
Kimms, Alf

Working Paper — Digitized Version

A cellular automaton based heuristic for multi-level lot
sizing and scheduling

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 331

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (1993) : A cellular automaton based heuristic for multi-level lot sizing
and scheduling, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel,
No. 331, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155409

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155409
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 331

A Cellular Automaton Based Heuristic

for

Multi-Level Lot Sizing and Scheduling

A. Kimms

November 1993

Dipl.-Inform. Alf Kimms, Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,

Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24118 Kiel, Germany

Abstract: Cellular automata were used to model and to simulate phenomena in the area of physics, biology and medicine.

Jn this paper it is now shown how the idea of cel lular automata can be appl ied to optimization problems as well. As a n

example a cellular automaton is used as a basis for solving multi-level lot sizing and scheduling problems to suboptimality.

We will furthennore give an outline of a proof that any genetic algorithm can be interpreted as a cellular automaton.

Keywords: Production planning, lot sizing, scheduling, PLSP, multi-level, cellular automata, hybrid heuristics,

genetic algorithms.

1 Introduction

Integer and combinatorial optimization belong to the most challenging subjects in Operations research. While a

mixed-integer program can often be formulated in order to describe a certain problem mathematically, the

optimal Solution of a complex real-world problem can more often not be computed by means of Standard

solvers. To attadc this problem a lot of special puipose heuristics were developed which render it possible to

solve a narrow class of problems to suboptimality (or more optimistically spoken to find an 8-approximate

Solution [Nemhauser and Wolsey 1988]). The advantages of such heuristics when compared to exact methods

are a short response time and more important the capability to find suboptimal but feasible solutions where

exact methods fail. These heuristics are usually classified as construction, improvement, mathematical

Programming, partitioning, restriction or relaxaüon methods [Sinclair 1993, Zanakis et al. 1989]. More recent

so-called meta algorithms [Hertz and de Weira 1990, Sinclair 1993] can be combined with existing approaches

to guide the Solution process. Some of these methods are known as simulated annealing [Collins et al. 1988,

Johnson et al. 1989 and 1991], genetic algorithms [Domdorf and Pesch 1992, Goldberg 1989, Holland 1975,

Liepins and Hilliard 1989, Mühlenbein et al. 1988] and tabu search [Faigle and Kern 1992, Glover 1989,

1990a and 1990b, Hertz and de Weira 1990], respectively. In the sequel we will introduce the idea of cellular

automata [Toffoli and Margolus 1988, Wolfram 1986] and as an example we will show how this idea can be

used as a basis for solving a haid production planning problem to suboptimality. The next section will thus be

dedicated to the fundamentals of cellular automata. To relate this approach to other work, we will subsequently

point out that any genetic algorithm can be interpreted as a cellular automaton. Afterwards, we will present the

multi-level, single-machine lot sizing and scheduling problem which will be the subject of our consideration.

We will then develop a cellular automaton based heuristic and give some computational results.

2 Cellular Automata

A deterministic cellular automaton is defined by six components:

• A (finite or infinite) lattice A £ Zm of so-called cells. The lattice can be of any riimp.nsinn m e N+.

Each cell is uniquely identified by a tuple of the form (A.% Xm) g A.

2

• A state-space I. Each cell (Xj,..., A^) e A is in a well-defined State CT [(A,j Xm)] e S. The State of

the whole lattice is denoted by a [A] e S'AI.

• An initial State of the lattice CT0 [A] e ZlAl, i.e. an initial State for each of the cells.
• Afamilyofstate-transitionfunctions6^[Aj: (Ax E)-»E.

(A stochastic state-transition rule would lead to the notion of stochastic cellular automata.)

• A neighborhood function v : A -> p (A) where p denotes the powerset Operator.

• A global clock.

The automaton then works as follows: Sta rting with the initial State of th e lattice, the state-transition
function 0CT j A] Aat corresponds to the current State er [A] is simultaneously applied to all cells at eveiy clock

tick where the (new) State of a cell (Xlt..., e A depends on the (old) states of the cells in the neighborhood
v [(^i> — > \n)]•

Example: One of the most well-known cellular automata is the "Game of Life" invented by Conway in

1968 [Gardner 1970]. He used a two-dimensional lattice to study the life cycles of (biological) cells: Each cell

can be either dead or alive. A potential scenario is that a living cell survives ifitis surrounded by two or three

other living cells otherwise it dies. A dead cell can be revived (i.e. a new cell is bom) if it is surrounded by

exactly three living cells. Figure 1 illustrates the behavior of this automaton.

Figure 1: "Game of Life"

| | dead cell ggj living cell

3 Well-Known Stochastic Cellular Automata: Genetic Algorithms

Genetic algorithms [Goldberg 1989, Holland 1975] were deduced from biology whe re in a population of life

forms the fittest individuals survive while the weakest die. The basic idea of these algorithms is to code a

feasible Solution of a problem as a string (which is termed individual or chromosome while a Single character

within such a string as called a gene). The task is to find an individual which defines a "good" Solution to a

given problem. To do so, a population of size P e N+ (which is the set of "parent"-individuals) is considered.

By using some basic genetic Operators (which are to be defined), a number of C e N+ new individuals (which

is the set of "child'-individuals) can be constructed. A fitness function is then used to decide which individuals

out of the pool of P+C individuals survive to form a new population (or generation) of size P. Noteworthy to

say, that "parenf'-individuals may survive for several generations if they are very fit. This process is repeated

over and over again in search for an individual with utmost fitness. More formally, a genetic algorithm is

defined as follows:

3

• P e N+s the size of the "parenf-population.

• C e N+, the size of the "chiltT-population.

• L e N+, the number of genes which form an individual, i.e. the length of a string that represents a

Solution to a problem instance.

• V, the state-space of the genes. The State of an individual is thus a member of the L-fold cross product of

V which is denoted in the usual way as VL.

(For the sake of simplicity we assume, that the stales of all the genes which build a string are members

of a common set V. In the case of different domains at different posiüons in the string of genes, one

could define V as the union of all domains.)

• An initial population of size P.

• A fitness function fitness: VL -*• R which assigns a fitness value to each individual. On the basis of this

value a new "parenf-population is selected.

• A set of basic genetic Operators. Usually, the following Operators are used:

crossover: (VL x VL) ->• p (VL) which "cuts" two individuals at the same position somewhere in the

middle (this position is chosen at random) and appends the last part of the first individual to the first

part of the second individual and vice versa to build two new individuals.

mutation : VL -* VL which changes the State of exactly one gene (chosen at random) to produce a new

individual.

The individuals to which the basic genetic Operators are applied to are chosen at random out of the set of

"parentH-individuals.

We will now point out that genetic algorithms can be interpreted as stochastic cellular automata:

Let A = { 1,..., P,..., P+C } x { 1,..., L } and 2 = V. This is to say, that a genetic algorithm is a two-

dimensional cellular automaton where each "row" of this automaton represents an individual and each cell

represents a gene. The first P "rows" will be used to define the "parent"-population. The initial State of the

cellular automaton must thus be defined by the initial population of the genetic algorithm for the first P "rows"

and can arbitrarily be defined for the last C "rows". The order in which the initial population is mapped onto

the first P "rows" is irrelevant. The neighborhood of a cell (Xj , Xj) e A is defined as v [(Xj, Xj)] = A. To
define a family of stochastic state-transition rules 0O [A j we first introduce a convenient notation: For

State e Z'A' and X e { 1,..., P+C }, State [X] is called a projection and denotes the Arth "row" of the lattice

A where State [l]eEL. The expression State [(X1A2)](= <*[(Xj,^)] e X) is called a projection as well

and denotes the Ag-th entiy in the 1%-th "row" of the lattice A. For each cell (A.j, X2) e A we can now define
ö0[Aj asfollows:

ea[A] 10-1> *2>' ° [(xl' X2>]]= select (trans (o [A])) [(XhX2)]

where

select: ->

is some kind of a sort function that reorders all the "rows" of a lattice A such that the P individuals that form

the (new) "parenf-population of the next generation can be found within the first P "rows". The selection of the

new "parenf-population can thereby be done either deterministically, so that

fitness (select (<j [A]) [X J) £ fitness (select (CT [A]) [A.']) ifand only if X S X'

4

holds for all X, X' e { 1 P+C }, or stochastically, so that the higher the fitness value of an individual the

more probable does this individual appear as a "parent" of the next generation.

Furtherxnore,

trans: s'Al ->•

is a procedura that computes C new "child"-individuals. This is done by choosing one of the basic genetic

operators at random. Suppose that the selected Operator combines n e N+ individuals to produce a new one.

The trans procedura then selects n "rows" out of the first P "rows" of the lattice and applies the genetic Operator

to these individuals. Another genetic Operator is then chosen at random and the whole process is repeated until

a total of C new individuals is computed. These individuals are eventually used to update the last C "rows" of

the lattice whereby the sequence in which the new individuals are used tofillup the lattice is of no relevance.

4 The Multi-Level Lot Sizing and Scheduling Problem

The focus of our attention is a non-trivial short-term production planning problem, i.e. the proportional lot

sizing and scheduling problem (PLSP) Praxi and Haase 1992, Haase 1993, Kimms 1993]: Several items are to

be produced on one machine in a multi-level production process. We consider a finite planning horizon which

is divided into several discrete üme periods. Before one item can be produced the machine has to be setup for

this particular item. Setting up the machine causes item specific setup costs. We assume that at most one setup

may occur in a certain period of üme and that the capacity of the machine is limited while the production of

one item consumes an item specific quantity of capacity units. It may therefore be necessary to produce some

items in periods much earlier than the demands for these items are to be met. In this case the items are to be

stored in inventory which causes item specific holding costs for every period that the items are held in

inventory. Demands are assumed to be deterministic but dynamic and shortages are not allowed. The objective

is to find a cheap and feasible production plan.

More precisely, the problem is defined by the following mixed-integer program [Kimms 1993]:

T J
min 2 £ (SjX% + h=L) (1)

t=ij = i J J 1 J

subjectto

^ ~ ^(t-i) + % * djt " Z (^ji %)
ieS(j)

min{t+v:,T>
Ijt* I (a^)

t-t+l ie S(j)

(j = 1.. J, t = 1.. T) (2)

(j = l .. J,t = 0.. T-l) (3)

5

(t = 1 .. T) (4)

B(y* + yj(t-i)) - % *0

^ - yjt+ yj(t-D * 0

.£(Pjqjt) * Q

yjt e {0,1}

Ijt S 0, qjt ^ 0, Xjt S 0

(j= 1.. J,t = 1.. T)

(j = 1.. J, t = 1.. T)

(t = 1.. T)

(j= 1 .. J, t = 1 .. T)

(j = 1 .. J, t = 1 .. T)

(5)

(6)

(7)

(8)

(9)

where

aj; is the "gozmto-factor", i.e. the quantity of item j that is needed to produce one item i;
. max { C, | t = 1.. T>

B isalargenumbergreaterthan min|^ 1 j=l—J} '

Cj is the capacity of the machine in period t;

djt is the (external) demand for item j in period t;

hj are the costs for holding one item j one period in inventory;

Ift is the quantity of item j held in inventory at the end of period t (Ij0 is the initial inventory);

J is the number of items;

Pj is the amount of capacity consumed by producing one item j;

qjj is the quantity of item j to be produced in period t;

Sj are the setup costs for item j;

S(j) is the set of successors of item j, i.e. the set of items i where a^ > 0;

T is the number of periods;

Vj is the (integral) lead üme of item j (vj £ 1);

Xjj is a (binaiy) variable indicating whether a setup for item j occurs in period t (x^ = 1) or not (x̂ = 0);

y^ is a binaiy variable indicating whether the machine is setup for item j at the end of period t (y^ = 1) or

not (yjt = 0) (yj0 is the initial setup State).

While (1) defines the öbjective to minimize the sum of setup and holding costs, (2) describe the

inventory balances. The constraints (3) ensure that internal demands are met promptly with respect to positive

lead times. The restrictions (4) (in combination with (8)) make sure that the setup State of the machine is

uniquely defined at the end of each period. The fact that the machine must be setup for an item before this

particular item can be manufactured is expressed by (5) where those periods of time in which setups take place

are spotted by (6). The machine capacity must not be exceeded which is formulated by (7). (8) and (9) define

decision variables to be non-negative.

6

5 Specification of a Heuristic

Before we will give a heuristic procedura that can be used to look for a feasible (and cheap) production plan let

us first work out the point of view that makes cellular automata attractable for solving PLSP-instances. To do so

we should have a closer look at what the idea of lot sizing and scheduling is about: Lot sizing means to bündle

up Hftmanris for the same item in order to save setup costs. By doing so in a capacitated environment it usually

happens that the production of such a lot lasts several succeeding üme periods. The act of sequence planning to

find a production plan that fits into a given üme firame and that respects the multi-level product structure is

termed scheduling while at most one item is scheduled at each üme spot, i.e. if a unique setup State is defined.

The combinaüon of both lot sizing and scheduling tends to find a production plan where the setup State does

not flicker, i.e. the unique setup State is kept the same over a couple of succeeding periods before it changes.

The underlying idea of the cellular automaton based approach is to compute a setup State pattern (by

means of a cellular automaton) first and to generale a production plan that fits to the setup State pattern

afterwards. Repeating this process leads to a number of different production plans from which the best one is

chosen. In the sequel we will describe this two-step scheine in more detail starüng with the generation of setup

State patteras.

To compute several setup State patteras for problem instances with J items and T periods we use a

stochastic cellular automaton defined as follows: A = [1,..., J] x [1,..., T] is the finite lattice of cells. Each

cell can be either dead or alive, i.e. the state-space is £ = { dead, alive }. A living cell (j, t) s A is interpreted

as item j may be produced in period t, whereas a dead cell (j , t) e A is interpreted as item j must not be

produced in period t This is to say, that the State of the cells defines for each item a mask which enables (but

does not enforce) the production in some periods and forbids the production in some other periods.

As pointed out before, two relevant aspects are to be modelled: Keeping up the setup State over several

periods of üme and a unique definition of the setup State at the end of each period. An appropriate definition of
the neighborhood function v and the family of stochastic state-transition rules 0O [A] ^ows us to take these

two aspects into account:

The first criterion, i.e. the fact that the setup State tends to be kept up over several time periods, can by

paid attention to by watching the neighborhood

Vi [(j , t)] = {(j', t') e A | (j = j') A (| t -1' | = 1) }•

This is to say, that if we have to decide whether or not to allow item j to be produced in period t while

Computing a new setup State pattem, we look at what decision we have made for item j in periods t-1 and t+1

for the old setup State pattern. If item j was allowed to be produced neither in period t-1 nor in period t+1, a

permission to produce item j in period t might lead to a better production plan. If the production of item j was

allowed in only one of these periods, it might be a good idea to permit production in period t, too, because

production may last longer than one period. If both setup states in period t-1 and t+1 were set, it might be a

good choice to allow item j tobe produced in period t as well, since a non-preemptive production may then take

place.

7

Following this idea, we discriminate three cases. These three cases are:

(1) | {(j,,f)€v1[(j,t)]|cr[(j',f)] = alive> 1=0,

(2) I { (j', t') e vj [(j , t) J | o [(j\ tf)] = alive } I = 1, and

(3) [{(j,,t')6v1[(j,t)]|a[(j',t,)] = aüve> 1=2.

To each of these cases we assign a certain probability (7tal, and respectively) for a living cell to

stay alive and a certain probability (%, n# and respectively) for a dead cell to be revived. The choice of

these probabilities is quite unclear. We could either ose a fixed probability assignment to compute new

generations of setup State patterns or we could rnodify the probability assignment after each state-transition of

the lattice where there are manyfold ways to modify the assignments (pure random, guided by local search

techniques,...). Given a particular testbed, computational studies are tobe done to find out how to proceed.

The second aspect conceming the fact that the setup State is uniquely defined at the end of each period is

taken into account by considering the neighborhood
v2 [(j»t)] = { (j*, t') e A |(j^j') A(t = t') }.

The decision whether or not to permit production of item j in period t depends on how many other items

own a permission to be produced in period t If no other items were allowed to be produced, we can feel free to

assign such a permission to item j. If exactly one other item was allowed to be produced, item j may be

produced as well because the PLSP-model allows one changeover in period t. If two or more other items had a

permission to be produced, it might be clever to disallow production of item j in period t. We thus distinguish

three cases to each of which a certain probability is assigned for a living cell to stay alive (nal, and

respectively) and a dead cell to be revived (p^, p# and Hj.3, respectively). The cases that we take into

consideration are:

(1) | {(j\t') e v2 £ (j, t)] I e r [(j*, t')] = alive } | =0,

(2) I {(j'.t')e v2[(j,t)]|a[(j',t')] = alive} I = 1, an d

(3) I { (j', t') € v2 [(j , t)] | a [(j', t')] = alive } | *2.

Again, it is quite unclear how to choose the probabilities and once more computational studies should be

used to find an answer when applied to a particular problem instance.

The neighborhood of a cell (j, t) e A can now be defined as

v[(j,t)]=v1 [(j,t)]uv2[(j,t)].
As a stochastic state-transition rule 0ff j A j we use the following scheme: For each cell (j, t) e A we

check both neighborhoods vj [(j , t)] and v2 [(j, t)] in Separation to find out which of the cases defined

above holds. Suppose that £ e { 1,2,3 > holds when we test Vj [(j , t)] and C e {1,2,3 } holds when we test
v2 [(J ' t)]. Given certain probabilities and for a living cell to stay alive in case E, and in case C»

respectively, we assume ^ to be the probability of a living cell to stay alive if both neighborhoods are

considered in combination. Analogously, we assume to be the probability of a dead cell to be revived. To

compute the new State of the cell, we then draw two random numbers and oo2 where 0 £ ä>1,(D2 ^ 1 are

uniformly distributed. The State of the cell is transformed by the following rules:

8

1

alive if ÜJJCÜJ ä 7c^
®c[A] [(j »t)>alive] = "

dead otherwise

and

®o[A] I(J> t), dead] =<

alive

dead otherwise

The initial State of the lattice is aibitrarily chosen, e.g. all cells are assumed to be alive when we Start.

To complete the description of our PLSP-heuristic it has to be defined how to (try to) find a feasible

production plan once that a setup State pattern as determined. The basic idea is to employ a backward oriented

regtet based heuristic [Drexl 1991]. While moving backwards from period T to period one items are scheduled

in the fbllowing way: Given a demand matrix (djt)j_, , the cumulated demand for item j in period t (denoted
t-i.T ? T

as CDjt), i.e. the sum of demands that are not met yet, is defined as CD^ = Z djt - Z qjr Within each period
T = t t = t+l

an item with a positive cumulated demand is scheduled where an item j may only be scheduled in period t if the

State o [(j , t)] = alive. The production quantity in period t of the selected item j is computed by

Oß = min { CD^, L^J }. The demand matrix is to be updated by the internal demand for directly predecessing

items in order to handle multi-level structures correctly, i.e. d^.) = ^(t-vj)+ Qjt ^ * 5 {L,J} If the

available capacity of the machine does not suffice to produce the whole cumulated demand in period t, the

production for item j is continued in period t-1 if and only if CT [(j , t-1)] = alive. In the case that the whole

cumulated demand can be produced in period t and that there are some capacity units left a second item is

scheduled likewise. This procedura goes on until period one is reached. A feasible production plan is eventually

found if no item j remains with a positive cumulated demand.

The details of this algorithm can be found in [Kimms 1993] and shall not be reviewed. However, we

should briefiy mention the way an item is selected for production. This choice i s based on a so-called regret

measure that estixnates the regret not to schedule an item in a certain period. Our regret measure reflects two

aspects: The costs that are incuired when an item is not scheduled and the risk of infeasibility. Four criteria do

(in our opinion) influence the regret measure.

(a) If the cumulated demand of item j is not scheduled in period t we have to pay additional holding costs.

(b) If item j is produced at the beginning of period t+1 then we may save setup costs if a production of item j

takes place at the end of period t as well.

(c) Preceding items must be manufactured before item j can be produced. I f item j is scheduled in early

periods it may therefore happen that the depth of the product structure exceeds the time frame which

means that no feasible production plan can be found. The depth of i tem j (denoted as depj) can be

computed as a longest path to item j where a path to item j is a sequence of the form

ig -> ii i% ix with iK = j, a^ ̂ ä 1 for all k e {1,...JK> and a^ = 0 for all items

he {1 J} and adistanceofvkbetween item ik and i^+1) for all k e {0 K-l>.

(d) In the case of scarce machine capacity the sum of capacity units needed to produce one item j and all its

predecessing components (denoted as capj) can be used as an indication of infeasibility when compared
t

to the available capacity ACj = ZCT.
X = 1

9

A formal definition of the regret not to schedule an item j in period t can be given as follows (we can

thing of other definitions which would be out of the scope of this paper): Let y be the item that is scheduled at

the beginning of period t+1 (assume y = 0 if t = T).

Case 1: CDjt>0 andj *yanda [(j ,t)] = alive.
rjt = hj CDjt

"fr max { Sj 1 all items i } ^
%

" max { Sj I all items i } (b)

+ «=>

+ w

Case 2: CD^ > 0 and j = y and a [(j, t)] = alive.

Just drop (b) in case 1.

Case 3: CD^ = 0 or a [(j, t)] = dead.

rjt=

The real-valued Parameters YI,--,Y4 adjust the influence of the four criteria where 0 £ S 1 and
4
£ Yi = 1 holds. To gain a better control over the influence of the differences between t he item specific regret

i = 1

measures, a modified regret measure is introduced:

f 0 if rjj = -oo
Pjt = j

l (r^- min { r% | items i withr^> -oo > + s)s otherwise

This modified measure assigns a positive regret value to any item that may be selected for production.

The gmall positive offset e guarantees that all such items do indeed have a positive regret value. The exponent 8

should by chosen as a non-negative value to amplify (5 > 1) or to smoothen (0 ^ 5 < 1) the differences of the

unmodified regrets.

Now that we have defined all ingredients of a hybrid cellular automaton based heuristic we can

summaiize the specification:

Step 1: Initialize the cellular automaton.

Step 2: Choose the control parametersyj,..., y4, e and 8 at random.

Step 3: (Try to) Generate a production plan that flts to the current setup State pattern.

Step 4: Evaluate the new production plan and memorize it if it improves the best one found so far.

Step 5: Choose the state-transition probabilities 7tal,..., ..., itr3, nal ..., p# at random.

Step 6: Compute a new population of cells.

Step 7: Go to step 2 until a predefined number of iterations isperformed.

As stated above, how to choose the parameters in steps 2 and 5 is not clear (it may be specific to the

problem instance to solve which values perform well) and is therefor done at random. The choice of items to be

scheduled (step 3) can be done either deterministically by selecting the item with the largest modified regret (no

item is to be scheduled if all regret values are zero) or stochastically with a probability proportional to the regret

value.

10

6 Computational Study

To study the presented heuristic we solved a total of 432 PLSP-instances. The results are compared to those that

were achieved with a randomized regret based heuristic [Kimms 1993] which is the best one that we know of so

far to solve multi-level, single-machine lot sizing and scheduling problems. Three different problem sizes are

investigated:

(1) 5 items and 10 periods of üme,

(2) 5 items and 25 periods of üme, and

(3) 10 items and 25 periods of üme.

The problem categories are a mixture of problem instances which are constructed on the basis of 4 different

product structures with 5 items (see below). These structuies are combined with different data sets, i.e. they

differ with respect to demand patterns, item specific setup and holding costs, "gozmto"-factors, and capacity

constraints.

0 0

© ©

©

Linear Structure Assembly Structure Divergent Structure General Structure

The probabilities rcal ^ n#, nal,..., py as well as the parameters h y4 are

chosen from the interval [0,1] with a uniform distribution. The control parameters s and 8 of the randomized

regret based heuristic are chosen at random from the intervals [0.0001,0.1] and [0 ,10], respectively.

In all cases we will provide the deviation of the result that was computed by the cellular automaton

based heuristic from the result of the randomized regret based heuristic because most of the problems are to

large to be solved with an exact Standard MlP-solver. The deviation is defined as
p*

deviation = 100 * ——aa

* RR
where F*^ denotes the objective function value computed by the randomized regret based heuristic (RR) and

F*H denotes the objective function value computed by the hybrid cellular automaton based heuristic (H). We

consider a version of the cellular automaton based heuristic and the randomized regret based heuristic,

respectively, in which an item is selected for production in a probabilistic way proportional to its regret

measure. A negative value of the deviation indicates that the result of the randomized regret based procedura is

improved.

For each problem instance a total of 1000 iterations are executed in order to find a feasible production

plan. Every instance that we tested has at least one feasible Solution. Figures 2, 3 and 4 give an overview of the

results that were achieved for problem sizes (1), (2) and (3), respectively.

11

Figure 2: Hybrid heuristic vs. regret-based heuristic, problem size (1)
%

40

30

20

10

0

-10

-20

-30

-40

• *

•*
• « •• •

• •
m

4 ##

0 20 40 60 80
Instances

100 120 140 160

«•»Average Deviation

Figure 3: Hybrid heuristic vs. regret-based heuristic, problem size (2)

40

30

20

10

0

-10

-20

-30

-40

V- #*# .

0 20 40 60 100 120 140 160 80
Instances

«•»Average Deviation

The results of the randomized regret based heuristic were slightly improved (i.e. -1.30 % in the average)

in the case of size (1) problem instances, but in the case of s ize (2) and size (3) instances the results of the

hybrid ce llular automaton based heuristic were slightly worse (i.e. 0.30 % and 2.04 %, respectively, in the

average). In terms of runtime the regret based heuristic outperforms the hybrid heuristic by a factor up to 7 on a

486 PC with 25 MHz. As it could have been expected in advance, the hybrid heuristic is dominated when we

consider the infeasibility ratio, i.e. the number of feasible production plans that could be found during 1000

iterations.

12

Figure 4: Hybrid heuristic vs. regret-based heuristic, problem size (3)
%

40

30

20

10

0

-10

-20

-30

-40
0 20 40 60 80 100 120 140 160

Instances
<™>Average Deviation

Employing the cellular automaton based heuristic seems to be promising if it does not come to hand by

the regret measure which item to schedule at next. This tends to be the case in product structures with many

items because in such cases it may happen that few items have a large regret and many items have a low regret

value. Due to the large number of items with a low regret it is therefor more probable to choose an item with a

low regret instead of an item with a high regret value which usually should be the case. The cellular automaton

approach reduces the number of items that are considered and thereby sm oothes this effect. Moreover, the

masking mechanism of the cellular automaton based heuristic may enforce a Splitting of lots which may be

necessary to find a good (or even feasible) Solution.

7 Conclusion and Future Work

In this paper we presented the idea of cellular automata and sketched out that genetic algorithms are a special

class of these. As an example we showed how this approach can be applied to mulü-level, single-machine lot

sizing and scheduling problems. Although the computational study brought out that in this particular case a

cellular automaton based heuristic in general does not improve the results when compared to another good

heuristic, it tumed out that the results are not that bad in the average. It was shown that certain aspects of a

problem can neatly been modelled (e.g. the fact that production often lasts several periods and that at most two

items are produced within each period of üme).

In general, one cannot declare the cellular automaton based approach to be superior to other techniques

or vice versa. All one could say is that in some cases a cellular automaton will fit more easily to model a certain

aspect of a problem, and in some cases it won't

Future work should find out if and how cellular automata fit to other (integer and combinatorial)

optimization problems (not only in the field of production planning). Heuristics should be developed and for

* : . * *•
**

-rr

13

instance be compared to genetic algorithms, tabu search methods and simulated annealing approaches of which

we know that they lead to fairly good results.

Acknowledgement

Prof Dr. Andreas Drexl got not tired to read this paper and gave many helpful suggestions.

References

Collins, N. E., Eglese, R. W., Golden, B. L., (1988), Simulated Annealing - An Annotated Bibliography,

American Journal ofMathematical and Management Sciences, Vol. 8, pp. 209-307

Domdorf, ü., Pesch, E., (1992), Evolution Based Leaming in a Job Shop Scheduling Environment, Research

Memorandum, Limburg University, Maastricht, Computers and Operations Research, to appear

Drexl, A-, (1991), Scheduling of Project Networks by Job Assignment, Management Science, Vol. 37, pp.

1590-1602

Drexl, A-, Haase, K., (1992), A New Type of Model for Multi-Item Capacitated Dynamic Lotsizing and

Scheduling, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 286

Faigle, U., Kern, W., (1992), Some Convergence Results for Probabilistic Tabu Search, ORSA Journal on

Computing, Vol. 4, No. 1, pp. 32-37

Gardner, M., (1970), The Fantastic Combinations of Conway's New SoHtaire Game "Life", Scientific

American, Vol. 223, No. 4, pp. 120-123

Glover, F., (1989), Tabu Search - Part I, ORSA Journal on Computing, Vol. 1, pp. 190-206

Glover, F., (1990a), Tabu Search - Part H, ORSA Journal on Computing, Vol. 2, pp. 4-32

Glover, F., (1990b), Tabu Search: A Tutorial, Interfaces, Vol. 20, pp. 74-94

Goldberg, D. E., (1989), Genetic Algorithms in Search, Optimization and Machine Leaming, Reading,

Addison-Wesley

Haase, K, (1993), Lotsizing and Scheduling for Production Planning, Ph D. thesis, University of Kiel

Hertz, A., de Weira, D., (1990), The Tabu Search Metaheuristic: How we used it, Annais of Mathematics and

Artificial Intelligence, Vol. 1, pp. 111-121

Holland, J. H., (1975), Adaption in Natural and Artificial Systems, Ann Haibor, University of Michigan Press

Johnson, D. S., Aragon, C. R., McGeoch, L. A., Scheven, C., (1989), Optimization by Simulated Annealing:

An Experimental Evaluation: Part I - Graph Partitioning, Operations Research, Vol. 37, pp. 865-892

Johnson, D. S., Aragon, C. R., McGeoch, L. A., Scheven, C., (1991), Optimization by Simulated Annealing:

An Experimental Evaluation: Part II - Graph Coloring and Number Partitioning, Operations Research,

Vol. 39, pp. 378-406

Kimms, A., (1993), Multi-Level, Single-Machine Lot Sizing and Scheduling (with Initial Inventory),

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 329

14

Liepins, G. £., Hilliard, M. R., (1989), Genetic Algorithms: Foundations and Applications, Annais of

Operations Research, Vol. 21, pp. 31-58

Mühlenbein, H., Gorges-Schleuter, M., Krämer, O., (1988), Evolution Algorithms in Combinatorial

Optimization, Parallel Computing, Vol. 7, pp. 65-85

Nemhauser, G. L., Wolsey, L. A., (1988), Integer and Combinatorial Optimization, New York, Wiley

Sinclair, M., (1993), Comparison of the Performance of Modern Heuristics for Combinatorial Optimization on

Real Data, Computers and Operations Research, Vol. 20, No. 7, pp. 687-695

TofToli, T., Margolus, N., (1988), Cellular Automata Machines, Cambridge, MIT Press

Wolfram, S., (1986), Theoiy and Applications of Cellular Automata, World Scientific

Zanakis, S. EL, Evans, J. R., Vazacopoulos, A. A., (1989), Heuristic Methods and Applications: A

Categorized Survey, European Journal of Operational Research, Vol. 43, pp. 88-110

15

