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Abstract 

We introduce the batch sequencing problem with item and batch availability for the Single ma

chine and two machine flow-shop case. We propose a genetic algorithm which solves all variants 

through a decomposition of the problem into a Phase I-Batching and a Phase II-Scheduling de-

cision. The batch sequencing problem is closely related to the discrete lotsizing and scheduling 

problem (DLSP). Computational experience shows that our algorithm favourably compares with 

procedures for the DLSP. 

Zusammenfassung 

Wir betrachten das Batch Sequencing Problem mit geschlossener und offener Produktweitergabe 

fuer den Ein-Maschinen- und Zwei-Maschinen Flow-Shop Fall. Ein genetischer Algorithmus loest 

alle Varianten durch Dekomposition der Loesung in eine Phase I-Batching und eine Phase II-

Scheduling Entscheidung. Das Batch Sequencing Problem haengt eng zusammen mit dem Dis

crete Lotsizing and Scheduling Problem (DLSP). Rechenergebnisse zeigen, dass der genetische 

Algorithmus leistungsfaehiger ist als die DLSP Loesungsverfahren. 

Sommaire 

Nous considerons le batch sequencing problem avec item et batch availability au cas d'une seule 

machine et pour le deux machine flow-shop environment. Un algorithme du type "genetic al

gorithm" resoud tous les cas differents. Le batch sequencing problem est tres proche au dis

crete lotsizing and scheduling problem (DLSP). Resultats numeriques montrent la superiorite de 

1'algorithme propose sur les algorithmes proposes pour le DLSP. 



1 Introduction 

In certain manufacturing systems significant setups are required to change production from one 

item to another, e.g. plastic molding and chemical engineering. Thus productivity can be in-

creased by batching jobs to avoid setups. At the same time demands of the different products 

occur at different points in time within the planning horizon. To satisfy dynamic demand large 

inventories must be hold if production is run with large batches, or frequent setups are required 

if inventory levels are low. Significant setup times, which consume scarce production capacity, 

further complicata the scheduling problem. This Situation is modeled in the batch sequencing 

problem (BSP). 

The set of jobs is partitioned into families and a setup is required if a Job follows a Job from 

another family or if a new batch of the same family is started. Only jobs from the same family 

can form a batch. Jobs in one batch are produced consecutively without a setup. We consider 

Problems where the number of jobs is large compared to the number of families. Each job must be 

scheduled between time zero and its deadline. All jobs in one family have different deadlines. So a 

family must be further partitioned into batches to assure feasibility with respect to the deadlines. 

In the BSP we distinguish two cases (cf. Santos and Magazine [21]): 

• batch availability, i.e. jobs of one batch are only available (to satisfy demand) after comple-

tion of the entire batch, and 

• item availability, i.e. jobs complete individually and are available at their completion time. 

Complexity results are given in Bruno and Downey [7] who refer to the BSP as job class scheduling 

problem and show that even the feasibility problem is NP-hard for nonzero setup times. Monma 

and Potts [18] refer to the results of [7] to derive the complexity of other scheduling problems 

and give a pseudopolynomial algorithm. Unal and Kiran [22] propose a heuristic to solve the 

feasibility problem of the BSP with item availability. 

Scheduling models which involve batching are e.g. presented in Santos and Magazine [21]. Prop

erties of optimal schedules for problems without deadlines are derived in Ahn and Huyn [1] a nd 

Mason and Anderson [17]. A survey of recent results is found in Webster and Baker [23]. 

The discrete lotszing and scheduling problem (DLSP) is similar to the job class scheduling prob

lem. Salomon et al. [20] refer to the results in [7] to examine the complexity of the DLSP. Potts 

and van Wassenhove [19] s tress the relationship of batching and lotsizing problems. A reformu-

lation of the DLSP as a BSP and an exact Solution procedure is given in Jordan and Drexl [12]. 
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A near optimal dual ascent and column generation algorithm for the DLSP with setup times is 

presented in Cattrysse et al. [8]. Brüggeman and Jahnke [5] consider the DLSP with the additional 

assumption of batch availability. An extension of the model to a 2-stage production process is 

given in Brüggeman and Jahnke [6]. In both cases they solve the extended DLSP with a simulated 

annealing approach. 

The outline of the paper is as follows: We first introduce the model in Section 2. In Section 3 a 

genetic algorithm is presented which turns out to accommodate easily the different variants of the 

basic model. We illustrate the transformation of a DLSP into a BSP in Section 4. In Section 5 

we compare the Performance of the genetic algorithm with procedures to solve the DLSP. We use 

the results of Brüggeman and Jahnke [5], Brüggeman and Jahnke [6] and Cattrysse et al. [8] as 

benchmarks for our algorithm. Conclusions follow in Section 6. 

2 The batch sequencing problem 

First we introduce the notation for the BSP. Parameters concerning the families are given in 

Table 1. We assume sequence-independent setup times si,- and costs sc;. Setup times and costs 

depend only on the family i a setup is performed to. 

Table 1: Parameters of the Families 

i index of the family, i = 

Ki number of Jobs in family i 

st{ setup time to family i 

sei setup costs to family i 

Attributes for Jobs are given in Table 2. The j-th job of family i is indexed with a tuple (i,j). A 

job (i, j) has a processing time P(jj), a deadline and a weight 

Table 2: Jobattributes 

(i,j) denotes the j-th job of family i, i — 1,..., I, j = 1,..., Ki 

P(ij) processing time of the j-th job of family i 

deadline of the j-th job of family i 

earliness weight of the j-th job of family i 

All jobs in one family are labelled in order of increasing deadlines We assume that the 
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time between successive deadlines of one family is large enough to perform at least one setup to 

another family before processing the next job, i.e. 

Vi, j 3g : i) + stg + sti < - P(ijy 

Otherwise we could batch jobs a priori and consider them as a single job (cf. Unal and Kiran [22]). 

Cf. Figure 1 with a BSP instance with 2 families and 5 jobs. The 3 jobs in family 1 all have 

different deadlines. Setup time to family 1 (2) is 1 (2) units of time. 

The BSP is solved in two phases, i.e. 

• Phase I: how are families partitioned into batches, referred to as Phase I-Batching, cf. Table 3, 

and 

• Phase II: how do we schedule batches, referred to as Phase II-Scheduling, cf. Table 4. 

Table 3: Decision Variables Phase I-Batching 

jb the 6-th batch of family i starts with job (i,jb) 

NBi family i is partitioned into NBl batches 

ß(,-,6) denotes the 6-th batch of family i, 6=1,..., NBi, 
= {(^ OK = Jfr» •••> J'H-I i} 

Resulting batch attributes 
•76+1-1 

:,&) = SU + ^ P(i,l) processing time of the 6-th batch of family i 
l=jb 

(^(ii)) deadline of the 6-th batch of family i for batch (item) 

availability 

In Phase I-Batching we decide whether a job starts a batch or not. The start job (i,jb) is the 

first, job (i,jb+1 — 1) the last job in batch In Figure 1 family 1 is partitioned into two 

batches, ß(i,i) = {(1,1), (1,2)} and 5(1,2) = {(1,3)}. The attributes batch processing time and 

batch deadline result from the partitioning of families into batches. 

We distinguish between batch and item availability with different batch deadlines. For batch 

availability a job is available after completion of the whole batch, equals the deadline of the 

start job (i,jb), cf. (1). In Figure 1 the deadline of the first batch of family 1 is ^ = 7. 

D(i,b) — d( ijb) (1) 
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For item availability the deadline is different (cf. (2)). Processing batch as late as 

possible the start job (i,jb) completes at its deadline. Cf. Figure (1), if ß(i,i) completes at 

•^(1,1) = 9 we ha-ve C(i j,) = C(i,i) = ^(1,1) = 

iö+i-i 
D(i,b) = d(i,jb) + PM 

'=76+1 

The batch processing time P^tb) is the sum of all job processing times in the batch plus the setup 

time sti, we have e.g. -Pfi,!) = 5. 

For so called burn-in models the batch processing time may be the maximum instead of the sum 

of the processing times of the jobs in a batch. Lee et al. [14] consider these problems, which arise 

in the production of wafers in semiconductor manufacturing. 

Families 

1 1,1 1,2 

2,1 

1,1 1,2 

2,1 2,1 

2,1 1,1 1,2 

10 

1,1 1,2 

2,1 

1,1 1,2 
-i— 

2,1 
—r~ 

5 10 

: setup time 

1,3 

2,2 

2,2 

2,2 

1,3 

2,2 

1,3 

15 

1,3 

2,2 

1,3 
—i— 

15 

Jobs at their 

deadline 

Item availability 

Phase I-Batching 

Phase n-Scheduling 

Batch availability 

Phase I-Batching 

Phase II-Scheduling 

Time 

Figure 1: BSP-instance, Phase I-Batching, Phase II-Scheduling 

Scheduling batches in Phase II we can treat batches as independent jobs. The Phase-1 Batching 

determines already the setups. The decision variables for Phase II-Scheduling are given in Table 4. 
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Table 4: Decision Variables Phase II-Scheduling 

SB Sequence of all batches 

denotes the batch at position k 

completion time of the 6-th batch of family i 

Resulting job completion times 

C(jj) completion time of job (i,j) 

C(i,j i,+ !-l) — 

C(i,z) ~ 1) ~ P(i,l+1)) ^ — jb: •••1 jb+1 ~ 2 

We must sequence batches satisfying constraints (3). We initialize (3) with CB= 0. A 

batch must complete before the next batch starts and not later than its deadline. In (3) we have 

Dif we consider batch availability, or for item availability. For given 

batch completion times CBwe recursively compute the job completion times C(ij) of the jobs 

in batch £(;,&), cf. Table 4. 

/ 
,&[(=]) ~ ^(i[k],&[k])'^(t[i_i],f>[*-i])} k — 1, ••• ! NB,, (3) 

2=1 

We can now express the feasibility problem BSPF-BA of the BSP for batch availability. 

BSPF-BA : Find batches #(;,{,), a sequence SB, and completion times 

CB(i^ subject to (3) and (1). 

The feasibility problem BSPF-IA for item availability differs in the deadline only. 

BSPF-IA : Find batches B^^, a sequence SB, and completion times 

CB(i^ subject to (3) and (2). 

Feasible solutions of BSPF-BA and BSPF-IA can be evaluated with respect to earliness and 

setup costs. Phase I-Batching determines the setup costs. Phase II-Scheduling determines batch 

completion times CB^ and thus the job completion times C(h]y The earliness of a job is 

c?(i j) — C(ij)- Total costs F of a schedule are computed in (4). 

I Ki i 
F = £ wfrj) ' Kw) ~ %;))+ ̂ 2 NBi-sa (4) 

t = l 3— 1 2=1 

The optimization problem of the BSP is expressed as follows: 

5 



BSP : Find a Solution of BSPF-BA (BSPF-IA, respectively) 

which minimizes F. 

So far we implicitely assumed that jobs in one family can be ordered w.r.t. increasing deadlines. 

This is stated in Theorem 1, which allows us to restrict our search for feasible solutions. 

Theorem 1 There exists a feasible Solution of BSPF-IA and BSPF-BA wherejobs (i,j) of one 

family i are scheduled in nondecreasing order of their deadlines (earliest deadline within families 

EDDWF). 

Proof: Refer to Monma and Potts [18] or Unal and Kiran [22]. • 

Unfortunately, a Solution for BSP with arbitrary weights may not have the EDDWF prop-

erty. But for the special case where weights and processing times are identical, i.e. = p^j), 

we can again restrict our search to EDDWF solutions. 

Theorem 2 For the special case = P(i,j) there exists an optimal Solution of BSP where 

jobs (i,j) of one family i are scheduled in EDDWF order. 

Theorem 2 is easily proven with an interchange argument. As BSPF-IA and BSPF-BA are 

already NP-hard. we will restrict the (heuristic) search of the genetic algorithm to EDDWF 

solutions. A similar approach is choosen by Woodruff and Spearman [24]. 

BSP is extended to the 2-machine flow-shop case in Section 3.2. We assume identical processing 

and setup times on the first Machine 1 and the second Machine 2. In the 2-machine flow-shop 

case we successively solve BSP for Machine 2 first and then for Machine 1. 

3 A genetic algorithm 

In the following section we present a genetic algorithm (GA) to solve BSP. This algorithm com-

bines the meta-strategy of genetic search with a heuristic for the subproblem Phase II-Scheduling. 

For an introduction to genetic algorithms cf. e.g. Goldberg [11] or Liepins and Hilliard [15]. Ge

netic search is performed only for Phase I-Batching, the search space is thus much smaller than for 

the Solution of the whole problem. The heuristic for Phase II-Scheduling is derived from Standard 

scheduling algorithms for known polynomially solvable cases. 

The algorithm solves all the different variants of BSP because we solve the problem in two phases. 

It is applicable to item and batch availability as well and Covers also the 2-machine flow-shop case. 

An extension to more than 2 machines is straightforward. 
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3.1 Phase I-Batching: The single machine case 

Applying a genetic algorithm (GA) for a specific problem we have to encode the Solution of the 

problem in a genetic string. A suitable coding of the Solution (the individual in the GA) should 

need a short string and use a small aiphabet for the genes. Moreover, the Standard GA Operations 

crossing over and mutation should maintain feasibility of the offsprings, i.e. the coding should 

be consistent with the operators of the GA. How to maintain feasibility is a typical problem 

one encounters applying GA's. Liepins and Hilliard [15] give an example for the TSP where the 

crossover Operator does not maintain tours. "Repair" algorithms may now convert infeasible to 

feasible offsprings, or the crossover Operator may be modified. But this way we "disturb" the 

evolution process based on building blocks and schemes (cf. Goldberg [11]). A poor Performance 

is the consequence in most cases. 

For our algorithm we choose a binary representation of the Phase I-Batching as the genetic string, 

cf. Figure 2. Each gene represents the batching of one job: If a job is the start job (i,jb) of a 

batch -0(^6), the gene is set to one and zero otherwise. The jobs (i, 1), i = 1,..., /, are always start 

jobs of a batch and therefore omitted in the genetic string. The string length is L = J2i=i Ki ~ I-

For the instance of Figure 1 the string length is 3. 

Gene 

Job 

Family 1 | Family 2 

Figure 2: Genetic String of Phase I-Batching 

The string in Figure 2 represents the Phase I-Batching shown in the Gantt Chart in Figure 1. Job 

(1,1) (not represented in the string) is the start job of the first batch 5(i,i)- Job (1,2) is batched 

with the preceeding job (1,1) (the gene is set to zero) and job (1, 3) starts again a new batch (the 

gene is set to one). The same way family 2 is partitioned into two batches, job (2, 2) starts a new 

batch (the gene is set to one). This string is used in a genetic algorithm to search for the best 

batching decision. Each gene may assume value 0 or 1, independently of the other genes. Note, 

that in a string representing a permutation of jobs we may not have two times the same value of 

a gene, values of one gene are not independent. We never obtain infeasible offsprings applying 

the genetic operators crossover or mutation. Moreover, we use a small aiphabet for the genes and 

a string shorter than the total number of jobs. Coding the Solution this way is thus well suited to 

be used in a genetic algorithm. 

0 | 1 1 1 

(1,2) (1,3) (2,2) 
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3.2 Phase I-Batching: The two machine flow-shop case 

In the following we extend BSP to the two-machine flow-shop case with batch availability. All jobs 

of one family pass two machines, we assume equal processing times P(ij) and setup times on both 

machines. A batch on Machine 1 (Ml) must be completed before processing on Machine 2 (M2) 

can start. In the two-machine case batches on M2 can again be interpreted as jobs (= demands) 

which can be batched on Ml. The deadline of the batch on Ml is the start of its first job on 

M2. However, the setup can be anticipated on M2, cf. Figure 3. In the genetic string we have to 

include additional Information how jobs (=batches) on M2 are batched on Ml. We enlarge the 

string aiphabet to the values [0;1;2] and define its meaning as follows: 

/ 

value of the gene = < 

1 , the job starts a batch on Ml and M2 

2 , the job starts a batch only on M2 

0 , the job (i,j) is batched with job (i,j - 1) 

In Figure 3 we illustrate Phase I-Batching (for only one item) on Ml and M2. The string which 

determines the batching decisions is given below the Gantt chart. The jobs at their deadline are 

first batched on M2 in 4 batches. Batches on M2 can again be interpreted as jobs at their deadline 

for Ml. On Ml we have to schedule 4 jobs (=batches on M2) with deadlines 4, 9, 13 and 16 and 

processing times of 2, 1, 1 and 2. These 4 jobs are batched in 2 batches on Ml. Batches on Ml 

must end before processing on M2 starts: on M2 Jobs (1,4),(1,5) and (1,6) form two batches, 

but one batch on Ml. Job (1,5) starts a batch only on M2 (the gene is set to 2), job (1,4) starts 

a batch on both machines (the gene is set to 1) and batches all three Jobs (1,4), (1,5) and (1,6) 

on Ml. The starttime 13 on M2 of the batch with job (1,4) is the deadline for the batch on Ml. 

The setup on M2 for job (1,4) can be anticipated before the batch on Ml is completed. Job (1,1) 

always starts a batch on both machines and is thus ommitted in the string. 

In fact, the string [02120] can be transformed into Ml batching with string [00100] and M2 

batching with string [01110] according to the former definition for the single machine case. The 

heuristic Solution of the two-machine problem is straightforward: First we solve BSP on M2, 

compute the deadlines and solve BSP on Ml. 

3.3 Phase II-Scheduling 

Minimizing F (cf. (4)) for a given Phase I-Batching we no longer have to worry about setups, which 

are already determined. The resulting subproblem Phase II-Scheduling consists of scheduling 

batches between time zero and their deadline. 
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Jobs at their 

deadline 

Machine 2 

Machine 1 

1,1 1,2 1,3 1,4 1,5 1,6 

— 1,1 1,2 

1,2 

1,3 1,4 = 1,5 1,6 

1,6 

E 1,1 1,2 1,3 1,4 1,5 1,6 

i i i i | i i i i j i i i i | i i i i 
5 10 15 

Two machine batching for item 1 

20 

0 2 1 2 0 

(1,2) (1,3) (1,4) (1,5) (1,6) 

Figure 3: Phase I-Batching for the Two-Machine Flow-Shop case with Batch Availability 

We solve this subproblem by considering the corresponding "mirror problem": In the mirror 

problem the time axis is reverted. The maximal deadline (=planning horizon) becomes time 

zero, deadlines convert into release dates and time zero converts into the planning horizon, which 

is a common deadline for all jobs. For a given batching the feasiblility problem is exactly the 

decision Version of the single machine problem with release dates, i.e. is there a schedule with a 

makespan less than a certain C, where C is the common deadline. We denote this problem as 

(1/ Tjj Cmax) in the 3-field notation of Lageweg et al. [13]. (1/ rj/ Cmax) is solved scheduling 

jobs in nondecreasing order of release dates (ERL)). After Phase I-Batching we thus have to 

schedule batches in nondecreasing order of their deadlines (EDD) to solve BSPF-IA (or BSPF-

BA, respectively). Consequently, the feasibility problem for a given batching can be solved 

polynomially. 

Minimizing the earliness costs for a given batching the mirror problem is (1/ rj/ Cw) with a 

common deadline for all batches (=jobs), the objective changes to minimize weighted completion 

time. Unfortunately, (1/ rj/ C") is NP-hard, cf. Lenstra et al. [16]. Note, that Bianco and 

Ricciardelli [4] propose an exact algorithm for (1/ rj/ CM). 

But for the purpose of a good heuristic we can improve the EDD scheduling of the batches with 

an idea similar to the Smith-rule for the (1/ / Cu) problem: For each batch we define a specific 
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weight in (5) (for a similar idea cf. Ahn and Huyn [1]). 

6 = 1, ^ (5) 
"(%,b) 

Note, that for the special case we always have Y^k=jb * w(i,k) < P(i,b) as P(i,b) 

includes setup time. E [0 ; 1] may be interpreted as a (specific) weight giving the fraction of 

time in a batch which is spent for production rather than setup. Whenever batches are scheduled 

earlier than their deadline in the EDD schedule we order them in increasing 

The algorithm Phase II-Scheduling moves backwards in time and minimizes earliness costs 

heuristically. 

Phase-Ii Scheduling 

1. Sort all batches in order of decreasing deadlines. Set the time instant t at the maximal 

deadline. 

2. Choose among all unscheduled batches with D^tb) > t the one with maximal 

3. Schedule the batch w.r.t. constraint (3) and set t at the starting time of the batch. If there 

is no unscheduled batch with £>(;,&) > t set t at the maximal deadline of all unscheduled 

' batches. 

4. As long as there are unscheduled batches, GOTO 2, o therwise STOP. 

Performing the algorithm for the example in Figure 1 t is set to 17 in Step 1. Batch 5(12) (which 

contains job (1,3)) and batch #(2,2) have a deadline > 17. We have W^x 2) = § > ^(2,2) = \-

Thus batch -B(I,2) is scheduled closer to its deadline than -8(2,2)-

3.4 The algorithm GABSP 

In the genetic algorithm to solve BSP (GABSP) the strings in a population are recombined 

through mutation and crossover until a prespecified number of generations is reached. We did 

not perform numerical experiments to find the best values for the different parameters but choose 

them according to the general recommendations of Goldberg [11]. 

Genetic search is performed only for Phase I-Batching. A Solution for each string is found after 

Phase II-Scheduling. The following algorithm EvaluateString computes the fitness of each string 

in a new population. 
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EvaluateString 

1. Compute the batches and batch attributes deadline, processing time and weight on M2. 

2. Perform Phase II-Scheduling for M2. 

3. Compute deadlines, processing times and weights for the batches on Ml. 

4. Perform Phase II-Scheduling for Ml. 

5. Evaluate F on Ml and M2 and assign the sum to the fitness of the string. 

Clearly, the single machine case does not include steps 3 and 4. 

4 Transforming lotsizing into batch sequencing instances 

The objective function (4) of BSP takes into account setup as well as earliness costs. Interpreting 

earliness as holding costs, (4) expresses the classical tradeoff in lotsizing problems. We can model 

BSP as a discrete lotsizing and scheduling problem (DLSP). The demand matrice of a DLSP and 

the jobs at their deadline express the same: The demand (=a job) must be produced (=scheduled) 

between period (=time) zero and its occurrence (=deadline). 

Families (=items) 

1 1,1 1,2 

2,1 

1 1 - 1 1 -

1 1 

2,1 1,1 
H— 

1,2 2,2 
—i— 

1,3 

2,2 

1 1 

1 1 

ss22sll lliss22s 11 

1,3 
—i— 

10 15 

Jobs at their 

deadline 

Demand matrice 

DLSP Solution 

BSP Schedule 

Figure 4: Tranformation between the DLSP and BSP 

Figure 4 provides the demand matrice for the BSP instance in Figure 1. The [2 x 17] DLSP 

demand matrice for 2 items and 17 periods reflects the jobs of two families at their deadline. 
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For item 1(2) setup time is 1(2) periods. The DLSP Solution teils us what to do in each period: 

we have [i,s, 1,2] as idle or setup time or production of item 1 or 2, respectively. Interpreting 

consecutive "ones" in the DLSP demand matrice as a job at its deadline and families as items we 

transform DLSP into BSP instances, cf. Figure 5. Holding costs hi of an item i are expressed 

via earliness weights of the jobs, i.e. W(ij) = hi • Via this transformation DLSP instances 

in the papers of Cattrysse et al. [8] and Brüggemann, Jahnke [5], [6] are available for BSP. They 

all report computational experience with instances where holding costs ht are equal to one for all 

items. Therefore Theorem 2 holds and we can restrict the search to EDDWF solutions. 

A detailed overview about the DLSP is beyond the scope of this paper, cf. e.g. [9], [12] and [20]. 

5 Computational results 

In this section we compare the Performance of GABSP with DLSP Solution procedures. We 

transform the DLSP instances into instances of BSP (cf. Figure 5). GABSP is then compared 

with the procedure proposed by Cattrysse et al. [8], the single-machine procedure of Brüggemann 

and Jahnke [5] a nd their two machine procedure [6]. Note, that GABSP solves all the diiferent 

variants, with a modification only in the assignment of batch attributes in Phase I-Batching. 

Figure 5: Comparison of DLSP and BSP Solution procedures 

5.1 The single-machine DLSP with setup times 

A dual ascent and column generation procedure (DACGP) for the single-machine DLSP is pro

posed in Cattrysse et al. [8]. It is a near optimal procedure and derives a lower bound as 
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well. For GABSP batch deadlines must be computed for item availability via constraints (2). 

From [8] we take the (largest) instances generated for item N and period T combination with 

(N,T) = {(2,60); (4,60); (6,60)}. The DLSP instances are transformed into instances for BSP 

with 2, 4 and 6 families, respectively. For all instances optimal solutions are calculated with an 

exact Branch&Bound procedura described in Jordan and Drexl [12] so that for each instance the 

deviation A from the optimal Solution is known. GABSP has been coded in C, for DACGP we 

took a FORTRAN code provided by Cattrysse. Experiments were run on a 486/33 Mhz PC. 

Table 5 gives the results for the different item - period combinations (jV,T) which transform 

into instances for BSP with an average number of jobs. Capacity utilization p i s high (H), 

medium (M) or low (L), respectively. In each (N,T,p) class we aggregated over 30 instances and 

give the average deviation Aavg and maximum deviation Amax in % from the Optimum. Not all 

of the 30 instances in each problem class have a feasible Solution. This is denoted with in 

the last column. The number of problems where the heuristics do not find a Solution is denoted 

by #/. 

Table 5: Comparison of the Solution quality between DACGP and GABSP 

GABSP DACGP 

(#,T) P Aavg Amax #/ Aavg ^mai #/ #/F 

(2,60) 19 L 0,07 1,4 2 0,02 0,5 2 2 

25 M 0,23 2,6 7 0 0 7 7 

29 H 0,56 4,3 9 0,32 4,3 10 9 

(4,60) 21 L 0,14 2,6 3 0,17 3,2 3 3 

31 M 0,63 5,8 5 0,20 3,1 6 5 

35 H 0,82 6,3 10 0,52 5,6 11 10 

(6,60) 22 L 0,11 1,0 1 0,21 4,0 1 1 

33 M 0,38 4,5 7 0,79 7,7 10 7 

35 H 0,41 6,6 10 0,60 5,1 10 10 

From Table 5 we note that average Aavg and maximum deviation Amax for DACGP and GABSP 

do not differ significantly. Note e.g. that GABSP finds all solutions in (6,60, M) while DACGP 

fails to find a Solution to some of the feasible instances. Solution quality of GABSP is slightly 

better for N = 6 than DACGP. 

A comparison of the computation times is left out because DACGP generates a lower bound while 

GABSP does not. Moreover, computation times for a genetic algorithm directly depend on the 

choice of parameters. For the results in Table 5 we choose a population size of 100, a maximal 
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number of generations (=iterations) of 500. GABSP stops if 100 consecutive generations do not 

improve the Solution. Good results for GABSP can be obtained also for smaller populations and 

less iterations but then GABSP sometimes falls to solve instances where a feasible Solution is 

difficult to find. The maximal CPU-seconds in the problem classes for GABSP (DACGP) vary 

between 4.8 (5.9) and 24.9 (177.0). 

5.2 The single-machine DLSP with batch availability 

Brüggemann and Jahnke propose in [5] a simulated annealing procedure to solve the single-

machine DLSP with batch availability. Now batch deadlines in the GABSP are computed via 

constraints (1) for batch availability. In [5] computational experience is reported for a hard 

instance (hard to find a feasible Solution) with N — 6 items and T = 60 periods, which takes 

1204 sec to solve on a 486/20 PC. We solve the same instance on a 486DX2/66 PC in 10 sec to 

find approximately the same Solution. The sequence of batches SB and also the objective function 

value are slightly different in our Solution. 

5.3 The two-stage DLSP with batch availability 

In [6] Brüggemann and Jahnke extend their simulated annealing approach to a two-stage DLSP 

with batch availability, referred to as BRJSA. This is the two-machine flow-shop case described 

in Section 3.2. Brüggemann and Jahnke give computational experience for instances with N = 6 

items and T = 60 periods in 6 problem classes with 15 randomly generated instances each. 

Approximate capacity utilization p is given in % for each class, e.g. p i s between 60 and 70 % in 

the first class. For high capacity utilization, i.e. p > 0.88, it is differentiated between a hard and 

an easy problem class. We choose a similar experimental design as Brüggemann and Jahnke and 

repeat GABSP 10 times (=10 trials) for each instance with a rather small population size \PS\. 

So GABSP may come up with infeasible solutions in some of the 10 trials, which also happened 

with BRJSA. We denote the number of unsuccessful trials of BRJSA (GABSP) in a problem 

class by #UT. Cf. Table 6, we apply both algorithms in problem class 88-92hard. The number of 

unsuccessful trials #UT is 29 (6) out of 10-15 trials for BRJSA (GABSP). For BRJSA experiments 

are conducted on a 486/20 PC, for GABSP on a faster 468DX2/66 PC, so we multiplied times 

on the latter with factor 5. Table 6 gives average running times Ravg (5 • R avg) in seconds for 

BRJSA (GABSP) and the population size |P5| of GABSP. 

Table 6 shows a smaller Solution time for GABSP versus BRJSA in all problem classes. Similar to 

the results in [6] objective function values of GABSP differ only slightly over the 10 trials, so that 

we conclude that the algorithm has converged to a "good" Solution. But more important than the 
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Table 6: Comparison of the Solution times between BRJSA and GABSP 

BRJSA GABSP 

Ravg #UT 

(6,60) 22 60-70 356 20 - 50 

22 70-80 351 20 - 50 

22 80-85 400 20 - 50 

22 85-88 492 2 20 - 50 

22 88-92easy 670 40 2 100 

22 88-92hard 1119 29 40 6 100 

comparison of objective function values is the ability of GABSP to find a feasible Solution faster 

than BRJSA. 

Objective function values can only be compared for the example in [6], (Table 1 and Figures 3 to 5). 

There a Solution is given for Stage 2, which consists of a sequence of 10 batches. This Solution 

can be improved interchanging the positions of the Batch 2 with 3 and Batch 6 with 7, which is 

the Solution of GABSP on M2 for this instance (comparing the specific (batch) weights this 

improvement is obvious). 

6 Conclusions 

We presented a genetic algorithm for some variants of the batch sequencing problem. One al-

gorithm solves all the different variants. To evaluate our approach we solve instances of the 

discrete lotsizing and scheduling problem for the different variants and demonstrate the Perform

ance of our algorithm. It should be noted that setup-times st,- € {0; 1; 2} in all DLSP instances 

and thus are not too big. We expect the advantages of our approach to be more pronounced if 

setups have a greater significance. 

The main feature of the approach is the decomposition of the Solution procedure in a Phase I-

Batching and a Phase II-Scheduling decision. Search is performed only for Phase I-Batching where 

we use the meta-strategy of a genetic algorithm. The algorithm in Phase II-Scheduling takes ad-

vantage from the knowledge about polynomially solvable scheduling problems. The decomposition 

allows to solve variants of one problem with the same approach. Extensions to multiple (more 

than two) machines and other batching types (e.g. burn-in-models) are straightforward. 
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