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Abstract: A ba tch sequencing model with se quence-dependent setup-times and -costs is used to c ompare mo delling and 
solving with two dif ferent general solvers. "Co nceptual mod els" are implemented in the con straint propagation / logic 
Programming language CHARME and solved with the PROLOG inference engine. The mixed-integer-programming (MIP) 
formulation of the same problem is solved with OSL, a st ate-of-the-art MIP solver. Modelling is easier in C HARME and 
computational results show, that the first approach outperforms the second one for instances with high capacity utilization. 

Keywords: SINGLE MACHINE BATCHING/ SEQUENCING, DEADLINES, SEQUENCE-DEPENDENT SETUP-TIMES 
AND -COSTS, LOGIC/ MIXED-INTEGER PROGRAMMING. 

Often problem solving must be done with general solvers as there is not enough time (or it is not 

worthwhile) to develop special purpose algoritbms. In these cases the user is interested in an easily 

manageable tool to implement and solve bis specific problem. We compare two different general solvers 

for a certain example problem: a mixed-integer programming (MIP) package and a constraint 

propagation/ logic programming language. Both have the advantage, that no algonthm must be 

specified, only the problem has to be represented in an appropriate form. We show how the same 

problem can be modelled difFerently for both solvers, and we are interested in their ability to encode 

constraints easily and in their Performance. 

Batch sequencing problem 

We consider a batch sequencing problem where a number of Jobs has to be processed on a Single 

machine/facility, each job is available at time zero and must be completed before its deadline. The set of 

jobs is partitioned into classes, and a sequence-dependent setup-time is needed when switching from 

jobs in one class to another. Jobs in one class have to be processed according to their earliest deadline 

ordering. This is motivated by considering jobs of one class as demands of a certain item. We consider 

four different objectives: First to minimize the sum of sequence dependent setup-costs (between classes) 

and earliness penalties for each job completed before its deadline (Case I); second, only the sequence-

dependent setup-costs (Case II); third only the sum of earliness costs has to be minimized (Case III); 

fourth - without any objective function - the problem may be viewed as a Constraint Satisfaction 

Problem (Case IV). 

Mixed-integer programming formulations versus logic programming 

A problem stated as a MlP-formulation can be solved with an LP-based branch-and-bound 

algonthm. As nonlinear expressions are not allowed, MlP-formulations often need a lot of decision 

variables which increases the computational complexity of the underlying branch-and-bound algorithm. 

The Solution times heavily depend on the quality of the LP-bounds which depend on the structure of the 

model. In general, MIP formulations for scheduling problems are largely intractable and not easy to 

State. For our tests we use OSL (cf. IBM [9]). 

Constraint propagation languages allow a declarative, even a nonlinear problem description. 

Variables in those languages have an associated domain and constraints are used to reduce the size of 

the domains and to eliminate infeasible values (constraint propagation). Originally, constraint 

propagation languages have been developed for constraint satisfaction problems (CSP), where values 

for each variable (out of its appropriate domain) must be found so that all constraints are satisfied. 

Normally, constraint propagation itself is not sufficient to find a Solution so that enumeration is 
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necessary, constraints now serve to cut the enumeration tree. Minimization of an objective can be done 

by finrting all solutions through enumeration and keeping the best objective value as an upper bound. So 

we expect constraint propagation languages to perform well for problems with a small Solution space 

when they are used for optimization. We use the constraint propagation language CHARME (cf. 

BULL [4]), other logic programming languages are described in e.g. Van Hentenryck [8], 

Review of related work 

Modelling capabilities and Performance of integer programming versus expert systems have been 

compared for one instance of a course scheduling problem by Dhar/Ranganathan [6], A survey of MIP 

formulations for scheduling problems is given in Blazewicz et al. [2], Gase III equals a MIP formulation 

given by Coleman [5] without tardiness. A similar MIP formulation of Cases I and II has been 

developed by Sielken [12]. The complexity of the batch sequencing problem has been considered by 

Monma/Potts [10], and by Bruno/Downey [3], who show the feasibility problem to be NP-hard, even 

for sequence-independent setup-times. Woodruff/Spearman [14] give a similar and extended 

"conceptual formulation" of the above problem and solve it with a tabu search heuristic. 

Unal/Kiran [13] address the feasibility problem in the context of order acceptance. 

In Section 1.1 we formulate a "conceptual model" of the batch sequencing problem, which is 

implemented in the constraint propagation / logic programming language CHARME. In Section 1.2 the 

different MIP formulations are presented. A numerical example illustrates the model in Section 2, and in 

Section 3 some computational experience is reported. Conclusions follow in Section 4. 

1. Model formulations 

In the following we present the parameters used for all formulations. 

Parameters 

J number of jobs 

J job index 0..J+1, 0 is the first (dummy) job, J+l the last (dummy) Job 

N number of jobclasses (=items) 

m index of thejobclass(=item), m=l..N 

set of jobs belonging to jobclass(=item) m 

hm holding costs per unit time of one unit of jobs injobclass m 
dj deadline of job j 

Pj processing time of job j 

J 5 II 

earliness costs per unit time of job j, j eMm 

^7im setup-time between jobclasses m and n, m,n = 1..N 

^7, setup-cost between jobclasses m and n, m,n = 1..N 
STij setup-time between job i and job j, i = 0..J, j : 

STr = {° for l>JeMm 
1J for; eMm,jeMn, m*n 

= 1..J 

setup-cost between job i and job j, i = 0..J, j = 
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B big number 

Jobs are labelled from 1 to J, and in each jobclass they are labelled in the earliest deadline order, so 

that V i,j e Mm and i<j we have d;<dj (cf. Fig.l in Section 2). The disjoint subsets Mm define a 

partition of the set of jobs. Earliness costs represent holding costs, so for each item they are 

proportional to the processing time and interchanging two jobs of the same item does not alter the 

earliness costs. The matrices STy and SCjj are enlarged matrices of the setup-time and -cost matrices 

between jobclasses. 

1.1 Conceptual model formulation 

After defining the following decision variables, a "conceptual model formulation" is given. Brackels 

0 are sometimes used to better distinguish variables and Indexes. 

Decision variables 
Xj-yj completion time ofjob j 

S sequence of jobs, 

Sfc job at position k 

R positions (ranks) of jobs, 

Rj position of job j 

J 
(1) 

s.t. 

4/M,] 
0=1-J) (2) 

(k=l..J) (3) 

(i<j; i,jeMm; m=l..N) (4) 

(j=l..J) (5) 

^[0] = 0. So= o (6) 

This formulation can be implemented directly in CHARME. The objective function (1) minimizes 

the sum of early completion and setup-costs for Case I. For Case II only the setup-costs (earliness costs 
= 0), for Case III only the earliness cost are minimized (setup-costs=0). Case IV determines a sequence 



4 

and completion times feasible w.r.t. (2) - (6). Constraints (2) are the "demand constraints" (each job 

must be completed before its deadline) and (3) accounts for a correct sequence on the machine: The 

completion time of the job at position k must be greater than the completion time of the previous job k-1 

plus the setup- and its processing time. Constraints (2) and (3) can be combined, i.e.: 

X[Sk-X] * -%]}' k = l J 

In (5) the arrays S (sequence) and R (position) are related, and (4) expresses the ordering of jobs in 

one jobclass in the earliest deadline ordering. With (6) the sequence is initialized. Note that the model 

can be concisely formulated by using decision variables as indexes (cf. Woodruff/Spearman [14]) and is 

therefore called a conceptual model. This is impossible in MIP-formulations where the variables and 

their coefficients must be identified in the formulation. 

1.2 Mixed-integer programming formulations 

The MIP formulations of the above models are less compact. In the equations we have to consider 

explicitly that each job may be scheduled at (nearly) each position of the sequence, which leads to 

constraints for each pair (ij). To achieve the best Performance we employ different MIP formulations 

for different objectives (cases). If sequence-dependent setup-costs have to be considered the binary 

decision variables must indicate that job j follows immediately job i. For Cases III and IV the number of 

binary variables can be reduced defming them as job j is scheduled (not necessarily immediately) after 

job i. 

MIP formulation Cases I and II (MIP A) 

Decision variables 
f 1 if job i is scheduled directly before j 
[O otherwise 

Xj completion time of job j 

J J J 
Min ^ ej (dj - Xj) + ]T ̂  SC^yy 

j=1 /=0y=l 
J*i 

s.t. 

J+1 
=1 

j=1 
j*i 

/=0 
i*j 

Xj + STjj +pj<Xj+B( 1 - yy) 

(7) 

(8) 

(9) 

(i=0..J; j=l..J+l;j#i) (10) 
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(j=L J+l) (11) 

0=1. J+l) (12) 

yij e{o»i} (i=<?. .J; j=l. J+l ;j*i) (13) 

o
 II s? (i>j; m=l..N) (14) 

£
 

II O
 

(15) 

For Case I both terms of the objective are important, in Case II the earliness costs are omitted 

(earliness costs = 0). The must define a permutation with 0 as the fxrst, J+l as the last job, so that 

(8) and (9) are assignment constraints (cf. Blazewicz et al.[2]). For y^ = 1 constraints (10) enforce the 

sequence on the machine (job i is scheduled directly before j). Constraints (11) correspond to (2). Due 

to the ordering in jobclasses some of the sequencing variables ytj are fixed in advance in (14). 

MIP formulation Cases III and VI (MIP B) 

Now, sequence dependent setup-costs need not to be considered in the objective. With the decision 

variables defined as below only half of the binary variables is needed. For Cases III and IV the setup-

time matrice is assumed to be triangular, that is STjj+STjfc > ST,•£ . In practice it is reasonable to 

assume that not two setups can be performed to accomplish one. 

Decision variables 
fl ifjob i is scheduled before job j 

^ |0 otherwise (=> job i is scheduled after]ob j) 

and the variables^ defined as above. 

J 

/=! 

s. t. 

STQJ + pj < Xj < dj (17) 

Xj - Xj + B(l-yij)> pj + STjj (i=l..J; j=i+ 1..J) (18) 

Xj - Xj + BytJ > pj + STjj (i=l..J;j=i+l..J) (19) 

0=7. (20) 

Ä/e{0,l} (i=l..J;j=i+l.J) (21) 

yjj = 0 (i>j; m=l..N) (22) 
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In Gase III the objective minimizes the earliness costs (setup-costs=0), in Case IV values for Xj and y^ 

subject to (17) - (22) must be found. Constraints (17) define the time window for the completion time of 

job j. The constraints (18) and (19) sequence the jobs; originally they have been proposed by Baker [1] 

and later on extended by Coleman [5] for the case of sequence-dependent setup-times. As in MIP A 

some of the can be fixed beforehand (22). Omitting the setup-costs in MIP A would give another 

formulation of Case III, but the Performance of MIP B is much better. Reversely, with a lot of 

additional continuous variables MIP B could also be extended to handle sequence-dependent setup-costs 

for Cases I and II, but again computational Performance of MIP A is better despite of the larger number 

of binary variables. In Table 1 we recall the difFerent objectives for the different cases. 

Table 1. Obfectives of the different cases 

Minimization of Case I Case II Case III Case IV 

setup-costs • • - -

earliness costs • - • 

2. Numerical example 

A small instance illustrates the difFerent models. 4 jobs labelled with 1..4 have to be scheduled on a 

Single machine. Jobs 1,2 are from item D, jobs 3,4 from item E. Inventory holding costs h are translated 

into earliness costs. Between the jobs the setup-time and setup-cost matrices are given (with identical 

columns and rows for jobs from D and jobs from E, respectively). A setup "structure" of this kind can 

be motivated as item D having a light, E having a dark colour. Switching from light to dark is much less 

expensive and time consuming than a setup from dark to light. The first line gives the setup-times and 

setup-costs if job j is scheduled first. 

= 

3 2 2^ 

0 0 11 

0 0 11 

3 3 0 0 

J 3 0 0, 

For each job we know the earliness costs ej, its deadline dj and its processing time Pj (cf. Table 2). 

90 90 60 60 

0 0 30 30 

0 0 30 30 

90 90 0 0 

90 90 0 0 

n 

Table 2. Data of the example 

Item h ,/ eJ dJ Pj 
D 

D 1.5 1 9 21 6 
D 

2 9 33 6 E 

E 0.66 3 2 21 3 
15 

4 6 33 9 

Figure 1. Jobs scheduled at their deadline 

© 

© 

© 

(t> 

18 21 24 27 33 
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A Solution can be represented by the decision variables sequence (S) and completion times (X). For 

Case I we get an optimal Solution with costs of 60 + (21-8) 2 + 90 + (21-17) 9 + 0 + (33-23)-9 + 30 + 0 

= 332 (Fig.2). Between jobs 1 and 2 we have a setup-time of 0, whereas between jobs 3 and 1 the setup-

time is 3. 

Table 3. Solution Case I Figure 2. Optimal schedule Case I with 332 

k 1 2 3 4 

Sk 3 1 2 4 

*k 17 23 8 33 

©Hl © ® I © 

11 17 
setup time 

23 33 

For the other Cases II (Fig.3) and III (Fig.4) different schedules are optimal. Note that idle time between 

jobs does not alter the setup State (Fig. 3). 

Figure 3. Optimal schedule Case II with 120 Figure 4. Optimal schedule Case III with 149 

© © I© © ©• © I © © 

11 14 21 24 33 0 2 14 24 27 33 

3. Computational Results 

The conceptual model has been implemented in CHARME and the MIP formulation has been solved 

with OSL. We describe the experimental design and provide the Solution times of 24 small instances 

solved for the four cases, so that 96 problems have been solved with both approaches. We consider 

3 different "setup structures" AI, A2 and A3. Structure AI has sequence-independent, A2 has 

sequence-dependent setup-times and -costs motivated through the colour example, costs correspond to 

setup-times. A3 has a setup-time matrix equal to A2, but setup-costs are arbitrarily. Instances have 

been generated as follows: For processing times and a setup-time matrix given a sequence is 

constructed, then deadlines are assigned to jobs so that the first, the second etc. job of each class have 

the same deadline. Thus lotsizing problems are imitated where demand often occurs in identical periods 

(for an Integration of lotsizing and scheduling cf. Haase [7], Potts/Van Wassenhove [11]). Lower 

capacitated problems (L) are generated by multiplying deadlines with 1.4; problems with high capacity 

utilization (H) are supposed to have a small, problems with low capacity utilization a large Solution 

space. Holding costs of each class are different, and average setup-costs approximately equal the 

holding costs incurred when two successive jobs are batched together. The instances are available from 

the authors upon request. 

OSL runs under AIX Unix on an IBM RS 6000/550 RISC Workstation, CHARME runs on an IBM 

486/33Mhz PC under SCO Unix. The Workstation is at least 2 times faster than the PC, factors difFer 

from 2-5 depending on the Operations (floating point or integer), so we took factor 2. Table 4 gives the 
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average running times of CHARME over 6 mstances, i.e. the setup structures AI, AI, A3 and higher 

and lower capacity, respectively. 

Table 4. Average CPU-times of CHARME in sec 
#jobclasses #jobs Case I Case II Case III Case IV 

2 10 22 16 16 3 
14 109 87 75 12 

3 9 46 33 33 2 
12 575 511 424 16 

Apparently Case I is the most challenging problem where (as in lotsizing models) the sum of 

earliness (holding) and setup-costs has to be minimized. 

We define ratio as 

CPU-time OSL ratio = 2 
CPU-time CHARME 

which represents the different Solution times of both solvers. The factor 2 takes into account the 

different machine speeds. In each entry of Table 5 we take the average ratio over the 3 different setup 

structures. 

Table 5. ratio o f CPU-times 
#jobclasses #jobs capacity Case I Case II Case III Case IV 

utilization 
2 10 H 4.6 109.6 0.2 0.2 

L 1.2 0.2 0.1 0.2 
14 H a) 16.0 b) 75.0 0.2 0.4 

L 1.8 0.8 0.4 0.1 

3 9 H 15.2 7.8 0.3 0.4 
L 1.0 0.4 0.4 0.6 

12 H b) 5.6 c) 0.3 0.3 
L 0.8 0.2 0.4 0.5 

a) 1 of 3 problems not solved by OSL 
b) 2 of 3 problems not solved by OSL 
c) none of 3 problems solved by OSL 

The following facts merit attention: 

Cases I and II: 

With the formulation MIP A 8 of 96 problems were not solvable with OSL even in a very large 

amount of computation time. MIP Solution times are widespread over the different setup structures, 

CHARME Solution times differ much less. Solution times for CHARME are small for high capacity 

utilization (small Solution space) but increase for loosely capacitated problems. In contrast OSL is slow 

for high capacity utilization (H) and becomes faster for lower utilization (L), so the ratios are high for 

"tight" problems. 
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Cases III and IV: 

There Solution times of OSL are generally better compared to CHARME. For Case III Solution times 

of both solvers decrease with higher capacity utilization; for Case IV the reverse is true. 

For all Cases I to IV CHARME solves problems with sequence-dependent setups (cf. structures A2, 

A3) much faster than those without sequence dependency. Especially the better Performance of 

CHARME for tighter instances in Cases I and II is surprising. 

4. Conclusions 

A batch sequencing problem has been used to illustrate modelling and solving with general solvers, a 

MIP solver and a logic programming solver. For the batch sequencing problem modelling in CHARME, 

the logic solver, could be done much easier via a conceptual model taking decision variables as indexes. 

CHARME also does not need a matrix generator before solving a problem. To achieve a comparable 

Performance, for different objectives different MlP-models had to be used, which required more 

modelling skill than for CHARME. High capacity utilization does not improve the LP-bounds for this 

sequencing problem, so that Solution times of the MIP solver OSL are sometimes very large. 

Furthermore, modifications and extensions of the MIP formulation are more difficult. 

For practica! purposes it may also be interesting to get all solutions of a specific problem, a 

possibility easily offered by constraint propagation languages. Especially in an early stage of the 

modelling process this gives important insights (e.g. reveal forgotten constraints) and is also well suited 

for multicriteria decision making if other objectives have to be met. 

In contrast to our results are experiences with CHARME when MIP formulations are implemented 

directly in CHARME. Then the branch-and-bound algorithm based on LP-relaxation solves the problem 

more effectively. 
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