
Jordan, Carsten; Drexl, Andreas

Working Paper — Digitized Version

A comparison of logic and mixed-integer programming
solvers for batch sequencing with sequence-dependent
setups

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 322

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Jordan, Carsten; Drexl, Andreas (1993) : A comparison of logic and mixed-integer
programming solvers for batch sequencing with sequence-dependent setups, Manuskripte aus
den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 322, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155402

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155402
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 322

A Comparison of Logic and Mixed-Integer

Programming Solvers for Batch Sequencing

with Sequence-Dependent Setups

Jordan, C. and A. Drexl

July 1993

Carsten Jordan, Andreas Drexl, Institut für Betriebswirtschaftslehre, Christian-

Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany.

Abstract: A ba tch sequencing model with se quence-dependent setup-times and -costs is used to c ompare mo delling and
solving with two dif ferent general solvers. "Co nceptual mod els" are implemented in the con straint propagation / logic
Programming language CHARME and solved with the PROLOG inference engine. The mixed-integer-programming (MIP)
formulation of the same problem is solved with OSL, a st ate-of-the-art MIP solver. Modelling is easier in C HARME and
computational results show, that the first approach outperforms the second one for instances with high capacity utilization.

Keywords: SINGLE MACHINE BATCHING/ SEQUENCING, DEADLINES, SEQUENCE-DEPENDENT SETUP-TIMES
AND -COSTS, LOGIC/ MIXED-INTEGER PROGRAMMING.

Often problem solving must be done with general solvers as there is not enough time (or it is not

worthwhile) to develop special purpose algoritbms. In these cases the user is interested in an easily

manageable tool to implement and solve bis specific problem. We compare two different general solvers

for a certain example problem: a mixed-integer programming (MIP) package and a constraint

propagation/ logic programming language. Both have the advantage, that no algonthm must be

specified, only the problem has to be represented in an appropriate form. We show how the same

problem can be modelled difFerently for both solvers, and we are interested in their ability to encode

constraints easily and in their Performance.

Batch sequencing problem

We consider a batch sequencing problem where a number of Jobs has to be processed on a Single

machine/facility, each job is available at time zero and must be completed before its deadline. The set of

jobs is partitioned into classes, and a sequence-dependent setup-time is needed when switching from

jobs in one class to another. Jobs in one class have to be processed according to their earliest deadline

ordering. This is motivated by considering jobs of one class as demands of a certain item. We consider

four different objectives: First to minimize the sum of sequence dependent setup-costs (between classes)

and earliness penalties for each job completed before its deadline (Case I); second, only the sequence-

dependent setup-costs (Case II); third only the sum of earliness costs has to be minimized (Case III);

fourth - without any objective function - the problem may be viewed as a Constraint Satisfaction

Problem (Case IV).

Mixed-integer programming formulations versus logic programming

A problem stated as a MlP-formulation can be solved with an LP-based branch-and-bound

algonthm. As nonlinear expressions are not allowed, MlP-formulations often need a lot of decision

variables which increases the computational complexity of the underlying branch-and-bound algorithm.

The Solution times heavily depend on the quality of the LP-bounds which depend on the structure of the

model. In general, MIP formulations for scheduling problems are largely intractable and not easy to

State. For our tests we use OSL (cf. IBM [9]).

Constraint propagation languages allow a declarative, even a nonlinear problem description.

Variables in those languages have an associated domain and constraints are used to reduce the size of

the domains and to eliminate infeasible values (constraint propagation). Originally, constraint

propagation languages have been developed for constraint satisfaction problems (CSP), where values

for each variable (out of its appropriate domain) must be found so that all constraints are satisfied.

Normally, constraint propagation itself is not sufficient to find a Solution so that enumeration is

2

necessary, constraints now serve to cut the enumeration tree. Minimization of an objective can be done

by finrting all solutions through enumeration and keeping the best objective value as an upper bound. So

we expect constraint propagation languages to perform well for problems with a small Solution space

when they are used for optimization. We use the constraint propagation language CHARME (cf.

BULL [4]), other logic programming languages are described in e.g. Van Hentenryck [8],

Review of related work

Modelling capabilities and Performance of integer programming versus expert systems have been

compared for one instance of a course scheduling problem by Dhar/Ranganathan [6], A survey of MIP

formulations for scheduling problems is given in Blazewicz et al. [2], Gase III equals a MIP formulation

given by Coleman [5] without tardiness. A similar MIP formulation of Cases I and II has been

developed by Sielken [12]. The complexity of the batch sequencing problem has been considered by

Monma/Potts [10], and by Bruno/Downey [3], who show the feasibility problem to be NP-hard, even

for sequence-independent setup-times. Woodruff/Spearman [14] give a similar and extended

"conceptual formulation" of the above problem and solve it with a tabu search heuristic.

Unal/Kiran [13] address the feasibility problem in the context of order acceptance.

In Section 1.1 we formulate a "conceptual model" of the batch sequencing problem, which is

implemented in the constraint propagation / logic programming language CHARME. In Section 1.2 the

different MIP formulations are presented. A numerical example illustrates the model in Section 2, and in

Section 3 some computational experience is reported. Conclusions follow in Section 4.

1. Model formulations

In the following we present the parameters used for all formulations.

Parameters

J number of jobs

J job index 0..J+1, 0 is the first (dummy) job, J+l the last (dummy) Job

N number of jobclasses (=items)

m index of thejobclass(=item), m=l..N

set of jobs belonging to jobclass(=item) m

hm holding costs per unit time of one unit of jobs injobclass m
dj deadline of job j

Pj processing time of job j

J 5 II

earliness costs per unit time of job j, j eMm

^7im setup-time between jobclasses m and n, m,n = 1..N

^7, setup-cost between jobclasses m and n, m,n = 1..N
STij setup-time between job i and job j, i = 0..J, j :

STr = {° for l>JeMm
1J for; eMm,jeMn, m*n

= 1..J

setup-cost between job i and job j, i = 0..J, j =

3

B big number

Jobs are labelled from 1 to J, and in each jobclass they are labelled in the earliest deadline order, so

that V i,j e Mm and i<j we have d;<dj (cf. Fig.l in Section 2). The disjoint subsets Mm define a

partition of the set of jobs. Earliness costs represent holding costs, so for each item they are

proportional to the processing time and interchanging two jobs of the same item does not alter the

earliness costs. The matrices STy and SCjj are enlarged matrices of the setup-time and -cost matrices

between jobclasses.

1.1 Conceptual model formulation

After defining the following decision variables, a "conceptual model formulation" is given. Brackels

0 are sometimes used to better distinguish variables and Indexes.

Decision variables
Xj-yj completion time ofjob j

S sequence of jobs,

Sfc job at position k

R positions (ranks) of jobs,

Rj position of job j

J
(1)

s.t.

4/M,]
0=1-J) (2)

(k=l..J) (3)

(i<j; i,jeMm; m=l..N) (4)

(j=l..J) (5)

^[0] = 0. So= o (6)

This formulation can be implemented directly in CHARME. The objective function (1) minimizes

the sum of early completion and setup-costs for Case I. For Case II only the setup-costs (earliness costs
= 0), for Case III only the earliness cost are minimized (setup-costs=0). Case IV determines a sequence

4

and completion times feasible w.r.t. (2) - (6). Constraints (2) are the "demand constraints" (each job

must be completed before its deadline) and (3) accounts for a correct sequence on the machine: The

completion time of the job at position k must be greater than the completion time of the previous job k-1

plus the setup- and its processing time. Constraints (2) and (3) can be combined, i.e.:

X[Sk-X] * -%]}' k = l J

In (5) the arrays S (sequence) and R (position) are related, and (4) expresses the ordering of jobs in

one jobclass in the earliest deadline ordering. With (6) the sequence is initialized. Note that the model

can be concisely formulated by using decision variables as indexes (cf. Woodruff/Spearman [14]) and is

therefore called a conceptual model. This is impossible in MIP-formulations where the variables and

their coefficients must be identified in the formulation.

1.2 Mixed-integer programming formulations

The MIP formulations of the above models are less compact. In the equations we have to consider

explicitly that each job may be scheduled at (nearly) each position of the sequence, which leads to

constraints for each pair (ij). To achieve the best Performance we employ different MIP formulations

for different objectives (cases). If sequence-dependent setup-costs have to be considered the binary

decision variables must indicate that job j follows immediately job i. For Cases III and IV the number of

binary variables can be reduced defming them as job j is scheduled (not necessarily immediately) after

job i.

MIP formulation Cases I and II (MIP A)

Decision variables
f 1 if job i is scheduled directly before j
[O otherwise

Xj completion time of job j

J J J
Min ^ ej (dj - Xj) +]T ̂ SC^yy

j=1 /=0y=l
J*i

s.t.

J+1
=1

j=1
j*i

/=0
i*j

Xj + STjj +pj<Xj+B(1 - yy)

(7)

(8)

(9)

(i=0..J; j=l..J+l;j#i) (10)

5

(j=L J+l) (11)

0=1. J+l) (12)

yij e{o»i} (i=<?. .J; j=l. J+l ;j*i) (13)

o
 II s? (i>j; m=l..N) (14)

£

II O

(15)

For Case I both terms of the objective are important, in Case II the earliness costs are omitted

(earliness costs = 0). The must define a permutation with 0 as the fxrst, J+l as the last job, so that

(8) and (9) are assignment constraints (cf. Blazewicz et al.[2]). For y^ = 1 constraints (10) enforce the

sequence on the machine (job i is scheduled directly before j). Constraints (11) correspond to (2). Due

to the ordering in jobclasses some of the sequencing variables ytj are fixed in advance in (14).

MIP formulation Cases III and VI (MIP B)

Now, sequence dependent setup-costs need not to be considered in the objective. With the decision

variables defined as below only half of the binary variables is needed. For Cases III and IV the setup-

time matrice is assumed to be triangular, that is STjj+STjfc > ST,•£ . In practice it is reasonable to

assume that not two setups can be performed to accomplish one.

Decision variables
fl ifjob i is scheduled before job j

^ |0 otherwise (=> job i is scheduled after]ob j)

and the variables^ defined as above.

J

/=!

s. t.

STQJ + pj < Xj < dj (17)

Xj - Xj + B(l-yij)> pj + STjj (i=l..J; j=i+ 1..J) (18)

Xj - Xj + BytJ > pj + STjj (i=l..J;j=i+l..J) (19)

0=7. (20)

Ä/e{0,l} (i=l..J;j=i+l.J) (21)

yjj = 0 (i>j; m=l..N) (22)

6

In Gase III the objective minimizes the earliness costs (setup-costs=0), in Case IV values for Xj and y^

subject to (17) - (22) must be found. Constraints (17) define the time window for the completion time of

job j. The constraints (18) and (19) sequence the jobs; originally they have been proposed by Baker [1]

and later on extended by Coleman [5] for the case of sequence-dependent setup-times. As in MIP A

some of the can be fixed beforehand (22). Omitting the setup-costs in MIP A would give another

formulation of Case III, but the Performance of MIP B is much better. Reversely, with a lot of

additional continuous variables MIP B could also be extended to handle sequence-dependent setup-costs

for Cases I and II, but again computational Performance of MIP A is better despite of the larger number

of binary variables. In Table 1 we recall the difFerent objectives for the different cases.

Table 1. Obfectives of the different cases

Minimization of Case I Case II Case III Case IV

setup-costs • • - -

earliness costs • - •

2. Numerical example

A small instance illustrates the difFerent models. 4 jobs labelled with 1..4 have to be scheduled on a

Single machine. Jobs 1,2 are from item D, jobs 3,4 from item E. Inventory holding costs h are translated

into earliness costs. Between the jobs the setup-time and setup-cost matrices are given (with identical

columns and rows for jobs from D and jobs from E, respectively). A setup "structure" of this kind can

be motivated as item D having a light, E having a dark colour. Switching from light to dark is much less

expensive and time consuming than a setup from dark to light. The first line gives the setup-times and

setup-costs if job j is scheduled first.

=

3 2 2^

0 0 11

0 0 11

3 3 0 0

J 3 0 0,

For each job we know the earliness costs ej, its deadline dj and its processing time Pj (cf. Table 2).

90 90 60 60

0 0 30 30

0 0 30 30

90 90 0 0

90 90 0 0

n

Table 2. Data of the example

Item h ,/ eJ dJ Pj
D

D 1.5 1 9 21 6
D

2 9 33 6 E

E 0.66 3 2 21 3
15

4 6 33 9

Figure 1. Jobs scheduled at their deadline

©

©

©

(t>

18 21 24 27 33

7

A Solution can be represented by the decision variables sequence (S) and completion times (X). For

Case I we get an optimal Solution with costs of 60 + (21-8) 2 + 90 + (21-17) 9 + 0 + (33-23)-9 + 30 + 0

= 332 (Fig.2). Between jobs 1 and 2 we have a setup-time of 0, whereas between jobs 3 and 1 the setup-

time is 3.

Table 3. Solution Case I Figure 2. Optimal schedule Case I with 332

k 1 2 3 4

Sk 3 1 2 4

*k 17 23 8 33

©Hl © ® I ©

11 17
setup time

23 33

For the other Cases II (Fig.3) and III (Fig.4) different schedules are optimal. Note that idle time between

jobs does not alter the setup State (Fig. 3).

Figure 3. Optimal schedule Case II with 120 Figure 4. Optimal schedule Case III with 149

© © I© © ©• © I © ©

11 14 21 24 33 0 2 14 24 27 33

3. Computational Results

The conceptual model has been implemented in CHARME and the MIP formulation has been solved

with OSL. We describe the experimental design and provide the Solution times of 24 small instances

solved for the four cases, so that 96 problems have been solved with both approaches. We consider

3 different "setup structures" AI, A2 and A3. Structure AI has sequence-independent, A2 has

sequence-dependent setup-times and -costs motivated through the colour example, costs correspond to

setup-times. A3 has a setup-time matrix equal to A2, but setup-costs are arbitrarily. Instances have

been generated as follows: For processing times and a setup-time matrix given a sequence is

constructed, then deadlines are assigned to jobs so that the first, the second etc. job of each class have

the same deadline. Thus lotsizing problems are imitated where demand often occurs in identical periods

(for an Integration of lotsizing and scheduling cf. Haase [7], Potts/Van Wassenhove [11]). Lower

capacitated problems (L) are generated by multiplying deadlines with 1.4; problems with high capacity

utilization (H) are supposed to have a small, problems with low capacity utilization a large Solution

space. Holding costs of each class are different, and average setup-costs approximately equal the

holding costs incurred when two successive jobs are batched together. The instances are available from

the authors upon request.

OSL runs under AIX Unix on an IBM RS 6000/550 RISC Workstation, CHARME runs on an IBM

486/33Mhz PC under SCO Unix. The Workstation is at least 2 times faster than the PC, factors difFer

from 2-5 depending on the Operations (floating point or integer), so we took factor 2. Table 4 gives the

8

average running times of CHARME over 6 mstances, i.e. the setup structures AI, AI, A3 and higher

and lower capacity, respectively.

Table 4. Average CPU-times of CHARME in sec
#jobclasses #jobs Case I Case II Case III Case IV

2 10 22 16 16 3
14 109 87 75 12

3 9 46 33 33 2
12 575 511 424 16

Apparently Case I is the most challenging problem where (as in lotsizing models) the sum of

earliness (holding) and setup-costs has to be minimized.

We define ratio as

CPU-time OSL ratio = 2
CPU-time CHARME

which represents the different Solution times of both solvers. The factor 2 takes into account the

different machine speeds. In each entry of Table 5 we take the average ratio over the 3 different setup

structures.

Table 5. ratio o f CPU-times
#jobclasses #jobs capacity Case I Case II Case III Case IV

utilization
2 10 H 4.6 109.6 0.2 0.2

L 1.2 0.2 0.1 0.2
14 H a) 16.0 b) 75.0 0.2 0.4

L 1.8 0.8 0.4 0.1

3 9 H 15.2 7.8 0.3 0.4
L 1.0 0.4 0.4 0.6

12 H b) 5.6 c) 0.3 0.3
L 0.8 0.2 0.4 0.5

a) 1 of 3 problems not solved by OSL
b) 2 of 3 problems not solved by OSL
c) none of 3 problems solved by OSL

The following facts merit attention:

Cases I and II:

With the formulation MIP A 8 of 96 problems were not solvable with OSL even in a very large

amount of computation time. MIP Solution times are widespread over the different setup structures,

CHARME Solution times differ much less. Solution times for CHARME are small for high capacity

utilization (small Solution space) but increase for loosely capacitated problems. In contrast OSL is slow

for high capacity utilization (H) and becomes faster for lower utilization (L), so the ratios are high for

"tight" problems.

9

Cases III and IV:

There Solution times of OSL are generally better compared to CHARME. For Case III Solution times

of both solvers decrease with higher capacity utilization; for Case IV the reverse is true.

For all Cases I to IV CHARME solves problems with sequence-dependent setups (cf. structures A2,

A3) much faster than those without sequence dependency. Especially the better Performance of

CHARME for tighter instances in Cases I and II is surprising.

4. Conclusions

A batch sequencing problem has been used to illustrate modelling and solving with general solvers, a

MIP solver and a logic programming solver. For the batch sequencing problem modelling in CHARME,

the logic solver, could be done much easier via a conceptual model taking decision variables as indexes.

CHARME also does not need a matrix generator before solving a problem. To achieve a comparable

Performance, for different objectives different MlP-models had to be used, which required more

modelling skill than for CHARME. High capacity utilization does not improve the LP-bounds for this

sequencing problem, so that Solution times of the MIP solver OSL are sometimes very large.

Furthermore, modifications and extensions of the MIP formulation are more difficult.

For practica! purposes it may also be interesting to get all solutions of a specific problem, a

possibility easily offered by constraint propagation languages. Especially in an early stage of the

modelling process this gives important insights (e.g. reveal forgotten constraints) and is also well suited

for multicriteria decision making if other objectives have to be met.

In contrast to our results are experiences with CHARME when MIP formulations are implemented

directly in CHARME. Then the branch-and-bound algorithm based on LP-relaxation solves the problem

more effectively.

Acknowledgements:

We thank Ulrich Derigs from the University of Köln for helpful comments and Uwe Penke from the

PC-Laboratory for his technical support.

References

[1] Baker, K.R., 1974. Introduction to sequencing and scheduling, Wiley, New York .

[2] Blazewicz, J., M. Dror and J. Weglarz, 1991. Mathematical programming formulations for
machine scheduling: a survey, European Journal of Operations Research, Vol. 51, pp. 283-300.

[3] Bruno, J. and P. Downey, 1978. Complexity of task sequencing with deadlines, setup-times and
changeover costs, SIAM Journal on Computing, Vol.7, pp. 393-404.

[4] BULL, 1990. Charme VI User's Guide and reference manual, Artificial intelligence development
centre, BULL S.A. France.

10

[5] Coleman, B. J., 1993. A simple model for optimizing the Single machine early/tardy problem with
sequence dependent setups, Production and Operations Management, Voll, pp. 225-228.

[6] Dhar, V. and N. Ranganathan, 1990. Integer programming versus expert systems: an experimental
comparison, Communications of the ACM, Vol.33, pp. 323-336.

[7] Haase, K., 1993 . Lotsizing and scheduling for production planning, PhD Thesis, University of
Kiel.

[8] Van Hentenryck, P., 1989. Constraint Satisfaction in Logic Programming, The MIT Press,
Cambridge, MA, USA.

[9] IBM Corporation, 1992. Optimization Subroutine Library, Guide and reference, Release 2,
Kingston NY, USA.

[10] Monma, C.L. and C.N. Potts, 1989. On the complexity of scheduling with batch setup times,
Operations Research, Vol. 37, pp. 798-804.

[11] Potts, C.N. and L.N. van Wassenhove, 1992. Integrating scheduling with batching and lot-sizing: a
review of algorithms and complexity, Journal of the Operational Research Society, Vol. 43,
pp. 395-406.

[12] Sielken, R., 1976. Sequencing with setup costs by zero-one mixed integer linear programming,
AIIE Transactions, Vol. 8, pp. 369-371.

[13] Unal, A. and A.S. Kiran, 1992. Batch sequencing, I1E Transactions, Vol. 24, pp. 73-83.

[14] Woodruff, DL. and M.L.Spearman, 1992. Sequencing and batching for two classes of jobs with
deadlines and setup times, Production and Operations Management, Vol l, pp. 87-102.

