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SUMMARY

We estimate the irrigation water demand for a season under uncertainty
using a dynamic programming model and a crop-growth simulation
model (EPIC-PHASE) linked to a CRRA utility function representing the
farmer's objective function. This model is used to generate the data
allowing the estimation of irrigation water demand by a nonparametric
procedure. An application shows that demand functions present four
main areas: for very small quantities, the demand is inelastic. In the
second area, where water is no more an essential input and is not yet a
risk reducing input, the demand is elastic. But, we find a third, non-
intuitive, area for larger quantities where the water is a risk reducing
input and the demand becomes inelastic again. In the last area the water
demand is obviously elastic for important total water quantities. This
result is of great importance to analyse a regulation policy.

Keywords: Seasonal irrigation water demand, uncertainty, regulation
policy

JEL: Q15, D81



NON TECHNICAL SUMMARY

The seasonal irrigation water demand under uncertainty, which lies at
the core of this paper, is still very roughly known. We know, however,
that irrigated agriculture accounts for a large proportion of water use,
especially in many water-scarce areas. In this paper, we estimate the
irrigation water demand, for various climatic conditions characterising
the distribution of the necessarily stochastic, demand functions under
uncertainty. We use a dynamic programming model to represent the
farmer's decision program under uncertainty. A crop-growth simulation
model (EPIC-PHASE), provides the response function to the decisions
taken and climatic events and is linked to a CRRA utility function
representing the farmer's objective function. This model is used to
generate the data allowing the estimation of irrigation water demand by a
nonparametric procedure. An application to irrigation water demand is
proposed in the South-West of France. We show that the estimated
demand functions present four main areas: for very small quantities,
where the farmer considers water as an essential input to crop growth,
the demand is inelastic. The second area corresponds to mean quantities
where the plant has reached a satisfactory level of growth; water is no
more an essential input and is not yet a risk reducing input. The farmer is
more responsive to change in water price. But, we find a third, non-
intuitive, area for larger quantities where the water is a risk reducing
input and the demand becomes inelastic again. The last area is classic, the
water demand is obviously elastic for important total water quantities.
This result is of great importance to analyse a regulation policy.
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1 Introduction

In many countries of the world, agricultural activities are risky, and irrigation a�ects these

risks. Di�erent types of risk exist: price risk, production risk, climatic risk; this last one seems

to be the most important in agriculture. Stochastic weather conditions a�ect considerably

the production of farmers and therefore their revenue. Thus, risk considerations may have

important e�ects on irrigation decisions of risk-averse farmers because irrigation is a risk

reducing input and a certain source of water unlike rainfall.

In France irrigated agriculture accounts for a large proportion of water use, especially

in many water-scarce areas. This position can induce imbalance between water needs and

resources that are likely to cause con�icts between di�erent categories of users (rural, urban,

industrial and other users). Agriculture is presented as the main cause of this desequilib-

rium. In these situations, the regulator may force all water users to pay the water at its

real value. The application of this policy is inherent to the knowledge of the intertemporal

water demand functions for each user. In France, farmers are charged for water. The fees

are �xed at low levels, compared to the ones paid by the others consumers and it is well

known that low prices induce over-consumption. Moreover the knowledge of farmers water

consumption remains imprecise. In this context, estimating farmer's water demand over a

season is di�cult and several questions are still unanswered.

The problem of evaluating irrigation water demand is not recent and has become a

growing �eld of research in the last few years. There is an important literature assessing

how farmers react to changes in the price of water. Two approaches on irrigation water

demand estimation exist. If data relating to observed water consumption exist then the

authors use econometric models (Ogg and Gollehon [23]; Moore and Negri [20]; Moore et

al. [21] and [22]; Hassine and Thomas [12]). However, in France as in many countries of

the world, they are imprecise data on these consumptions. This point has induced the use

of programming models for the estimation of the water demand. Demand estimates are

derived from simulations of pro�t maximizing behavior. These modeling procedures require

the use of standard mathematical techniques such as linear programming (Shunway [26];

Montginoul and Rieu [19]), or quadratic programming (Howitt et al. [13]). These authors

seems to conclude that irrigation water demand is completely inelastic below a threshold

price, and elastic beyond (Montginoul and Rieu [19]; Garrido et al. [9]; Varela-Ortega et al.

[27]; Iglesias et al. [14]).
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The programming method studies are based on the mathematical formalization of the

farmer's behavior. This latter is assumed to maximize his �nal pro�t. The water demand

function is derived from the following scheme. For a given price, one estimates the quantity

of water maximizing the farmer's pro�t. Variations in water prices induce di�erent levels of

optimal water quantities. The authors use this information directly to represent the derived

demand for irrigation water.

The weaknesses of these models are due to the formalization of the farmer's program

and to the necessarily simplifying assumptions. Therefore, the demand estimates obtained

strongly depend on the speci�cations made and these results can be biased.

One aim of this paper is to estimate the seasonal irrigation water demand using program-

ming methods and complementing the previous studies. The approach to derive irrigation

water demand by programming methods needs to be precisely de�ned and the farmer's

maximization problem has to be detailed.

Our paper makes four contributions to the literature on seasonal irrigation water demand

under risk.

First, we use dynamic programming to describe the farmer's program. The advantage of

our approach is that it allows to represent precisely the problem of allocation of a limited

water supply on a given crop �eld under risk and to show the impact of multiple applications

of the water during the irrigation season. Few papers in this literature have dealt with the

subject of irrigation scheduling (Bontemps and Couture [1] or [2]).

Second, we use a crop growth simulation model, EPIC-Phase, for estimating crop yield

response function to irrigation water. A major advantage of this model compared to the

pre-speci�ed functions performed in the literature is that it represents more precisely the

biological and physical process of plant growth.

Third, we specify a Constant Relative Risk Aversion (CRRA) utility function as objective

criterion which appears appropriate to describe the farmer's behavior(Chavas and Holt [7];

Pope and Just[24]). The previous studies are based on the strong assumption that the

farmer is risk-neutral and he maximizes his pro�t while it is recognized in the literature

that farmers are risk averse (Bouzit [5]). Neglecting the risk-averse behavior in agricultural

models can lead to important overstatement of the output level and to biased estimation

of the irrigation water value, as well as incorrect prediction of choices. Moreover, there

have been few attempts in the literature to prove the important role of information in the

decision making process of farmers under uncertainty (Bontems and Thomas [4]). To our
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knowledge, taking into account risk aversion and information value for estimating irrigation

water demand is rarely found in the literature.

Finally, the scheme used to derive irrigation water demand is based on the evaluation of

the value of water for the farmer. We de�ne this value as the maximum amount of money

the farmer would be willing to pay for the use of one additional unit of the resource under

water scarcity.

This model is used to characterize and to quantify the irrigation demand functions un-

der uncertainty for various climatic conditions. We use this climatic variability to draw the

distribution of this demand function for two di�erent information sets. In the �rst case an

ex-ante or open-loop decision rule1 for input use (i.e. computing irrigation water applications

before random shocks to weather conditions are observed) is performed while an ex-post or

feedback strategy (i.e. when successive information components are processed by the farmer

at di�erent stages) characterizes the second case. The derivation of the demand functions

for these two main strategies under various climatic conditions is of great interest and an-

swers to the following questions: What is the shape of the irrigation demand function under

uncertainty? What is the distribution of this random function? How sensitive is it to the

strategy used (or to the information set)? and �nally, Is the irrigation water demand func-

tion convex?

We have used this model to estimate the irrigation water demand for a season under

stochastic weather conditions in the South-West of France2. We obtain this function for

various climatic conditions characterizing the distribution of the necessary stochastic de-

mand functions under uncertainty. We have used a nonparametric estimation procedure in

order to have a precise information on the shape of these functions. We show that irriga-

tion water demand depends obviously on two variables: climate and information set. All

the estimated demand functions have the same shape, presenting four main areas. For very

small quantities, where the farmer considers water as an essential input to crop growth, the

demand is inelastic. The second area corresponds to mean quantities where the plant has

reached a satisfactory level of growth; water is no more an essential input and is not yet a

risk reducing input. The farmer is more responsive to change in water price. But we �nd a

1The farmer decides not to use all the information available at every stage in the decision process.
2The climate in our region is more humid than in the Mediterranean areas, but much more drier than in

the north of France.
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third, non-intuitive, area for larger quantities where the water is a risk reducing input and

the demand becomes inelastic again. The last area is classic, the water demand is obviously

elastic for important total water quantities. This result is of great importance in terms of

regulation policy, since the real price for the region considered lies in the third inelastic area.

If the regulator imposes a price (or a quota) regulation, the impact of the change in the price

(or in the quota) will strongly depend on the location of the initial and �nal prices (quotas)

within the four areas. Finally, we have provided a parametric estimation of the demand

functions and compared their shapes to the nonparametric ones. The �t seems quite good

but the parametric curves are convex and present only two well known areas. The use of

these parametric representations of the demand functions for policy analysis may therefore

be misleading.

The paper is structured in the following manner. Section 2 describes the procedure

for evaluating the irrigation water demand function under uncertainty. We present the

theoretical framework for calculating demand functions, and then describe the dynamic

model of the farmer's decisions. Finally the numerical procedure of resolution and the

nonparametric estimation are presented. In section 3 we present an application in the South-

West of France. The main results and estimations are reported, as well as the graphical

representation of the demand functions. The policy regulation implications of these results

are developed and analyzed. Section 4 concludes the paper.

2 Evaluating irrigation water demand under uncertainty

2.1 De�nitions

The methodology for evaluating irrigation water demand is based on the evaluation of the

value of water for the farmer. The farmer uses water as long as the bene�t from the use of

an additional unit of the resource exceeds its cost. As water becomes scarce, the value of

water for the farmer appears greater than the real water price. Therefore, the farmer would

be ready to use more water. Under limited water supply, the farmer's water value is "the

maximum amount of money the farmer would be willing to pay for the use of an additional

unit of the resource". For a given quantity of water allocated for the season, its value, noted

�(Q) is the derivative of the maximized objective function evaluated for this given quantity.

Under stochastic weather conditions, the objective criterion of the risk-averse farmer is the
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expected utility of the pro�t, U(�(Q)).

This opportunity cost �(Q) is de�ned as the derivative of the optimized utility function

U�(�(Q)), these two functions depend on the total quantity of water Q:

�(Q) =
dU�(�(Q))

dQ
(1)

The knowledge of �(Q) for any total quantity of water, gives the willingness to pay func-

tion of the farmer. This function is just the inverse of the irrigation water derived demand.

Therefore, the irrigation water demand function is completely derived once its inverse, the

willingness to pay, is known.

Our goal is to characterize the distribution of this demand function over the climatic

alea, meaning that we will have as many di�erent functions as we have di�erent climates.

We will present in section 3 several demand function according to the stochastic variability

of the climatic factors.

To characterize the stochastic demand and willingness to pay functions we use the �mean

demand function� and �mean willingness to pay�. These functions are de�ned using the above

procedure on the �mean utility function�, noted E


h
U�

�
�(Q)

�i
over the range of the climatic

distribution, denoted 
.

The mean willingness to pay, noted �E(Q), is computed as :

�E(Q) =
dE


h
U�
�
�(Q)

�i
dQ

(2)

2.2 Decision model

2.2.1 General framework

We distinguish 
, It, and !t. 
 is the stochastic climate of the whole season. It is the

farmer's characterization of this climate over the period t ; !t is the vector of real weather

factors such as wind, rain, temperatures, and radiation, realized during the period t.

Consider a farmer facing a sequential decision problem of irrigation under uncertainty. At

date t = 1, the farmer knows the total quantity of water available for the season, Q, the initial

water stock in soil, �V , and the state of crop biomass, �M . The farmer has to take decisions

on irrigation at each date t = 1; :::; T � 1, and must choose the quantity of irrigation water
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denoted qt. Therefore, we have a dynamic model of sequential choice under limited water

supply with uncertainty, integrating three state variables (Mt; Vt; Qt) for t = 1; :::; T �1.

Mt+1 �Mt = ft(Mt; Vt; !t) (3)

Vt+1 � Vt = gt(Mt; Vt; qt; !t) (4)

Qt+1 �Qt = �qt (5)

The change in the level of the biomass at any date (equation 3) is a function (ft) of the

current date state variable, water stock in soil, and climatic conditions during the period.

The change in water stock in soil (equation 4) depends moreover on the decision taken at

the current date. The total quantity of water has a simple decreasing dynamic (equation 5).

The irrigation water supply is constrained as follows:

T�1X
t=1

qt � Q (6)

The application level, qt - if this quantity is selected positive - is subject to technological

and institutional constrains:

q � qt � �q for qt > 0 (7)

with q and �q exogenous3.

The �nal date (t = T ) corresponds to harvesting when actual crop yield becomes known.

Let Y denote the crop yield function ; that quantity depends only on the �nal biomass at

date T and is denoted Y (MT ).

The farmer's pro�t per hectare can be written as:

� = r � Y (MT )� CFT �
T�1X
t=1

(c � qt + Æt � CF ) (8)

where r denotes the output price; CFT denotes �xed production costs; c is the variable cost

for each m3 of water ; Æt is a dummy variable taking the value 1 if the farmer irrigates and 0

if not. CF represents the �xed costs for each irrigation done due to labor and energy costs.

We assume in the following that there is no uncertainty on output price.

3Farmers can face some limitations on the quantity qt of water applied for each irrigation since the

investments are �xed in the short term (see Bontems and Favard [3]).
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The farmer is represented by a strictly monotonic, increasing and concave Von-Neumann-

Morgenstern utility function, denoted U . We chose the most common CRRA utility function:

U(�) =
� 1

1� �

�
� �(1��) (9)

with � (� 6= 1), the relative risk aversion coe�cient. We have assumed a risk aversion coef-

�cient of 0:001, in accordance with the literature4 (Jayet [16]).

The farmer's objective is to maximize the expected utility. We have to de�ne now how

the farmer does (or does not) incorporate the information he gets during the season. We

focus here on two main procedures known as �feedback� and �open-loop� .

2.2.2 Information sets

� The feedback strategy

In this framework, the farmer incorporates all the information he gets during the decision

process. At date 1, the farmer takes the decision q1 according to his weather expectations.

At date 2 he integrates the decision made at date 1 and the climate realized during period

1, he may revise his weather expectations using a bayesian rule:

Let 
c � 
 for c 2 C denote a particular climate and let It be the subset of the

climatic information on the period t for t 2 1; : : : ; T . Let's assume that the corresponding

probabilities P [
c] for c 2 C as well as the conditional probabilities P [Itj
c] are known5.

Then from the Bayes's formula we �nd the a posteriori probability:

P [
cjIt] =
P [Itj
c] � P [
c]PC
c=1 P [Itj
c] � P [
c]

(10)

This procedure can be repeated up to date T � 1. The result of this classical process (see

for example Sim [25]) is that the set of still possible states of the world is reduced via

It; It+1; � � � ; IT until �nally:

IT � 
c so that P [
cjIT ] = 1 for some c 2 C (11)

At this stage, the climate is �nally known.

4The choice of this parameter is beyond the scope of this paper.
5In the procedure application (section3) we will use a 14 years database to compute these probabilities.
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Through these computations the decision taken at date t clearly depends on the weather

conditions observed during the period [t � 1; t] and on the past decisions q1; � � � ; qt�1. For-

mally, the farmer's sequential problem is:

Maxq1E
Maxq2E
jI1:::MaxqT�1E
jIT�2E
jIT�1

h
U
�
r �Y (MT )�CFT�

T�1X
t=1

(c � qt + Æt � CF )
�i

(12)

s=c

8>>>><>>>>:
Mt+1 �Mt = ft(Mt; Vt; !t)

Vt+1 � Vt = gt(Mt; Vt; qt; !t)

Qt+1 �Qt = �qt

(13)

and subject to the technical constraint

and s=c

8>>>>>>>>>>><>>>>>>>>>>>:

Æt =

8><>: 0 si qt = 0

1 si qt > 0

q � qt � �q iff qt > 0

Mt � 0; Vt � 0; Qt � 0

M1 = �M; V1 = �V ; Q1 = Q

(14)

Where

E
 denotes the expectation over the climatic alea for the whole season or a priori distri-

bution.

E
jIt�1 represents the conditional expectation on 
 revised from the Bayes formula or a

posteriori distribution.

� The open-loop strategy

On the contrary, the farmer's decision program is an �open-loop� one if he decides to

choose all irrigations, fqtgt=1;:::;T�1, before observing stochastic variables. In this case, all

the decisions are made at date 1. At each period, the farmer does not revise his expectations.

This procedure serves as benchmark since no information is incorporated during the season.

The problem is the following:

Maxffqtgt=1;:::;T�1gE


h
U
�
r � Y (MT )� CFT �

T�1X
t=1

(c � qt + Æt � CF )
�i

(15)

subject to the above dynamics and technical constrains (13) and (14).
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In this expression E
 represents, as in the previous section, the expectation on the whole

climatic information set.

Under uncertainty, the two classes of strategies, open-loop and feedback, can be dis-

tinguished by the amount of information used and the anticipation of future knowledge. It

is well-known that because information is never strictly useless, the farmer should prefer

feedback to open-loop decisions. In real world situations, the farmer's strategy probably lies

somewhere between these two extreme cases and some feedback must take place at some

points in time.

2.3 Estimation procedure

2.3.1 Database

We need a database relating the total quantities of water to the maximized utilities in order

to estimate the utility and the water demand functions. These data are obtained by solving

the farmer's program described in the previous section (2.2) for di�erent total quantities of

water. Before solving the decision problem6 for the two strategies, we need to characterize

the production function Y (MT ). That function is not pre-speci�ed. We use an agronomic

model, EPIC-PHASE (Cabelguenne and Debaeke [6]) to numerically represent it; this model

also generates information relating to state variables previously represented by the functions

ft(:) and gt(:). Using this crop growth simulation model it is possible to simulate yields

for a large variety of soils and climatic conditions. The output from EPIC-PHASE is used

as input in the economic model. Then the economic model evaluates utilities for various

amounts of water available and for various climates. Finally the decision problem is solved

using a global optimization framework and the optimized utilities are computed.

The optimization problem we are facing here is not a trivial one: for a given climate, and

a given quantity of water Q, one has to �nd the irrigation schedule (q1; � � � ; qT�1) subject

to (13) and (14) which maximizes the farmer's expected utility (equation (12) or (15)). Of

course the farmer does not know the climate, and has to incorporate some information on

it using an open-loop or a feedback strategy. We will need for that to incorporate the antici-

pated climate at beginning of the season or revised anticipations during the season.

6The numerical procedure of resolution integrating the agronomic model, an economic model, and an

algorithm of search of the solution is detailed in Bontemps and Couture [1].
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Figure 1: Optimization process.

The resolution of this problem is based on a method of global optimization over the set

of possible irrigation schedules. In both cases, the set of constrains de�ned by (14) reduces

the space of available irrigation schedules. Therefore the problem may be solved using an

algorithm of search on all possible cases at each step. However, the objective functions being

quite di�erent, the procedure is di�erent for the two cases.

In the open-loop case, the farmer has some anticipation on the climate and computes his

optimal schedule at the beginning of the season. For any given value of the total quantity

of water, and for any schedule, the model de�ned above may evaluate the utility function

upon the anticipated climate. Because of the constrains inherent to the problem, the set

of all possible irrigation schedules is not too large. One may then compute the expected

utilities for each schedule. The optimal decision pattern is simply obtained by examining

exhaustively the corresponding set of expected utilities. Finally, we repeat this procedure

for di�erent total quantities of water, and for various climates. Once the schedule maximiz-

ing the expected utility is found, we run the model on the real climate and �nd the real

optimized utility, U�(Q).

In the feedback case, the problem is more tricky because at each decision step the farmer

observes the climate and revises his anticipation before computing the schedule for the period.

Because of the nature of our production function, which gives the output at the end of the
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season, we use an approximation of the feedback program called "open-loop feedback" and

assume that the farmer optimizes the schedule for the rest of the season. Since he does this

operation at each decision period, it only retains the decision for the period considered, the

approximation is therefore very close to the �pure� feedback strategy presented above (see

Figure 1). The optimization program uses the same methodology than in the open-loop case.

At each decision step we compute the set of the irrigation schedules still possible. We also

compute the new anticipation using Bayes's formula and the observed climatic information.

We run the crop simulation program over all these schedules taking into account the real

observed climate at that period, and the expected ones. We �nd the optimal expected utility

and schedule, take the corresponding decision and go to the next decision step7 until we reach

the �nal decision8 and get the complete schedule. As in the latter case, we then run the

real climate for that schedule and �nd the corresponding utility, U�(Q). We repeat this

procedure for di�erent quantities of water, and for various climatic years.

The database created in both situations consists in pairs (quantity of water, optimized

utility) for various climates, and is well designed for estimating the utility and demand

functions distributions over a climatic range. This database will be used through the non-

parametric estimation procedure. An important feature of the demand functions we are

estimating here is that they depend on stochastic climatic conditions, and therefore are

stochastic. We will therefore estimate these functions for di�erent climatic realizations and

derive the main characteristics of the demand function distribution.

2.3.2 Estimation

In order to estimate the water value, it is necessary to estimate the optimized utility function

and its derivative. We use a nonparametric method to estimate these functions. A major

advantage of nonparametric approach is that it allows to estimate an unknown function

without assuming its form9. Another feature is that the estimation is only based on the

data ; nonparametric estimators are all based on a weighted sum of functions of the data.

The general procedure for estimating the utility function for a given climate is described in

Appendix A; the procedure is the same for estimating demand functions.

7Note that for the �rst step, the procedure is exactly the one used in the open-loop case.
8The program may stop before the last period if there is no more choice, for example if the total quantity

of water has been used totally in the �rst decision periods.
9The choice of the speci�cations of the considered functions, in particular the yield-water function, is

always being debated at the present time.
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3 An application in the South-West of France

Demand functions were estimated using the former procedure with data from the South-West

of France (these data are described in Appendix B). In this area, agriculture is the largest

water consumer with 2/3 of total water consumption. During low river �ow periods there

is a strong competition for water with urban and industrial uses. In this area, irrigated

agriculture is quite recent and concerns most crops. Irrigation needs depend strongly on

weather conditions. Irrigation water is generally drawn from rivers supplied by mountain

reservoirs. The irrigation tools used in the South-West of France are generally sprinkler

systems. The reference crop is corn because it remains the main irrigated crop in this area.

3.1 Results

The stochastic variability is presented in these results through three climates a �dry� one

corresponding to real data of the year 1989, a �humid� year (1993) and a �normal� one (1991).
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Table 1: Utility functions for �Dry�, �Medium� and �Humid� year.
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Figure 2: Demand functions for �Dry�, �Medium� and �Humid� year.

We use these climatic years as high and low bounds of the distributions under study.

We have run the simulation model for 9 quantities10 of water for the irrigation season (Q 2

[0; 4000]m3=ha).

3.1.1 Utility

The �rst results we observe from the utilities estimations presented in Table 1 are in accor-

dance with what could be expected: Within a climatic year the more information you have,

the higher the utility. Between the climatic years the drier the climate, the higher the utility.

We may also notice that the shapes of the functions are quite identical.

3.1.2 Demand

Figure 2 reveals that the shapes of the demand functions are more or less the same. They

present four areas: In the �rst one the curve is highly decreasing, becomes almost �at in the

second, decreases greatly again in the third before changing its curvature once more at the

end. Another common feature of the distribution presented, is that in each case we �nd a

10This number is limited mainly because the computation time for the agronomic model EPIC is important

and because the optimization procedure requires a great number of simulations.
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Table 2: Parametric versus Nonparametric comparison in the feedback and open-loop case

null price for some level of the total quantity of water and a maximum price for very small

amounts of water. Note that, as for the utilities, the ordering of the functions is logical,

between the three climates.

These curves give a good representation of what the distribution should be. We will not

analyze in detail the general features of these curves, even if they represent the distribution

bounds of the irrigation water demand under uncertainty, and focus in section (3.2) on the

the shape of the mean willingness to pay functions (Figure 3). These curves are certainly

the ones a regulator would closely look before setting either a price or a quota in situations

where the water is scarce.

3.1.3 Parametric versus nonparametric demand functions

The nonparametric estimation of irrigation water demand provides a precise �gure of the

demand function without assuming any parametric speci�cation of this function. However it

may be interesting to have a parametric, and more practical, form for this function. More-

over, almost all irrigation demand studies use some ad-hoc parametric speci�cations for the

pro�t or production functions (Moore et al. [22] or Hassine and Thomas[12]) and there-

fore indirectly specify the demand function. We have estimated parametrically by nonlinear

regression, the mean demand functions using the data generated by the nonparametric pro-

cedure. We have tested several speci�cations having the same shape than the nonparametric

demand function. The table 3 gives some of the speci�cations we have tested and their
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Demands

Speci�cations Parameters Feedback Open

(1) : P = �1 + �1 � exp(�
1 �Q) �̂1 -0.043948 -0.058292

�̂1 1.220422 1.216876


̂1 0.000941 0.001006

r2 0.993415 0.9951764

(2) : P = �3 + �3=
p
Q �̂3 -0.113706 -0.147926

�̂3 13.498286 13.459313

r2 0.896510 0.898665

(3) : P = �4 + �4=
p
Q+ 
4=

3
p
Q �̂4 -1.388966 -1.4001683

�̂4 -42.634237 -41.660033


̂4 31.563734 30.994017

r2 0.99467271 0.994237

Table 3: Results of nonlinear regressions

associated R2.

We have graphically represented the comparison of the best parametric speci�cation and

the nonparametric estimations of the mean demand functions in the table 4. We may notice

two important points, �rst at this level11, the parametric curves gives a good approximation

of the nonparametric ones, but these parametric functions are, by construction, convex.

This means that the four areas we have discussed earlier and which are of great im-

portance, are no longer present in the demand functions. The use of these parametric

representations of the demand function for policy analysis may be misleading.

3.2 Economic analysis

3.2.1 Policy implication

The shape of the mean demand functions presented in �gure 3 are similar whatever the

information set. As previously mentioned, they present four main areas12 schematically

represented in �gure 4.

For high prices (above 0.50 francs=m3), the water irrigation demand is inelastic. This

11To have a better comparison and test between parametric and nonparametric curves one may use speci�c

tests (see Härdle and Mammen [11]), we only provide here indications based on the R2.
12In the �gure 2, these areas appear even more clearly for some climates and cases.
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Figure 3: Mean demand functions in the `open-loop� and �feedback� case.

area corresponds to very small quantities where the farmer considers water as an essential

input to crop growth; consequently, he will reduce his consumption for signi�cant changes

in water price. The second area (prices between 0.40 and 0.50 francs=m3), corresponds to

larger quantities where the farmer is more responsive to changes in water price. The plant

has reached a satisfactory level of growth; water is no more an essential input and is not

yet a risk reducing input. But, we �nd here a third, non-intuitive, area where the demand

becomes inelastic again (prices beyond 0.40 francs=m3). In this area the water is a risk

reducing input, the farmer chooses large water quantities to insure a maximum and certain

level of pro�t. Therefore to reduce the farmer's consumption the regulator has to increase

strongly the price. Finally, for very large quantities, the demand is elastic in the fourth area.

Demands

Feedback Open-loop

Price elasticity -0.31 -0.34

Table 4: Price elasticities for a consumption of 1500m3=Ha.

The real price of the water is in the third area (0.25 francs=m3), where the demand is
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quite inelastic. This visual analysis is con�rmed by the computation of the price elasticities

given in table 4. We �nd that the ratio of change in consumption is less than the ratio of

change in price for the real water price.

All previous results are crucial information for the regulator in order to analyze the e�ects

of a water regulation policy. There are two main ways of regulating, using quotas or prices.

Let's consider that the regulator imposes a quota, �xed13 to 1500m3=ha. We can analyze

the impact of the reduction of this quota down to 1350m3=ha (10% reduction) for the farmer.

The loss in the farmer's surplus is around 50 francs=ha (0:75%) whatever the case. If the

regulator wants to maintain the farmer's revenue at the the initial level, he will have to

subsidize the loss up to this sum.

If the regulator imposes a price regulation, the e�ects of the increase in price will depend

on the area of the initial and �nal prices. For example, if we analyze the increase of 0.10

francs=m3 starting with an initial price of 0.25 francs=m3, in the third or risk reduction

area, the total quantity of water is reduced by 230m3=ha (15:65% of the initial consumption)

and the surplus is reduced by 94 francs=ha (1:29% of the initial surplus). The same increase

from 0.40 francs=m3 up to 0.50 francs=m3, in the intermediate area, leads to a much greater

reduction of water by 420m3=ha (38:5%). The loss in terms of revenue is then 272francs=ha

(3:83% of the initial surplus). As the real price lies in the risk reducing area, the water pricing

policy will be e�cient if the increased price reaches the intermediate area, even more if it

reaches the left border of this area. An increase of the real price leading to a new price

within the same area will have few impacts on water consumption.

4 Conclusion

Our paper presents estimations of the seasonal irrigation water demand under uncertainty.

We based our approach on the evaluation of the farmer's willingness to pay for an additional

unit of the ressource under water scarcity and stochastic weather conditions. Utility functions

are obtained through a sequential decision program for two main strategies, open-loop and

feedback.

The farmer's dynamic program of decision is solved by a numerical procedure integrating

a crop-growth model, and an optimization process linked to the economic model. A non-

parametric estimation process is �nally performed to derive the demand fonctions from the

13This quantity corresponds to an average of the farmer's consumption in this area.
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Figure 4: Schematic representation of the seasonal irrigation water demand curves.

utilities. This procedure is applied to estimate demand functions for data from South-west

of France. We obtain these functions for various climatic conditions, and thus characterizing

the distribution of the demand functions under uncertainty.

We show that irrigation demand functions depend on climate and information sets, but

have the same shapes. They can be decomposed into four main areas. For small water

quantities, the demand is inelastic and then becomes elastic while increasing water quantities.

The demand becomes inelastic again and �nally appears elastic for larger water quantities.

This result (four-area decomposition of demand function) is a crucial information for the

regulator to de�ne a water regulation policy.
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A The nonparametric procedure of estimation

We will detail the general procedure for a given climate, the procedure is the same for

estimating the mean utility and mean demand function.

A.1 Utility function estimation

For this almost �nal step, we use the data resulting from the optimization procedure de-

scribed above, and simply represented for a given climate as a sequence of couples (Qi; U
�

i )i=1;:::;n.

For a given climate, the unknown function, U�(�), is estimated from n couples (Qi; U
�

i ).

The kernel estimator of utility function evaluated for any value of Q, is a weighted sum of

the observed responses Qi, the weight being a continuous function of observed quantities,

Qi, and current evaluation point Q (see Härdle [10] for details). It is de�ned as:

cU�(Q) =

Pn
i=1 U

�

i �K
�
Qi�Q

h

�
Pn

i=1K
�
Qi�Q

h

� 8 Q 2 R (16)

where K(�) is a kernel function, continuously di�erentiable. We use a Gaussian kernel func-

tion among existing kernel functions14. Note that cU�(Q) will inherit all the continuity and

di�erentiability properties of K. Therefore dU�(Q) is continuous and di�erentiable. The

bandwidth, noted h, determines the degree of smoothness of dU�(Q) ; its choice will be

discussed latter in this section.

A.2 Demand function estimation

In order to estimate the demand function, we will use the property that the utility function

estimator is di�erentiable. If the estimate cU�(Q) properly re�ects the utility function, U�(Q),

then the estimate of the utility function derivative is equal to the derivative of the estimate

of the utility function (Härdle [10]). Therefore a derivation of (16) with respect to Q will

give an estimator of the demand function15.

In other words, the estimator
d@U�
@Q

(�) of the unknown function @U�

@Q
(�) is just the derivative

14Estimations based on Epanechnikov kernel slightly di�er from the Gaussian kernel estimator.
15Note that the Mack and Müller's estimator [17] is easier to use for derivation since it has a denominator

which does not depend on the derivative variable (Q here). Since the derivation calculus are quite obvious

in our case, we have used the `classic' kernel estimator, but we suggest to use this estimator for advanced

derivation estimation.
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of the estimator dU�(�). More precisely:

d@U�

@Q
(Q) =

@

@Q

 Pn
i=1 U

�

i �K
�
Qi�Q

h

�
Pn

i=1K
�
Qi�Q

h

� !
8 Q 2 R (17)

This can be rewritten as:d@U�

@Q
(Q) =

1�Pn
i=1K

�
Qi�Q

h

��2 � �� � nX
i=1

U�

i �
1

h
�K 0

�Qi �Q

h
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� nX

i=1

K
�Qi �Q

h

��

+
� nX

i=1
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i K
�Qi �Q
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��
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� nX

i=1

1

h
�K 0

�Qi �Q

h

���
We will not present the details of this calculus here, note however that since the kernel

function K(�) is continuously di�erentiable, the estimator
d@U�
@Q

(Q) is also continuously di�er-

entiable.

A.3 Smoothing parameter selection

Choosing the bandwidth, h, is always a crucial problem. If h is small, then we get an interpo-

lation of the data. On the other hand, if h is high, then the estimator is a constant function

that assigns the sample mean to each point. There exist several approaches to bandwidth

selection (Vieu [28]) using theoretical considerations (plug-in method) or data-based method

(cross-validation method).

A feature of these approaches is that the selected bandwidth is not fully adapted, par-

ticularly if observation data are small. We use as a benchmark the value obtained by cross-

validation. The aim of this method is to choose a value for h minimizing the cross-validation

criterion, de�ned as a sum of distances between the estimator bU�(�) evaluated at Qi and the

real data observed U�

i . We denote the bandwidth selected by the cross-validation criterion by

h�. In practice, a re�nement consists in using a slightly smaller bandwidth than h� in order

to limit oversmoothing. Following Härdle ([10] p. 160), the smoothing parameter selected

for demand function estimator is the same that the one chosen for utility function estimator,

even if this argument may be discussed.

B Data

A �rst set of data is required by the crop growth simulator model. This data set includes

weather, soil, technical and irrigation practices, and crop data. The daily weather input �le
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Year Output price Water price Fixed Cost per irrigation Fixed cost

r (Francs/Tonne) c (Francs/m3) CF (Francs) CFT (Francs)

1989 1049 0.25 150 2150

1991 1038 0.25 150 2150

1993 778 0.25 150 2150

Table 5: Output and input prices (Source: ITCF [15]; Michalland [18] and Couture [8]).

was developed from data collected at the INRA station in Toulouse, for a 14-years series

(1983-1996). The soil characteristic data were included in the crop growth model. The soil

is clayey and chalky.

Economic output and input price data are included as a secondary data set, see table 5.

Output prices are farm-level producer prices. Input prices include irrigation variable costs

and �xed costs by watering, and other �xed production costs. The �xed cost, (CF ), per

irrigation includes energy and labor costs. The �xed production costs, (CFT ), are composed

of fertilizer, nitrate, seed, and hail insurance costs.
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