in a distinctive way:.
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7 Appendix

7.1 Proofs of results in section 3

Proof of Lemma 1 As the value function V' (i, £, \) is linear in ¢, it can be
written as

V (i, t, \) = at + V(i,\)

where a is equal to 1. It follows that
1—pi:F<ﬂ[‘~/e(0)—\~/e(i+1)] —a), Vi,

where V¢ ( j) indicates the expected value of 1% (7, A) taken with respect to
the random variable A\. We indicate with \}; the solution to the equation

BIVE(O) = Ve(i+1)] =c+ Ny, Vi (18)

Therefore, Vi, 1 —p; = F (A}é) so that there is a one to one correspondence

between p; and \%. From the monotonicity of V (i, \) with respect to \ it
follows that

V(i,\) = —vi+pVe(i+1), if A > N,
= —yi—ci— A+ BVE(0), if A< Ny

Taking expectations we obtain

Ve (i) = —yi — piXiy — ci — / s dF (s) + BV* (0), Vi. (19)
AR
(18) together with (19) implies that
Cir1 = pOAR+c0+ c,+>\’ +/ sdF(s) —~v(i+1)+

i N A T sdF(s), Vi (20)
R

For any given sequence of probabilities {p;,7 > 0}, equation (20) defines a
difference equation of the first order in ¢;, whose solution is unique once an
initial condition for ¢, is set. Moreover, given equations (18) and (19) a
sequence of adjustment costs {¢;,7 > 0} that solves (20) delivers the given
sequence of probabilities {p;,7 > 0} as a solution of the firm problem. Lastly,
we note that as ¢y is arbitrary and § < 1, adjustment costs can always be
chosen to be strictly positive. Q.E.D.
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Proof of Lemma 2 We start with reviewing some basic concepts in
the theory of Markov chains (see e.g. Karlin and Taylor 1975, 1981). Two
states ¢ and j communicate if there exists a positive probability that, in a
finite number of transitions, state j can be reached starting from state ¢ and
vice-versa. As the concept of communication satisfies reflexivity, symmetry
and transitivity property is an equivalence relation. This implies that we
can partition the totality of states into equivalence classes. The states in an
equivalence class are those which communicate with each other. The Markov
chain is irreducible if the equivalence relation induces only one class. The
Markov chain is reducible if it is not irreducible. A state i is recurrent if and
only if, starting from state i, the probability of returning to state ¢ after some
finite length of time is one. A non-recurrent state is transient. All states in
an equivalence class are either recurrent or transient so that both recurrency
and transience are class properties.

Given Assumption 1, the Markov chain P has the property that starting
from any state ¢, the probability of returning to state zero is one. This implies
firstly that state zero is recurrent and secondly that either state ¢ and state
zero belong to the same class or state 7 is transient. As state zero is recurrent,
it follows that at least one recurrent class does exist and given the previous
considerations this is the only one. Q.E.D.

Proof of Lemma 3 Given Assumption 1, the probability of returning
to state zero starting from any state ¢ is one, that is all states communicate
with state zero. State zero communicates with a given state 7 if and only if
B; > 0. This implies that all states can be reached from state zero and the
transmission mechanism P is irreducible if and only if Assumption 2 does
not hold. Q.E.D.

Proof of Lemma 4 Given Assumption 1 and Lemma 1, there exists
one and only one recurrent class and all units will enter the set of recurrent
states with probability one. Given Assumption 2’ and Lemma 3 the matrix
is reducible and the recurrent class is finite dimensional. We indicate with ¢*
the number of states of the recurrent class. Given Assumption 2’, there exists
a state 0 < i < ¢* — 1 such that p; # 1 and the Markov chain P is aperiodic.
Therefore the unique finite dimensional recurrent class is aperiodic and a
steady state distribution always exists.

If Assumption 1 holds and Assumption 2 does not, the Markov chain is
irreducible and recurrent by Lemma 3. The basic limit theorem of Markov
chains (see Karlin and Taylor 1975, theorem 1.2) implies that one of two cases
must hold. Either the Markov chain is null recurrent so that asymptotically
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P goes to a matrix of zeros, or it is positive recurrent so that the matrix P"
converges to a matrix whose rows are identical and equal to the steady state
distribution, call that 7*. It can be checked that 7* is such that its element
in place ¢, 7}, satisfies the relation 77 = 7} 3, ;, where 3, = 1. This implies
that a necessary and sufficient condition for the transmission mechanism P
to be positive recurrent is that

1
o B

is finite and strictly positive (see Billingsley 1986, theorem 8.8. and example
8.13). Q.E.D.

ot

Proof of Lemma 5 We first write the reallocation structure 6; = 6 as
equal to § = 67 — 6~ where 67 > 0 and 6~ > 0. We then note that non-
negative matrixes associate under multiplication and that the distributive
property is always satisfied for denumerable matrices (see Kemeny, Snell and
Knapp 1966 proposition 1-2 and corollary 1-4). This implies that §' PO =
(67 — 67) P"O is well defined provided that for each n, (6 ) P"O and
(67) P"O are (not necessarily uniformly) bounded . By Assumption 3 the
reallocation structure ¢ is such that (§7)'O and (67) O are both finite as
either 6" or & has just one element strictly positive by equation (12). We
then note that each element in place j of P"O has increments bounded above
from one. Therefore, if we indicate with 1 a vector of ones we have that

0< ({6 )PO<(6)(0O+nl) <o
and analogously for (67) P*O
0< (67 PPO<(67)(0+nl) < oo,

so that (67) P"O and (§%)" P"O are bounded Yn. Q.E.D.

7.2 Proofs of results in section 4

The next Lemma is used throughout the proofs.

Lemma 6 (Technical lemma) x = max{i: p; =0, 7> 0} + 1 while

S:{mif Kk < 00 (21)

i* if k=00

Wherei*:min{i:ﬁi:ﬁgzﬂz;lopkzo,iZ 1}-
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Then under Assumptions 1, 2’ and 3,
5P"O=A+B+C—-D, (22)

where Vn, A, B, C' and D are equal to

A= e, (4)
B = ni(sg““ﬂ;” (B)
i=0
C = Y e (s i), (©)
=0
D = Sfj(s;““ﬂ;ta (D)
=0

where 53 = HZ_:IO Dj+k, the quantities ¢i'’s are such that 0 < ¢} < p"K,
0 <p<1, K isabounded quantity while 0 < S < ¢*, is the expected value
of the steady state distribution.

Proof of Lemma 6 By definition (21) and Assumption 2’ s is always
bounded. We consider the submatrix P of the transmission mechanism P
identified by the first s rows and columns of the matrix P. P is a positive
square matrix whose rows sum up to one, that is a stochastic matrix. It
follows from the same reasoning as in the proof of Lemmas 2, 3, and 4 that
P is irreducible if i* = s, while it is reducible if #* < s. By Lemmas 2 and
3 the recurrent class and the steady state distribution of P are the same as

those of P. We can then partition the matrix P as follows

P 0 0 0 0
ENE] sx1 sx1 sx1 sx1
P=| 10 p 0 0
— 1xs s )
7‘1+1
S0 0 0 pen

where rjl- indicates a row vector of dimension 1 X s corresponding to the first
s elements of the row j + 1 (state j) of the matrix P. For example in this
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notation P is equal to

Ty
P ri
SX 8§ :
Ts1
It follows that P™, the nth iterate of P is equal to
PO -0 0 0 - 0 ]
m o -0 B 0 - 0
|0 - 0 0 g0
e A S ,
|0 0 0 0 Bt

where 77 indicates a row vector of dimension 1 X s corresponding to the first
s elements of the row j+ 1 (state j > 0) of the matrix P", while the element
Bt i >0, are in tow s+ 4 -+ 1 and column s +4 + 1 +n. If we indicate with
e1 a vector of dimension s x 1 equal to the first column of an identity matrix
of dimension s x s, it can be proved by recursion that for ¢ > s

o= (L=p)ry i (L —pip) g+ +
+ B o (1= pign—a) 10+ By (1 — pisn_r) €] =
n—1
= > B (L=piy) 5 7, (23)
=0

where 3, = 1, while 7 = €.

To prove (22) we proceed as follows. Firstly we show that r?*, 0 <7 < s
converges at least exponentially to m, the vector of dimension s x 1 corre-
sponding to the steady state distribution of P, that is

rt — 7| < Hp"l', Vi<s, Yn>0 (24)

where 1 > H > 0,0 < p < 1 and 1’ is a vector of dimension 1 x s whose
elements are all equal to one.
Secondly we will show that Vi > s, Vn, 77" is equal to

T‘;L == <1 - ﬂi_1> 7T/ + 62_1 (]- - pi—i—n—l) 6,1 + a?’ (25)

where the a} are such that Vn, Vi, 0 < a? < p"H1,0<p <1, H being a
bounded quantity independent of ¢ and n. (24) together with (25) will then
imply that
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cg + S

.+ S

. A+S+6(s+n)—SB
PPO= e 4548 (s+14+n) -5 |- (26)

S+ B (s it n) - S

where the quantities ¢’ are such that 0 < ¢! < p"K, 0 < p < 1, K being a
bounded quantity independent of ¢ and n ,while S is the expected value of
the steady state distribution © and so bounded below from zero and above
from ¢*. From (26), Assumption 3 and the properties (11) and (12) of ¢, it
will then follow that §,P"O is equal to (22) and the proof will be complete.

We now prove (24). We consider first the case i* = s. Given Assumption
2’, there exists a state 0 < ¢ < ¢* — 1 such that p; # 1 and the Markov chain
P is both irreducible and aperiodic. In this case we know that a steady state
distribution 7 of dimension s x 1 does exist and that the rate of convergence
is exponential and independent of the initial distribution (see e.g. Stokey
and Lucas 1988, theorem 11-4), that is (24) holds.

We now consider the case where i* < s. In this case the matrix P is
reducible and we know that the first * < s states of the Markov chain P
are recurrent while all the other s — ¢* are transient. The structure of P
implies that a unit starting from one transient state ¢* < ¢ < s will enter the
recurrent class after a number of periods less or equal than s —¢* . We then
know that (24) holds starting from the s — i* th iterations of P* so that there
can always be found a bounded constant H such that

r? —x'| < Hp"l', Vi<s, Yn>0, 0<p<1.

This proves (24).
We now prove (25). From (23) and (24) we obtain that Vi > s, ¥n > 0

= (1= B ) = B (L= pin 1) €

0 < p < 1. This proves (25). Q.E.D.

<H(1-8,,)p"V <Hp'T,

Proof of Proposition 1 (Increasing hazard functions) To prove the
assertion we proceed as follows. Firstly we show that Assumptions 1, 2" and
3 hold. We then apply Lemma 6, so that §,P"O is equal to (22). We then
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show that A, B, C' and D are all O(p"), 0 < p < 1 where O(p™) indicates a
quantity at most of order p™ that is lim,, . O/()‘:Ln) < 00. This will imply that
8, PO is also O(p™) concluding the proof.

If the probabilities p; are decreasing in ¢, for ¢ > &, ﬁ; falls at a rate that
asymptotically is at least as great as the exponential one, Vi. In fact for large

J

By = L85 . < Bh(px) ™" < (pe) ™" (27)

so that Assumption 1 holds.

As assumptions 1, 2’ and 3 hold, Lemma 6 guarantees that §; PO is equal
0 (22). We know that A is always O(p"), 0 < p < 1. Assumption 3 together
with (27) guarantees that also B, C' and D are O(p"), 0 < p < 1. Q.E.D.

Proof of Proposition 2 (Robust typical spectral shapes) In order
to prove the assertion we want to show that ¢,, = y6,P"O ~ n'™" = n? 1
d = 2 — h. To prove the assertion we proceed as follows. Firstly we show
that Assumptions 1, 2’ and 3 hold. We then apply Lemma 6, so that §,P"O
is equal to (22). We know that A = O(p™), 0 < p < 1. We then show that
B ~ n!'=" C = O(n'=") while D ~ n=". Consequently ¢,, = v8,P"O ~ n'=",
and it will conclude the proof.

Assumptions 2’ and 3 hold by hypothesis. We now show that 55 ~ 3% ~
n~" so that Assumption 1 is also satisfied. In fact, from the recursion of the
Gamma function (see Abramowitz and Stegun, 1972, formula 6.1.15)

I'(a+1)=al(a), (28)
it follows that

gy = <1— h )(1— f )...(1_ h ):
s*+1 s* 4+ 2 s*+n

%(S*—i_l_h)(8*+2_h>-..(8*—|—n—h):

I'(s*+1) TI'(s*+n+1-h)
F(s*+n+1) I'(s*+1—h)

~ B ~nasn oo, (29)

n

where the last asymptotic equivalence used the fact that

lim nb’“P (n+a)

A T (30)

See Abramowitz and Stegun (1972), formula 6.1.46.
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As Assumptions 1, 2’ and 3 hold, by Lemma 6, §, PO is equal to (22).
We now show that B ~ n (3 so that B ~ n!™" by (29). From equation

(B) and the identity =% Bugi BT we obtain

oo s+z+1

— ﬁ Z s+n

which by Assumption (A4) we know to be bounded for all n. 5" is a
probability and thus is a strictly positive quantity bounded above by one
and below by zero. From the same reasoning as that which led to (29) we
obtain that for n > s* — s

'n+s+1) I'(n+s+i+1—h)

o= : 1
b F'n+s+1—h) T(n+s+1+14) (31)

Condition (A4), the fact that by (31) and (30) lim,, ., 5;7" = 1, Vi, together
with the Lebesgue dominated convergence theorem guarantees that

oo 5s+z+1 oo 6§+i+1‘
lim Z g =) —— < 0. (32)
n—00 = 6@
Given (12) it follows that
B
lim | L =7
n—oo n n
s+7l+1|
where 0 < Z = 3% —5— < oo by condition (A4). It follows that B ~
We now show that C = O(n'~") where O(n' ") indicates a quantity at

. . 17h .
most of order n!=" that is lim,,_,.c %’L—hl < o0. To prove it we show two

preliminary results.
Firstly from (C) and the identity =5 Boss — = (351" we obtain that

C = 26§+i+1/6151+i (S + Z) —
i=0
[o'e) 6s+z+1

= YT (), (©)

Secondly, we prove the following result concerning sums of Gamma functions

ir(br_(;?)“) - Fé?(_b)a), Vb > a >0, (33)
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for any integer b. If a is an integer, (33) can be proved by induction after
using the identity

i @-—1 1
~ (a+1i)! aal
(see Gradshteyn and Ryzhik , 1997, formula 0.247) and the fact that
i 1)!_if(b—1—a+i)
i=b—a ) i=1 r (b + Z)

If a is not an integer, from the series expansion of the function (1 — L)¢
one obtains that for any L (see Granger and Joyeux, 1980, p. 18)

> (1—a ,
;F (i)le)Lz’ Va > 0
so that for L = 1 we obtain that
if(i—a) B
= l+1)
Therefore
i —1—a—|—z)__bilf‘(i—a)
= L'(b+14) =ZT@E+1)

We now show by induction that

jlr &) T(h-a)
2T o)

which is what is required to prove (33). In fact for b = 1, we obtain

2T (i —a) '(—a) T(1-a)
_ZF(i—I—l):_ r(1Q)  ar'(1)

If we assume that the formula holds for b = b we then obtain that for b = b+1

I'(b—a) TI'(b—a) OB-—a)T'(b—a) T'(b+1-a)
_;FWHY'J@'1%+Q_ al (b+1) — al(b+1)

which completes the proof by induction of (33).
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To prove that C = O(n'™") we distinguish the case where A > 1 from
that in which 1 < h. Consider first the case in which h > 1. From assumption
(A4) it follows that

6;?—&—2'—&-1‘
and
6;?4—2'—&-1‘
i 3 T (S + Z) > K

for some strictly positive bounded constants H and K. From this together
with (C”), (31), (33) and (30) it follows that

s T'(n+s+1) ET'(n+s+i—h)
O]~ ﬁ”F(n+s+1—h)§ T(n+s+i)
s T'(n+s+1) T'(n+s+1-h)
- 5”r(n+s+1—h)(h—1)r(n+s)N

We now consider the case h < 1. In this case

o] 6f+1+1 ﬂ?Jrn

C=(s+n)p3 (s+1),

= B (s+n)

which by Assumption 3 and Lemma 4 we know to be bounded for all n.

s+n
We now show that if h < 1, the quantity Z ) is always decreasing in n.
s+n
(12), the fact that lim,, . éTm = 0, together with the Lebesgue dominated

convergence theorem will then imply that if h < 1, C = o(nf;), that is
lim,, oo % = 0. So that in general for any h, C' = O(n ;) = O(n'~") by
(29). !

Therefore we now show that the derivative of

g F'n+s+1) I'n+s+i+1—nh)
s+n  (s+n)T(n+s+1—h) T(n+s+1+1)

(34)

with respect to n is negative. In fact, once we define the Psi-function v (-)

d[InT (z)] TV(x)

Vi) = dx T (x)

we obtain that
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= Wn+s+1)+¢(n+s+i+1—h)—¢(n+s+1—h)

] (35)

_ 1) —
v(n+s+i+1) P

which is equal to

WY(n+s)—yv(n+s+1—h)+yv(n+s+i+1—h)—v(n+s+i+1)
(36)
after using the recursion formula ¢ (z + 1) — 1 =1 (z) (see Abramowitz and
Stegun, 1972, formula 6.3.5). h < 1, together with the strictly increasing
nature of ¢ (-) over the positive real line (see Abramowitz and Stegun, 1972,
formula 6.3.16), implies that (36) and consequently (35) are negative.
Finally we show that D ~ 2 so that D ~ n=" by (29). From equation

(D) we obtain
00 6s+i+1

D - ﬁzfl Z tﬂs ﬁ;ﬂrnil?
1=0 i

which by Assumption 3 and Lemma 4 we know to be bounded for all n.
BT~ 1 is a probability and thus is a strictly positive quantity bounded above
by one and below from zero. Condition (A4), (12), the fact that by (31) and
(30), lim,_s 357 = 1, Vi, together with the Lebesgue dominated conver-

gence theorem imply that

D
iy 152 2

sotitl

where 0 < Z = 372 —5— < oo by condition (A4). Q.E.D.

7.3 Proofs of results in section 5

Proof of Proposition 3 (Counter-example) We want to show that ¢,, =
v8,P"O ~ n® ! where d = 3 — h. To prove the assertion we proceed as
follows. Firstly we show that Assumptions 1, 2’ and 3 hold. We then apply
Lemma 6, so that 6,P"O is equal to (22). We know that A =0(p") 0 < p <
1. We then show that B ~ n? " C ~ n?> " while D ~ n'~". Consequently
b, = 76, P"O ~ n?>~" and completing the proof.

We now show that Assumptions 1 and 3 hold (Assumption 2’ holds by
hypothesis). We first note that, given (A4)
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F(s+1) DI'(s+i+1—nh)

6§:F(s+1—h) T (s+1+1)

(37)

and then that

g = F'i+s+1) I'(i+s+n+1—nh) (38)
" " T(i+s+1—h) T(i+s+1+n)

As h > 2, (30) together with (37) and (38) implies that Assumptions 1
and 3 are satisfied. By Lemma 6 &,P"O is then equal to (22). (37) and (38)
imply that

F'(s+1) TI'(i+s+n+1—nh)

S Q8+i
bi O " I'(s+1—h) T(i+s+1+n) ’

so that from (A4’)

I'(s+1) X I'(i+s+n+1—nh)

B = — B
aF(s+1—h)nZO T(its+l+n) (B")

B F'is+1) &TL'(i+s+n+1-nh) , .

C = ar(8+1_ ; Titstien) (s+1), (c”)
D — —aS I'(s+1) F(Z—I—s—l—n—h)_ (D7)

['(s+1—h) ; I'(i+s+n)
We now show that B ~ n*>~". In fact (33), (30) and (B”) imply that

B 4 (s+1) F(S+n+1_h)n~n2_h
 T(s+1—h) (h—1)T(s+n) '

We now show that C' ~ n?~" To do so, firstly we proove that for any
integer b

> T'(b-— 2—a—|—z)_ 'o—1-a)

2T T ctarp-1) 2”0 (39)
Indeed (33) implies that >-3° 124%2 is equal to
XT(b—2—a+1) T (b—-2—a+1) ro—1-a)
—(b—1 _
; ro+i—1) (b ); L'(b+1) a(l+a)T(b—-1)

which proves (39).
(30), (33) and (C”) together with (39) imply that
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C— —a ['(s+1) (h—l)(8—1)+nf‘(—h—l—s—l—n+1)Nn2_h
~ TI'(s+1-h) (h—2)(h—1) T (s+n) '

Finally we show that D ~ n'=". In fact (33), (30) and (D”) imply that

I LR R (e
b= SF(S—I—l—h)(h—l)F(s—l-n—l) '

Q.E.D.

Corollary (The reallocation structure matters) Given Assumptions
1, 2’ and 3, the assertion follows from Lemma 6 and Proposition 2 and 3. For
example a reallocation structure §; that reallocates only inside the recurrent
class, that is 6! = 0,Vi > s, given (22) produces §,P"O = A = O(p"),
0 < p < 1, independent of the structure of the transmission mechanism P.
On the other hand a reallocation structure that also reallocates outside the
recurrent class, that is 3 6! # 0, for some i > s, can generate a rate of decay
in the quantities ¢, = v,P"O that might be slower than the exponential
rate. See Propositions 2 and 3. Q.E.D.
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