
Drexl, Andreas; Juretzka, Jan; Salewski, Frank

Working Paper  —  Digitized Version

Academic course scheduling under workload and
changeover constraints

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 337

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas; Juretzka, Jan; Salewski, Frank (1993) : Academic course
scheduling under workload and changeover constraints, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 337, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155413

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155413
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


No. 337 

Academic Course Scheduling Under 

Workload and Changeover Constraints 

Drexl / Juretzka / Salewski 

December 1993 

Andreas Drexl, Jan Juretzka, Frank Salewski, Institut für Betriebswirtschaftslehre, 

Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany 



1 

Austretet: Two phases can be distinguished in academic course scheduling: In phase one 

iectures have to be assigned to professors, whereas in phase two the lectures have to be 

scheduled. Here we assume that the lectures are already assigned to professors, i.e. the first 

phase has been done. For the second phase we look for a schedule of lectures (for one week) in 

such a way that several restrictions (availability of professors and students; workloads per 

day; changeover times; etc.) are observed. The problem under consideration is represented as 

a binary optimization model, where we make use of a new type of resources, i.e. so-called 

partially renewable resources. It is shown that even the feasibility Version of the problem is 

NP-complete. We present heuristics which are essentially based on three ideas: First, prevent 

blocking of lectures, rooms and/or time-slots; second, look at the worst-case consequence of 

local decisions; third, perform regret based biased random sampling. We provide an instance 

generator for the generation of a representative set of instances. The generator along with a 

Statistical model are used for a thorough experimental evaluation of the methods. Computa-

tional results show that the methods solve medium-sized instances to suboptimality. 

Keywords: Academic course scheduling, workload constraints, changeover times, 

partially renewable resources, regret based biased random sampling 

1. Introduction 

In academic course scheduling, two phases are usually distinguished: In phase one lectures 

have to be assigned to professors, whereas in phase two the lectures have to be scheduled. 

Here we assume that the lectures are already assigned to professors. For the second phase we 

look for a schedule of lectures (for one week) in such a way that several restrictions 

(availability of professors and students; workloads per day; changeover times; etc.) are 

observed. In the following we will use the terms "course" and "lecture" as synonyms; 

moreover, we are concemed with "course scheduling" despite the fact, that we don't consider 

phase one. Note that in course scheduling for universities there do not exist classes like in 

timetabling for schools. 

The following items may be used in order to identify a specific course scheduling model: 

Lectures of equal/different length; precedence relations; availability of rooms of equal/ 

different size and/or equipment; changeover times between rooms belonging to different zones; 

workload constraints, i.e. upper bounds on the maximum number of lectures per day for a 

specific subject; preferences of professors for rooms and/or hours. Note that the model 

presented in Section 3 incorporates all these items in a rather general form. 

A survey of related work may be given as follows: Tripathy (1980) considers a course 

scheduling problem, which does not allow to take care of rooms of different sizes. Ferland, 

Roy (1985) decompose the whole problem into two subproblems. Loosely speaking, one 
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coordinates the temporal requirements, whereas the other looks at the requirements for rooms. 

Note that travel times and upper bounds on the maximum number of lectures per day are not 

taken into acccount. An Interactive man-machine approach is described in Mulvey (1982). 

Harwood, Lawless (1975), Dyer, Mulvey (1976) as well as McChire, Wells (1984) concentrate 

on phase one, whereas Shih, Sullivan (1977) and Dinkel, Mote, Venkataramanan (1989) 

consider both phases simultaneously, yet in a rather restricted way. A general model is 

described in Heinrich (1984) and Bettin (1986); one of the main differences to our model is, 

that rooms are differentiated only with respect to their size and not with respect to their 

specific equipment. Approaches based on graph colouring may be found in de Werra (1985), 

Hertz (1991), (1992) and Kiaer, Yellen (1992). While in the former it is difficult to 

incorporate the requirements for specific rooms, one of the drawbacks of the latter is the 

absence of lectures of different length. Timetabling problems are dealt with in, e.g., Aubin, 

Ferland (1989), Abramson (1991) and Cangalovic, Schreuder (1991), wheras the related exam 

scheduling problem is treated in, e.g., Carter (1986), Balakrishnan, Lucena, Wong (1992). 

The outline of the paper is as follows: In Section 2 we present the assumptions and the 

notation. In Section 3 the mathematical programming is described. Section 4 provides 

methods for solving the model approximately. The results of the experimental evaluation can 

be found in Section 5. Section 6 gives a summary and some conclusions. 

2. Assumptions and Notation 

The problem under consideration is based on the following assumptions: 

• The planning horizon is denoted with W (e.g. one week with W = 5 days), w = 1,...,W 

represents macro-periods (days). Each macro-period w is subdivided into pw micro-periods 

(e.g. hours). Thus we have t = 1,...,T periods (time slots) with T = X p^. 

• r = 1,...,R categories of rooms are available, with being the number of rooms of 

category r available in time slot t. (Noteworthy to mention that this allows to model the 

availability of rooms of equal/different size and/or equipment.) 

• Let j = 1,...,J denote all possible assignments of room categories to time slots, in short 

room-periods. Obviously, we have J = R-T. 

• i = lectures have to be scheduled, where lecture i has a duration of d. micro-periods, 

hence the general case with lectures of different lengths is considered. 

• J. 6 {1,...,J} denotes the set of possible assignments of lecture i to room-periods, which are 

considered to be relevant to a specific instance. (Note that the cardinality of J. in general 

turns out to be rather small). 
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• c.j denotes the "cost" of assigning subject i to room-period j 6 J.. Clearly, c.. should be 

used for taking into account the preferences of professors for specific rooms and/or hours. 

• V denotes the set of subjects i' which have to scheduled in parallel with subject i. (Note 

that this defines a specific partial order of lectures, i.e. precedence relations.) 

• There are d = 1,...,D professors available; in addition, there are s = 1,...,S' sets of 

students attending the lectures; note that in general more than one such set of students 

has to/wants to attend a specific lecture. 0 denotes the "availability level" (e.g. 0 or 1) 

of set/professor s = 1,...,S',S' + 1,...,S' +D-1,S' +D in time slot t. For the sake of 

shortness we will set S = S1 + D in the following. Though keeping in mind that in course 

scheduling we don't have classes (like, e.g., in timetabling) for ease of description we will 

use the term" class" s in order to denote a set of students s in the following. 

• S. € {1,...,S',S'+1,...,S} U {( j)} denotes the set of professors and "classes" belonging to 

lecture i. 

• There are z = 1,...,Z zones, the rooms belong to; denotes the set of rooms in zone z. 

Changing from a room in zone z to a room in zone z1, z # z', in subsequent time slots is 

feasible only, if there is enough changeover (travel, setup) time. We assume that one 

micro-period is necessary in order to change between rooms of different zones in subse­

quent time slots. 

• K , m = denotes the set of (conflicting) lectures, which are only allowed to be 

scheduled at day w up to a maximum number of K lectures. In other words, a subject 

(e.g. mathematics) is only allowed to be given/attended up to the maximum workload of 

«mw lectures per day. (Note that the generalization of this item, i.e. to consider not only 

the number of lectures but the sum of their durations, could easily be incorporated.) 

Based on these assumptions we are going to formulate the model. In order to simplify the 

presentation we first relate 

• j to t, R, and r, 

• r to j and R, and 

• t to j, r, and R 

by the use of the following mappings: 

Function Symbol Explicit Function 

j j = e(t,r,R) j = (t-l)R+r 

r r = f(j,R) = f(j) r = j mod R [with r : = R if (j mod R) = 0] 

t t = g(j,r,R) = g(j,f(j))= g(j) t = (j-r)/R+l 
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Then we derive the symbols 

w -1 
FP = 1 + S p 

w , rv V = 1 

(first period of day w) 

w 
LP = S p 

w . rv V=1 

(last period of day w) 

and the sets 

J.w = { j | j € J. A F Pw < j < LPw > 

(set of room-periods of lecture i on day w) 

R ={r|3(jeJ.):r=f(j)M£H } 

(set of rooms of lecture i in zone z) 

R. = R U ... U R. _ 
l ll lZ 

(set of rooms of lecture i within all zones) 

IRrt = { i | 3 (j e Jj): r = f(j) A g (j) - d. + 1 < t < g (j) } 

(set of lectures i being schedulable in room categorie r and period t) 

ISst = { i | s e S. A 3 (j G J. ): g(j) -d. + 1 < t < g(j) } 

(set of lectures i being schedulable for professor/class s in period t) 

Atsl ={i|s€S.A3(j€J.):t =g(j)-d. +lAf(j)eH2} 

(set of lectures i being schedulable for professor/class s and Starting in period t within 

zone z) 

Essl - { i I s e S. A 3 (j € I): t = g(j) A f(j) 6 H } 

(set of lectures i being schedulable for professor/class s and ending in period t within 

zone z) 

By the use of these abbreviations we are able to State in the following the problem under 

consideration in a compact way. 
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3. Model 

Now we are going to formulate the mathematical programming model. We use binary 

variables 

x.. IJ 

1 , if lecture i is assigned to room-period j 

0 , otherwise 

and derive the following Course Scheduling JProblem (CSF): 

min S E c.. x.. 
i=l j€Ji 1J 1J 

s.t. S x.. = 1 
jEJi 1J 

(Vi) 

(Vi, Vhe V.withh < i) 

(1) 

(2) 

(3) 

i£lRrt T= t 
[(r-l)R+r]6Ji 

t+d i-1 
S Xi[(T-l)R+r] " Art (Vr, Vt with |IRt| > Art) (4) 

t+d i-1 
EX S x. 
ieISst reRi T=t 

[(r-l)R+r]eJi 

i[(r-l)R+r] - ®st (Vs, Vt with |ISJ > 0 t) (5) 

E 
iGAZst reR,- i [((t+dj-l)-l)R+r] 

1Z 
[((t+di-l)-l)R+r]GJi 

IGE- , v rER^g 
Zs(t_1) [((t-l)-l)R+r]€Ji 

^[((t_l)_l)R+r] ^ (VS, Vt, VZ, Vi With Z # ä) (6) 

S S x.. < K 
•-in ieKm jeJi, 1J~ mw 

(V m, V w with U l > K ) (7) 
V ' • rV mW 

lfcJVr 

Jiw^ 

e {0, 1} (Vi, Vj) (8) 

The objective function (1) minimizes the sum of the costs (or equivalently maximizes the 

sum of preferences) for scheduling all lectures. Equations (2) are lecture completion con-

straints. Equations (3) secure the required lectures to be scheduled in parallel. Equations (4) 
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take care of the availability of the room capacities. Equations (5) guarantee, that each 

professor/class is able to participate at the the relevant lectures. Equations (6) provide for the 

changeover times needed between lectures to be given in different zones in succeeding time 

slots; note that only time slots t = (FP1 + l),...,LP1,(FP2 + l),...,LPw, where A^ # <j> and 

E_s(t need to be considered. Equations (7) obey the maximum workload per subject and 

day. (8) establishes the binarity of the variables. 

The following theorem states the complexity of the Feasibility variant CSPF of the CSP, 

where the question is, whether there exists at least a feasible Solution for a specific instance or 

not. 

Theorem. The CSPF is NP-complete. 

Proof. By reduction to PARTITION. • 

The proof uses the PARTITION problem which is well-known to be NP-complete itself 

(cf. Garey , Johnson (1979)). Details of the proof (for the special case: T=2, R=l, D=S = 

Z = 0, d. = 1 and V = 0 Vi, no setups) can be found in Salewski et al. (1994). Clearly, the 

NP-completeness of the feasibility problem CSPF in turn implies the NP-hardness of the 

corresponding optimization problem CSP. In fact, this theorem implies that any scheduling 

feasibility (optimization) problem comprising at least two periods and one renewable resource 

with arbitrary usages is NP-complete (NP-hard). 

Noteworthy to say, that the CSP (l)-(8) is closely related to nonpreemptive multi-mode 

resource-constrained project scheduling. Here in addition to the renewable and nonrenewable 

resources (well-known from project scheduling; cf. e.g. Drexl (1991)) the resources are 

partially renewable, i.e. their usage is restricted to subsets of periods. 

4. Methods 

Now we present a class of methods with which the CSP can be solved to suboptimality. 

We proceed as follows: First, we describe the fundamental algorithmic scheme, denoted as 

method Ml. Second, we present an extension, denoted as M2. Third, we provide several local 

decision rules which can be incorporated into both methods. 

A formal description of Ml in pseudo-code may be given as follows (with comments in 

brackets): 
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Initialize 

1 : = U j=1 i; {the set of all lectures} 

10 :-Z; {the set of unscheduled lectures} 

II {the set of scheduled lectures} 

J0{ : = J. (Vi); {the set of unscheduled room-periods of lectures i} 

x.. : = 0 (Vi, Vj); {initialize the decision variables} 

while (10 ± <p) do {stop when there is no schedulable lecture} 

begin 

select (i G 10 ) and (j E / 0.); {the criteria will be defined below} 
x..: = 1; 

IJ {lecture i is assigned to room-period j} 

~ 10 \{i}; {update 10} 

= 11 U {i}; {update 11} 

10 

11 

if (V. # then 

begin 

for (i1 G V .) do {schedule the parallel lectures i'} 

begin 

select (j' G JO .,); {the criteria will be defined below} 

x.,., : = 1; {lecture i1 is assigned to room-period j'} 

10 : = 10 \ {i1}; {update 10} 

11 := 11 U {i1} ; {update Ii} 

end 

end 

update JO. (V ie 10); {update the set of room-periods} 

for i G 10 with \J0]\ =0 do {lecture i may not be scheduled} 

begin 

10 : = 10 \ {i}; {lecture i is not schedulable} 

end 

end 

evaluate the schedule x; {compute the Performance measures} 

Clearly, the Solution produced is a feasible schedule if 11=1 holds. Performance measures 

are computed for both infeasible and feasible schedules in order to evaluate specific variants of 

the general algorithmic scheme (for details see Section 5). 

M2 differs from Ml with respect to: (i) Lectures ielO for which only one room-period 

remains feasible (i.e. I/O.| = 1), are scheduled immediately. (ii) A lecture iG10 is forbidden 
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to be scheduled within a room-period, if for any other lecture i' elO no feasible room-period 

would remain. 

Now we are going to provide the local decision rules, which are used to do the "select 

(i e 10) and (j e JO.y job. First, we present local decision rules selecting lectures and 

room-periods sequentially. Second, we provide rules selecting lectures and room-periods simul-

taneously. 

I. Sequential Selection of Lectures and Room-Periods 

The selection of lectures and room-periods is done in two stages. In stage 1 we select ielO 

with probability proportional to w?; in stage 2 we select je/fl. with probability proportional 

to x?. j 

In stage 1 one of the following two criteria is used: 

RPMIN: Choose a lecture i 610 according to a criterion which prefers those for which the 

number of Room-Periods (RP.) available is MINimal. More formally, compute 

RP. := \J0.\ (Vi 610), 

Rpmax ; = max ^Rp_ | i g and 

w. := RPmax-RP. (V i e 10). 

PSMAX: Choose a lecture i 6 10 according to a criterion which prefers those for which the 

number of Professors and Students required is MAXimal. More formally, compute 

PS. := |S.| (V ielO), 

PS1™1 := min {PS. | i e 10} and 

w. := PS.-PS1™* (V i e 10). 

Note that w. i n both cases represents the worst-case alternative of not choosing lecture i in 

correspondence with the criterion defined. Thus it establishes the regret of the worst-case 

decision alternative; cf. Drexl (1991) w.r.t. a similar idea successfully applied to project 

scheduling. 

Jjj. m ay be used for calculating decision probabilities as follows: Compute 

w. := (ä + e)a (V i € 10) and 

w? := üj. / 21 05., (V i e 10). 
1 1 i'eXö 1 

e > 0 makes sure that each decision alternative may be chosen with a positive probability; 

a transformes the term (.) exponentially and thus gives way to control the generation of 

probabilities. 
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In stage 2 the following criterion is used: 

BPSEQ: For the lecture i chosen in stage 1 select a room-period j based on the number of 

pairs (ii # i', going to be blocked by scheduling pair (i,j), i.e. use the Blocked 

Pairs SEOuential rule. More formally, compute 

BP. := the number of currently unblocked pairs (i1,j') going to be blocked 

by scheduling pair (i,j) . (V j G JO .), 

BPmax := max{BP. | jG JO.} and 

- := ßPmax - BP. (V j e 30.). 
J 3 i 

1r. may be used for calculating decision probabilities as follows: Compute 

T. := (7T. + e)b (V j € JO.) and 

t9. := x. / £ 7T.t (V j G JO .). 
J J j'ejft J 1 

Once more e > 0 makes sure that each decision alternative may be chosen with a positive 

probability; b transformes the term (.) exponentially and thus gives way to control the 

generation of probabilities. 

In summary we have for the sequential selection of lectures and room-periods, i.e. for 

Computing the "select (i E 10) and (j G JO.)"-line of the algorithm, the following two 

(combined) rules: RPMIN/BPSEQ and PSMAX/BPSEQ. 

II. Simultaneous Selection of Lectures and Room-Periods 

The selection of lectures and room-periods is done as follows: Select ie 10 and jG JO. simul-

taneously with probability proportional to ^. One of the following two criteria may be used: 

BPSIM: Choose a pair (i,j) according to a criterion which prefers those with the minimum 

number of Blocked Pairs (i1,j1) SIMultaneouslv. More formally, compute 

BP.. := number of currently unblocked pairs (i',j') going to be blocked by 

scheduling pair (i,j) (V i G 10, V j G JO .), 

Bpmax ;= ^ {Bp__ | i 6 I0 A j G joj and 

f.. := ßPmax - BP.. (V i G 10, V j G JO .). ^ij ij i 

CMIN: Choose a pair (i,j) according to a criterion which prefers those for which the Costs 

are MINimal. More formally, compute 

C™= := max {c.. | (i,j): i G 10 A j G JO .} and 

l. := C^-c. (V i G 10, V j G JO .). 
^1J ij J v 
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may be used for calculating decision probabilities £? as follows: Compute 

f.. := ($,. + (V i e 10, V j e /0.) and 

e. := f../ S S f , , (Vi€lö,Vjem 
1J 1J Veio j'e/ö. 1J 1 

Once more e > 0 makes sure that each decision alternative may be chosen with a positive 

probability; g transformes the term (.) exponentially and thus gives way to control the 

generation of probabilities. 

5. Experimental Evaluation 

The methods presented in the preceeding Section have been coded in TURBO PASCAL 

and implemented on a 386 machine. For experimental purposes we randomly generated test 

instances. An informal description of the generator may be given as follows: In step 1, the 

Parameters W, pw (1 <w<W), R, Art (l<r<R, l<t<T), Z, (l<z<Z) and M are used as 

input. In step 2, with these parameters the other model parameters I, d., J., V., S., S, 6^, 

c_, Km, are computed subsequently. The Output is an instance, for which we know that 

at least one feasible Solution exists. The details are rather technical and therefore omitted 

here for the sake of shortness. The generator and the test instances are available from the 

authors upon request. 

The instances generated are classified with respect to two items, i.e. the size s and the 

(computational) tractability t. Clearly, several criteria may be used in order to measure the 

size and the tractability. According to preliminary computational results not reported here 

the criteria which will be used in the following allow to discriminate between " small" /" large" 

as well as " easy" /" hard" instances. 

The size s e {s, m, 1} of instances is characterized with respect to the number of lectures I 

as follows: 

s 6 {s, m, 1} with s = small m = medium 1 = large 

10 < I < 5 0 51 < I < 1 00 101 < I < 5 00 

The tractability t e {e, m, h} is characterized via the average usage u (0 < u < 1) of room 

categories as follows: 

16 {e, m, h} with e = easy m = medium h = hard 

0.5 < u < 0.7 0.7 < u < 0 .9 0.9 < u < 1 .0 

In order to provide benchmark solutions we used the general MlP-solver LINDO. On an 

IBM RISC/6000 model 550 it took seconds to minutes to find and to verify the optimal 

Solution for the small instances. For the medium-sized instances, especially for the hard ones, 
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it took even hours of CPU-time to find one feasible Solution. Thus, in general optimal 

benchmark solutions are unavailable for medium-sized instances. Moreover, w.r.t. the 

CPU-times required, we did not investigate the large instances s = {1}. 

In order to investigate the Performance of the sequential rules (RPMIN/BPSEQ and 

PSMAX/BPSEQ) described in Section 4, the following Statistical model with nine factors can 

be stated: An experiment is described by a tupel (M, T,N,I) where the symbols 

have the following meaning: 

MC {M1,M2} (methods) 

Q c {RPMIN, PSMAX} (selection of lectures) 

R c {BPSEQ} (selection of room-periods) 

A c {0,2,4} (control parameter a for RPMIN and PSMAX) 

B C { 0,2,4} (control parameter b for BPSEQ) 

S c {s,m} (size of the instances) 

T C { e,m, h} (tractability of the instances) 

N C { 1,..., 10} (instances generated) 

I c {1000} (number of iterations of the method) 

Clearly, 6 (M* Q* R* A* B* S* T*N*I) now defines a specific experi­

ment. We use the following Performance measures (cf. Badiru (1988)): 

* Amqrabstni e [0,1] is the first acceptance ratio of the experiment (m,t,n,i). More 

precisely, it denotes the fraction of feasible solutions provided with the method (m) by the 

rule (q,r) based on the control parameters (a,b) for the instance (s,t,n) when (i) solutions 

have been iteratively generated. Clearly, ^mqra^stn^ = 0 denotes that no feasible Solution 

has been generated, whereas = 1 denotes that only feasible solutions have been 

generated. 

* bstni E [0,1] is the second acceptance ratio. It defines the fraction of iterations within 

the experiment (m,q,r,a,b,s,t,n,i) where at least 95 %of the lectures have been scheduled. 

* Tmqrabstni E [0,1] is the feasibility ratio of the experiment (m,q,r,a,b,s,t,n,i). More 

precisely, it denotes the average number of scheduled lectures with the method (m) by the 

rule (q,r) based on the control parameters (a,b) for the instance (s,t,n) when (i) solutions 

have been iteratively generated. 

* Cmqrahstni denotes the CPU-time required by the experiment (m, g,r, 6,s, 
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# ^mqrabsini denotes the best objective function value computed within the experiment 

(m,q,r,a,b,s,t,n,i). Clearly, we have Zmqraistni = 00 when no feasible schedule has been 

found. 

• ömqrabstni 6 (0,1] denotes the optimality rate, i.e. the ratio of the best known objective 

function value Bgtn for a specific instance (s,t,n) divided by £ • (Clearly, Bgtn either 

corresponds to the objective function value computed by LINDO or to the one computed 

by our methods.) Note that 0 , , . -> 0 when we did not find a feasible Solution within J ' mqraostni 
the experiment (m,q,T,n,b,s,t,n,i). = 1 when equals • 

In the following we report aggregated computational results of several experiments. 

Aggregation means to compute averages and variances, e.g., as follows: 

(meM, qtQ, rtR, atA) 

- -V2 

(mtM, qzQ, reR, a£Ä) 

: = Square root of a(^mqrJ2 

(mtM, qtQ, rtR, atA) 

In the following, first we are going to evaluate the Performance of the RPMIN- and the 

BPSEQ-rule within the framework of the method Ml for solving small instances the trac­

tability of which is medium or hard. Thus, unless stated otherwise, the experimental design is 

as follows: M = {Ml}, Q = {RPMIN}, R = {BPSEQ}, A = {0,2,4}, B = {0,2,4}, S = {s}, 

T = {m,h}, N = {1,..., 10} and / = {1000}. 

Tables 1 and 2 provide the acceptance ratios Aa and A'a as well as their variances of the 

RPMIN/BPSEQ-rule as a function of the control parameter a, respectively. (ij = 0.091, e.g., 

means that on the average 9.1% of the iterations can schedule more than 95% of the 

lectures.) As can be seen both acceptance ratios increase with increasing values of a, where in 

both cases the variances only slightly increase. Thus, lectures with a low number of available 

room-periods shoud more likely to be scheduled first than those with a high number of 

available room-periods. Note that (in comparison with pure random sampling, i.e. a = 0) the 

effect of a on Aa demonstrates that the rule RPMIN/BPSEQ is a decisive local decision 

criterion. 

mqra 

(A v mqra' 

<J(A ) v mqra' 
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Table 1: Performance measure Aa for RPMIN/BPSEQ 

a 0 2 4 

A a 

a(Aa) 

0.013 0.020 0.030 

0.016 0.023 0.032 

Table 2: Performance measure A'a for RPMIN/BPSEQ 

a 0 2 4 

A' a 0.045 0.067 0.091 

0.059 0.077 0.095 

Tables 3 and 4 provide the feasibility ratios 7a and the optimality rates 0a as a function of 

a, respectively. The average number of scheduled lectures increases with increasing a, where 

the variances are decreasing slightly. With o = 4 in each iteration 81.8% of the lectures could 

be scheduled on the average. Similarly, a increases the optimality rate though not dealing 

with the cost coefficients of the objective function. 

Table 3: Performance measure 7 a for RPMIN/BPSEQ 

a 0 2 4 

7 a 

*<?,) 

0.785 0.805 0.818 

0.058 0.051 0.048 

Table 4: Performance measure 0^ for RPMIN/BPSEQ 

a 0 2 4 

0 a 0.717 0.860 0.941 

0.436 0.328 0.218 

Tables 5, 6, 7 and 8 provide the acceptance ratios Ab and Ab, the feasibility ratios and 

the optimality rates of the RPMIN/BPSEQ-rule as a function of b, respectively. The Inter­

pretation of the results is similar to the one for Tables 1 to 4. Especially, the effect of b on Ab 
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demonstrates that the rule BPSEQ is a suitable local decision criterion in comparison with 

pure random sampling. 

Table 5: Performance measure Ab for RPMIN/BPSEQ 

b 0 2 4 

0.011 0.023 0.030 

0.013 0.025 0.031 

Table 6: Performance measure A^ for RPMIN/BPSEQ 

b 0 2 4 

Al 0.034 0.075 0.094 

0.044 0.079 0.096 

Table 7: Performance measure for RPMIN/BPSEQ 

b 0 2 4 

0.778 0.810 0.820 

0.053 0.050 0.049 

Table 8: Performance measure for RPMIN/BPSEQ 

b 0 2 4 

°b 
0.699 0.879 0.940 

0.443 0.309 0.218 

Tables 9 provides a comparison of the methods Ml and M2 within the sequential frame-

work considered so far. The experimental design is as follows: Q = {RPMIN}, R = {BPSEQ}, 

A = {0,2,4}, B = {0,2,4}, S = {s}, T = {m,h}, N = {1,..., 10} and I = {1000}. Note that 

M2 outperforms Ml w.r.t. each Performance measure. Most noteworthy to mention is that the 

optimality rate 0m increases from 0.686 to 0.992. 
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Table 9: Performance measures for Ml and M2 

m Ml M2 

4. 0.010 0.033 

<AJ 0.017 0.028 

4L 0.043 0.092 

0.064 0.087 

0.786 0.819 

«cj 0.056 0.045 

0.686 0.992 

«°rf 0.446 0.023 

Table 10: Results of M2 for a = 4, b = 4 

m M2 

0.058 

0.042 

< 0.144 

0.119 

0.839 

0.046 

0 m 0.998 

0.005 

1:44:02 

0:08:51 

Table 10 provides the results of the method M2 and the RPMIN/BPSEQ-rule associated 

with the "best" parameters a = 4, b = 4 evaluated so far. In 5.8 % of the iterations a feasible 

Solution has been computed. The fraction of iterations with at least 95% of the lectures 

scheduled equals 14.4% The feasibility ratio equals 0.839 and is thus the highest obtained so 
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far. Most noteworthy to mention is the fact, that only for some of the instances the optimal 

objective function value has not been obtained within the specified number of iterations. The 

CPU- times are provided in hours:min:sec on a 386 machine with 40MHz clockpulse. Thus, on 

the average one iteration of M2 takes 6.2 sec. Note that the computation of the local decision 

criteria (especially JO.) is rather time-consuming and that our code is an experimental version 

which could be speeded-up substantially. 

Table 11: Performance measures for PSMAX and RPMIN 

Q PSMAX RPMIN 

A q 0.035 0.058 

0.026 0.042 

A' q 0.106 0.144 

<*9 0.090 0.119 

7 q 0.824 0.839 

oV) 0.049 0.046 

0 q 0.986 0.998 

0.037 0.005 

In Table 11 we are going to compare the Performance of the PSMAX- and the RPMIN-

rule within method M2 for the most promising parameter values a = 4 and 6=4. The experi­

mental design is as follows: M = {M2}, Q = {RPMIN, PSMAX}, R = {BPSEQ}, A = {4}, 

B = {4}, S = {s}, T = {m,h}, N = {1,..., 10} and I = {1000}. Clearly, RPMIN outperformes 

PSMAX w.r.t. all Performance criteria and therefore PSMAX will be skipped in the sequel. 

In order to investigate the Performance of the simultaneous rules (BPSIM, CMIN) 

described in section 4, the following Statistical model with seven factors can be stated: An 

experiment is described by a tupel (M,L,G,S, T,N,I) where the symbols have the following 

meaning 

L C { BPSIM, CMIN} (criteria for the selection of lectures and room-periods), 

G C { 0,2,4} (control parameter g used for BPSIM and CMIN), and 

MC {M1,M2}, SC{s,m}, T"c{e,m,h}, iVC {1,..., 10}, /c {1000} as defined above. 

Clearly, (m,l,g,s,t,n,i) € (M*L* G*S* T* N* I) now defines a specific experiment. We use 

the following Performance measures: Acceptance ratios ^mlgstni and ^[gstni> feasibility ratio 
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^mlgstnie ^' CPU-time Cmlgatni, objective function value %mlgstni and optimality rate 

^mlgstni w^c"1 are defined analogously as above. 

In Table 12 we compare the Performance of the rule BPSIM (within the framework of 

method Ml) with the most powerful sequential competitor, i.e. the RPMIN/BPSEQ-rule 

(with a = 4, 6=4 and method Ml). The experimental design is as follows: M = {Ml}, 

L = {BPSIM}, G = {4}, S = {s}, T = {m}, N = {1,..., 10} and / = {1000}. Obviously, 

BPSIM is outperformed by RPMIN/BPSEQ w.r.t. all Performance measures. Especially 

remarkable is the drastic increase of computation time needed by BPSIM. 

Table 12: Performance measures for BPSIM and RPMIN/BPSEQ 

1 BPSIM 1 RPMIN/BPSEQ 

Al 0.029 0.044 

0.026 0.035 

Ai 0.110 0.183 

FUß 0.071 0.090 

*1 0.846 0.869 

0.029 0.024 

0.949 0.987 

0.065 0.017 

c. 29:15:05 2:17:09 

Table 13 provides the Performance measures of the CMIN-rule within the framework of 

method Ml. Clearly, CMIN is outperformed by the sequential rule RPMIN/BPSEQ w.r.t. all 

Performance measures except CPU-time. 
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Table 13: Performance measures for Ml / CMIN with g = 4 

1 CMIN 

4r 0.000 

a(A) 0.001 

A'l 0.001 

o(Ap 0.001 

7l 0.704 

0.034 

°l 0.097 

a(0p 0.305 

1:07:14 

0:01:55 

Table 14: Further results of M2 with RPMIN/BPSEQ 

(a,b) (4,4) (8,8) 

Aab 0.045 0.063 

0.034 0.047 

Kb 0.059 0.078 

0.040 0.057 

0.800 0.810 

"(V 0.023 0.026 

1.000 1.000 

0.000 0.000 

Table 14 provides further results for the currently most promising rule RPMIN/BPSEQ 

within the framework of the method M2. For instances 5 = {s} and T = {h} we increased the 

control parameters (a, b) to (8,8). Obviously, this leads to an improvement of the acceptance 

ratios. In addition, we get remarkable optimality rates for both sets of parameters. 
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Table 15 provides additional results for the rule RPMIN /BPSEQ within the framework of 

the method M2. For one instance with S = {m} and T = {h} we increased the control para­

meters (a, b) from (2,2) to (4,4) and then successively to (12,12). The best tuple (a, b) w.r.t. 

Aab, A'ah, 7ah and is (10,10), (12,12), (12,12) and (12,12), respectively. Thus it is 

worthwhile to increase the control parameters in order to get better schedules. 

Table 15: RPMIN/BPSEQ results for one instance 

(a,b) ^ab Kb 7 ab 

(2,2) 0.000 0.034 0.923 00 

(4,4) 0.000 0.155 0.938 00 

(6,6) 0.000 0.275 0.944 00 

(8,8) 0.003 0.346 0.949 826 

(10,10) 0.007 0.391 0.951 843 

(12,12) 0.002 0.435 0.952 847 

Note that it takes about four times the CPU-time to solve medium-sized instances in 

comparison to small-sized ones. This moderate increase of computational requirements presu-

mes the methods provided in this paper to be suitable for solving medium-to-large problem 

instances as well. By the way we should keep in mind that (as argued in literature: cf., e.g., 

Alvarez-Valdes, Tamarit (1989), Badiru (1988), and Davis, Paterson (1975)) the efficiency of 

heuristic methods in terms of Performance is supposed to remain largely unaltered when 

problem size increases. 

6. Summary and Conclusions 

In this paper we propose a new model for academic course scheduling which addresses 

most of the items which are relevant for applications: Lectures of different length; precedence 

relations; availability of rooms of different size and equipment; changeover times between 

rooms belonging to different zones; workload constraints, i.e. upper bounds on the maximum 

number of lectures per day for a specific subject; preferences of professors for rooms and/or 

hours. In addition, we present heuristics which are essentially based on three ideas: First, 

prevent blocking of lectures, rooms and/or time-slots; second, look at the worst-case 

consequence of local decisions; third, perform regret based biased random sampling. We 

provide an instance generator for the generation of a representative set of instances. The 
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generator along with a Statistical model is used for a thorough experimental evaluation of the 

methods. Computational results show that the methods solve medium-sized instances to 

suboptimality. 

In the future improved (local search) methods should be developed. Amongst others, the 

following meta heuristics should be considered: First, simulated annealing methods (cf., e.g., 

Johnson, Aragon, McGeoch, Schevon (1989, 1991), van Laarhoven, Aarts, Lenstra (1992)), 

second, genetic algorithms, (cf., e.g., Dorndorf, Pesch (1992), Goldberg (1989), Mühlenbein, 

Gorges-Schleuter, Krämer (1988)), and third, tabu search methods (cf., e.g., Faigle, Kern 

(1992), Glover (1989, 1990)). 
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