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Abstract 
 
Set identification in Bayesian vector autoregression (VARs) is becoming increasingly popular 
while facing recent criticism about potentially unwanted prior dominance and underrepresented 
bounds of the identified set. This can lead to biased inference even in large samples. Common 
estimation strategies in high dimensions or with tight restrictions can prove to be highly 
inefficient or even practically infeasible. We propose to include micro data on heterogeneous 
entities for the estimation and identification of vector autoregressions to achieve sharper 
inference. First, we provide conditions when imposing a simple ranking of impulse responses 
will sharpen inference in bivariate and trivariate VARS. Importantly, we show that this 
sharpening also applies to variables not subject to ranking restrictions. Second, we develop two 
types of inference to address recent criticism: (i) A prior-robust posterior over the bounds of the 
identified set and (ii) a fully Bayesian sampling algorithm that allows us to efficiently include an 
agnostic prior over the non-identifiable parameters. Third, we apply our methodology to US data 
to identify productivity news and defense spending shocks. We find that under both algorithms 
the bounds of the identified sets shrink substantially under heterogeneity restrictions relative to 
standard sign restrictions. 
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1 Introduction

Since the seminal paper by Sims (1980), the structural vector autoregressive (SVAR) model remains

the workhorse for assessing the dynamic causal effects of economic shocks that drive macroeconomic

variables. The model by itself is under-identified and requires additional prior identifying assump-

tions from outside the model which has been the key challenge in the SVAR literature since. Typical

inference methods impose zero restrictions to achieve just- or over-identification, such as short-run

schemes (Sims, 1980; Christiano et al., 1999; Sims and Zha, 1998) or long-run schemes (Blanchard

and Quah, 1989). But even though the resultant point identification is desirable, the underlying

assumptions are often too strong and restrictive to defend confidently and rarely backed by the-

ory according to Canova (2007). Alternatively, Uhlig (2005), Faust (1998), and Canova and De

Nicolo (2002) have pioneered the “agnostic identification” approach, proposing to identify shocks

by restricting the sign of the responses of selected variables consistent with conventional wisdom.

This approach relaxes strong zero restrictions and has become increasingly popular in the recent

literature. It belongs to the econometric class of set identified models.

We make three contributions to the class of set identified dynamic time series models: (1) We

show how to use micro data for the sharper identification of macroeconomic shocks by imposing

a ranking of responses. (2) We characterize analytically when ranking restrictions on one set of

variables, including, but not limited to micro data, can sharpen the inference for another variable,

such as a macro time series. (3) We propose two inference methods: As a conservative inference

method, we devise a sampling algorithm to transparently characterize the posterior bounds of set

identified shocks. This algorithm is immune to any shape of the prior distribution. We also devise a

new efficient sampling algorithm that characterize the posterior distribution over the identified set

for an agnostic prior. While most common algorithms within the Bayesian framework lead to a large

fraction of draws to be inadmissible empty sets, our approach finds for all posterior reduced form

draws the corresponding identified set and its distribution. This is particularly important when

restrictions are tight or the application is complex, for example, because of its high dimensionality.

Heterogeneity restrictions can stem from different a priori shock elasticities of different indus-

tries, regions or households. A-priori, heterogeneity could be supported or derived either from

theory or data. For example, consider identifying a fiscal policy shock as an unexpected increase

in government defense spending. Manufacturing industry A might have, a priori, a (much) higher

exposure to those shocks relative to sector B, if the government is a key client in the former in-

dustry and a negligible client in the latter industry. Hence, we may reasonably expect industry

A to expand more than B following a defense spending shock. We label such restrictions hetero-

geneity restrictions. In this paper we show both analytically and in two quantitative applications

that our approach sharpens inference substantially, even by the challenging standards of the recent

set-identified VAR literature.

Recent contributions on set identified SVARs have pointed to limitations related to (i) the

correct and transparent measures of uncertainty about the bounds on the identified impulse response

functions (Moon and Schorfheide, 2012; Moon et al., 2013; Giacomini and Kitagawa, 2014) and (ii)
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the unwanted dominance of seemingly uninformative priors (Baumeister and Hamilton, 2015; Arias

et al., 2014). Baumeister and Hamilton (2015) explore the role of the typical uniform prior and

its one-to-one dominance in the posterior. They explore prior elicitation directly on the structural

representation of the SVAR by truncating its direction to be consistent with the imposed sign

restrictions derived from theory defining a shock of interest to be identifed. Giacomini and Kitagawa

(2014) propose a method to conduct inference that is robust to the choice of prior on the non-

identifiable part, i.e. the rotation matrix mapping reduced form to structural impulse vectors.

Their approach delivers multiple posteriors, allows to summarize the corresponding robustified

credible regions and bounds on the posterior mean. Similar to them, we also pursue prior-robust

inference, in the spirit of not imposing distributions one may be uncomfortable with. However, we

focus on characterizing bounds on the impulse-responses, following Moon and Schorfheide (2012)

and Moon et al. (2013). To address unwanted prior dominance Moon and Schorfheide (2012)

suggest to construct and report credible sets for the identified set by providing a “transparent

parametrization” of the set. They discuss how any prior, no matter how uninformative, can lead to

overly informative inference. Bayesian credible sets thus lie strictly within the frequentist identified

set. Building on Moon and Schorfheide (2012), Moon et al. (2013) provide a valid frequentist

approach to inference in sign restricted VARs. We report prior robust posteriors using the quasi-

analytical characterization of the identified set of impulse-responses in the spirit of Moon et al.

(2013).

We combine this literature with a separate advance in empirical macroeconomics: The use of

the growing microeconomic datasets to answer macroeconomic questions. Including disaggregate

data by itself holds three promises. First, richer, heterogeneous data tends to exhibit more variation

which helps for identification, as in Nekarda and Ramey (2011). Second, it provides a more detailed

analysis of the transmission mechanism and the heterogeneous effects of shocks themselves. For

example, Anderson et al. (forthcoming) analyze the transmission of monetary policy shocks to

groups of households and Perotti (2008) looks how fiscal shocks transmit to different industries.

Third, the richer data may better reflect the relevant information set of economic agents which can

be important in the presence of news shocks (Beaudry and Portier, 2014).

Specifically, we use the extra dimension of heterogeneous data both for the estimation and im-

portantly the identification of SVARs. We show that it is particularly helpful for the identification:

In bi- and trivariate VARs we provide analytical conditions under which imposing heterogeneity

restrictions leads to strictly smaller identified sets for the responses to a macroeconomic shock while

avoiding unwanted prior information by following the approach of Moon and Schorfheide (2012)

and Moon et al. (2013). As we highlight in our analysis of the trivariate VAR, heterogeneity re-

strictions can also lead to set reduction for responses of traditional macro variables that are not

directly affected by heterogeneity restrictions. This occurs under simple conditions on the reduced

form correlation between forecast errors. We verify in two applications that this set reduction for

variables not directly affected by heterogeneity restrictions is also relevant in practice.

Where do heterogeneity restrictions come from and how can we motivate them? Heterogeneity
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restrictions could come from theory or could be based on estimates from separate sets of micro

data. We provide two applications and take the latter route to motivate heterogeneity restrictions.

In our first application we identify the dynamic effects of productivity news shocks while in our

second application we identify fiscal policy shocks. Beaudry and Portier (2006) have argued that

productivity news shocks are important drivers of business cycles. Our heterogeneity assumption

is that productivity news move the stock returns of R&D intensive industries more. We measure

the R&D intensity using Compustat data for either five or ten Fama and French (1997) industries.

We find that the restriction that more innovative sectors responds more sharpens our inference

substantially: Prior-robust bounds on the impulse-responses shrink by up to 45% for consumer

confidence and by more than one third for output and employment. The fully Bayesian responses

have a much more pronounced shape with heterogeneity restrictions and imply a slow increase

in TFP relative to its trend that is consistent with technology diffusion. We also find that our

conclusions change little when we impose a soft zero restriction on initial TFP, lending further

support to our identification scheme.

In our second application we identify a defense spending shock financed through higher taxes.

In the spirit of Nekarda and Ramey (2011) we characterize the macroeconomic effects with the

help of the differential effects on manufacturing industries. Our heterogeneity assumption is that

shipments of all manufacturing industries rise, but more so in industries with a higher share of sales

to the government, as measured by the input-output linkages computed by Nekarda and Ramey

(2011). One of the variables included in this application is real federal debt and its response is left

unrestricted. With heterogeneity restrictions, but not with sign restrictions, we find evidence that

despite the tax increase, federal debt rises in response to spending shocks. Intriguingly, this finding

already applies to the identified set at the posterior mean, highlighting the power of heterogeneity

restrictions at the micro level for macro variables.

While our focus is on identifying impulse-response functions, the identification scheme also

has implications for other moments derived from the identified shocks in VARs. For example,

Arias et al. (2015) examine the implied policy rules of a set identified SVAR, while Uhlig (2003)

directly targets the maximization of the forecast error variance decomposition (FEVD) of selected

variables to identify specific shocks. Focusing on FEVD, we show how to compute the identified

set of the explained variance that is consistent with sign- or heterogeneity restrictions, building

on the work by Faust (1998). Typically, reported FEVD in set identified SVARs tend to be very

wide, hence equally consistent with theories that either render driving shock being negligible or

the key driver. See Uhlig (2005) for a comparison and discussion of FEVD under agnostic and

recursive identification in the case of contractionary monetary policy shocks. In our applications

we show that the heterogeneity restrictions reduce the upper bound of the forecast error variance

significantly.

Our approach and our contributions naturally carry over to factor-augmented VARs and dy-

namic factor models in general as in Amir-Ahmadi and Uhlig (2015), panel VARs as in De Graeve
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and Karas (2014),1 or time-varying parameter VARs with stochastic volatility (henceforth TVP-

VAR) popularized by Primiceri (2005) and Cogley and Sargent (2005).Our proposed identification

scheme is independent of the specific statistical model and our analytical results regarding its

efficiency are static and thus independent of how the dynamics are modeled. In addition, the

algorithms we develop can also easily be applied to more general VAR-style models. Given that

inference in these models is already more demanding, having an efficient algorithm for sampling

over the identified set becomes even more important than in our VAR application.

This paper is structured as follows. First, we set up the general statistical model and identifica-

tion problem. In this general framework, we discuss prior-robust inference and provide analytical

characterizations of the identified sets in bivariate and trivariate models. Second, we discuss a

simple estimation algorithm that recovers the full identified set. Third, we provide two empirical

examples of large VARs applied to data from different US industries and US metro areas.

2 Model

Here we set up the standard Bayesian VAR framework that we work with throughout the paper

before we define sign and heterogeneity restrictions. We discuss that heterogeneity restrictions

weakly narrow the identified set and provide sufficient conditions for identified sets to have positive

measure. To illustrate the concept of heterogeneity restrictions, we provide examples of possible

applications. Last, we provide conditions when heterogeneity restrictions, compared to pure sign

restrictions, lead to strict reduction and no set reduction in bivariate and trivariate VARs.

2.1 Setup

We work with a Gaussian VAR with a conjugate prior over the identifiable reduced form parameters.

Specifically, the p× 1 vector of observables Yt depends on k lags and has iid normally distributed

forecast errors et.

Yt = µ+
k∑

ℓ=1

BℓYt−ℓ + et, et
iid∼ N (0,Σ). (2.1)

Structural VARs are underidentified and require a number of additional restrictions to provide

a one-one mapping of the reduced form innovations et to structural shocks ǫt by factoring the

variance-covariance matrix Σ. This can be summarized by the following relation:

et = Aǫt, ǫt
iid∼ N (0, Ip), Σ = AA′. (2.2)

1De Graeve and Karas (2014) have used what we call identification through heterogeneity to identify shocks from
banking panics in a data set of Russian banks. While their application is intriguing, our focus here is different. First,
we focus on formally characterizing asymptotically identifiable sets. Second, we propose to generalize their specific
application to exploit heterogeneity in a broad range of applications and dynamic econometric models.
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In addition to this generic VAR restriction, we want to impose restrictions on the signs of impulse-

response functions. We now lay out the notation needed to formalize these restrictions. We define

impulse vectors following Uhlig (2005):

Definition 1. The vector a ∈ Rp is called an impulse vector, iff there is some matrix A, so that

AA′ = Σ and so that a is a column of A.

Trivially, the columns of the lower Cholesky matrix Ã are impulse vectors – but generally not

structural impulses. In addition, for any rotation matrix Q = [q1, . . . , qp], the columns of ÃQ are

impulse vectors. Thus, without loss of generality we can express impulse vectors as:

a = Ãq, ||q|| = 1. (2.3)

We use || · || to denote the Euclidean norm throughout.

In general, we can then write our full model as:

p(Y T , B,Σ, Q) = ℓ(B,Σ|Y T )πrf (B,Σ)πQ(Q|B,Σ), (2.4)

where ℓ is the likelihood function, πrf denotes the prior over the reduced form parameters, and πQ

denotes the prior over Q that could be conditional on the reduced form parameters. We assume

standard a conjugate prior over (B,Σ) and take these parameters as given for now. We will discuss

estimation in the next section. Now we focus on what we can learn from beliefs about impulse

responses and the reduced form parameters about Q. We proceed assuming that πQ has full

support over the identified set.

2.2 Sign and heterogeneity restrictions

To learn about Q and identify structural impulse vectors, we impose qualitative restrictions on the

impulse-responses Q induces. To define these restrictions, we need extra notation. We use the

companion form Xt = BXXt−1+Aǫt of the VAR (2.1) to express impulse-responses after the initial

impact. The response at horizon h is then given by

ra(h) =
[

Ip 0p,p×(k−1)

]

(BX)h

[

a

0p×(k−1),1

]

(2.5)

We are now equipped to define sign restrictions, following Amir-Ahmadi and Uhlig (2015).

Imposing sign restrictions is equivalent to picking a list LSR ⊆ {(s, n)|s ∈ {−1, 1}, n ∈ {1, . . . , p}}
of variables n and signs s as well as a restriction horizon H ≥ 02.

Definition 2. The impulse vector a satisfies the sign restrictions (LSR,H) iff s × ra(h)n ≥ 0 for

all (s, n) ∈ LSR and h ∈ {0, . . . ,H}.
2Note, that extending the list to have have potentially different binding horizons for each pair of inequality

restrictions would be straightforward. For ease of notation we refrain from this exposition here.
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We define heterogeneity restrictions similarly, except that they are defined for a list of pairs of

variables (n,m) and an associated strength λ ∈ R+. Define LHR ⊆ {(s, n,m, λ)|s ∈ {−1, 1}, (n,m) ∈
{1, . . . , p}2, λ(n−m) 6= 0, λ ≥ 0}.

Definition 3. The impulse vector a satisfies the heterogeneity restrictions (LHR,H) iff s×ra(h)n ≥
λs× ra(h)m for all (s, n,m, λ) ∈ LHR and h ∈ {0, . . . ,H}.

Note that with a specific prior over Q and for given percentiles of the posterior distribution, the

heterogeneity restrictions can produce more dispersed posteriors percentiles: The tighter restric-

tions can shift mass away from the center of the prior towards the tails of the distribution, as we

will see in our applications. For the (distribution-free) identified set, however, there is a clear sense

in which heterogeneity restrictions are tighter than sign restrictions: Heterogeneity restrictions

can nest the standard sign restrictions. If they do so, the identified set is weakly smaller.

Lemma 1. Write LSR = {(s(j), n(j))|j = 1, . . . , J} for the full set of sign restrictions and write

LHR = {(s(j), n(j),m(j), λ(j))|j = 1, . . . , J} for the analogous set of heterogeneity restrictions. If for

all j = 1, . . . , J n
(j)
SR = n

(j)
HR and λ(j) ≥ 0, then identified the set for a induced by LHR is weakly

smaller than the set for a induced by LSR.

Proof. (Sketch.) Note that for λ(j) = 0, the restrictions in L
(j)
HR imply the restrictions in L

(j)
SR given

that n
(j)
SR = n

(j)
HR.

Below we provide conditions under which the identified sets are strictly smaller than with pure

sign restrictions in the cases of p = 2 and p = 3.

Heterogeneity restrictions may also apply when no sign restrictions are available because we

can only sign the difference in the responses. For example, we might know that lump-sum fiscal

transfers raise the expenditure of highly leveraged households more than those with low leverage.

Depending on how the transfers are financed, some household might actually cut expenditures,

for example if they pay most taxes. In that case we might want to impose only heterogeneity

restrictions that do not nest the standard sign restrictions.3

Can heterogeneity restrictions be too tight and result in empty identified sets? We now provide

sufficient conditions to guarantee a non-empty identified set. While the focus on impact restrictions

is more restrictive than our empirical specifications, the same intuition applies when we can rule

out overshooting responses or the restricted horizon is short enough.

Formally, if heterogeneity restrictions are imposed on impact only and satisfy the order condition

J ≤ p and a rank condition, there is always a set of impulse-vectors a that are consistent with the

heterogeneity restrictions.

Lemma 2. Assume H = 0, J ≤ p, all n(j) are distinct. Let Λ be a J × p matrix of zeros, except

for λ(j)s in the (j,m(j)) positions, j = 1, . . . , J . Let E be a J × p matrix of zeros, except for ones

3In a sense, also in that case the heterogeneity restrictions are stronger as the sign restrictions could leave an
unrestricted set of a = Ãq subject only to ||q|| = 1, while the heterogeneity restrictions imply restrictions.
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in the (j, n(j)) positions, j = 1, . . . , J . If M ≡ E − Λ is of rank J , then the set for a induced by

LHR has positive (Lebesgue) measure.

Proof. Let S be a J × J diagonal matrix with the direction of the restrictions on its diagonal

Sj,j = s(j). Then the heterogeneity restriction in LHR are equivalent to

S (E − Λ)
︸ ︷︷ ︸

=M

Ãq ≥ 0.

Since M is of rank J by assumption, we can re-write M = U [D, 0J×(p−J)]V , where U, V are

orthogonal matrices of dimension J and p, respectively. D is a J×J diagonal matrix with non-zero

entries along its main diagonal. Define M̃ = V ′[D−1; 0(p−J)×J ]U
′. Note that MM̃ = I.

Now define

q̃ ≡ Ã−1M̃S−11J×1.

Note that q̃ is non-zero. To see this, assume by contradiction that q̃ = 0p×1. Equivalently, after

left-multiplying by Ã and then by M , MM̃S−11J×1 = M0p×1 = 0J×1. But MM̃ = I and since S

is invertible, 1J×1 = 0J×1, a contradiction. Thus ||q̃|| > 0.

Let q ≡ q̃
||q̃|| . Then:

SMÃq = ||q̃||−1SMÃÃ−1M̃S−11J×1 = ||q̃||−11J×1 > 0,

where the inequality is taken elementwise. Since the inequality is strict, by continuity there exists

a δ > 0 such that all q̂ with ||q̃ − q̂|| < δ small enough can be rescaled so that Ã q̂
||q|| satisfies LHR.

Thus, the set of admissible a has positive (Lebesque) measure.

This Lemma is also useful to guide the design of heterogeneity restrictions. To see this note that

if the rank of M equals R < J only a degenerate solution with zero Lebesgue measure may exist.

Consider the case that J = 2 and M =

[

1 −1

−1 1

]

. In that case only q ∝
[

1, Ã11−Ã21

Ã22

]

, scaled to

have unit norm, is a possible solution. Thus if we want to increase the odds that a non-degenerate

solution exists we have to rule out cycles: This is natural on economic grounds, but we need to

formalize this notion. Restricting ourselves to no more restrictions than variables and focusing on

chains of restrictions is sufficient for the rank condition in Lemma 2.

In our application, we always impose heterogeneity restrictions for groups of variables. While

this restriction is by no means necessary, we now show that this type of restriction is sufficient for

the rank condition in the previous Lemma 2.

Corollary 1. Assume H = 0, J ≤ p, all n(j) are distinct, and there is at most one restriction L
(j)
HR

with m(j) = n and λ(j) > 0 for each variable n = 1, . . . , p. Furthermore, heterogeneity restrictions

7



come in non-overlapping groups G = {j1, j2, . . . , j̄} with s(j) = s(ℓ) = sG for all j, ℓ ∈ G with one

λ(j1) = 0, i.e.:

0 ≤ sGr(a)n(j1)

sGλ(j2)r(a)n(j1) = sGλ(j2)r(a)m(j2) ≤ r(a)n(j2) using n(j1) = m(j2)

. . .

sGλ(j̄)r(a)m(j̄) ≤ r(a)n(j̄)

Then the set for a induced by LHR has positive (Lebesgue) measure.

Proof. To keep the notation simpler, assume that the variables with restrictions are ordered first in

the VAR, such that n(j) = j for j = 1, . . . , J . Otherwise the proof below holds after multiplication

with appropriate permutation matrices.

Since groups are non-overlapping, we have that the rows of E,Λ involving any variables j ∈ G

do not involve any variables j′ ∈ G′,G′ 6= G. Note that E,Λ are zero except for: (1) Positions

{(j1, j1), . . . , (j̄ , j̄)} in E, which are unity, and (2) positions {(j1,m(j1)), . . . , (j̄,m(j̄))} in Λ, which

equal λ(j1), . . . , λ(j̄), respectively. Proceed by Gaussian Elimination.

Note that λ(j1) = 0 by assumption. Then, multiplying row j1 by −λ(j2) and adding it to row

j2 ensure that Mj2,◦ − λ(j2)Mj1,◦ = Ej2,◦ − Λj2,◦ − λ(j2)Ej2,◦ = Ej2,◦ = ej2 – a zero row except for

one entry equal to unity.

Now assume that Mjn,◦ = Ejn,◦ = ejn. Multiplying multiplying row jn by −λ(jn+1) and adding

it to row jn ensure that Mjn+1,◦ − λ(jn+1)Mjn,◦ = Ejn+1,◦ = ejn+1. Continue until jn + 1 = j̄.

Thus, we can rewrite Mj1,◦, . . . ,Mj̄,◦ as a linear combination of the independent basis vectors

Ej = ej , j ∈ G. Thus, their rank equals the cardinality of G.

Since groups are non-overlapping, the total rank is the cardinality of all groups, which equals

J . Thus, Lemma 2 applies.

Note that the logic underlying our existence results does not generally hold when H ≥ 1 because

dynamic restrictions involve interaction terms between restrictions of potentially different sign or

reversal to the mean that is not monotone. Heterogeneity restrictions and simple sign restrictions

alike can lead us to reject reduced form draws in these cases.

2.3 Equivalence to change of variables

Note that in simple settings there is an equivalence between heterogeneity restrictions and sign

restrictions with an appropriate change of variables. Let [1, 0] and [λ,−1] be the rows ofM encoding

the heterogeneity restrictions on Yt = [Y1,t, Y2,t]
′. Then this heterogeneity restriction is equivalent
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to two standard univariate sign restrictions [1, 0] and [0,−1] in a VAR of Ỹt = [Y1,t, λY1,t − Y2,t]

with associated Cholesky factor:

˜̃
A =

[

1 0

−λ 1

][

Ã1,1 0

Ã2,1 Ã2,2

]

=

[

Ã1,1 0

λÃ1,1 − Ã2,1 −Ã2,2

]

.

For example, take Y1,t to be the nominal interest rate and Y2,t to be the inflation rate. Then the

first restriction identifies an increase in the nominal interest rate and the second restriction requires

the ex post real rate to rise. Equivalently, we can represent these restrictions as sign restrictions in

a bivariate VAR with the nominal and the ex post real interest rate.

More generally, if there are J = p full rank heterogeneity restrictions in a VAR of {Yt} these

are equivalent to standard sign restrictions in a VAR of {Ỹt} = {MYt} with covariance matrix

Σ̃ ≡ MΣM ′. Here, M = E − Λ. Our argument can, thus, alternatively be viewed as a theory of

the VAR observables. Our setup is, however, more general because we do not require the order

condition J = p but can allow for more restrictions than observables.

2.4 Strength of the restrictions

How do we choose the strength of the heterogeneity restrictions? Mathematically, what are rea-

sonable values for λ? If we have a notion that we want to rank the responses of different sectors

qualitatively, the case of λ = 1 might be the most natural. However, in this case can also think of

λ as expressing our degree of confidence in the measured heterogeneity. For example, setting λ = 1
2

expresses a weaker ranking. However, also qualitative beliefs about macroeconomic relationships

can generate bounds. For example, we might want to assume that the (ex post) real interest rate

rises in response to contractionary monetary policy shock rises, implying

λ× IRFFFR,0 ≥ IRFinflation,0 with λ = 1

The following example generates a λ 6= 1: If we believed in a Phillips Curve relationship between in-

flation and unemployment whose slope below a certain threshold, we might specify that in response

to demand shocks the following restriction holds

IRFinflation,0 ≤ −λ×IRFunemployment,0 with λ = 2

The choice of λ = 2 is a conservative value. For example, Blanchard et al. (2015) report that the

75th percentile of the point estimates of the slopes across all countries and time periods is smaller

than 1.75.

2.5 Different variations of heterogeneity restrictions

While we focus on short-run heterogeneity restriction in the remainder of the paper, we note that

the approach is versatile and applies also to the following variations:
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Soft zero restrictions: We can also use varying ranking intensities λ to impose approximate zero

restrictions, i.e., soft zero restrictions. For example, Christiano et al. (1999) identify monetary

policy shocks via zero short-run restrictions, imposing, among other things, that real output

cannot respond contemporaneously to monetary policy shocks. Here, we could also impose

an analogous, but less dogmatic, soft zero restriction by imposing for a small value of λ for

the following restrictions

−λ× IRFFFR,0 ≤ IRFGDP,0 ≤ λ× IRFFFR,0 with λ = 0.01

Long-run zero restrictions: It is straightforward to extend our suggested heterogeneity restric-

tions to the case of set identified long-run restrictions. One could either implement long-run

neutrality based on soft zero restrictions as detailed above. For example, to impose approxi-

mate monetary neutrality impose:

−λ× IRFFFR,0 ≤ IRFGDP,∞ ≤ λ× IRFFFR,0 with λ = 0.01.

Here, IRFGDP,∞ is the respective long-run impulse response of real GDP to a contractionary

monetary policy shock.

Long-run heterogeneity restrictions: Implementing a long-run identification scheme under het-

erogeneity restrictions is also straightforward. Consider the case of productivity news shocks

and of two industries, A and B. A is more R&D intensive than B. To impose that the long-

run impulse response of productivity industry A be stronger than productivity in industry B

impose:

IRFProductivity in A,∞ ≥ λIRFProductivity in B,∞ with λ = 0.01.

Fully Bayesian analysis of models with extreme values of λ can be challenging. To that end, we

develop an efficient algorithm in Section 3 that works well even with soft zero restrictions.4

2.6 Characterizing the identified set analytically

When can we expect heterogeneity restrictions to be most useful? Here we first follow Moon et al.

(2013) to characterize the identified set analytically in a bivariate VAR with impact restrictions

only. We show that for the common restrictions, associated with λ
(j)
HR = 0, the identified set for an(j)

can be strictly or weakly smaller, depending on reduced form parameters. For an(j′) with λ
(j′)
HR > 0,

however, we find that the identified set is strictly smaller, except for degenerate cases. Either

type of restriction has the more bite the more negative the reduced form correlation of forecast

errors. Trivially, heterogeneity restrictions have the more bite, the stronger the known degree of

4Note that existing Bayesian analyses of sign and zero restrictions often inadvertently impose non-stated beliefs
in the identification. See Arias et al. (2014), who explain how to combine sign and hard zero restrictions in a fully
Bayesian fashion.
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heterogeneity and the higher the ratio of conditional standard deviations. We also show that the

results generalize to trivariate VARs. Trivariate VARs allow us to distinguish between variables

directly affected by heterogeneity restrictions and other variables subject only to sign restrictions.

2.6.1 Bivariate VAR with impact restrictions

We impose two restrictions to identify the first shock. In a bivariate VAR we can use (2.3) to

express these restrictions as:5

Standard sign-restrictions Heterogeneity restrictions

q1Ã1,1 ≥ 0 q1Ã1,1 ≥ 0 (2.6a)

q1Ã2,1 + q2Ã2,2 ≥ 0 (q1Ã2,1 + q2Ã2,2)− λq1Ã1,1 ≥ 0 (2.6b)

Since the heterogeneity restriction nests the standard sign restriction for λ = 0, we now focus on

this more general case.

To understand the implied restrictions, it is useful to write the elements of the Cholesky factor

Ã in terms of the correlation and variances of the reduced form errors.6 We can then rewrite (2.6)

as:

q1 ≥ 0 (2.7a)

q2 ≥
(

λ
Ã1,1

Ã2,2

− Ã2,1

Ã2,2

)

q1 =
(

λ
Ã1,1

Ã2,2
︸︷︷︸

>0

− ρ
√

1− ρ2

)

q1. (2.7b)

In (q1, q2) space, q2 has to lie in the plane above the ray through the origin with slope − ρ√
1−ρ2

with pure sign restrictions. he slope depends on correlation between the reduced form forecast

errors. Heterogeneity restrictions can always flip the slope for λ high enough.

Intersecting the set described by (2.7) with the unit circle yields Figure 2.1, following Moon

et al. (2013): First, q1 is positive. Second, q2 lies above the straight line through the origin, that

may have positive or negative slope. The slope is increasing in λ. Last, (q1, q2) are confined to the

unit circle since ||q|| = 1. Given λ > 0, three cases can arise: (a) the reduced form correlation is

positive and dominates the positive contribution of the heterogeneity restriction, (b) the reduced

form correlation is positive, but the contribution from the heterogeneity restriction dominates, (c)

5As written, we impose one sign and one heterogeneity restriction. An example is identifying a cost shock
in a competitive industry for which we observe prices and quantities. In the presence of decreasing returns to
scale and with elastic demand, we know that minus the quantities fall more strongly than the prices within that
industry. For example, let Qt = ǫatL

1−φ
t be the production function and Qt = ǫbtP

−ω
t , φ ∈ (0, 1) and ω > 1. Then

prices equal ln pt = ln w̄ + φ

1−φ
ln qt − 1

1−φ
ln ǫat and ln qt = ln ǫbt − ω ln pt. In equilibrium, ∂ lnpt

∂ ln ǫa
t

= (1−φ)2

1+φ(ω−1)
and

− ∂ ln qt
∂ ln ǫa

t

= ω
1−φ

∂ ln pt
∂ ln ǫa

t

> ∂ ln pt
∂ ln ǫa

t

.
6Note that the Cholesky decomposition Σ = ÃÃ′ can be written as: Ã1,1 =

√
Σ11, Ã2,1 = Σ21

Ã1,1

= Ã2,2
ρ√
1−ρ2

,

and Ã2,2 =
√

Σ22 − (Ã2,1)2 = |Ã2,1|
√

1/ρ2 − 1. Σ is the covariance matrix of the forecast errors and ρ is the reduced
form correlation between the forecast errors.
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the correlation is negative so that both contributions are positive. In cases (b) and (c), the marginal

full set for q1 is strictly smaller with heterogeneity restrictions. In case (a), the marginal set for

q1 is [0, 1] in both cases, but the full identified set for q2 is strictly smaller with heterogeneity

restrictions.

(a) λÃ1,1 − Ã2,1 ≤ 0, Ã2,1 ≥ 0 (b) λÃ1,1 − Ã2,1 ≥ 0, Ã2,1 ≥ 0 (c) λÃ1,1 − Ã2,1 ≥ 0, Ã2,1 ≤ 0
Weak heterogeneity restriction Strong heterogeneity restriction Strong heterogeneity restriction
Positive correlation Positive correlation Negative correlation

q1

q2

SR

HR

q1

q2

SR

HR

q1

q2

SR

HR

The full identified set is given by the intersection of the unit circle with the q1 ≥ 0 plane and the plane above the

HR and SR lines, respectively. The resultant joint set on the unit circle as well as the marginal sets on the axes

are marked in red (and solid) lines for the case of heterogeneity restrictions (HR) and in dashed and blue lines for

the traditional sign restriction (SR). The HR set is strictly smaller on the unit circle – this always translates into a

tighter set for q2 and, in cases (b) and (c) also in smaller sets for q1. We show in the text that this also translates to

tighter sets for a1 and a2 in the HR case.

Figure 2.1: Graphical representation of the identified set for the two types of restrictions

However, we are not interested in the set of admissible q per se, but in the induced set for a = Ãq.

Since a1 = Ã11q1, we can simply read off the results from Figure 2.1. Appendix A.1 summarizes the

identified sets for both a1 and a2. Proposition 1 uses this characterization to summarize when we

have a strict set reduction for the responses. Since Ã11 =
√
Σ11 and Ã21 = Σ21√

Σ11
, these restrictions

depend only on the reduced form variances and covariances.

Proposition 1. The identified set for the structural impulse a1 from (2.6) is strictly smaller under

heterogeneity restrictions than under sign restrictions iff λÃ11 − Ã21 > 0. The identified for a2 is

strictly smaller unless λÃ11 = Ã21.

Proof. This follows directly from comparing the sets listed in Appendix A.1 for λ = 0 and λ > 0.

Note that independent of the presence of heterogeneity restrictions or sign restrictions, a nega-

tive reduced form correlation leads to a smaller identified set of q1 and, consequently, of a1. These

sets are, in turn, smaller with heterogeneity restrictions. The differences in the sets are most pro-

nounced when the correlation is positive, but the heterogeneity restriction is strong – compared to

the reduced form standard deviations of the second variable relative to the first.

Intuitively, we find set reductions with sign restrictions if the reduced form correlation between

the variables is of the opposite sign than the one attributed to the identified shock: In this case, the
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identified shock cannot account for the entire impact response – else the VAR could not generate

the observed reduced form correlation. This intuition not only applies to the case of heterogeneity

restrictions, but also for the reduced form correlation between variable 1, [1, 0]Yt and the linear

combination [−λ, 1]Yt.

When are the two sets equal? Note that when there is only one common shock to variables 1

and 2 whereas also a second shock affects variable 2, the identified sets in response for the common

shock are necessarily equal. The second shock is an idiosyncratic shock to variable 2, such as an

industry-specific shock: A = [a11, 0; a21, a22]. In this case, Ã = A. Assume a positive covariance.

Then, Ã21 = κÃ11 for κ = a21
a11

. If λ = κ, the two sets are equal.7

Proposition 1 implies that for λ large enough, identified sets for both responses a1, a2 are strictly

smaller. A different way to understand our results is through Proposition 4 in Amir-Ahmadi and

Uhlig (2015). They show that in a bivariate VAR, all possible sign restrictions are spanned by two

sign restrictions with maximal 180◦ angle. Standard sign restrictions as defined above imply an

angle of 90◦, whereas heterogeneity restrictions imply an angle of more than 90◦.8 Here, as λ ր ∞,

the angle spanned by the heterogeneity restriction approaches 180◦. In this case, our identified

sets for a2 converge to a point mass at Ã22. Note that this case arises when we impose a soft

zero restriction: For large λ, we are constraining the response of variable one, i.e., IRF0,1 to lie in

IRF0,1 ∈ [0, λ−1IRF0,2]. Given that IRF0,2 ≥ 0, the limit of λ ր ∞ is point identification. Large

but finite λ correspond to “soft” point identification.

Note that the idea of ranking the responses of two different variables to one shock carries over to

ranking the response of a single variable to two different shocks: The response of the first variable

to the two shocks can be written as a1,1(Q) = Ã11

[

q1,1 q1,2

]

subject to ||
[

q1,1 q1,2

]

|| = 1.

Assuming positive responses, the heterogeneity restriction then takes the form of q1,1 ≥ 0 and

λq1,1 ≥ q1,2 =
√

1− q21,1 ≥ 0 so that q11 ≥ 1√
1+λ2

> 0. Because q12 =
√

1− q211 = |λ|√
1+λ2

> 0, we

have a strict set reduction.

2.6.2 Trivariate VAR with impact restrictions

Proposition 1 shows that impulse response of the variable on the right-hand side of the heterogeneity

restriction belongs to a strictly smaller identified set with heterogeneity restriction compared to

sign restrictions under conditions on the reduced form conditional covariance. Higher dimensional

cases are more complicated. However, in the trivariate case, there is a set of sufficient conditions

that parallel the necessary and sufficient conditions of the bivariate case. These sufficient conditions

also imply either equal sized sets or a strict set reductions for the variable that is not involved in

the heterogeneity restrictions.

We begin by stating the heterogeneity restriction for the trivariate case – to obtain the sign

7With a negative covariance, both the sign and the heterogeneity restrictions are violated. In this case, the
heterogeneity restrictions will, mistakenly, lead us to be more confident about the wrong restrictions.

8Since [1, 0][−λ, 1]′ < 0 but [1, 0][0, 1] = 0 the angle implied by sign restrictions is wider.
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restrictions, set λ = 0.

q1Ã11 ≥ 0 (2.8a)

q1Ã21 + q2Ã22 ≥ 0 (2.8b)

q1Ã31 + q2Ã32 + q3Ã33 ≥ λ(q1Ã21 + q2Ã22) (2.8c)

Proposition 2. The identified set for the structural impulse a1 from (2.8) is strictly smaller under

heterogeneity restrictions than under sign restrictions if λÃ21 > Ã31 and Ã31 > 0. The identified

set for a1 is equal under heterogeneity and sign restrictions if λÃ21 ≤ Ã31 and Ã21 ≥ 0.

Proof. See Appendix A.2.1.

The intuition from Proposition 1 also explains Proposition 2: Consider a case where shock

identification calls for positive comovements between the variables. The sufficient condition applies

to the case where the reduced form correlations are the same as the correlations conditional on

the shock. The heterogeneity restriction strictly sharpens inference if in the space of transformed

variables the conditional correlation has the opposite sign from the reduced form correlation.

Proposition 2 implies that heterogeneity restrictions can sharpen the inference also on standard

macro variables, say variable 1, even if the heterogeneity restrictions only involve micro variables 2

and 3. Again, since Ã1i =
Σ1i√
Σ11

, these conditions involve only the reduced form covariances between

the forecast errors.9

In the Appendix, we provide three examples that show that the sufficient condition in Propo-

sition 2 has bite in real world applications: (1) We analyze the workhorse New Keynesian model

of the nominal interest rate, a measure of real activity, and the rate of inflation. (2) We look at

fiscal policy in a VAR of GDP, spending, and taxes, motivated by Blanchard and Perotti (2002).

(3) We also look at a news shock, in a VAR with GDP, TFP, and a stock index. In these examples,

we consider a range of values for λ that implement a “soft” zero restriction on, respectively, real

activity, government spending, and current TFP, motivated by Beaudry and Portier (2006). In the

New Keynesian application, the sufficient condition for equal sets applies and we verify that for any

λ, the identified sets for the macro variable (the interest rate) is unchanged. In the fiscal policy

application, we find that the sufficient condition for set reduction applies for modest λ. The set

reduction builds up to about 10-15% of the impact response of GDP. The results are similar for

the third application, with a set reduction of up to 7.5% for the output response.

What happens if there are only two aggregate shocks and the responses of variables 2 and

variables 3 to both shocks satisfy the heterogeneity restriction in population? We show in Ap-

pendix A.2.3 that in this case the heterogeneity restriction simply becomes redundant and we are

left with two simple sign restrictions, (2.8a) and (2.8b), to identify the shock of interest. Thus, when

9Note that the same logic would apply in the somewhat peculiar case of a p dimensional VAR in which Σ1i ≥ 0
for i = 1, . . . , p with p− 3 positivity restrictions appended to (2.8) – or no restrictions on the extra p− 3 restrictions.
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responses to all aggregate shocks satisfy the heterogeneity restrictions, heterogeneity restrictions

have no bite.10

3 Estimation

The estimation uncertainty of the identified impulse response functions stems from two sources – the

size of the identified set and the uncertainty about the reduced form parameters. We consider two

types of inference: First, we consider prior-robust inference (Algorithm 1) about the identified set.

Second, we also consider an efficient fully Bayesian inference (Algorithm 2). We provide numerical

algorithms for both schemes and begin by summarizing inference over reduced form parameters.

3.1 Reduced form parameter uncertainty

We quantify the uncertainty about the reduced form parameters using a Bayesian approach. This

approach is also perfectly valid from a frequentist perspective. The posterior distribution is standard

for our Gaussian Bayesian VAR.

Specfically, stacking all the coefficients in a vector β and denoting the forecast error variance

by Σ we have the following conjugate prior distribution over the reduced form parameters:

β ∼ N (β̄0, N
−1
0 ⊗ Σ) (3.1)

Σ ∼ Wp(ν0(Σ̄0)
−1, ν0). (3.2)

The marginal posterior distribution for Σ−1 is a Wishart-distribution, from which we draw directly.

Given the draw for Σ−1, we can draw from the conditional normal distribution for the coefficients

B.

3.2 Prior-robust inference

In a standard BVAR with sign restrictions such as Uhlig (2005), the posterior distribution of

impulse-response functions results from integrating out both the rotation matrix Q and the reduced

form parameter uncertainty. However, there are many possible prior distributions over Q that may

imply different shapes for the resultant IRF, as we illustrate in Figure 3.1. Baumeister and Hamilton

(2015) point out that the commonly used prior that Q be uniformly distributed in the space of

orthonormal matrices does not translate to a uniform distribution within the identified set. We

also find this in our applications below. Additionally, Arias et al. (2014) argue that practitioners

have combined sign and zero restrictions in ways that introduced unnoticed prior information.

We argue that one can address the criticism by Baumeister and Hamilton (2015) and Arias

et al. (2014) by being conservative and choosing the worst case prior possible over Q. However,

when we are conservative about the distribution of Q, we still know how to quantify the posterior

10Trivially, the sets identified with heterogeneity restrictions equal those identified with pure sign restrictions.
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prior-robust identified set

Parameterizing a = Ãq means that the impact response of the first variable a1 = Ã11q1. The figure shows that

different possible priors, here coming from the family of beta-distributions, can generate very different densities over

the structural parameters. Here we focus instead on the full identified set, highlighted in blue.

Figure 3.1: Impulse-vector for first variable in VAR for different beta-priors over q1

distribution over the reduced-form parameters (β,Σ), and we should use this information that

transparently reflects the data.

Thus, we follow Moon and Schorfheide (2012) to compute the infimum and supremum over

all admissable rotation matrices Q. This set is distribution free, as we compute the infimum and

supremum over the set of all prior distributions over admissable rotation matrices. We compute

this set conditional on the reduced form parameters (β,Σ). While this set is robust to any full-

support prior over rotation matrices, we still care about the parameter uncertainty: Some parameter

combinations (β,Σ) have very low posterior probability. These parameter draws may or may not

have large bounds for the impulse response functions attached to them, but since the data tells

us that these have very lower posterior density, we argue that we should communicate this. We

therefore compute a distribution over the [inf, sup]-bounds that reflects the posterior reduced-form

parameter uncertainty.

Formally, define the posterior distribution over the IRF for variable j at horizon h given the

prior π over the rotation vectors q as:

F̃ π
j,h(x) =

∫ ∫

q

1{r
Ãq

(h;Σ,β)j≤x}1{r
Ãq

(s;Σ,β)n≥λr
Ãq

(s;Σ,β)m∀(n,m,λ)∈L(j)
HR∀j=1,...J}π(q)dq × p(Σ, β;Y T )dΣdβ

In contrast, we define the prior-robust posterior distribution over the IRFs as:

Fj,h(x) =

∫

sup
π,q|π(q)>0

1{r
Ãq

(h;Σ,β)j≤x}1{r
Ãq

(s;Σ,β)n≥λr
Ãq

(s;Σ,β)m∀(n,m,λ)∈L(j)
HR∀j=1,...J}p(Σ, β;Y

T )dΣdβ

Our prior-robust inference avoids taking a stance on the shape of the prior over the identified
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set. It is therefore “frequentist-friendly” in the language of DiTraglia and Garćıa-Jimeno (2016).

It sidesteps both the criticism by Baumeister and Hamilton (2015) that priors can dominate the

inference and the criticism by Moon et al. (2013) that traditional sign identified Bayesian VARs

misrepresents the identified set. Our approach follows the principle of transparent parameterization

detailed in Schorfheide (2016).

In contrast to the simple sampling scheme for the reduced form parameters, characterizing the

bounds of the identified set via Monte Carlo integration is hard, particularly in higher dimensions

and can become impractical. We therefore rely on the following numerical algorithm to compute

the identified sets. It mimics the analytical approach that we use to characterize the identified set

in the bivariate and trivariate VAR examples.

Algorithm 1 Prior robust inference

1. Draw B(d) and Σ(d) from p(B,Σ|Y ).

2. Given B(d) and Ã(d) = chol(Σ(d)), compute the following matrix:

W ≡








S(E − Λ)B(d)
0 Ã(d)

S(E − Λ)B(d)
1 Ã(d)

. . .

S(E − Λ)B(d)
H Ã(d)







,

where

B(d)
h =

{∑h
s=0(B

(d))s j if estimated in growth rates,

(B(d))h j if estimated in levels.

3. For each variable i = 1, . . . , p and for each horizon s = 0, . . . , S solve the following problems

min
q

and max
q

e′jB(d)
s Ã(d)q

s.t. Wq ≤ 0,

||q|| = 1

Save the resulting values as upper and lower bounds.

Our Algorithm 1 is related to those of Faust (1998) and Giacomini and Kitagawa (2014). It

resembles the algorithm of Giacomini and Kitagawa (2014) without their computation of posterior

means. Unlike them, we have no need to approximate the bounds using stochastic integration.

Note that the numerical optimization problem in the algorithm has a simple structure: A linear

objective and inequality constraint, and an equality constraint with gradient 2q. We find that

Matlab’s fmincon11 solves the problem efficiently. For high-dimensional problems we can run the

algorithm in parallel, given independent posterior draws for B(d) and Ã(d) = chol(Σ(d)).12

11We experimented with different algorithms and solvers to ensure robustness of the results.
12In the language of Giacomini and Kitagawa (2014) and Kline and Tamer (forthcoming), we find that for the
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IRFs are just one implication of the set-identified shock. The identified set also has implica-

tions for policy rules (see Arias et al., 2015) and the forecast error variance decomposition. Since

Christiano et al. (1999) argue that structural VARs can fail to identify policy rules even when they

identify IRFs correctly, we focus on the forecast error variance decomposition. In Appendix B we

follow Uhlig (2003) to show that the forecast error variance for variable i from horizon 0 to H

associated with the orthonormal vector q can be expressed as:

q′Si,Hq, Si,H ≡
H∑

h=0

(H + 1− h)(eiB(d)
h Ã)′(eiB(d)

h Ã). (3.3)

We can now compute bounds on the forecast error variance contribution of any variable i up to

horizon H by replacing the objective e′jB
(d)
s Ã(d)q in the previous algorithm with q′Si,Hq. For given

parameters this approach is the algorithm used in Faust (1998) to assess whether the finding that

monetary policy shocks only explain a small proportion of output are indeed robust.

3.3 Fully Bayesian inference

If a researcher has beliefs that provide information in addition to the sign restrictions, she might

want to impose these beliefs. Here, we provide a framework for conducting inference under the

belief that the rotation vector q is distributed uniformly over the unit n-sphere, conditional on

lying in the identified set. Because the identified set can be small, we provide an algorithm for

drawing from this set that is efficient and leads to a perfect acceptance rate.

Our prior belief that conditional on a given reduced form draw, whose associated identified set

is non-empty, the rotation vector q is distributed uniformly on the unit n-sphere corresponds to

the following complete Bayesian model:13

p(Y,B,Σ, q;R(·)) = p(Y |B,Σ)p(B,Σ)p(q|B,Σ;R(·)), (3.4a)

p(q|B,Σ;R) =
1{R(B,Σ)q ≤ 0}
∫

Q∩{q̃|R(B,Σ)q̃≤0} dq̃
(3.4b)

In practice, we found that is can be extremely difficult to sample from p(q|B,Σ;R(·)) when R

has many restrictions. We therefore device an efficient algorithm for drawing from the posterior

(Algorithm 2). To do this, we use the fact that our restricted set is scale free and that a draw

from the multivariate normal distribution rescaled to have zero norm is uniformly distributed on

applications reported here, the posterior plausibility of our restrictions is always 100%. We found lower posterior
plausibilities only in a priori unreasonable specifications of our heterogeneity restrictions.

13Note that our unconditional prior is agnostic in the sense of Arias et al. (2014): Without restrictions, p(B,Σ, q) =
p(B,Σ, qQ̃) for any orthogonal matrix Q̃. The conditional posterior, however, need not be conditionally agnostic in
their language, however, because the size of the identified set enters the probability of q via

∫

Q∩{q̃|R(B,Σ)q̃≤0}
dq̃. Note

that this prior implies that the marginal data density is unaffected by the prior over q when the identified set is never
empty: p(Y ) =

∫ ∫ ∫

p(Y |B,Σ)p(B,Σ)p(q|B,Σ;R(·))dqdBdΣ =
∫ ∫

p(Y |B,Σ)p(B,Σ)
∫

p(q|B,Σ;R(·))dqdBdΣ =
∫ ∫

p(Y |B,Σ)p(B,Σ)dBdΣ.
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the unit n-sphere.14 We formally state these facts in Lemma 3.

Lemma 3. If x
iid∼ N (0, In) and Wx ≤ 0, then q = x

||x|| is a uniform draw from the unit n-sphere

that satisfies Wq ≤ 0.

Proof. The fact that y
||y|| has uniformmeasure over the space of unit vectors follows from the rotation

invariance of the zero-mean multivariate normal distribution. More formally and generally, from

Theorem 3.3 in Stewart (1980) or Theorem 9 in Rubio-Ramı́rez et al. (2010), if X = [x1, . . . , xn]

with xi
iid∼ N (0, I), the matrix Q obtain from the QR decomposition of X has, after normalizing R

from the QR decomposition to have a positive diagonal, the uniform distribution on the space of

orthogonal matrices. The first column of Q is then simply q = x1
||x1|| . Thus, if y

iid∼ N (0, In), then

q = y
||y|| is distributed uniformly on the unit n-sphere.

Thus, for any Borel set A, Pr
{

y
||y|| ∈ A

}

= Pr {q ∈ A}. Now consider the truncated dis-

tribution: q|Wq ≤ 0. Let S = {z ∈ Rn|Wz ≤ 0}. Notice that Pr
{

y
||y|| ∈ S

}

= Pr{y ∈
S} because y = 0 has zero probability. It follows that the truncated distributions are equal:

Pr
{

y
||y|| ∈ A ∩ S

}

Pr
{

y
||y|| ∈ S

}−1
= Pr {q ∈ A ∩ S}Pr {q ∈ S}−1.

Lemma 3 allows us to draw efficiently from the truncated unit n-sphere efficiently by drawing

from the truncated multivariate normal distribution subject to inequality constraints. Practically,

we use the Gibbs sampling algorithm in Li and Ghosh (2015). More efficient direct samplers such

as Botev (2016), which uses a recursive sampler based on the LQ decomposition of the W matrix of

restrictions, are available when the number of restrictions is no larger than the dimension of q.1516

While Algorithm 2 is designed to draw from the posterior associated with the specific prior

(3.4b), we could adapt it for other beliefs by introducing a reweighting step. Specifically, the

conditional structure of the prior over (B,Σ, q) in (3.4b) makes our prior hierarchical. This prior

belief differs from the prior in Uhlig (2005) and Arias et al. (2014) that implies a flat distribution

of q independent of the reduced form parameters. Under regularity conditions, Algorithm 2 can

be adapted to produce draws from posteriors induced by other prior beliefs. To do this, we would

importance-sample by reweighing the draws from the posterior based on (3.4b) by measure of the

restricted set Wq ≤ 0.

14Note that if we had a set of restrictions {q|Wq ≤ b} for b 6= 0, then Wx ≤ b does not imply that W x
||x||

≤ b –

for example, if an equality is strict and ||x|| < 1. This limits our algorithm to scale-free problems.
15We simply use the inverse normal CDF in Matlab to draw from its truncated distribution, unlike Li and Ghosh

(2015). The inverse standard normal CDF transform is accurate up to ±8. Simulating draws from both the Li and
Ghosh (2015) method and the inverse normal method showed that the Li and Ghosh (2015) method was no more
accurate in the tails and in some occasions less accurate. Also experimenting with an alternative approximation to
the inverse normal CDF produced indistinguishable results.

16Notice that the thinning step 3(c)ii in Algorithm 2 is not strictly necessary. However, thinning increases the
effective sample size and therefore ensures that comparisons between the measure of different sets associated with
restrictions R and R′ are not driven by differences in the effective sample size.
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Algorithm 2 Fully Bayesian inference

1. Draw B(d) and Σ(d) from p(B,Σ|Y ).

2. Given B(d) and Ã(d) = chol(Σ(d)), compute the following matrix:

W ≡








S(E − Λ)B(d)
0 Ã(d)

S(E − Λ)B(d)
1 Ã(d)

. . .

S(E − Λ)B(d)
H Ã(d)







,

where

B(d)
h =

{∑h
s=0(B

(d))s j if estimated in growth rates,

(B(d))h j if estimated in levels.

3. Draw from p(q|B(d),Σ(d);R)

(a) Initialize x(d,0) = xc

||xc|| where xc is the Chebychev center of the set Wx ≤ 0:

xc = argmin
x

max
r

r s.t. Wi,◦q + r||Wi,◦|| ≤ 0∀i.

(b) Verify that the identified set is non-empty, i.e., proceed if maxi |xci | > 0. Otherwise, go
back to Step 1.

(c) Draw ℓ̄ realizations of q(d,ℓ) using the following Gibbs sampler:

i. For ℓ = 1, . . . , ℓ̂+ f × ℓ̄:

• For m = 1, . . . n, draw x
(d,ℓ)
m from the univariate truncated normal distribution

truncated to [l
(d,ℓ)
m , u

(d,ℓ)
m ].

• The upper bound is: u
(d,ℓ)
m = min

{

∞,min{j:Wjn>0}−
Wjnx

(d−1{n>m},ℓ)
−m

Wjn

}

.

• The lower bound is: l
(d,ℓ)
n = max

{

−∞,max{j:Wjn<0}−
Wjnx

(d−1{n>m},ℓ)
−m

Wjn

}

.

ii. Drop the first ℓ̂ draws and then keep every fth draw.

iii. For the remaining draws, compute B(d)
s Ã(d) x(d,ℓ)

||x(d,ℓ)|| .
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4 Applications

4.1 News shocks

In our first application, we analyze a productivity news shock, in the spirit of Beaudry and Portier

(2006). Beaudry and Portier (2006), Barsky and Sims (2012) and others summarized in Beaudry

and Portier (2014) have argued that these shocks can be important. For example, Beaudry and

Portier (2014) estimate that at the two year horizon, between 50 and 80% of the variance in

consumption, investment, GDP, and hours can be explained by news shocks. These results are

obtained using zero restrictions. Beaudry et al. (2011) used sign restrictions to identify news shocks.

However, Arias et al. (2014) show their approach uses prior information that is not acknowledged

and, when implemented only with the stated prior, inference becomes imprecise. We now show how

adding readily available information on industry returns sharpens inference substantially, compared

to only using macro time series.

Our added assumption is that productivity news moves the stock returns of the most innovative

sectors the most. To keep the estimation simple, we focus on the five-industry classification by

Fama and French (1997).17 For firms within each industry, we compute the distribution of R&D

intensities, measured as the ratio of the three-year moving average of R&D expenses relative to

a lagged measure of firm size. Figure 4.1 displays the distribution of the R&D intensity, pooled

across firm-years, for each of the five industries using either gross operating income or total assets

as a measure of size.18 While we focus on the 5-industry classification for simplicity, we show below

that our results hold up using the finer 10-industry data.

We define a news shock to raise real GDP, employment, productivity, and consumer confidence

as well as cumulative real stock returns. Based on the R&D intensities in Figure 4.1, we impose the

following ranking on industry returns: (1) Health and High Tech returns increase more than those

in Manufacturing, (2) Manufacturing returns increase more than those in the Consumer and Other

industries, and (3) Stock returns in the Consumer and Other industries increase. We impose these

restrictions on impact and in the two subsequent quarters. Below we also report an extension that

imposes a (soft) zero restriction on initial TFP, in the spirit of Beaudry and Portier (2006).

Our VAR includes a total of nine variables. We allow for four lags, as a rule of thumb for

quarterly data, and estimate the model in levels with a quadratic trend.19 We work with a flat

prior for the coefficients B and Jeffrey’s prior for the covariance matrix Σ. Throughout, we take

500 reduced form draws, and 10,000 draws from the Gibbs-sampler over q, keeping every 10th draw.

Turning to the results, we discuss the impulse responses first, because this is where we impose

the restrictions. We then discuss the forecast error variance decomposition. Then we turn to an

analysis which restrictions are the most important, and conclude the discussion with a robustness

17The returns are available in Kenneth’s French’s data library:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

18We use Compustat data and drop observations with negative net sales, assets, or employment. Also, we keep
only firms that are incorporated in the US and whose records are denominated in US dollars. For our analysis, we
winsorize the data at the 1st and 99th percentile year by year.

19In unreported robustness checks we estimated the model in first differences with comparable results.
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The boxes show the median along with the interquartile range of the R&D intensity for each of the five industries

in the coarsest Fama and French (1997) classification. The upper whiskers end in the values just above to the 75th

percentile plus 1.5 times the interquartile range, and analogous for the lower whiskers. We measure firm size either

as the lagged three year moving average of operating income or total assets.

Figure 4.1: R&D intensity by industry in the 5-industry Fama and French (1997) classification

check. In what follows, we focus on a select number of results, but provide the full set of results in

Appendix D.1

4.1.1 Impulse response functions

Figure 4.2 and 4.4 show the impulse response functions for the four macro variables in the VAR,

computed according to Algorithm 1 and 2, respectively. Figure 4.2 shows the posterior distribution

over the bounds of the identified set, i.e., the prior-robust posterior. Throughout, we contrast the

results with pure sign restrictions, in red, and the heterogeneity restrictions, in blue. All responses

are based on the same reduced form draws, all of which were consistent with the restrictions.

To begin, let us discuss what we learn when we remain robust to the prior over the distribution

within the identified set. Figure 4.2 shows these results for the four macro variables and two

industry returns: The black dashed lines show the bounds of the identified set at the posterior

mean. The shaded areas show the posterior distribution over these bounds – specifically, the 68%,

90% and 95% percentile plus the most extreme bounds. We find that the distributions over the

identified sets always include zero after the restrictions are lifted – here in the third quarter. In

the short-term, most of the uncertainty reflects the width of the identified set, whereas at longer

horizons parameter uncertainty dominates.

Can we still draw substantive conclusions while remaining prior-robust? We see different shapes

in the identified sets, with support for a build-up in the output and employment responses, but a

smooth decline in consumer confidence. Little can be inferred about the shape of the TFP response

when we take parameter uncertainty into account. The exception is TFP: At the posterior mean,

the lower bound for TFP excludes zero after two years when we impose heterogeneity restrictions.

Similarly, the shown industry returns turn significantly negative at the posterior mean with hetero-
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geneity restrictions. With parameter uncertainty, the analysis mainly serves to bound the responses

and the heterogeneity restriction again sharpens the results significantly: For example, for GDP

the sign restrictions tell us that the one standard deviation news shock may raise GDP (relative to

trend) by almost 1.4%. The heterogeneity restrictions imply that the GDP increases no more than

0.8%. We find comparable set reductions of up to 50% for consumer confidence and almost 40%

for employment (for numbers, see Table D.1(a) in the Appendix).
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Comparing the identified set at the posterior mean (black dashed lines), we find that heterogeneity restrictions reduced

the identified set substantially compared to sign restrictions, but after the restrictions are eased, we can only infer that

TFP increases in the medium run. However, parameter uncertainty is pervasive at longer horizons and when taking

it into account we can only bound the responses with the restrictions. The bounds with heterogeneity restrictions

are a third smaller for output at the 95th percentile and almost fifty percent smaller for consumer confidence.

Figure 4.2: Prior-robust responses of output, TFP, and consumer confidence productivity news
shock

We now turn to the fully Bayesian analysis and begin with a technical point: Figure 4.3 shows

the fully Bayesian posterior over the three macro responses: The plots show the most extreme

realizations from the sampler (the lightest shaded areas) along with the quasi-analytical bounds

familiar from Figure 4.2. Throughout, the outermost credible sets of the fully Bayesian posterior

track the outermost prior-robust bounds closely. This speaks to the ability of our algorithm to

sample the entire parameter space. However, the upper and lower 2.5% of the posterior mass are

often as wide or wider than the inner 95% – which is why we “zoom” in for our discussion of the

IRFs.

What can researchers with conditionally agnostic priors learn from sign or heterogeneity re-

strictions? Figure 4.4 shows the belief that q is conditionally uniformly distributed sharpens our

inference substantially: The pointwise 95% confidence sets shown all exhibit well-defined shapes.

While we could say little about the shape of the TFP response while being robust to any prior,

our fully Bayesian posterior implies that TFP increases in a hump-shaped fashion in response to

a productivity news shock, plausibly reflecting technology diffusion. Inference about the hump is

much sharper with heterogeneity restrictions which place the peak increase in TFP between 0.5

and 2%, about three years after the initial shock. This causes a hump-shaped expansion in out-

put, peaking one year out between 0.2% and 0.5% with 95% confidence, according to the model
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Here we compare the coverage of the identified set using Monte-Carlo integration using Algorithm 2 compared to the

quasi-analytical characterization using Algorithm 1. We find that the posterior mass is concentrated in the center of

the identified sets, but the top and bottom 2.5% density cover the identified set well.

Figure 4.3: Comparison of fully Bayesian coverage and prior-robust bounds

with heterogeneity restrictions or 0.2% to 0.7% with sign restrictions only. Consumer confidence

increases 0.05% to 0.2% on impact (0.3% with sign restrictions) and then reverts back to zero after

one year. Overall, we see economically sensitive responses that are much sharper with heterogeneity

restrictions.
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Heterogeneity restrictions sharpen the inference with sign restrictions in economically meaningful ways: TFP is found

to increase in a hump-shaped fashion, consistent with slow technology diffusion. We find a smaller increase in output

and consumer confidence with heterogeneity restrictions.

Figure 4.4: Fully Bayesian responses of macro variables to productivity news shock.

The confidence sets alone could obscure irregular posterior distributions – but in Figure 4.5 we

show that they do not.20 The posterior densities are unimodal and largely symmetric. The plot

also confirms that the densities assign positive measure to almost the extremes of the distribution

over identified sets, shown as thick lines underneath the zero line. On the substantive side the

densities show that for the three macro variables except TFP, the posterior mass is shifted to the

20At short horizons, when the restrictions are still binding, we sometimes observe higher densities around zero,
reflecting the truncation.
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left using heterogeneity restrictions. For TFP, the mass is shifted, in contrast, to the right. For all

four variables the densities are markedly more concentrated with heterogeneity restrictions.
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Heterogeneity restrictions lead to both a reduction in the identified set, here integrated over all reduced form param-

eters, and the dispersion of the fully Bayesian responses, show as density plots two years after impact. Heterogeneity

restrictions both lead to less dispersed distributions of responses, but can also shift mass away from zero. For exam-

ple, the TFP and consumer confidence responses are zero with sign restrictions, but significantly positive for TFP

(at the 95% level) and negative (at the 68% level) for consumer confidence.

Figure 4.5: Distribution of responses to productivity news shock: Macro variables two years out.

We now turn to the micro-responses of cumulative industry stock returns in Figure 4.6. Hetero-

geneity restrictions on these responses yields tighter bounds on the macro variables. In addition,

we find that the heterogeneity restrictions provide enough structure to rule out identified sets for

the responses that simply drift off into positive or negative territory. Take, for example, the return

in other industries. Even though we bound the return in this industry with that in manufacturing

only up to the second quarter, it rules out expansionary paths over the entire horizon and hints

at a smooth reversal of the initial expansion. We find similar patterns for the all five industries

and show here one of each category: the low R&D intensive other industries, manufacturing, and

high tech. Considering the fully Bayesian posterior reveals very pronounced shapes and reduce the

magnitudes of responses up to 45% on impact and 70% one year our (Table D.1(b)).

4.1.2 Forecast error variance decomposition

We now analyze the forecast error variance decomposition. For simplicity, we focus on results at

the posterior mean. We normalize the explained variance by the unconstrained optimum without

restrictions, i.e., we divide by the maximal variance that could be attained by any single shock, as

derived by Uhlig (2003).

Table 4.1 summarizes the variance reduction relative to pure sign restrictions for each variable

at horizons of up to six years. Table D.2 in the Appendix shows that with sign restrictions alone the

restrictions are uninformative because the forecast error variance contribution typically attain the

maximal contribution, particularly at horizons of up to four quarters. Heterogeneity restrictions,

in contrast, bring a variance reduction of 8% to 33% at the one year horizon for the four macro
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We rank the responses of stock returns of industries from zero to two quarters according to their R&D intensity.

Our main purpose was to sharpen inference about macro variables, but the restrictions also help to rule out paths

for cumulative returns that drift off. For the prior-robust inference, this just bring a substantial set reduction. For

the Fully Bayesian responses, this reveals a swift mean reversion of returns that is fastest for the industry with the

lowest R&D intensity.

Figure 4.6: Responses of (cumulative) industry returns to productivity news shock.

variables. These reductions typically persist up to six years. Overall, the variance reductions due

to heterogeneity restrictions, also for the industry returns, are substantial. Intuitively, they mirror

the reductions in the magnitude of impulse-responses, summarized in Table D.1 in the Appendix.

Reduction in Maximum FEV (% of maximal FEV)
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24

Output 18.5 18.6 18.9 19.7 20.8 23.0 26.0 28.2 29.3 29.6
TFP 11.6 10.8 9.6 8.8 8.4 7.2 6.3 6.1 6.2 6.5
Confidence 21.0 26.9 29.8 31.6 32.9 35.5 35.1 33.2 30.8 28.6
Employment 12.8 12.6 11.7 13.5 16.5 24.8 29.0 31.0 31.6 31.7
Consumers 40.0 37.7 37.6 38.1 38.7 40.2 41.0 40.8 39.9 38.4
Manu 16.1 17.7 18.9 19.8 20.3 21.1 21.2 21.0 20.7 20.4
HiTec 16.8 15.3 15.1 15.2 15.6 18.5 20.5 21.7 22.2 22.3
Health 23.2 24.4 24.7 25.4 26.6 31.0 34.1 36.3 37.5 37.9
Other 52.3 53.4 55.4 56.9 57.9 60.2 63.0 65.0 65.8 65.8

We find that the forecast error variance shrinks by about 10% to 35% for macro variables other than TFP over all

horizons thanks to the heterogeneity restrictions. For the micro variables, the reduction is ranges from roughly 15

to 65%. The variance contribution is expressed in percent of the total forecast error variance up to horizon H . All

contributions are computed at the posterior mean.

Table 4.1: Reduction in maximum forecast error variance explained by productivity news due to
heterogeneity restrictions
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4.1.3 Important restrictions

We impose tighter restrictions to achieve sharper identification. Which of these restrictions matter?

Do they reduce the importance of the “standard” restrictions?

We answer this question using the output of the prior-robust Algorithm 1: For the bound on the

response of each variable over horizon h = 0, . . . , H̄, we simply count how often a given restriction

binds with equality. If we took away such a restriction, the bounds would widen.21 We repeat this

for each reduced form draw. Last, we compute the fraction of binding instances. Table 4.2 reports

these statistics both for GDP and averaged across all four macro variables.

Comparing how often a restriction on industry return binds with λ = 0 relative to how often

it binds with actual heterogeneity imposed (λ = 1) tells us which restriction matters. Consider

the Table 4.2(a): The restriction that manufacturing returns increase more than λ times returns in

other industries binds 68% of the time for the upper bound of GDP with heterogeneity, compared

to 4% of the time as a simple sign restriction. We conclude that this restriction is important for

bringing about the reduction in the identified set for GDP. The same is true when averaged across

all macro variables, see Table 4.2(b).

Surprisingly, we find that the importance of the return heterogeneity restrictions does not

generally diminish how often the sign restrictions on macro variables bind with equality.22 Rather

than being slack more often the sign restriction on consumer confidence even binds much more

often in the case of the GDP response (in 14% more of instances). The other three macro sign

restrictions bind about as often. Thus, information from heterogeneity restrictions complements

the standard sign restrictions.

4.1.4 Robustness

Are our results an artifact of the particular industry classification we chose? They are not. We

double the number of industries in our VAR and using the same procedure to order the micro data

responses. In Figure D.3 we contrast the fully Bayesian responses along with the min and max

of the prior-robust results for the four macro variables and the two datasets. With either dataset

we obtain significant set reductions with heterogeneity restrictions, for example, a reduction of the

maximum GDP response from 1.2% to about 0.6% at the three year horizon. The fully Bayesian

confidence sets also imply pronounced shapes. The one exception is the TFP response. Here we find

no build-up, but just a lasting increase in the TFP level when using ten rather than five industries

to impose the micro data restrictions.

4.1.5 Soft zero restrictions

21Formally, we compute which rows of Wq ≤ 0 in Algorithm 1 are equal to zero and then map the rows of W
back into English. We pool the same restriction when imposed at multiple horizons. In practice, we need to set a
numerical threshold for equality. We tried both 10−8 and 10−4 and obtained almost identical results – unsurprisingly,
given our threshold for the optimizer of 10−12.

22Our second application shows a different pattern, revealing that this finding is not mechanical.
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(a) Binding restrictions (as a share of all cases) – GDP
Lower Bound Upper Bound

Restrictions SR (λ = 0) HR (λ = 1) SR (λ = 0) HR (λ = 1)

Output> 0 0.07 0.07 0.15 0.14
TFP> 0 0.05 0.04 0.64 0.63
Confidence> 0 0.09 0.11 0.23 0.36
Employment> 0 0.26 0.22 0.27 0.27
Consumers> 0 0.13 0.16 0.01 0.12
Other> 0 0.32 0.49 0.00 0.04
Manu> λ×Consumers 0.16 0.41 0.04 0.25
Manu> λ×Other 0.16 0.26 0.04 0.65
Health> λ×Manu 0.28 0.45 0.05 0.39
HiTec> λ×Manu 0.18 0.29 0.11 0.30

(b) Binding restrictions (as a share of all cases) – all macro IRFs
Lower Bound Upper Bound

Restrictions SR (λ = 0) HR (λ = 1) SR (λ = 0) HR (λ = 1)

Output> 0 0.08 0.08 0.17 0.19
TFP> 0 0.23 0.18 0.49 0.50
Confidence> 0 0.11 0.14 0.25 0.39
Employment> 0 0.31 0.26 0.23 0.19
Consumers> 0 0.11 0.24 0.03 0.15
Other> 0 0.17 0.39 0.03 0.12
Manu> λ×Consumers 0.16 0.41 0.10 0.39
Manu> λ×Other 0.16 0.36 0.10 0.56
Health> λ×Manu 0.28 0.42 0.12 0.38
HiTec> λ×Manu 0.16 0.27 0.10 0.26

We quantify the importance of restrictions by computing for which fraction of responses, averaged over horizons

zero to 24 quarters and all reduced form draws, any given restriction is binding. Although we could distinguish at

which restricted horizon any restriction is binding, we sum them together for horizons zero to three. We find that

the restrictions that manufacturing returns exceed those in other industries is particularly important for sharpening

both the GDP response and the four macro responses more generally. Introducing heterogeneity restrictions does not

diminish the importance of the sign restrictions on macro variables.

Table 4.2: Importance of constraints for identifying macro impulse-responses: Incidence of binding
constaints.
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Beaudry and Portier (2006) identify the news shock by a Cholesky decomposition that imposes that

the impact of the news shock on the level of TFP be zero: TFP news should not, by themselves, raise

TFP immediately. Here we incorporate this assumption as a “soft” zero restriction on the initial

TFP response.23 Table 4.3 shows that this extra restriction yields a very powerful additional set

reduction: For output, this reduces the maximal FEV explained by the TFP news by roughly half,

an additional reduction of 15 to 30% compared to heterogeneity restrictions alone. For employment

we also obtain a significantly lower maximal FEV of 15 to 25%, while consumer confidence is largely

unaffected. By construction, the FEV for TFP that can be explained drops dramatically at short

horizons, but rises with the forecast horizon.

Reduction in Maximum FEV due to heterogeneity restrictions (% of maximal FEV)
plus soft zero restriction on initial TFP

Horizon H (quarters)
Variable 0 1 2 3 4 8 12 16 20 24

Output 51.2 50.4 50.4 50.2 50.0 48.1 47.3 46.5 45.8 45.0
TFP 99.2 98.1 94.6 90.7 87.1 76.0 66.1 57.4 50.4 44.9
Confidence 22.9 28.8 31.9 33.8 35.1 37.3 36.7 35.0 33.1 31.4
Employment 34.3 36.5 37.2 39.0 41.4 46.3 46.3 45.5 44.5 43.6
Consumers 61.4 59.2 58.8 58.4 57.7 55.1 53.6 51.9 49.7 47.2
Manu 44.0 44.6 45.1 45.2 45.0 43.0 41.0 39.3 37.8 36.5
HiTec 36.0 32.1 30.1 28.8 28.2 28.0 28.3 28.4 28.2 27.7
Health 24.1 25.0 25.1 25.7 26.8 31.1 34.3 36.5 37.8 38.2
Other 68.4 68.9 70.0 70.3 70.2 69.5 70.6 71.6 71.7 71.2

Compared to the results with heterogeneity restrictions but without the soft zero restriction (Table 4.1), we observe a

significant further reduction in the maximal forecast error variance attributable to the fiscal shock. By construction,

this is most pronounced for TFP at the short run, but the identified shock becomes more important for TFP in the

medium term. Reduction for output and employment are between 20 and 30%. The contribution is expressed in

percent of the total forecast error variance up to horizon H . All contributions are computed at the posterior mean.

Table 4.3: Reduction in maximum forecast error variance explained by productivity news: Hetero-
geneity restrictions without and with soft zero restriction

While the explained forecast error variance drops with extra restrictions, we find that the

impulse-responses change little. Figure 4.7 shows the corresponding responses. By construction,

the initial response of TFP is (almost) zero, but there is still a substantial build-up in TFP in

the medium term. The shape of the output and consumer confidence response change little. We

conclude that our identification scheme is robust to the added assumption that TFP news have no

contemporaneous effect on TFP.

4.1.6 Alternative sampler

The more bite a restriction has, the harder it often is to draw while respecting this restriction with

the standard algorithm of drawing q uniformly and keeping only admissible draws. For example,

Inoue and Kilian (2013) report that they need 20,000 draws of the rotation vector for numerical

23Formally we impose on impact that: Output > 10 × TFP, in addition to: TFP > 0.
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Qualitatively, imposing that TFP increase (hardly) on impact in response to a news shock changes our results very

little: The build-up in TFP is more pronounced, but takes away little from the medium-term effects. The response

of output, but not confidence is further muted compared to just heterogeneity restrictions in Figure 4.4.

Figure 4.7: Fully Bayesian responses of macro variables to productivity news shock with soft zero
restriction on initial TFP.

stability. Our approach delivers, in contrast, a perfect acceptance rate. In many of our applications

we would be unable to provide fully Bayesian results without it, as Figure 4.8 illustrates: The

median acceptance rate across reduced form draws in our benchmark VAR is just 0.014%. Still, it

is strictly positive for all draws based on 5 million attempts. With the slightly harder problem of

including a soft zero restriction, the median acceptance rate drops by three orders of magnitude,

to 0.00005%. Without the soft zero restriction, but in the higher dimensional version with ten

industry returns, the median acceptance rate is even 0. We conclude that Algorithm 2 is important

in practice.
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Using a simple uniform proposal density, as customary since the seminal paper by Uhlig (2005), becomes impractical

with tight sign restrictions. We show the distribution of acceptance probabilities as a function of the reduced form

parameter draws. The acceptance probability is based on 5 million draws for each vector of reduced form parameters.

Figure 4.8: Distribution of acceptance probabilities for uniform proposal density over reduced form
draws
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4.2 Fiscal shocks

In this application, we analyze a defense spending shock financed through higher taxes. We use the

NBER manufacturing database and IO-table information from Nekarda and Ramey (2011) as the

source of our micro data. For tractability, we aggregate to the 20 SIC2 manufacturing industries.

Our heterogeneity restriction is that shipments of all manufacturing industries rise, but more so in

the industries of which the government is an important client.

Figure 4.9 measures the importance of the government for each SIC2 industry by showing

the median and distribution of the government share in direct shipments (left panel) and overall

shipments to the government (right panel).24 For both measures we can clearly see that the sub-

industries 36 (electronics), 37 (transportation), and 38 (sensors etc.) are the most exposed to

the government. Our strategy is to pick two industries at the two of the distribution, two in the

middle, and two in the bottom of the distribution. We choose the aggregate of 36 and 37 as the most

exposed industries, 29 (petrol and refineries) and 35 (equipment) as industries with an intermediate

exposure, and 21 (tobacco) and 24 (lumber) as those with the lowest exposure.

(a) Relative to industry shipments (b) Relative to aggregate shipments
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The boxes show the median along with the interquartile range of the importance of government shipments each of

2-digit SIC manufacturing industry. The upper whiskers end in the values just above to the 75th percentile plus

1.5 times the interquartile range, and analogous for the lower whiskers. We obtain the data from Nekarda and

Ramey (2011). We choose the aggregate of 36 (electronics) and 37 (transportation) as the industries most exposed

to the government, 29 (petrol and refineries) and 35 (equipment) as industries with an intermediate exposure, and

21 (tobacco) and 24 (lumber) as those with the lowest exposure.

Figure 4.9: Importance of government shipments by industry

Our VAR includes annual data on defense spending, GDP, the real market value of federal debt,

total hours worked (all in logs and per capita terms), and the average marginal tax rate in addition

to shipments from the six industries.25 We estimate an annual VAR with one lag in levels and

24Because later we aggregate industries up to the SIC2 level, we focus on direct shipments to avoid double-counting
of indirect shipments.

25The macro data, except for debt, is taken from Ramey (2011). We use the Dallas Fed data for the nominal
market value of federal debt, available at https://www.dallasfed.org/research/econdata/govdebt, and deflate it
by the CPI.
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include a linear-quadratic trend to remove low-frequency movements.26

We define a tax-financed defense spending shock as follows: Defense spending, GDP, total hours,

and the average marginal tax rate increase for two years. The most exposed industries increase

their shipments more than those with more modest exposure. The modestly exposed industries,

in turn, increase shipments more than the industries with no exposure. Output in the lumber and

tobacco industries weakly increases. Debt is free to respond in any way. Let us now turn to the

implied responses.

4.2.1 Impulse response functions

Inference that is robust to the prior distribution is hard – but the heterogeneity restrictions tighten

bounds and allow qualitative inference at the posterior mean. Figure 4.10 shows the results for the

three macro variables. As in the analysis of the news shocks, at short horizons the uncertainty is

modest and mostly due to the width of the identified that would also prevail at the posterior mean.

At longer horizons, parameter uncertainty compounds the uncertainty about the identified set at

the posterior mean. Heterogeneity restrictions lower the upper bound – by between 8% (hours at

the three year horizon) and 48% (tax rates at the 8 year horizon), see Table D.5. In addition, at the

posterior mean heterogeneity restrictions permit inference about the shape of the responses. The

unrestricted debt response is positive, despite the tax increase. Defense spending and hours remain

high persistently, while output quickly reverts back towards zero (Figure D.7 shows all responses).
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Heterogeneity restrictions yield set reductions that allow to sign responses for both defense spending and debt at the

posterior mean, even though the debt response is left unrestricted. While parameter uncertainty blurs these findings,

heterogeneity restrictions still lower the 95th percentile of upper bounds by between 10% and 25% for the variables

shown across the different horizons.

Figure 4.10: Prior-robust responses to defense spending shock: Macro variables

A Bayesian would find that her beliefs that rotation matrices are uniformly distributed allow

her to sharpen inference significantly, because there is little mass in the extremes of the identified

26With sign restrictions alone, reduced form draws with explosive eigenvalues often dominated the tails. We
therefore decided to reject draws with eigenvalue above 1.03 in absolute value to give sign restrictions a better chance
to stand their own against heterogeneity restrictions.

32



set.27 Already with sign restrictions, a Bayesian can say that output increases for two years after

impact, along with hours worked and tax rates. With heterogeneity restrictions, however, we isolate

a more persistent increase in spending up to four years, find a hump-shaped increase also in output,

and find clear evidence that debt rises initially and, with some confidence, up to eight years after

the shock. The range for a one standard deviation defense spending increase is wide, around 0.25%

to 3.5%, with initial increases in GDP of 0.1% to 0.6%.28
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Both sign and heterogeneity restrictions produce economically sensible responses: Defense spending shocks are per-

sistent and raise output above trends for two years after impact. Heterogeneity restrictions, however, allow sharper

inference that reveals a more persistent increase in defense spending, and thus lower discounted multipliers, as well

as a pronounced increase in debt even though part of the spending increase is tax financed.

Figure 4.11: Prior-robust responses to defense spending shock: Macro variables
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Here we show the identified set and the fully Bayesian posterior densities over the responses of three macro variables

three years after the initial shock, integrated over the uncertain parameters. We find that some densities are skewed,

but all are unimodal. For total hours and tax rates the sharper inference is particularly clear, but for hours the

heterogeneity restrictions also rule out negative responses.

Figure 4.12: Distribution of responses to defense spending shock: Macro variables three years out.

27However, the tails of the numerically computed posterior confidence sets do cover almost all of the identified set.
See Figure D.7 in the Appendix.

28Based on the medians, the impact multiplier is thus roughly three (0.3% over (0.05 × 2%)), but this is driven
by a large increase in the present discounted value of defense spending that generates a big negative wealth effect.
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Figure 4.12 shows the Bayesian densities and the prior-robust bounds at the three year horizon.

It illustrates the set reductions for debt, hours, and tax rates. They are particularly strong for debt

and tax rates: The left tail of the identified set for the debt distribution shrinks by 1.5p.p. and

the mode of the fully Bayesian density shifts to the right by a similar amount. On the flipside, for

taxes heterogeneity restrictions rule out large tax increases and shifts the distribution to the left.

For total hours worked, the shift in the distribution due to heterogeneity rules out very negative

responses of total hours worked.

Shipments in the industries used for heterogeneity restrictions exhibit a sensible pattern, see

Figure 4.13. As for aggregate output, industry shipment revert back to values around zero after

three years. Heterogeneity restriction cut the prior-robust upper bounds by 17% to 63% and almost

shrink the width of the inner 95% credible sets – see Table D.5.

SIC 21: Tobacco SIC 35: Equipment SIC 36: Electronics

4 8

Horizon (years)

-10

-8

-6

-4

-2

0

2

4

6

8

Pe
rc

en
t

Sign Restrictions:
Tobacco

4 8

Horizon (years)

Heterogeneity Restrictions:
Tobacco

4 8

Horizon (years)

-25

-20

-15

-10

-5

0

5

10

15

Pe
rc

en
t

Sign Restrictions:
Equipment

4 8

Horizon (years)

Heterogeneity Restrictions:
Equipment

4 8

Horizon (years)

-25

-20

-15

-10

-5

0

5

10

15

Pe
rc

en
t

Sign Restrictions:
Electronics

4 8

Horizon (years)

Heterogeneity Restrictions:
Electronics

prior-robust 16th / 84th 5th / 95th 2.5th / 97.5th min / max SR HR

We rank the responses of real shipments of industries from zero to one year according to the importance of government

purchases to the industry. Our main purpose was to sharpen inference about macro variables, but the restrictions

also help to tighten the range of possible responses, by between 35% and 65% on impact. While the identified set is

consistent with a wide range of responses, the fully Bayesian posterior indicates with 95% probability that there is

mean reversion after the initial increase in shipments.

Figure 4.13: Responses of select industry shipments to defense spending shock.

4.2.2 Forecast error variance decomposition

Already pure sign restrictions help to significantly reduce the forecast error variance that could be

attributed to a defense spending shock at horizons of one year and higher: According to Table D.6

in the Appendix, the macro response account could account for about 60-70% of the variance

relative to what the single most important shock could account for. But heterogeneity restriction

sharpen the inference even further: they imply that only 40% (71.8% minus 32.4%)of the tax rate

variation at the one year horizon could be due to the spending shock, compared to 72% under sign

restrictions alone. The reduction in the forecast error variance for output is almost as strong, with

more modest reductions for the other macro variables.
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Reduction in Maximum FEV due to heterogeneity restrictions (% of maximal FEV)
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending 5.5 4.3 4.2 4.2 4.2 4.3 4.3
Output 34.9 22.2 13.9 10.4 9.2 6.9 6.3
Debt 8.0 6.3 5.1 4.4 3.9 1.1 2.5
Hours 8.3 6.3 4.5 3.6 3.0 2.6 2.9
Tax rate 29.8 31.3 32.4 33.2 33.6 32.2 31.2
Tobacco 49.4 47.6 45.6 43.1 40.5 33.9 32.1
Lumber 65.0 52.0 44.4 40.1 37.7 30.1 27.7
Petrol 46.5 43.4 41.7 40.0 38.5 34.0 32.0
Equipment 61.5 59.1 50.4 38.0 30.2 18.7 22.2
Electronics 59.0 57.4 53.8 48.8 42.9 20.8 13.9
Transportation 29.4 16.7 10.6 8.0 6.8 4.7 4.3

We find mixed evidence on the reduction in the maximum forecast error variance (FEV) when comparing heterogeneity

restrictions to pure sign restrictions. While there is a substantial set reduction of more than 30% for tax rates at

all horizons, the set reduction lasts only a few years for output and is below 10% for the other macro variables.

The contribution is expressed in percent of the total forecast error variance up to horizon H . All contributions are

computed at the posterior mean.

Table 4.4: Maximum forecast error variance explained by defense spending shocks: Results for sign
restrictions and heterogeneity restrictions

4.2.3 Important restrictions

Looking at which micro restrictions are important for our results, we find that the restrictions that

petrol shipments increase more than tobacco shipments (rather than just zero) and the restriction

that transportation shipment increase more than equipment shipments (rather than zero) matter

the most: For example, for the lower bound of the macro variables, the restriction on transportation

shipments binds 94% of the time but only 27% of the time when taking a pure non-negativity

constraint. See Table 4.5.

We also find that heterogeneity restrictions substitute for restrictions on defense spending and

tax rates: For example, the non-negativity constraint on defense spending binds for 39% of the

lower bounds of macro variables, but only for 20% when we also have heterogeneity restrictions.

This stands in contrast to our finding for the news shock, where they complemented sign restrictions

on macro variables.

For lower bounds, the most important macro restriction is that taxes rise. It binds half of the

time when we compute lower bounds on macro variables and almost 20% of the time for their

upper bounds. Overall, the restriction that transportation shipments rise more than equipment

shipments is the most important, binding for 92% of the lower and 65% of the upper bounds on

macro variables. Second comes the restriction that petrol rise more than lumber, binding in 55-60%

of all cases.
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Binding restrictions (as a share of all cases) – all macro IRFs
Lower Bound Upper Bound

Restrictions SR (λ = 0) HR (λ = 1) SR (λ = 0) HR (λ = 1)

Defense spending> 0 0.39 0.19 0.23 0.13
Output> 0 0.04 0.10 0.07 0.05
Hours> 0 0.23 0.17 0.08 0.08
Tax rate> 0 0.58 0.50 0.19 0.18
Tobacco> 0 0.51 0.71 0.56 0.75
Lumber> 0 0.36 0.46 0.26 0.40
Petrol> λ×Tobacco 0.38 0.44 0.23 0.38
Petrol> λ×Lumber 0.38 0.57 0.23 0.49
Equipment> λ×Tobacco 0.10 0.23 0.26 0.35
Equipment> λ×Lumber 0.10 0.27 0.26 0.42
Electronics> λ×Petrol 0.25 0.27 0.40 0.38
Electronics> λ×Equipment 0.25 0.45 0.40 0.43
Transportation> λ×Petrol 0.27 0.39 0.29 0.59
Transportation> λ×Equipment 0.27 0.94 0.29 0.63

We quantify the importance of restrictions by computing for which fraction of responses, averaged over horizons

zero to 10 years and all reduced form draws, any given restriction is binding. Although we could distinguish at

which restricted horizon any restriction is binding, we sum them together for horizons zero and one. We find that

the restrictions that transportation shipment exceed those in the equipment industry is particularly important for

sharpening the five macro responses. Introducing heterogeneity restrictions diminishes the importance of some sign

restrictions on macro variables, in particular the requirement that defense spending rise.

Table 4.5: Importance of constraints for identifying macro impulse-responses: Incidence of binding
constaints.

4.2.4 Robustness

Here, we ask how specification uncertainty affects our results. Does controlling for low frequency

movements via trends matter? The comparison between responses with and without deterministic

trends in the VAR in Figure D.9 in the Appendix show that for the macro variables, our findings

are robust: While the specification without trends generally implies much wider credible sets, the

set reduction with heterogeneity restrictions remains substantial. On impact it varies between 5%

for hours worked and 15% for tax rates. While it remains modest for hours, it rises to 32% at

the four year horizon and over 50% at the eight year horizon for tax rates. Most other variables

experience set reduction of 10-20%. Importantly, the heterogeneity restriction indicate a more

prolonged increase in defense spending and a likely increase in debt.

5 Conclusion

While inference in VARs with sign restrictions is popular, recent papers have pointed to three

issues: First, an intransparent representation of the identified set. Second, unwanted or unnoticed

prior dominance. Third, impractical inference in complex models. Prior-robust and accurately

represented bounds can be large. Here we propose (a) algorithms for prior-robust and efficient

inference and (b) the use of micro data to develop new sets of restrictions. We rank the response of

micro time series to shocks according to the heterogeneous attributes of underlying industries. We
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develop intuitive conditions for bivariate and trivariate models when these ranking restrictions, or

heterogeneity restrictions, lead to sharper inference, both at the macro and micro level.

To implement our approach in quantitative models, we develop algorithms for both prior-robust

and efficient fully Bayesian inference. The prior-robust algorithm provides a distribution over the

bounds of the identified set of the object of interest – impulse-responses or variance decompositions.

The fully Bayesian algorithm is a novel way to draw from sign restrictions with a 100% acceptance

rate, by exploiting a connection between the truncated uniform distribution of rotation vectors and

a truncated multivariate normal distribution. We find that the algorithm works well in several

examples, sampling even in the tails of the identified set and with soft zero restrictions. Both

algorithms are of independent interest.

With these tools at hand we turn to two applications: First, we identify productivity news shocks

with the help of stock return information on sectors with different R&D intensities. Second, we

identify a defense spending shock with the help of information on the importance of the government

as a client. We find that heterogeneity restrictions on micro data, but not pure sign restrictions,

allow inference about the shape of responses for several macro variables at the posterior mean

without imposing any prior over the space of rotation matrices. More generally, we find that

heterogeneity restrictions cut the size of the identified set significantly, with reductions of up to

50% for macro variables in both applications.

Heterogeneity restrictions also help to sharpen fully Bayesian inferences. Interestingly, however,

the extra restrictions do not simply shrink the response towards zero, but can shift posterior mass

away from zero. In the productivity news example, we find that heterogeneity restrictions reveal

an intuitive hump-shaped increase in TFP, whereas sign restrictions would also be consistent with

a only a short-lived response. In the fiscal policy example, we find with heterogeneity restrictions

that debt increases significantly after a tax-financed spending shock, whereas sign restrictions do

not allow to sign the response.

Our approach to inference allows us to provide information about the importance of the different

restrictions. We find that for many macro variables, the tighter heterogeneity restrictions do not

substitute for the pure sign restrictions on macro variables, but represent genuinely new information.

It also allows us to isolate which restrictions are most relevant in our analysis.
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A Derivations

A.1 Bivariate VAR(0)

Recall the restrictions:

a1 ≡ q1Ã11 ≥ 0

a2 ≡ q1Ã21 + q2Ã22 ≥ λq1Ã11

Trivially, the lower bound for a1 of zero is always within our set: a1 = 0.
Note that if the heterogeneity restriction binds with equality, we have that:

q1 =
Ã22

√

Ã2
22 + (Ã2

21 − λÃ11)2
q2 = ± |Ã21 − λÃ11|

√

Ã2
22 + (Ã2

21 − λÃ11)2

Case (a) Ã21 ≤ 0.

• Upper bound for a2: Since q1 ≥ 0, the upper bound for a2 is, trivially, ā2 = Ã22.

• Lower bound for a2: Since Ã22 > 0, the lower bound is attained by the largest q1
and the lowest q2, i.e. with a binding heterogeneity restriction for q2 > 0. Then: the

lower bound for a2 is a2 =
λÃ11Ã22√

Ã2
22+(Ã2

21−λÃ11)2
.

• Upper bound for a1: ā1 is also associated with the binding heterogeneity restriction:

ā1 =
Ã22√

Ã2
22+(Ã2

21−λÃ11)2
Ã11.

Case (b) λÃ11 − Ã21 ≤ 0, Ã21 ≥ 0.

• Upper bound for a2: a2 is now weakly positive and the heterogeneity constraint is
slack. The SOC for the unique interior extremum to be a maximum always holds.

At the interior extremum, q1 =
Ã21√

Ã2
22+Ã2

21

and q2 =
Ã22

Ã21
q1. Thus: ā2 =

√

Ã2
22 + Ã2

21.

• Lower bound for a2: A negative q2 is now possible, but constrained by the het-
erogeneity constraint, as its RHS is increasing faster in q1 than its LHS. Thus,
the lower bound is associated with a binding heterogeneity constraint and a2 =

λÃ11Ã22√
Ã2

22+(Ã2
21−λÃ11)2

.

• Upper bound for a1: Since q2 = 0, q1 = 1 is possible, the upper bound is simply
ā1 = Ã11.

Case (c) λÃ11 − Ã21 ≥ 0, Ã21 ≥ 0 or 0 ≤ ρ ≤ λ
√
Σ11√
Σ22

.

• Upper bound for a2: We proceed by brute force, checking whether the heterogeneity

constrained is binding at the unconstrained maximum. We find that if λ ≤ Ã2
22+Ã2

21

Ã11Ã21
=

Σ22
Σ21

, the heterogeneity constraint is slack. Thus:

ā2 =







√

Ã2
22 + Ã2

21 λ ≤ Ã2
22+Ã2

21

Ã11Ã21
= Σ22

Σ21
= 1

ρ

√
Σ22√
Σ11

λÃ11Ã22√
Ã2

22+(Ã2
21−λÃ11)2

λ ≥ Ã2
22+Ã2

21

Ã11Ã21
= Σ22

Σ21
= 1

ρ

√
Σ22√
Σ11
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• Lower bound for a2: Since the interior extremum is always a maximum, we check
the corners. Comparing the two corners, we find:

a2 =







Ã22 λ ≥ 1
2
Ã2

22+Ã2
21

Ã11Ã21
= 1

2
Σ22
Σ21

= 1
2
1
ρ

√
Σ22√
Σ11

λÃ11Ã22√
Ã2

22+(Ã2
21−λÃ11)2

λ ≤ 1
2
Ã2

22+Ã2
21

Ã11Ã21
= 1

2
Σ22
Σ21

= 1
2
1
ρ

√
Σ22√
Σ11

• Upper bound for a1: ā1 is also associated with the binding heterogeneity restriction:

ā1 =
Ã22√

Ã2
22+(Ã2

21−λÃ11)2
Ã11.

A.2 Trivariate VAR(0)

A.2.1 Identified set

Here we only consider bounds for a1. We seek a solution to the following problem:

min
q

or max
q

Ã11q1 (A.1a)

s.t. ||q|| = 1 (A.1b)

Ã11q1 ≥ 0 (A.1c)

Ã21q1 + Ã22q2 ≥ 0

(Ã31 − λÃ21)
︸ ︷︷ ︸

≡Ãλ
31

q1 + (Ã32 − λÃ22)
︸ ︷︷ ︸

≡Ãλ
32

q2 + Ã33q3 ≥ 0 (A.1d)

Since Ãii > 0∀i, we can write equivalently:

min
q

or max
q

√

1− (q2)2 − (q3)3

s.t. Ã21

√

1− (q2)2 − (q3)3 + Ã22q2 ≥ 0

(Ã31 − λÃ21)
︸ ︷︷ ︸

≡Ãλ
31

√

1− (q2)2 − (q3)3 + (Ã32 − λÃ22)
︸ ︷︷ ︸

≡Ãλ
32

q2 + Ã33q3 ≥ 0

Note that a1 = 0 is always feasible by setting q3 = 1. We therefore focus on the maximization
problem

Using Lagrange multipliers νSR and νHR to denote the inequality constraints we can equivalently
write the Lagrangian as

min
νSR,νHR

max
q2,q3

L =
√

1− (q2)2 − (q3)3 − νSR(Ã21

√

1− (q2)2 − (q3)3 + Ã22q2)

− νHR(Ã
λ
31

√

1− (q2)2 − (q3)3 + Ãλ
32q2 + Ã33q3)

with the associated Kuhn-Tucker conditions as:

[q2]−
q2

√

1− (q2)2 − (q3)3
(1− νSRÃ21 − νHRÃ

λ
31) = νSRÃ22 + νHRÃ

λ
32

νSR(Ã21

√

1− (q2)2 − (q3)3 + Ã22q2) = 0

νSR ≥ 0

[νSR]Ã21

√

1− (q2)2 − (q3)3 + Ã22q2 ≥ 0.
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[q3]−
q3

√

1− (q2)2 − (q3)3
(1− νSRÃ21 − νHRÃ

λ
31) = νHRÃ33

νHR(Ã
λ
21

√

1− (q2)2 − (q3)3 + Ãλ
22q2 + Ã33q3) = 0

νHR ≥ 0

[νHR]Ã
λ
31

√

1− (q2)2 − (q3)3 + Ãλ
32q2 + Ã33q3 ≥ 0.

Clearly, the Kuhn-Tucker conditions show that the unconstrained optimum, when the multipliers
νSR, νHR are zero, involves setting q2 = q3 = 0.

We assume throughout that λ > 0.

1. All (conditional) covariances positive, heterogeneity restriction weak:
Note that when 0 ≤ Ã21 ≤ 1

λ
Ã31, then Ãλ

31 ≥ 0 and q2 = q3 = νSR = νHR = 0 is a local
extremum – specifically, an optimum. All conditions are trivially satisfied at zero. This equals
the unconstrained optimum.

2. All (conditional) covariances positive, heterogeneity restriction strong:
Note that when Ã21 >

1
λ
Ã31 > 0, then Ãλ

31 < 0. q2 = q3 = νSR = νHR = 0 no longer satisfies
the optimality conditions with λ > 0, since the HR constraint is violated at this candidate
point. With λ = 0, however, q2 = q3 = 0 is feasible and the unconstrained maximum attains.

3. Ã21 < 0 < Ã31:
In this case, the first sign restriction is binding, and the second restriction is slack for any
λ ≥ 0 that still satisfies Ãλ

32 ≥ 0. The constrained maximum with sign restrictions is attained
at:

q∗1 =

√
√
√
√1 +

(

Ã21

Ã22

)2
−1

.

Note that Ãλ
31 > 0 by construction.

4. Ã31 < 0 < Ã21:

In this case, the second sign restriction is binding, and the first restriction is slack. The
heterogeneity restriction leads to a tighter bound because the slope Ãλ

31 (the penalty for
larger q1) increases, while the ability to compensate via higher q2 decreases (Ãλ

32 < Ã32).

A.2.2 General signs

min
q

or max
q

Ã11q1 (A.2a)

s.t. ||q|| = 1 (A.2b)

s1Ã11q1 ≥ 0 (A.2c)

s2(Ã21q1 + Ã22q2) ≥ 0 (A.2d)

s3






(Ã31 − λÃ21)
︸ ︷︷ ︸

≡Ãλ
31

q1 + (Ã32 − λÃ22)
︸ ︷︷ ︸

≡Ãλ
32

q2 + Ã33q3







≥ 0 (A.2e)
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Now, define Âij = Ãij if i = j and Âij = Ãij × sj
∏j

ℓ=1 sℓ for i = 1, 2, 3 and j ≤ i. Also define

q̂i = siqi and λ̂ = s3λ. Then we can re-write problem (A.2) as

min
q

or max
q

s1Ã11q̂1 (A.3a)

s.t. ||q|| = 1 (A.3b)

Ã11q1 ≥ 0 (A.3c)

Â21q̂1 + Ã22q̂2 ≥ 0 (A.3d)

(Â31 − λ̂Â21)
︸ ︷︷ ︸

≡Âλ
31

q̂1 + (Â32 − λ̂Â22)
︸ ︷︷ ︸

≡Âλ
32

q̂2 + Ã33q̂3 ≥ 0, (A.3e)

whose constraints are of the same form as (A.2). Thus, the previous solution applies to the trans-
formed vector q̂ in terms of the transformed coefficients Âij. However, if s1 = −1, maximization
and minimization are interchanged.

Thus, the sufficient condition for set reduction becomes λ̂Â21 > Â31 > 0. In terms of the
original components:

λs3s2s1Ã21 > s3s1Ã31 > 0.

For these sufficient conditions to apply we need that Â21 > 0 and Â31 > 0. In terms of the
original components:

s2s1Ã21 > 0, s3s1Ã31 > 0.

Examples include:

1. Traditional New Keynesian example: Variable 1 is the funds rate. Variable 2 is a real activity
measure. Variable 3 is the measure of prices. s1 = s3 = −1. s2 = 1: Inflation and real
activity fall, the FFR rises.

(a) Interest rates rise: s1 = +1

(b) Industrial production or PCE falls: s2 = −1, and

(c) Prices fall (and more than λ× output): s3 = −1.

Thus, the sufficient condition here becomes: λÃ21 > −Ã31 > 0. Equivalently: −λÃ21 <

Ã31 < 0. For this condition to apply we also need that Â21, Â31 > 0, or −Ã21 > 0 and
Ã31 > 0 in this example.

Choleski of covariance matrix MLE estimate for FFR, PCE prices, and PCE quantities:





0.5086 0 0
0.0610 0.4899 0
−0.0022 0.0425 0.1493





Thus, Ã31 < 0 and our theorem does not apply.
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Choleski of covariance matrix MLE estimate for FFR, PCE prices, and IP quantities:





0.4990 0 0
0.1645 0.5877 0
0.0002 0.0052 0.1564





Thus, Ã21 > 0 and our theorem does not apply. Because our conditions are only sufficient,
we also verify the lack of set reduction numerically. As the right panel of Figure A.1 shows,
there is no set reduction in the Federal Funds Rate response, nor in the response of prices.
By construction, higher λ enables us to impose soft zero restrictions.

2. New Keynesian housing example: Variable 1 is the interest rate. Variable 2 is the measure of
housing starts, variable 3 of house price inflation. s1 = s3 = −1. s2 = 1: Inflation and real
activity fall, the FFR rises.

(a) Interest rates rise: s1 = +1

(b) Housing starts: s2 = −1, and

(c) House prices fall (and more than λ× output): s3 = −1.

Thus, the sufficient condition here becomes: λÃ21 > −Ã31 > 0. Equivalently: −λÃ21 <

Ã31 < 0. For this condition to apply we also need that Â21, Â31 > 0, or −Ã21 > 0 and
Ã31 > 0 in this example.

Choleski of covariance matrix MLE estimate for FFR, housing prices, and median house
prices:





0.5086 0 0
−0.6119 6.5659 0
−0.0567 0.0538 2.6529





Thus, Ã31 < 0 and our theorem does not apply. However, we still find a very modest set
reduction, see the upper panel in Figure A.2.

If we replace the median house price with the Case-Shiller index we find that the following
Choleski factor of the covariance matrix MLE estimate:





0.5035 0 0
−0.4178 6.5342 0
0.0105 0.0090 2.1261





Now our theoretical results also apply formally and we expect a set reduction. The bottom
panel of Figure A.2 displays the results and shows that the set reduction is there, but neg-
ligible. In both case it is clear how the large value for λ imposes a soft zero restriction on
housing starts, as intended.

3. Blanchard and Perotti (2002) example: Variable 1 becomes output. Variable 2 is government
consumption. Variable 3 is the tax rate. s1 = 1 (arbitrary), s2 = +1, s3 = +1.

(a) Output rises: s1 = +1,

(b) G rise: s2 = +1.
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Figure A.1: Set-reduction for impact response in traditional NK application
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Figure A.2: Set-reduction for impact response in NK housing application
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(c) Taxes τ rise (and more than λ× government spending): s3 = +1, and

For high values of λ, this restriction imposes a “soft” zero restriction on government spending:
Spending does not rise (significantly) on impact in response to tax shocks.

The sufficient condition is thus simply: λÃ21 > Ã31 > 0.

Choleski of Blanchard and Perotti (2002) covariance matrix MLE estimate, after ordering:





0.0086 0 0
0.0135 0.0220 0
0.0044 −0.0007 0.0232





Thus, Ã31 = 0.0044 > 0 and λÃ21 > Ã31 iff λ > 0.44
1.35 ≈ 1

3 . Figure A.3 shows the corresponding
set reduction. Note the non-linear scale of λ that shows that for small λ there is not set
reduction, confirming our theoretical analysis.

4. Productivity news example (inspired by Beaudry and Portier, 2006): Variable 1 is output
growth. Variable 2 is utilization-adjusted TFP growth (Fernald, 2014). Variable 3 is the real
growth of the Wilshire 5000 index.

(a) Output rises: s1 = +1,

(b) TFP τ does not fall: s2 = +1, and

(c) The stock market rises (and more than λ× TFP): s3 = +1.

For high values of λ, this restriction imposes a “soft” zero restriction on TFP: TFP does not
rise (significantly) on impact in response to positive news.

The Choleski of the covariance matrix MLE estimate, after ordering:





0.44 0 0
1.02 2.47 0
0.75 0.68 4.61





Here, Ã31 = 0.75 > 0 and λÃ21 > Ã31 iff λ > 0.75
1.02 ≈ 3

4 . Figure A.4 shows the corresponding
set reduction. Note the non-linear scale of λ that shows again that for small λ there is not
set reduction.

A.2.3 Redundant restrictions

Consider a three variable, three-shock case where the true impulse matrix is given by:

A =





a11 a12 0
a21 a22 0
a31 a32 a33



⇒ AA′ =





a211 + a212 a11a21 + a22a12 a11a31 + a12a32
a21a11 + a22a12 a221 + a222 a21a31 + a22a32
a31a11 + a12a32 a31a21 + a32a22 a231 + a233 + a232



 (A.4)

One interpretation of this structure is that there are only two aggregate shocks. These aggregate
shocks affect all three variables while the third variables also contains a third idiosyncratic shock.
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Figure A.3: Set-reduction for impact response in Blanchard and Perotti (2002) application
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Note: The dashed vertical line marks the treshold for λ above which there is set reduction for the output response,

i.e. λ̄ = Ã31/Ã21.

Figure A.4: Set-reduction for impact response in News application
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Note: The dashed vertical line marks the treshold for λ above which there is set reduction for the output response,

i.e. λ̄ = Ã31/Ã21.
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The lower-triangular Choleski decomposition is given by:

Ã11 =
√

a211 + a212

Ã21 =
a21a11 + a22a12

Ã11

Ã22 =

√

a221 + b222 − Ã2
21

Ã31 =
a31a11 + a12a32

Ã11

Ã32 =
a31a21 + a32a22 − Ã31Ã21

Ã22

Ã33 =

√

a231 + a233 + a232 − Ã2
31 − Ã2

32

Now consider the case that a31 = κa21 and a32 = κa22. In that case:

Ã31 = κÃ21, (A.5a)

Ã32 = κÃ22, (A.5b)

Ã33 = |a33|. (A.5c)

We now show that if the heterogeneity restrictions are weaker than those of the data generating
process, i.e. λ ≤ κ, then adding the heterogeneity restrictions does not change the identified set
for variables 1 and 3. We start by stating the problem:29

max
q

e′iÃq, i ∈ {1, 2}, (A.6a)

s.t. ||q|| = 1 (A.6b)

e′1Ãq ≥ 0 (A.6c)

e′2Ãq ≥ 0 (A.6d)

(e3 − λe2)
′Ãq ≥ 0, (A.6e)

where Ã is the Cholesky factor of AA′ in (A.4) that satisfies (A.5). ei denotes a selection vector
with zeros except for a one in the ith position.

We derive the Kuhn-Tucker conditions using a Lagrangean:

min
µ,νi≥0

max
q

L = e′iÃq + µ(1− ||q||)−
2∑

j=1

νje
′
jÃq − ν3(e3 − λe2)

′Ãq

The necessary conditions are:



e′i −
2∑

j=1

νje
′
jÃ− ν3(e3 − λe2)

′



 Ã− 2µq′ = 0

29We focus on the upper bounds because we can always attain the lower bound of zero.

49



νje
′
jÃq = 0 νj ≥ 0 , j = 1, 2

ν3(e3 − λe2)
′Ãq = 0 ν3 ≥ 0.

Note that ν3−i = 0 for i = 1, 2, by the complementary slackness condition. We now guess and verify
that we can ignore the heterogeneity restrictions, i.e., the third set of restrictions. Simplifying:

q′SR =
1

||
(

e′i − ν3−ie
′
3−iÃ

)

||

(

e′i − ν3−ie
′
3−iÃ

)

ν3−ie
′
3−iÃq = 0.

Note that e′3qSR = 0. Now, does this solution satisfy the heterogeneity restriction?

(e3 − λe2)
′ÃqSR = e′3ÃqSR − λe′2ÃqSR

= [κe′2Ã+ e′3Ã]qSR − λe′2ÃqSR

= κe′2ÃqSR − λe′2ÃqSR

= (κ− λ)e′2ÃqSR ≥ 0,

where the last inequality follows from κ ≥ λ and the sign restriction e2Ãq ≥ 0. Thus, the solution
without heterogeneity restriction is also a solution with heterogeneity restriction. Thus, the upper
bound coming from the heterogeneity restriction is not binding when λ ≤ κ, i.e. the imposed
restriction is weaker than the one implied by the data generating process.

Intuitively, in this case the heterogeneity restrictions have no bite because they do not help to
tell the first shock from the second shock, because in the data generating process, responses to both
shocks satisfy the heterogeneity restrictions. They are, thus, redundant.
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B Forecast error variance decomposition

The total forecast error variance for Yt+H given information up to time t is given by:

FEVH =

H∑

h=0

((Bh
XÃ)(Bh

X Ã)′).

We can decompose the forecast error variance into the contribution due to an identified shock with
impulse-vector Ãq. We call this the conditional forecast error variance (CFEV):

CFEVH(q) =
H∑

h=0

((Bh
XÃq)(Bh

XÃq)′).

Let CFEVi,H(q) by the (i, i)th element of the CFEV. As shown by Uhlig (2003), we can rewrite
CFEVi,H(q) as:

CFEVi,H(q) =
H∑

h=0

((Bh
XÃq)(Bh

XÃq)′)(ii) = q′Si,Hq, (B.1)

Si,H ≡
H∑

h=0

(H + 1− h)(eiB
h
XÃ)′(eiB

h
XÃ). (B.2)

We can compute the upper and lower bound on CFEVi,H simply by replacing the objective function
algorithm in Section 4 by q′Si,Hq and keeping the same set of constraints.

To convert the forecast error variance explained by the identified shock, we normalize CFEVi,H(q)
by the total forecast error variance for variable i up to horizon H.
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C Data

C.1 News data

We use the following macro variables, taken, unless otherwise stated, from the St. Louis Fed FRED
website:

• Real GDP GDPC1

• Hours worked (nonfarm, business sector) PRS85006032 (growth, accumulated)

• Consumer confidence CSCICP03USM665S

• PCE price index PCEPI

• Utilization adjusted TFP: Fernald (2014) (accumulated)

All variables enter the VAR in log-levels.
We use industry data from Ken French’s data library, based on Fama and French (1997).

Specifically, we use the FF5 industry returns, and convert them to real ex post returns using the
change in the log of the PCE price index.

To compute industry R&D intensities, we use Compustat data. We drop all firms not head-
quartered in the U.S. and all observations with negative sales or assets. For each year, we winsorize
the data at the 1st and 99th percentile, although our results do not depend on this. We then
compute the R&D intensity as the ratio of the three-month moving average of R&D expenditures
xrd relative to the three year moving average of operating income before depreciation oibdp, net
sales sales, or total assets at. We tabulate the data pooling firm-calendar year observations and
drop observations with multiple fiscal years in a given calendar year.

C.2 Fiscal data

We merge the datasets of Ramey (2011) and Nekarda and Ramey (2011). To this, we add infor-
mation on the market value of publicly held federal debt from the Dallas Fed website30 that we
then deflate by the CPI from Ramey (2011). All variables enter the VAR in log-levels relative to
population.

30See https://www.dallasfed.org/research/econdata/govdebt.
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D Additional results

D.1 News shocks
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Figure D.1: Prior-robust responses of all variables to productivity news shock
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Figure D.2: Fully Bayesian responses of all variables to productivity news shock
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(a) Prior-robust
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24

Output 9.7 10.7 15.1 15.4 20.4 34.9 38.9 36.0 34.0 35.2
TFP 8.4 6.7 8.8 10.6 11.2 5.9 5.3 10.4 10.5 16.1
Confidence 11.8 20.0 26.6 31.8 34.3 47.8 42.2 31.3 34.0 34.7
Employment 7.7 10.2 11.7 14.7 18.4 30.9 35.7 30.6 24.3 23.3
Consumers 23.5 20.6 29.1 38.7 50.0 59.3 55.0 58.0 62.0 61.9
Manu 11.1 13.6 16.5 21.1 31.2 56.4 60.1 60.5 61.0 55.9
HiTec 9.5 8.2 10.7 15.2 20.6 33.2 32.9 31.8 32.8 30.0
Health 12.2 16.3 16.4 22.4 29.7 30.0 34.7 37.0 40.1 40.3
Other 32.7 36.5 43.6 52.4 60.7 61.8 54.2 53.2 48.3 39.7

(b) Fully Bayesian
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24

Output 16.9 11.8 13.8 15.2 22.1 44.0 45.8 38.0 31.6 34.1
TFP 18.5 14.8 8.7 1.6 -0.1 -16.6 -11.7 -7.7 -6.3 -6.6
Confidence 19.5 28.9 36.2 42.7 48.3 71.3 55.4 30.2 33.3 45.8
Employment 7.9 8.7 8.8 12.8 17.3 33.6 38.5 28.1 7.1 -7.7
Consumers 37.1 31.3 42.5 55.3 73.7 101.7 98.8 105.0 109.8 111.2
Manu 12.3 15.5 19.7 25.4 40.9 82.9 92.3 95.3 94.7 90.6
HiTec 5.9 1.1 7.0 15.7 23.2 34.2 37.3 41.3 42.1 44.2
Health 8.5 10.8 5.0 14.7 24.5 30.6 38.4 49.3 56.2 60.1
Other 44.9 44.8 55.9 66.0 76.3 82.5 72.1 68.5 66.8 64.9

The contribution is expressed in percent of the 95th percentile of the IRF using sign restrictions only. A negative

number implies a higher IRF with heterogeneity restrictions. Here, this happens in the Fully Bayesian case and

indicates that the heterogeneity restriction shifts posterior mass up. By construction, this cannot happen with

prior-robust bounds.

Table D.1: Reduction of 95th percentile of IRF relative to sign restrictions
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Maximum FEV under pure sign restrictions (% of maximal FEV)
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24

Output 99.0 96.1 93.8 91.8 89.6 80.7 75.7 72.8 70.6 68.8
TFP 99.2 98.2 95.7 92.8 90.4 85.0 82.2 80.1 78.4 77.1
Confidence 100.0 98.1 97.2 95.8 94.3 88.6 83.0 77.8 73.7 70.5
Employment 92.3 91.6 90.2 89.7 89.9 89.1 85.5 82.4 79.8 77.6
Consumers 96.8 96.4 95.6 93.5 90.7 81.7 76.2 71.9 67.8 63.8
Manu 93.2 93.6 93.6 93.1 92.0 85.9 80.1 75.4 71.6 68.5
HiTec 96.0 95.8 94.6 92.8 91.5 87.3 83.0 79.2 75.9 73.0
Health 99.9 98.5 97.0 94.7 92.9 89.5 88.1 86.6 84.6 82.2
Other 95.8 96.0 95.8 94.2 92.4 86.6 85.0 84.3 83.3 82.0

Maximum FEV under heterogeneity restrictions (% of maximal FEV)
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24

Output 80.6 77.6 74.9 72.1 68.8 57.7 49.7 44.6 41.3 39.1
TFP 87.7 87.5 86.1 84.0 81.9 77.8 75.9 74.0 72.2 70.6
Confidence 79.0 71.2 67.3 64.2 61.4 53.1 47.9 44.6 42.9 41.9
Employment 79.6 79.0 78.6 76.2 73.4 64.3 56.5 51.4 48.2 46.0
Consumers 56.8 58.7 58.0 55.4 52.1 41.5 35.2 31.1 27.9 25.4
Manu 77.1 75.9 74.7 73.3 71.6 64.8 58.9 54.4 50.9 48.1
HiTec 79.2 80.4 79.5 77.6 75.9 68.8 62.5 57.5 53.7 50.7
Health 76.8 74.1 72.3 69.3 66.3 58.5 54.0 50.3 47.1 44.4
Other 43.6 42.6 40.3 37.4 34.5 26.4 22.0 19.3 17.5 16.2

The contribution is expressed in percent of the total forecast error variance up to horizon H . All contributions are

computed at the posterior mean.

Table D.2: Maximum forecast error variance explained by productivity news: Results for sign
restrictions

Binding heterogeneity restrictions (as a share of all cases) – all IRFs
Lower Bound Upper Bound

Restrictions SR (λ = 0) HR (λ = 1) SR (λ = 0) HR (λ = 1)

Output> 0 0.06 0.05 0.19 0.22
TFP> 0 0.12 0.10 0.59 0.60
Confidence> 0 0.09 0.10 0.21 0.37
Employment> 0 0.23 0.19 0.32 0.25
Consumers> 0 0.20 0.30 0.02 0.12
Other> 0 0.24 0.42 0.02 0.10
Manu¿Consumers 0.17 0.36 0.06 0.46
Manu¿Other 0.17 0.34 0.06 0.60
Health¿Manu 0.17 0.29 0.19 0.52
HiTec¿Manu 0.12 0.23 0.13 0.32

For sign restrictions, we set the right-hand-side of the heterogeneity restrictions to zero, i.e., “Manu>Other” and

“Manu>Consumers” both become “Manu>0”.

Table D.3: Maximum forecast error variance explained by productivity news: Results for sign
restrictions and heterogeneity restrictions
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Figure D.3: Responses to productivity news shock for macro variables: Five vs. ten FF industries57
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Figure D.4: Responses to productivity news shock for macro variables: Level vs. first difference
specification 58
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Figure D.5: Prior-robust responses of macro variables and industry returns to productivity news
shock with soft zero restriction.
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Figure D.6: Fully Bayesian responses of macro variables and industry returns to productivity news
shock with soft zero restriction.
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Maximum FEV under pure sign restrictions (% of maximal FEV)
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24

Output 99.0 96.1 93.8 91.8 89.6 80.7 75.7 72.8 70.6 68.8
TFP 99.2 98.2 95.7 92.8 90.4 85.0 82.2 80.1 78.4 77.1
Confidence 100.0 98.1 97.2 95.8 94.3 88.6 83.0 77.8 73.7 70.5
Employment 92.3 91.6 90.2 89.7 89.9 89.1 85.5 82.4 79.8 77.6
Consumers 96.8 96.4 95.6 93.5 90.7 81.7 76.2 71.9 67.8 63.8
Manu 93.2 93.6 93.6 93.1 92.0 85.9 80.1 75.4 71.6 68.5
HiTec 96.0 95.8 94.6 92.8 91.5 87.3 83.0 79.2 75.9 73.0
Health 99.9 98.5 97.0 94.7 92.9 89.5 88.1 86.6 84.6 82.2
Other 95.8 96.0 95.8 94.2 92.4 86.6 85.0 84.3 83.3 82.0

Reduction in Maximum FEV due to heterogeneity restrictions (% of maximal FEV)
plus soft zero restriction on initial TFP

Horizon H (quarters)
Variable 0 1 2 3 4 8 12 16 20 24

Output 51.2 50.4 50.4 50.2 50.0 48.1 47.3 46.5 45.8 45.0
TFP 99.2 98.1 94.6 90.7 87.1 76.0 66.1 57.4 50.4 44.9
Confidence 22.9 28.8 31.9 33.8 35.1 37.3 36.7 35.0 33.1 31.4
Employment 34.3 36.5 37.2 39.0 41.4 46.3 46.3 45.5 44.5 43.6
Consumers 61.4 59.2 58.8 58.4 57.7 55.1 53.6 51.9 49.7 47.2
Manu 44.0 44.6 45.1 45.2 45.0 43.0 41.0 39.3 37.8 36.5
HiTec 36.0 32.1 30.1 28.8 28.2 28.0 28.3 28.4 28.2 27.7
Health 24.1 25.0 25.1 25.7 26.8 31.1 34.3 36.5 37.8 38.2
Other 68.4 68.9 70.0 70.3 70.2 69.5 70.6 71.6 71.7 71.2

The contribution is expressed in percent of the total forecast error variance up to horizon H . All contributions are

computed at the posterior mean.

Table D.4: Reduction in maximum forecast error variance explained by productivity news: Het-
erogeneity restrictions without and with soft zero restriction
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D.2 Fiscal shocks

Prior-robust
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending 11.1 8.8 9.7 11.8 11.2 13.3 26.1
Output 23.9 13.3 10.6 20.2 24.4 26.7 16.9
Debt 13.2 21.2 19.8 11.1 12.5 18.4 28.1
Hours 8.2 12.5 15.4 20.9 34.4 23.0 21.0
Tax rate 19.7 33.5 36.1 40.9 44.4 48.6 45.2
Tobacco 63.9 51.0 46.8 44.2 52.3 24.5 37.9
Lumber 47.0 29.3 26.4 31.0 35.3 16.7 19.7
Petrol 36.7 36.9 37.6 41.5 40.5 29.8 31.7
Equipment 48.4 40.3 23.7 30.7 40.7 45.0 37.5
Electronics 37.1 36.4 29.3 32.7 35.4 49.2 33.6
Transportation 22.6 16.0 17.3 27.6 36.3 16.7 24.6

Fully Bayesian
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending -15.8 -32.6 -30.6 -21.2 -16.3 -8.8 -0.4
Output 19.1 -0.3 -11.9 -9.6 -6.8 -3.9 -8.3
Debt -23.6 -39.7 -84.1 -93.4 -35.6 3.8 6.4
Hours -2.1 -1.6 -9.5 -6.7 3.8 7.8 4.5
Tax rate 13.7 32.3 38.4 41.0 42.5 49.4 33.0
Tobacco 65.5 60.2 44.2 39.1 59.5 20.8 7.3
Lumber 61.6 15.6 2.1 22.2 28.4 -3.0 -2.4
Petrol 33.2 34.3 34.0 36.8 37.0 17.1 12.4
Equipment 51.9 37.9 21.7 26.2 50.0 60.0 17.7
Electronics 35.5 30.6 21.7 27.8 46.4 94.5 36.9
Transportation 13.6 -9.9 -8.4 -5.4 -13.6 -12.3 -9.0

The contribution is expressed in percent of the 95th percentile of the IRF using sign restrictions only. Negative entries

imply a larger response under heterogeneity restrictions.

Table D.5: Reduction of 95th percentile of IRF to defense spending shocks relative to sign restric-
tions
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Defense spending
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Figure D.7: Responses to defense spending shock: Macro variables
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Maximum FEV under pure sign restrictions (% of maximal FEV)
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending 86.9 72.5 63.9 59.6 57.4 54.5 53.3
Output 92.1 72.4 60.4 52.8 48.6 39.9 37.6
Debt 72.7 58.2 49.9 43.3 36.8 27.4 31.5
Hours 88.7 81.7 73.9 67.3 62.7 54.1 52.5
Tax rate 78.0 73.5 71.5 69.9 68.1 60.2 57.7
Tobacco 59.0 56.4 54.0 51.4 48.9 43.5 42.1
Lumber 97.1 81.8 71.7 65.7 62.2 51.3 48.1
Petrol 89.5 84.9 81.5 78.7 76.5 70.2 66.9
Equipment 86.2 83.1 73.5 62.0 52.1 34.8 37.3
Electronics 88.5 83.8 77.9 70.3 62.1 41.5 37.1
Transportation 77.5 58.5 48.7 42.8 39.7 33.9 32.5

Maximum FEV under heterogeneity restrictions (% of maximal FEV)
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending 81.5 68.1 59.7 55.4 53.2 50.1 49.0
Output 57.3 50.1 46.5 42.4 39.4 33.1 31.3
Debt 64.7 51.9 44.9 38.9 32.9 26.3 29.0
Hours 80.4 75.4 69.3 63.8 59.6 51.4 49.6
Tax rate 48.2 42.2 39.1 36.7 34.5 28.0 26.5
Tobacco 9.5 8.7 8.4 8.3 8.4 9.6 10.0
Lumber 32.1 29.8 27.3 25.6 24.6 21.2 20.4
Petrol 43.0 41.5 39.8 38.6 38.0 36.2 34.9
Equipment 24.7 24.1 23.1 23.9 21.9 16.1 15.1
Electronics 29.6 26.4 24.1 21.5 19.1 20.7 23.2
Transportation 48.0 41.7 38.1 34.9 32.9 29.2 28.2

The contribution is expressed in percent of the total forecast error variance up to horizon H . All contributions are

computed at the posterior mean.

Table D.6: Maximum forecast error variance explained by defense spending shocks: Results for
sign restrictions and heterogeneity restrictions
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Figure D.8: Responses of industry shipments to defense spending shock.
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Defense spending
Fully Bayesian: Trend Fully Bayesian: No trend

4 8

Horizon (years)

-15

-10

-5

0

5

10

15

20

Pe
rc

en
t

Sign Restrictions:
Defense spending

4 8

Horizon (years)

Heterogeneity Restrictions:
Defense spending

4 8

Horizon (years)

-25

-20

-15

-10

-5

0

5

10

15

20

Pe
rc

en
t

Sign Restrictions:
Defense spending

4 8

Horizon (years)

Heterogeneity Restrictions:
Defense spending

GDP
Fully Bayesian: Trend Fully Bayesian: No trend

4 8

Horizon (years)

-3

-2

-1

0

1

2

Pe
rc

en
t

Sign Restrictions:
Output

4 8

Horizon (years)

Heterogeneity Restrictions:
Output

4 8

Horizon (years)

-6

-4

-2

0

2

4

Pe
rc

en
t

Sign Restrictions:
Output

4 8

Horizon (years)

Heterogeneity Restrictions:
Output

Publicly held debt
Fully Bayesian: Trend Fully Bayesian: No trend

4 8

Horizon (years)

-15

-10

-5

0

5

10

15

20

Pe
rc

en
t

Sign Restrictions:
Debt

4 8

Horizon (years)

Heterogeneity Restrictions:
Debt

4 8

Horizon (years)

-20

-10

0

10

20

Pe
rc

en
t

Sign Restrictions:
Debt

4 8

Horizon (years)

Heterogeneity Restrictions:
Debt

Total hours worked
Fully Bayesian: Trend Fully Bayesian: No trend

4 8

Horizon (years)

-2

-1

0

1

2

3

4

Pe
rc

en
t

Sign Restrictions:
Hours

4 8

Horizon (years)

Heterogeneity Restrictions:
Hours

4 8

Horizon (years)

-3

-2

-1

0

1

2

3

4

Pe
rc

en
t

Sign Restrictions:
Hours

4 8

Horizon (years)

Heterogeneity Restrictions:
Hours

Average marginal tax rate
Fully Bayesian: Trend Fully Bayesian: No trend

4 8

Horizon (years)

-6

-4

-2

0

2

4

6

8

Pe
rc

en
t

Sign Restrictions:
Tax rate

4 8

Horizon (years)

Heterogeneity Restrictions:
Tax rate

4 8

Horizon (years)

-6

-4

-2

0

2

4

6

8

10

Pe
rc

en
t

Sign Restrictions:
Tax rate

4 8

Horizon (years)

Heterogeneity Restrictions:
Tax rate

prior-robust 16th / 84th 5th / 95th 2.5th / 97.5th min / max SR HR

Figure D.9: Responses to defense spending shock: Macro variables robustness
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