E E D I‘l :T U R /; Service of

Make Your Publications Visible. I: B LU

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Amir-Ahmadi, Pooyan; Drautzburg, Thorsten

Working Paper

Identification through Heterogeneity

CESifo Working Paper, No. 6359

Provided in Cooperation with:

Ifo Institute - Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Amir-Ahmadi, Pooyan; Drautzburg, Thorsten (2017) : Identification through
Heterogeneity, CESifo Working Paper, No. 6359, Center for Economic Studies and ifo Institute

(CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/155601

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155601
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

The international platform of Ludwig-Maximilians University’s Center for Economic Studies and the Ifo Institute

CESifo Working Papers

www.cesifo.org/wp

Identification through Heterogeneity

Pooyan Amir-Ahmadi
Thorsten Drautzburg

CESIFO WORKING PAPER NO. 6359

CATEGORY 6: FiscaL PoLicy, MACROECONOMICS AND GROWTH
FEBRUARY 2017

An electronic version of the paper may be downloaded

o from the SSRN website: www.SSRN.com
o from the RePEc website: www.RePEc.org
o from the CESifo website: www.CESifo-group.org/wp

ISSN 2364-1428

CESifo

Center for Economic Studies & Ifo Institute


http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/

CESifo Working Paper No. 6359

Identification through Heterogeneity

Abstract

Set identification in Bayesian vector autoregression (VARS) is becoming increasingly popular
while facing recent criticism about potentially unwanted prior dominance and underrepresented
bounds of the identified set. This can lead to biased inference even in large samples. Common
estimation strategies in high dimensions or with tight restrictions can prove to be highly
inefficient or even practically infeasible. We propose to include micro data on heterogeneous
entities for the estimation and identification of vector autoregressions to achieve sharper
inference. First, we provide conditions when imposing a simple ranking of impulse responses
will sharpen inference in bivariate and trivariate VARS. Importantly, we show that this
sharpening also applies to variables not subject to ranking restrictions. Second, we develop two
types of inference to address recent criticism: (i) A prior-robust posterior over the bounds of the
identified set and (ii) a fully Bayesian sampling algorithm that allows us to efficiently include an
agnostic prior over the non-identifiable parameters. Third, we apply our methodology to US data
to identify productivity news and defense spending shocks. We find that under both algorithms
the bounds of the identified sets shrink substantially under heterogeneity restrictions relative to
standard sign restrictions.
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1 Introduction

Since the seminal paper by Sims (1980), the structural vector autoregressive (SVAR) model remains
the workhorse for assessing the dynamic causal effects of economic shocks that drive macroeconomic
variables. The model by itself is under-identified and requires additional prior identifying assump-
tions from outside the model which has been the key challenge in the SVAR literature since. Typical
inference methods impose zero restrictions to achieve just- or over-identification, such as short-run
schemes (Sims, 1980; Christiano et al., 1999; Sims and Zha, 1998) or long-run schemes (Blanchard
and Quah, 1989). But even though the resultant point identification is desirable, the underlying
assumptions are often too strong and restrictive to defend confidently and rarely backed by the-
ory according to Canova (2007). Alternatively, Uhlig (2005), Faust (1998), and Canova and De
Nicolo (2002) have pioneered the “agnostic identification” approach, proposing to identify shocks
by restricting the sign of the responses of selected variables consistent with conventional wisdom.
This approach relaxes strong zero restrictions and has become increasingly popular in the recent
literature. It belongs to the econometric class of set identified models.

We make three contributions to the class of set identified dynamic time series models: (1) We
show how to use micro data for the sharper identification of macroeconomic shocks by imposing
a ranking of responses. (2) We characterize analytically when ranking restrictions on one set of
variables, including, but not limited to micro data, can sharpen the inference for another variable,
such as a macro time series. (3) We propose two inference methods: As a conservative inference
method, we devise a sampling algorithm to transparently characterize the posterior bounds of set
identified shocks. This algorithm is immune to any shape of the prior distribution. We also devise a
new efficient sampling algorithm that characterize the posterior distribution over the identified set
for an agnostic prior. While most common algorithms within the Bayesian framework lead to a large
fraction of draws to be inadmissible empty sets, our approach finds for all posterior reduced form
draws the corresponding identified set and its distribution. This is particularly important when
restrictions are tight or the application is complex, for example, because of its high dimensionality.

Heterogeneity restrictions can stem from different a priori shock elasticities of different indus-
tries, regions or households. A-priori, heterogeneity could be supported or derived either from
theory or data. For example, consider identifying a fiscal policy shock as an unexpected increase
in government defense spending. Manufacturing industry A might have, a priori, a (much) higher
exposure to those shocks relative to sector B, if the government is a key client in the former in-
dustry and a negligible client in the latter industry. Hence, we may reasonably expect industry
A to expand more than B following a defense spending shock. We label such restrictions hetero-
geneity restrictions. In this paper we show both analytically and in two quantitative applications
that our approach sharpens inference substantially, even by the challenging standards of the recent
set-identified VAR literature.

Recent contributions on set identified SVARs have pointed to limitations related to (i) the
correct and transparent measures of uncertainty about the bounds on the identified impulse response
functions (Moon and Schorfheide, 2012; Moon et al., 2013; Giacomini and Kitagawa, 2014) and (ii)



the unwanted dominance of seemingly uninformative priors (Baumeister and Hamilton, 2015; Arias
et al., 2014). Baumeister and Hamilton (2015) explore the role of the typical uniform prior and
its one-to-one dominance in the posterior. They explore prior elicitation directly on the structural
representation of the SVAR by truncating its direction to be consistent with the imposed sign
restrictions derived from theory defining a shock of interest to be identifed. Giacomini and Kitagawa
(2014) propose a method to conduct inference that is robust to the choice of prior on the non-
identifiable part, i.e. the rotation matrix mapping reduced form to structural impulse vectors.
Their approach delivers multiple posteriors, allows to summarize the corresponding robustified
credible regions and bounds on the posterior mean. Similar to them, we also pursue prior-robust
inference, in the spirit of not imposing distributions one may be uncomfortable with. However, we
focus on characterizing bounds on the impulse-responses, following Moon and Schorfheide (2012)
and Moon et al. (2013). To address unwanted prior dominance Moon and Schorfheide (2012)
suggest to construct and report credible sets for the identified set by providing a “transparent
parametrization” of the set. They discuss how any prior, no matter how uninformative, can lead to
overly informative inference. Bayesian credible sets thus lie strictly within the frequentist identified
set. Building on Moon and Schorfheide (2012), Moon et al. (2013) provide a valid frequentist
approach to inference in sign restricted VARs. We report prior robust posteriors using the quasi-
analytical characterization of the identified set of impulse-responses in the spirit of Moon et al.
(2013).

We combine this literature with a separate advance in empirical macroeconomics: The use of
the growing microeconomic datasets to answer macroeconomic questions. Including disaggregate
data by itself holds three promises. First, richer, heterogeneous data tends to exhibit more variation
which helps for identification, as in Nekarda and Ramey (2011). Second, it provides a more detailed
analysis of the transmission mechanism and the heterogeneous effects of shocks themselves. For
example, Anderson et al. (forthcoming) analyze the transmission of monetary policy shocks to
groups of households and Perotti (2008) looks how fiscal shocks transmit to different industries.
Third, the richer data may better reflect the relevant information set of economic agents which can
be important in the presence of news shocks (Beaudry and Portier, 2014).

Specifically, we use the extra dimension of heterogeneous data both for the estimation and im-
portantly the identification of SVARs. We show that it is particularly helpful for the identification:
In bi- and trivariate VARs we provide analytical conditions under which imposing heterogeneity
restrictions leads to strictly smaller identified sets for the responses to a macroeconomic shock while
avoiding unwanted prior information by following the approach of Moon and Schorfheide (2012)
and Moon et al. (2013). As we highlight in our analysis of the trivariate VAR, heterogeneity re-
strictions can also lead to set reduction for responses of traditional macro variables that are not
directly affected by heterogeneity restrictions. This occurs under simple conditions on the reduced
form correlation between forecast errors. We verify in two applications that this set reduction for
variables not directly affected by heterogeneity restrictions is also relevant in practice.

Where do heterogeneity restrictions come from and how can we motivate them? Heterogeneity



restrictions could come from theory or could be based on estimates from separate sets of micro
data. We provide two applications and take the latter route to motivate heterogeneity restrictions.
In our first application we identify the dynamic effects of productivity news shocks while in our
second application we identify fiscal policy shocks. Beaudry and Portier (2006) have argued that
productivity news shocks are important drivers of business cycles. Our heterogeneity assumption
is that productivity news move the stock returns of R&D intensive industries more. We measure
the R&D intensity using Compustat data for either five or ten Fama and French (1997) industries.
We find that the restriction that more innovative sectors responds more sharpens our inference
substantially: Prior-robust bounds on the impulse-responses shrink by up to 45% for consumer
confidence and by more than one third for output and employment. The fully Bayesian responses
have a much more pronounced shape with heterogeneity restrictions and imply a slow increase
in TFP relative to its trend that is consistent with technology diffusion. We also find that our
conclusions change little when we impose a soft zero restriction on initial TFP, lending further
support to our identification scheme.

In our second application we identify a defense spending shock financed through higher taxes.
In the spirit of Nekarda and Ramey (2011) we characterize the macroeconomic effects with the
help of the differential effects on manufacturing industries. Our heterogeneity assumption is that
shipments of all manufacturing industries rise, but more so in industries with a higher share of sales
to the government, as measured by the input-output linkages computed by Nekarda and Ramey
(2011). One of the variables included in this application is real federal debt and its response is left
unrestricted. With heterogeneity restrictions, but not with sign restrictions, we find evidence that
despite the tax increase, federal debt rises in response to spending shocks. Intriguingly, this finding
already applies to the identified set at the posterior mean, highlighting the power of heterogeneity
restrictions at the micro level for macro variables.

While our focus is on identifying impulse-response functions, the identification scheme also
has implications for other moments derived from the identified shocks in VARs. For example,
Arias et al. (2015) examine the implied policy rules of a set identified SVAR, while Uhlig (2003)
directly targets the maximization of the forecast error variance decomposition (FEVD) of selected
variables to identify specific shocks. Focusing on FEVD, we show how to compute the identified
set of the explained variance that is consistent with sign- or heterogeneity restrictions, building
on the work by Faust (1998). Typically, reported FEVD in set identified SVARs tend to be very
wide, hence equally consistent with theories that either render driving shock being negligible or
the key driver. See Uhlig (2005) for a comparison and discussion of FEVD under agnostic and
recursive identification in the case of contractionary monetary policy shocks. In our applications
we show that the heterogeneity restrictions reduce the upper bound of the forecast error variance
significantly.

Our approach and our contributions naturally carry over to factor-augmented VARs and dy-

namic factor models in general as in Amir-Ahmadi and Uhlig (2015), panel VARs as in De Graeve



and Karas (2014),! or time-varying parameter VARs with stochastic volatility (henceforth TVP-
VAR) popularized by Primiceri (2005) and Cogley and Sargent (2005).Our proposed identification
scheme is independent of the specific statistical model and our analytical results regarding its
efficiency are static and thus independent of how the dynamics are modeled. In addition, the
algorithms we develop can also easily be applied to more general VAR-style models. Given that
inference in these models is already more demanding, having an efficient algorithm for sampling
over the identified set becomes even more important than in our VAR application.

This paper is structured as follows. First, we set up the general statistical model and identifica-
tion problem. In this general framework, we discuss prior-robust inference and provide analytical
characterizations of the identified sets in bivariate and trivariate models. Second, we discuss a
simple estimation algorithm that recovers the full identified set. Third, we provide two empirical

examples of large VARs applied to data from different US industries and US metro areas.

2 Model

Here we set up the standard Bayesian VAR framework that we work with throughout the paper
before we define sign and heterogeneity restrictions. We discuss that heterogeneity restrictions
weakly narrow the identified set and provide sufficient conditions for identified sets to have positive
measure. To illustrate the concept of heterogeneity restrictions, we provide examples of possible
applications. Last, we provide conditions when heterogeneity restrictions, compared to pure sign

restrictions, lead to strict reduction and no set reduction in bivariate and trivariate VARs.

2.1 Setup

We work with a Gaussian VAR with a conjugate prior over the identifiable reduced form parameters.
Specifically, the p x 1 vector of observables Y; depends on k lags and has iid normally distributed
forecast errors e;.
Yi=p+Y BYigte, e~NOY). (2.1)
=1

Structural VARs are underidentified and require a number of additional restrictions to provide
a one-one mapping of the reduced form innovations e; to structural shocks € by factoring the

variance-covariance matrix ». This can be summarized by the following relation:

€t = AEt, €t %N(O,Ip), Y= AA/ (22)

'De Graeve and Karas (2014) have used what we call identification through heterogeneity to identify shocks from
banking panics in a data set of Russian banks. While their application is intriguing, our focus here is different. First,
we focus on formally characterizing asymptotically identifiable sets. Second, we propose to generalize their specific
application to exploit heterogeneity in a broad range of applications and dynamic econometric models.



In addition to this generic VAR restriction, we want to impose restrictions on the signs of impulse-
response functions. We now lay out the notation needed to formalize these restrictions. We define

impulse vectors following Uhlig (2005):

Definition 1. The vector a € RP? is called an impulse vector, iff there is some matrix A, so that
AA" =¥ and so that a is a column of A.

Trivially, the columns of the lower Cholesky matrix A are impulse vectors — but generally not
structural impulses. In addition, for any rotation matrix @ = [¢1,...,¢p), the columns of AQ are

impulse vectors. Thus, without loss of generality we can express impulse vectors as:
a=A4q, |lgll=1 (2.3)

We use || - || to denote the Euclidean norm throughout.

In general, we can then write our full model as:
p(Y".B,%,Q) = (B, 3|Y " )1,y (B, D)mq(Q| B, %), (2.4)

where / is the likelihood function, 7, denotes the prior over the reduced form parameters, and g
denotes the prior over ) that could be conditional on the reduced form parameters. We assume
standard a conjugate prior over (B,Y) and take these parameters as given for now. We will discuss
estimation in the next section. Now we focus on what we can learn from beliefs about impulse
responses and the reduced form parameters about (). We proceed assuming that mg has full

support over the identified set.

2.2 Sign and heterogeneity restrictions

To learn about () and identify structural impulse vectors, we impose qualitative restrictions on the
impulse-responses () induces. To define these restrictions, we need extra notation. We use the
companion form X; = Bx X;_1+ Ae; of the VAR (2.1) to express impulse-responses after the initial

impact. The response at horizon h is then given by

ra(h) = [Ty Op ey (Bx)"

“ ] (2.5)

Opx (k—1),1

We are now equipped to define sign restrictions, following Amir-Ahmadi and Uhlig (2015).
Imposing sign restrictions is equivalent to picking a list Lgr C {(s,n)|s € {—1,1},n € {1,...,p}}

of variables n and signs s as well as a restriction horizon H > 02.

Definition 2. The impulse vector a satisfies the sign restrictions (Lgg, H) iff s X r4(h), > 0 for
all (s,n) € Lgr and h € {0,...,H}.

2Note, that extending the list to have have potentially different binding horizons for each pair of inequality
restrictions would be straightforward. For ease of notation we refrain from this exposition here.



We define heterogeneity restrictions similarly, except that they are defined for a list of pairs of
variables (n, m) and an associated strength A € R,. Define Lyr C {(s,n,m,\)|s € {—1,1},(n,m) €

{1,...,p}%, AX(n —m) # 0,\ > 0}.

Definition 3. The impulse vector a satisfies the heterogeneity restrictions (Lg g, H) iff s xrq(h), >
As X 14(h)py, for all (s,n,m,\) € Lygr and h € {0,...,H}.

Note that with a specific prior over () and for given percentiles of the posterior distribution, the
heterogeneity restrictions can produce more dispersed posteriors percentiles: The tighter restric-
tions can shift mass away from the center of the prior towards the tails of the distribution, as we
will see in our applications. For the (distribution-free) identified set, however, there is a clear sense
in which heterogeneity restrictions are tighter than sign restrictions: Heterogeneity restrictions

can nest the standard sign restrictions. If they do so, the identified set is weakly smaller.

Lemma 1. Write Lgg = {(s¥),n@))|j = 1,...,J} for the full set of sign restrictions and write
Lrr = {(s9),n0) m&) A0))j =1,... J} for the analogous set of heterogeneity restrictions. If for
all j=1,...,J ng}% = ng)R and AU ) > 0, then identified the set for a induced by Lgpr is weakly
smaller than the set for a induced by Lgg.

Proof. (Sketch.) Note that for AU) = 0, the restrictions in Lg)R imply the restrictions in Lg}z given

that ng% = ng)R O

Below we provide conditions under which the identified sets are strictly smaller than with pure
sign restrictions in the cases of p = 2 and p = 3.

Heterogeneity restrictions may also apply when no sign restrictions are available because we
can only sign the difference in the responses. For example, we might know that lump-sum fiscal
transfers raise the expenditure of highly leveraged households more than those with low leverage.
Depending on how the transfers are financed, some household might actually cut expenditures,
for example if they pay most taxes. In that case we might want to impose only heterogeneity
restrictions that do not nest the standard sign restrictions.?

Can heterogeneity restrictions be too tight and result in empty identified sets? We now provide
sufficient conditions to guarantee a non-empty identified set. While the focus on impact restrictions
is more restrictive than our empirical specifications, the same intuition applies when we can rule
out overshooting responses or the restricted horizon is short enough.

Formally, if heterogeneity restrictions are imposed on impact only and satisfy the order condition
J < p and a rank condition, there is always a set of impulse-vectors a that are consistent with the

heterogeneity restrictions.

Lemma 2. Assume H = 0, J < p, all n0) are distinct. Let A be a J x p matrix of zeros, except

for A\U)s in the (j,m(j)) positions, j = 1,...,J. Let E be a J X p matrix of zeros, except for ones

3In a sense, also in that case the heterogeneity restrictions are stronger as the sign restrictions could leave an
unrestricted set of a = Aq subject only to ||g|| = 1, while the heterogeneity restrictions imply restrictions.



in the (j,n(j)) positions, j = 1,...,J. If M = EF — A is of rank J, then the set for a induced by

Lgr has positive (Lebesgue) measure.

Proof. Let S be a J x J diagonal matrix with the direction of the restrictions on its diagonal

Sjj= sU). Then the heterogeneity restriction in Lz g are equivalent to

S(E—A)Ag>0.
——
=M
Since M is of rank J by assumption, we can re-write M = U[D,0 Jx (p— J)]V, where U,V are
orthogonal matrices of dimension J and p, respectively. D is a J x J diagonal matrix with non-zero
entries along its main diagonal. Define M = V/[D~!; O(p—1yxs]U’. Note that MM =1.

Now define

Note that ¢ is non-zero. To see this, assume by contradiction that ¢ = 0,x1. Equivalently, after
left-multiplying by A and then by M, MMS™11,,, = MOpyx1 = 0yx1. But MM = I and since S
is invertible, 1741 = 07«1, a contradiction. Thus ||g|| > 0.

Let ¢ = H%ll' Then:

SMAq =G| *SMAAMS 151 = |G| 11 > 0,

where the inequality is taken elementwise. Since the inequality is strict, by continuity there exists
a 0 > 0 such that all ¢ with ||¢ — ¢|| < ¢ small enough can be rescaled so that AH%H satisfies Lyp.

Thus, the set of admissible a has positive (Lebesque) measure. O

This Lemma is also useful to guide the design of heterogeneity restrictions. To see this note that

if the rank of M equals R < J only a degenerate solution with zero Lebesgue measure may exist.

1 -1 Loi
Consider the case that J =2 and M = ) ] In that case only g [1, 14114;2;421]’ scaled to

have unit norm, is a possible solution. Thus if we want to increase the odds that a non-degenerate
solution exists we have to rule out cycles: This is natural on economic grounds, but we need to
formalize this notion. Restricting ourselves to no more restrictions than variables and focusing on
chains of restrictions is sufficient for the rank condition in Lemma 2.

In our application, we always impose heterogeneity restrictions for groups of variables. While
this restriction is by no means necessary, we now show that this type of restriction is sufficient for

the rank condition in the previous Lemma 2.

)

Corollary 1. Assume H =0, J < p, all n9) are distinct, and there is at most one restriction ]Lg R

with m) = n and AU) > 0 for each variable n = 1,...,p. Furthermore, heterogeneity restrictions



come in non-overlapping groups G = {j1,52,...,j} with sU) = s = §C for all j,¢ € G with one
AU =0, fe.:

0< SGT‘((I)n(jl)

SGA(jz)T(a)n(jl) = SG/\(j2)7"(a)m(j2> < r(a)y62) using nV! = m0?

sCADr(a), 5 < r(a),a)

Then the set for a induced by Lyr has positive (Lebesgue) measure.

Proof. To keep the notation simpler, assume that the variables with restrictions are ordered first in
the VAR, such that nl9) = j for j = 1,...,.J. Otherwise the proof below holds after multiplication
with appropriate permutation matrices.

Since groups are non-overlapping, we have that the rows of E, A involving any variables j € G
do not involve any variables j € G',G’ # G. Note that F, A are zero except for: (1) Positions
{(j1,41),...,(j,7)} in E, which are unity, and (2) positions {(j1,mUb), ..., (j,m(j))} in A, which
equal AUD AU ), respectively. Proceed by Gaussian Elimination.

Note that AUV = 0 by assumption. Then, multiplying row j1 by —AU2) and adding it to row
j2 ensure that Mjs , — )\(j2)Mj17o =FEjoo—Njoo — )\(j2)Ej270 = Ejo o = ejo — a zero row except for
one entry equal to unity.

Now assume that Mj;, . = Ej, . = €;,. Multiplying multiplying row jn by — AU+ and adding
it to row jn ensure that M, 410 — /\(j’”rl)Mjn,O = Ejn+1,0 = €jnt1. Continue until jn +1 = j.
Thus, we can rewrite Mj1,,...,M;, as a linear combination of the independent basis vectors
E; = ej,j € G. Thus, their rank equals the cardinality of G.

Since groups are non-overlapping, the total rank is the cardinality of all groups, which equals

J. Thus, Lemma 2 applies. O

Note that the logic underlying our existence results does not generally hold when H > 1 because
dynamic restrictions involve interaction terms between restrictions of potentially different sign or
reversal to the mean that is not monotone. Heterogeneity restrictions and simple sign restrictions

alike can lead us to reject reduced form draws in these cases.

2.3 Equivalence to change of variables

Note that in simple settings there is an equivalence between heterogeneity restrictions and sign
restrictions with an appropriate change of variables. Let [1,0] and [\, —1] be the rows of M encoding

the heterogeneity restrictions on Y; = [Y74,Y5,]’. Then this heterogeneity restriction is equivalent



to two standard univariate sign restrictions [1,0] and [0, —1] in a VAR of Y, = Y14, AY1 ¢ — Yo,
with associated Cholesky factor:

1 0
-1

Ay 0

A= Lt
Az1 Az

For example, take Y7 ; to be the nominal interest rate and Y5; to be the inflation rate. Then the
first restriction identifies an increase in the nominal interest rate and the second restriction requires
the ex post real rate to rise. Equivalently, we can represent these restrictions as sign restrictions in
a bivariate VAR with the nominal and the ex post real interest rate.

More generally, if there are J = p full rank heterogeneity restrictions in a VAR of {Y;} these
are equivalent to standard sign restrictions in a VAR of {¥;} = {MY;} with covariance matrix
Y = MYM'. Here, M = E — A. Our argument can, thus, alternatively be viewed as a theory of
the VAR observables. Our setup is, however, more general because we do not require the order

condition J = p but can allow for more restrictions than observables.

2.4 Strength of the restrictions

How do we choose the strength of the heterogeneity restrictions? Mathematically, what are rea-
sonable values for A7 If we have a notion that we want to rank the responses of different sectors
qualitatively, the case of A = 1 might be the most natural. However, in this case can also think of
A\ as expressing our degree of confidence in the measured heterogeneity. For example, setting A = %
expresses a weaker ranking. However, also qualitative beliefs about macroeconomic relationships
can generate bounds. For example, we might want to assume that the (ex post) real interest rate

rises in response to contractionary monetary policy shock rises, implying
A X IRFppr,0 > I RFipfationo Wwith A =1

The following example generates a A # 1: If we believed in a Phillips Curve relationship between in-
flation and unemployment whose slope below a certain threshold, we might specify that in response

to demand shocks the following restriction holds
IREnﬁation,O < _/\XIRFunemployment,O with A =2

The choice of A = 2 is a conservative value. For example, Blanchard et al. (2015) report that the
75th percentile of the point estimates of the slopes across all countries and time periods is smaller
than 1.75.

2.5 Different variations of heterogeneity restrictions

While we focus on short-run heterogeneity restriction in the remainder of the paper, we note that

the approach is versatile and applies also to the following variations:



Soft zero restrictions: We can also use varying ranking intensities A to impose approximate zero
restrictions, i.e., soft zero restrictions. For example, Christiano et al. (1999) identify monetary
policy shocks via zero short-run restrictions, imposing, among other things, that real output
cannot respond contemporaneously to monetary policy shocks. Here, we could also impose
an analogous, but less dogmatic, soft zero restriction by imposing for a small value of A for

the following restrictions

—AX IRFrrro < IRFgppo < A X IRFrpro with A =0.01

Long-run zero restrictions: It is straightforward to extend our suggested heterogeneity restric-
tions to the case of set identified long-run restrictions. One could either implement long-run
neutrality based on soft zero restrictions as detailed above. For example, to impose approxi-

mate monetary neutrality impose:
—A X IRFFFR,() < IRFGDP,oo <A X IRFFFR,O with A =0.01.

Here, IRFGDP o is the respective long-run impulse response of real GDP to a contractionary

monetary policy shock.

Long-run heterogeneity restrictions: Implementing a long-run identification scheme under het-
erogeneity restrictions is also straightforward. Consider the case of productivity news shocks
and of two industries, A and B. A is more R&D intensive than B. To impose that the long-
run impulse response of productivity industry A be stronger than productivity in industry B

impose:
[RFProductivity in A,co = )\IRFProductivity in B,oo with A =0.01.

Fully Bayesian analysis of models with extreme values of A can be challenging. To that end, we

develop an efficient algorithm in Section 3 that works well even with soft zero restrictions.*

2.6 Characterizing the identified set analytically

When can we expect heterogeneity restrictions to be most useful? Here we first follow Moon et al.
(2013) to characterize the identified set analytically in a bivariate VAR with impact restrictions
only. We show that for the common restrictions, associated with )‘g)R = 0, the identified set for a,, ;)
can be strictly or weakly smaller, depending on reduced form parameters. For a,  with /\g% > 0,
however, we find that the identified set is strictly smaller, except for degenerate cases. KEither
type of restriction has the more bite the more negative the reduced form correlation of forecast

errors. Trivially, heterogeneity restrictions have the more bite, the stronger the known degree of

4Note that existing Bayesian analyses of sign and zero restrictions often inadvertently impose non-stated beliefs
in the identification. See Arias et al. (2014), who explain how to combine sign and hard zero restrictions in a fully
Bayesian fashion.
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heterogeneity and the higher the ratio of conditional standard deviations. We also show that the
results generalize to trivariate VARs. Trivariate VARs allow us to distinguish between variables

directly affected by heterogeneity restrictions and other variables subject only to sign restrictions.

2.6.1 Bivariate VAR with impact restrictions

We impose two restrictions to identify the first shock. In a bivariate VAR we can use (2.3) to

express these restrictions as:®

Standard sign-restrictions Heterogeneity restrictions
QIALI >0 q1/~1171 >0 (2.6&)
g1 a1+ gadzp >0 (1Az1 + q2Az2) — ArArg > 0 (2.6b)

Since the heterogeneity restriction nests the standard sign restriction for A = 0, we now focus on
this more general case.

To understand the implied restrictions, it is useful to write the elements of the Cholesky factor
A in terms of the correlation and variances of the reduced form errors.® We can then rewrite (2.6)

as:

=0 (2.7a)
Ay Ay Ay p
( Azp  Asp ( Azs /1 —,o2>
0
>

In (g1, g2) space, g2 has to lie in the plane above the ray through the origin with slope — 1”_ ~
with pure sign restrictions. he slope depends on correlation between the reduced form forecast
errors. Heterogeneity restrictions can always flip the slope for A\ high enough.

Intersecting the set described by (2.7) with the unit circle yields Figure 2.1, following Moon
et al. (2013): First, ¢; is positive. Second, go lies above the straight line through the origin, that
may have positive or negative slope. The slope is increasing in A. Last, (¢1, g2) are confined to the
unit circle since ||¢|| = 1. Given X > 0, three cases can arise: (a) the reduced form correlation is
positive and dominates the positive contribution of the heterogeneity restriction, (b) the reduced

form correlation is positive, but the contribution from the heterogeneity restriction dominates, (c)

5As written, we impose one sign and one heterogeneity restriction. An example is identifying a cost shock
in a competitive industry for which we observe prices and quantities. In the presence of decreasing returns to
scale and with elastic demand, we know that minus the quantities fall more strongly than the prices within that
industry. For example, let Q: = E?L,}f‘zb be the production function and Q; = 2P, ¢ € (0,1) and w > 1. Then

prices equal Inp; = Inw + % Ing: — ﬁ Ine! and Ing; = Ine? — winp;. In equilibrium, g;:f; = 1&:(755121) and
__Olng: — _w Olnpy > dlnpy ¢
Olnef 1—¢ Olne? Olned” . - ~ B
5Note that the Cholesky decomposition ¥ = AA’ can be written as: A1 = VZ11, A1 = 1?1211 = Az \/1‘1—27
, —p

and Az,g =4/Yoo — (Az,l)Q = |A2,1 [\v/1/p? — 1. ¥ is the covariance matrix of the forecast errors and p is the reduced
form correlation between the forecast errors.
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the correlation is negative so that both contributions are positive. In cases (b) and (c), the marginal
full set for ¢; is strictly smaller with heterogeneity restrictions. In case (a), the marginal set for
q1 is [0,1] in both cases, but the full identified set for ¢y is strictly smaller with heterogeneity
restrictions.

() My — A1 < 0,421 >0 (b)) Ay —Ag; >0,45; >0 (c) My — Az >0,451 <0
Weak heterogeneity restriction Strong heterogeneity restriction Strong heterogeneity restriction

Positive correlation Positive correlation Negative correlation
qz qz
A A
HR
\
\
‘l
> 41 +— (1
\ \ ]
\ \ /
\ \ Y]
\\ / HR \\ r'
_/\ —/\
' SR ' SR

The full identified set is given by the intersection of the unit circle with the ¢i > 0 plane and the plane above the
HR and SR lines, respectively. The resultant joint set on the unit circle as well as the marginal sets on the axes
are marked in red (and solid) lines for the case of heterogeneity restrictions (HR) and in dashed and blue lines for
the traditional sign restriction (SR). The HR set is strictly smaller on the unit circle — this always translates into a
tighter set for g2 and, in cases (b) and (c) also in smaller sets for ¢gi. We show in the text that this also translates to

tighter sets for a1 and a2 in the HR case.

Figure 2.1: Graphical representation of the identified set for the two types of restrictions

However, we are not interested in the set of admissible g per se, but in the induced set for a = Aq.
Since a1 = Aq1q1, we can simply read off the results from Figure 2.1. Appendix A.1 summarizes the
identified sets for both a; and as. Proposition 1 uses this characterization to summarize when we

have a strict set reduction for the responses. Since /Nln = /X211 and 12121 = \/Z;:—L, these restrictions

depend only on the reduced form variances and covariances.

Proposition 1. The identified set for the structural impulse a1 from (2.6) is strictly smaller under
heterogeneity restrictions than under sign restrictions iff A1 — Asp > 0. The identified for as is

strictly smaller unless )\flll = flgl.

Proof. This follows directly from comparing the sets listed in Appendix A.1for A =0and A > 0. O

Note that independent of the presence of heterogeneity restrictions or sign restrictions, a nega-
tive reduced form correlation leads to a smaller identified set of ¢; and, consequently, of a;. These
sets are, in turn, smaller with heterogeneity restrictions. The differences in the sets are most pro-
nounced when the correlation is positive, but the heterogeneity restriction is strong — compared to
the reduced form standard deviations of the second variable relative to the first.

Intuitively, we find set reductions with sign restrictions if the reduced form correlation between

the variables is of the opposite sign than the one attributed to the identified shock: In this case, the
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identified shock cannot account for the entire impact response — else the VAR could not generate
the observed reduced form correlation. This intuition not only applies to the case of heterogeneity
restrictions, but also for the reduced form correlation between variable 1, [1,0]Y; and the linear
combination [—A\, 1]Y;.

When are the two sets equal? Note that when there is only one common shock to variables 1
and 2 whereas also a second shock affects variable 2, the identified sets in response for the common
shock are necessarily equal. The second shock is an idiosyncratic shock to variable 2, such as an
industry-specific shock: A = [a11,0;as1,ag]. In this case, A = A. Assume a positive covariance.
Then, Ay = kA;q for k = % If A = &, the two sets are equal.”

Proposition 1 implies that for A large enough, identified sets for both responses a1, as are strictly
smaller. A different way to understand our results is through Proposition 4 in Amir-Ahmadi and
Uhlig (2015). They show that in a bivariate VAR, all possible sign restrictions are spanned by two
sign restrictions with maximal 180° angle. Standard sign restrictions as defined above imply an
angle of 90°, whereas heterogeneity restrictions imply an angle of more than 90°.% Here, as A " oo,
the angle spanned by the heterogeneity restriction approaches 180°. In this case, our identified
sets for ao converge to a point mass at 12122. Note that this case arises when we impose a soft
zero restriction: For large A, we are constraining the response of variable one, i.e., IRFj to lie in
IRFy1 € [0, A" I RFys]. Given that IRFyo > 0, the limit of A 7 co is point identification. Large
but finite A correspond to “soft” point identification.

Note that the idea of ranking the responses of two different variables to one shock carries over to
ranking the response of a single variable to two different shocks: The response of the first variable
to the two shocks can be written as a11(Q) = Ay [qu ng] subject to || [qu qm} || = 1.
Assuming positive responses, the heterogeneity restriction then takes the form of ¢;; > 0 and

A
A1 > qu2 = 4/1— qil > 0 so that ¢11 > \/ﬁ > 0. Because ¢12 = /1 — ¢} = T‘JAQ > 0, we
have a strict set reduction.

2.6.2 Trivariate VAR with impact restrictions

Proposition 1 shows that impulse response of the variable on the right-hand side of the heterogeneity
restriction belongs to a strictly smaller identified set with heterogeneity restriction compared to
sign restrictions under conditions on the reduced form conditional covariance. Higher dimensional
cases are more complicated. However, in the trivariate case, there is a set of sufficient conditions
that parallel the necessary and sufficient conditions of the bivariate case. These sufficient conditions
also imply either equal sized sets or a strict set reductions for the variable that is not involved in
the heterogeneity restrictions.

We begin by stating the heterogeneity restriction for the trivariate case — to obtain the sign

"With a negative covariance, both the sign and the heterogeneity restrictions are violated. In this case, the
heterogeneity restrictions will, mistakenly, lead us to be more confident about the wrong restrictions.
8Since [1,0][= A, 1]’ < 0 but [1,0][0, 1] = 0 the angle implied by sign restrictions is wider.
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restrictions, set A = 0.

@A >0 (2.8a)
q1 491 + qaAae >0 (2.8b)
@1 Az + g2 Aze + q3Asz3 > M1 Aar + g2 A2) (2.8c)

Proposition 2. The identified set for the structural impulse a; from (2.8) is strictly smaller under
heterogeneity restrictions than under sign restrictions if )\flgl > ./2131 and ./2131 > 0. The identified

set for a; is equal under heterogeneity and sign restrictions if Ay < Ag; and Agq > 0.
Proof. See Appendix A.2.1. O

The intuition from Proposition 1 also explains Proposition 2: Consider a case where shock
identification calls for positive comovements between the variables. The sufficient condition applies
to the case where the reduced form correlations are the same as the correlations conditional on
the shock. The heterogeneity restriction strictly sharpens inference if in the space of transformed
variables the conditional correlation has the opposite sign from the reduced form correlation.

Proposition 2 implies that heterogeneity restrictions can sharpen the inference also on standard

macro variables, say variable 1, even if the heterogeneity restrictions only involve micro variables 2

and 3. Again, since Ay; = \/221—;'1, these conditions involve only the reduced form covariances between
the forecast errors.”

In the Appendix, we provide three examples that show that the sufficient condition in Propo-
sition 2 has bite in real world applications: (1) We analyze the workhorse New Keynesian model
of the nominal interest rate, a measure of real activity, and the rate of inflation. (2) We look at
fiscal policy in a VAR of GDP, spending, and taxes, motivated by Blanchard and Perotti (2002).
(3) We also look at a news shock, in a VAR with GDP, TFP, and a stock index. In these examples,
we consider a range of values for A that implement a “soft” zero restriction on, respectively, real
activity, government spending, and current TFP, motivated by Beaudry and Portier (2006). In the
New Keynesian application, the sufficient condition for equal sets applies and we verify that for any
A, the identified sets for the macro variable (the interest rate) is unchanged. In the fiscal policy
application, we find that the sufficient condition for set reduction applies for modest A\. The set
reduction builds up to about 10-15% of the impact response of GDP. The results are similar for
the third application, with a set reduction of up to 7.5% for the output response.

What happens if there are only two aggregate shocks and the responses of variables 2 and
variables 3 to both shocks satisfy the heterogeneity restriction in population? We show in Ap-
pendix A.2.3 that in this case the heterogeneity restriction simply becomes redundant and we are

left with two simple sign restrictions, (2.8a) and (2.8b), to identify the shock of interest. Thus, when

9Note that the same logic would apply in the somewhat peculiar case of a p dimensional VAR in which ¥;; > 0
for i =1,...,p with p — 3 positivity restrictions appended to (2.8) — or no restrictions on the extra p — 3 restrictions.
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responses to all aggregate shocks satisfy the heterogeneity restrictions, heterogeneity restrictions

have no bite.19

3 Estimation

The estimation uncertainty of the identified impulse response functions stems from two sources — the
size of the identified set and the uncertainty about the reduced form parameters. We consider two
types of inference: First, we consider prior-robust inference (Algorithm 1) about the identified set.
Second, we also consider an efficient fully Bayesian inference (Algorithm 2). We provide numerical

algorithms for both schemes and begin by summarizing inference over reduced form parameters.

3.1 Reduced form parameter uncertainty

We quantify the uncertainty about the reduced form parameters using a Bayesian approach. This
approach is also perfectly valid from a frequentist perspective. The posterior distribution is standard
for our Gaussian Bayesian VAR.

Specfically, stacking all the coefficients in a vector § and denoting the forecast error variance

by ¥ we have the following conjugate prior distribution over the reduced form parameters:

B~N(Boy, Ny' ®%) (3.1)
X~ Wp(Vo(io)_l, V()). (32)

The marginal posterior distribution for 7! is a Wishart-distribution, from which we draw directly.
Given the draw for ¥~!, we can draw from the conditional normal distribution for the coefficients
B.

3.2 Prior-robust inference

In a standard BVAR with sign restrictions such as Uhlig (2005), the posterior distribution of
impulse-response functions results from integrating out both the rotation matrix () and the reduced
form parameter uncertainty. However, there are many possible prior distributions over () that may
imply different shapes for the resultant IRF, as we illustrate in Figure 3.1. Baumeister and Hamilton
(2015) point out that the commonly used prior that @ be uniformly distributed in the space of
orthonormal matrices does not translate to a uniform distribution within the identified set. We
also find this in our applications below. Additionally, Arias et al. (2014) argue that practitioners
have combined sign and zero restrictions in ways that introduced unnoticed prior information.
We argue that one can address the criticism by Baumeister and Hamilton (2015) and Arias
et al. (2014) by being conservative and choosing the worst case prior possible over ). However,

when we are conservative about the distribution of ), we still know how to quantify the posterior

OTyivially, the sets identified with heterogeneity restrictions equal those identified with pure sign restrictions.
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B \\ HR violated

Z | —— some prior

3 FRCENE H prior-robust identified set
\
AY

Impact IRF a;

Parameterizing a = Aq means that the impact response of the first variable a1 = Auql. The figure shows that
different possible priors, here coming from the family of beta-distributions, can generate very different densities over

the structural parameters. Here we focus instead on the full identified set, highlighted in blue.

Figure 3.1: Impulse-vector for first variable in VAR for different beta-priors over ¢;

distribution over the reduced-form parameters (/3,%), and we should use this information that
transparently reflects the data.

Thus, we follow Moon and Schorfheide (2012) to compute the infimum and supremum over
all admissable rotation matrices ). This set is distribution free, as we compute the infimum and
supremum over the set of all prior distributions over admissable rotation matrices. We compute
this set conditional on the reduced form parameters (/3,%). While this set is robust to any full-
support prior over rotation matrices, we still care about the parameter uncertainty: Some parameter
combinations (5,X) have very low posterior probability. These parameter draws may or may not
have large bounds for the impulse response functions attached to them, but since the data tells
us that these have very lower posterior density, we argue that we should communicate this. We
therefore compute a distribution over the [inf, sup]-bounds that reflects the posterior reduced-form
parameter uncertainty.

Formally, define the posterior distribution over the IRF for variable j at horizon A given the

prior w over the rotation vectors g as:

T . v
Fip (@) _//ql{mq(h;E,B)ij}1{%1(s;z,ﬁ)n>ArAq(s;E,B)MV(n,mA)eLg}%w:1,...J}7T(q)dqXp(z’ﬁ’y )dxds

In contrast, we define the prior-robust posterior distribution over the IRFs as:

; = _ vT
Fjn() /Msﬂlg))w1{mq(h;2ﬂ)jﬁw}1{%1(s;z,ﬁ)n»mq(s;z,ﬁ)mV(n,m,A)eL(}})RVj:l,...J}p(z’5’Y )dxdp

Our prior-robust inference avoids taking a stance on the shape of the prior over the identified

16



set. It is therefore “frequentist-friendly” in the language of DiTraglia and Garcia-Jimeno (2016).
It sidesteps both the criticism by Baumeister and Hamilton (2015) that priors can dominate the
inference and the criticism by Moon et al. (2013) that traditional sign identified Bayesian VARs
misrepresents the identified set. Our approach follows the principle of transparent parameterization
detailed in Schorfheide (2016).

In contrast to the simple sampling scheme for the reduced form parameters, characterizing the
bounds of the identified set via Monte Carlo integration is hard, particularly in higher dimensions
and can become impractical. We therefore rely on the following numerical algorithm to compute
the identified sets. It mimics the analytical approach that we use to characterize the identified set

in the bivariate and trivariate VAR examples.

Algorithm 1 Prior robust inference

1. Draw B and %@ from p(B, Z|Y).

2. Given B and A@ = chol(X®), compute the following matrix:

S(E — A)B A

W= |S(E-MBYAD 7

S(E — A)BYW A@

where
B _ Z?ZO(B (d))s  j if estimated in growth rates,
b (B@)R Jj if estimated in levels.
3. For each variable ¢ = 1,...,p and for each horizon s = 0,...,.5 solve the following problems

min and max e/B(d);l(d)q
q q I

s.t. Wq <0,
llal| =1

Save the resulting values as upper and lower bounds.

Our Algorithm 1 is related to those of Faust (1998) and Giacomini and Kitagawa (2014). It
resembles the algorithm of Giacomini and Kitagawa (2014) without their computation of posterior
means. Unlike them, we have no need to approximate the bounds using stochastic integration.
Note that the numerical optimization problem in the algorithm has a simple structure: A linear
objective and inequality constraint, and an equality constraint with gradient 2¢q. We find that
Matlab’s fmincon'! solves the problem efficiently. For high-dimensional problems we can run the

algorithm in parallel, given independent posterior draws for B@ and A@ = chol(Z‘,(d)).12

1We experimented with different algorithms and solvers to ensure robustness of the results.
2Tn the language of Giacomini and Kitagawa (2014) and Kline and Tamer (forthcoming), we find that for the
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IRFs are just one implication of the set-identified shock. The identified set also has implica-
tions for policy rules (see Arias et al., 2015) and the forecast error variance decomposition. Since
Christiano et al. (1999) argue that structural VARs can fail to identify policy rules even when they
identify IRFs correctly, we focus on the forecast error variance decomposition. In Appendix B we
follow Uhlig (2003) to show that the forecast error variance for variable i from horizon 0 to H

associated with the orthonormal vector ¢ can be expressed as:

H
¢Sing,  Sim=Y (H+1-h)(eBYAY (&8, A). (3.3)
h=0

We can now compute bounds on the forecast error variance contribution of any variable 7 up to
horizon H by replacing the objective e;Bgd)A(d)q in the previous algorithm with ¢'S; gg. For given
parameters this approach is the algorithm used in Faust (1998) to assess whether the finding that

monetary policy shocks only explain a small proportion of output are indeed robust.

3.3 Fully Bayesian inference

If a researcher has beliefs that provide information in addition to the sign restrictions, she might
want to impose these beliefs. Here, we provide a framework for conducting inference under the
belief that the rotation vector ¢ is distributed uniformly over the unit n-sphere, conditional on
lying in the identified set. Because the identified set can be small, we provide an algorithm for
drawing from this set that is efficient and leads to a perfect acceptance rate.

Our prior belief that conditional on a given reduced form draw, whose associated identified set
is non-empty, the rotation vector ¢ is distributed uniformly on the unit n-sphere corresponds to

the following complete Bayesian model:'3

p(Y,B,%,q; R(-)) = p(Y|B,X)p(B,X)p(q|B, %; R(-)), (3.4a)
1{R(B,%)q < 0}

B, Y;R) = p

v ) Jongairs.s)a<oy 4

(3.4b)

In practice, we found that is can be extremely difficult to sample from p(q|B,%; R(-)) when R
has many restrictions. We therefore device an efficient algorithm for drawing from the posterior
(Algorithm 2). To do this, we use the fact that our restricted set is scale free and that a draw

from the multivariate normal distribution rescaled to have zero norm is uniformly distributed on

applications reported here, the posterior plausibility of our restrictions is always 100%. We found lower posterior
plausibilities only in a priori unreasonable specifications of our heterogeneity restrictions.

3Note that our unconditional prior is agnostic in the sense of Arias et al. (2014): Without restrictions, p(B, X, q) =
p(B, X, qQ) for any orthogonal matrix Q. The conditional posterior, however, need not be conditionally agnostic in
their language, however, because the size of the identified set enters the probability of q via fQﬁ{cﬂR(B,E)q<0} dq. Note
that this prior implies that the marginal data density is unaffected by the prior over ¢ when the identified set is never
empty: p(Y) = [ [ [p(Y|B,X)p(B,X)p(q|B,%; R(-))dgdBdY = [ [p(Y|B,%)p(B,Y) [ plq|B,%; R())dgdBdY =
J [p(Y|B,2)p(B,X)dBdx.
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the unit n-sphere.'* We formally state these facts in Lemma 3.

Lemma 3. If z 24 N(0,1,) and Wz < 0, then ¢ = ﬁ is a uniform draw from the unit n-sphere

xT
that satisfies Wq < 0.

Proof. The fact that ﬁ has uniform measure over the space of unit vectors follows from the rotation
invariance of the zero-mean multivariate normal distribution. More formally and generally, from
Theorem 3.3 in Stewart (1980) or Theorem 9 in Rubio-Ramirez et al. (2010), if X = [x1,..., 2]
with z; id N(0,7), the matrix @ obtain from the QR decomposition of X has, after normalizing R
from the QR decomposition to have a positive diagonal, the uniform distribution on the space of
orthogonal matrices. The first column of @ is then simply ¢ = =-. Thus, if y e (0,1,), then

[1]]
q= ﬁ is distributed uniformly on the unit n-sphere.

Thus, for any Borel set A, Pr{ﬁ € A} = Pr{q € A}. Now consider the truncated dis-

tribution: ¢|Wq < 0. Let S = {# € R"|[Wz < 0}. Notice that Pr{ﬁ GS} = Pr{y €
S} because y = 0 has zero probability. It follows that the truncated distributions are equal:

Pr{ieAmS}Pr{Les}_l:Pr{qumS}Pr{qGS}‘l. 0
o

[yl

Lemma 3 allows us to draw efficiently from the truncated unit n-sphere efficiently by drawing
from the truncated multivariate normal distribution subject to inequality constraints. Practically,
we use the Gibbs sampling algorithm in Li and Ghosh (2015). More efficient direct samplers such
as Botev (2016), which uses a recursive sampler based on the L@ decomposition of the W matrix of
restrictions, are available when the number of restrictions is no larger than the dimension of ¢.!516

While Algorithm 2 is designed to draw from the posterior associated with the specific prior
(3.4b), we could adapt it for other beliefs by introducing a reweighting step. Specifically, the
conditional structure of the prior over (B, Y, q) in (3.4b) makes our prior hierarchical. This prior
belief differs from the prior in Uhlig (2005) and Arias et al. (2014) that implies a flat distribution
of ¢ independent of the reduced form parameters. Under regularity conditions, Algorithm 2 can
be adapted to produce draws from posteriors induced by other prior beliefs. To do this, we would
importance-sample by reweighing the draws from the posterior based on (3.4b) by measure of the

restricted set Wq < 0.

M Note that if we had a set of restrictions {g|WW¢q < b} for b # 0, then Wa < b does not imply that W& < b —

]|
for example, if an equality is strict and ||z|| < 1. This limits our algorithm to scale-free problems.

15We simply use the inverse normal CDF in Matlab to draw from its truncated distribution, unlike Li and Ghosh
(2015). The inverse standard normal CDF transform is accurate up to £8. Simulating draws from both the Li and
Ghosh (2015) method and the inverse normal method showed that the Li and Ghosh (2015) method was no more
accurate in the tails and in some occasions less accurate. Also experimenting with an alternative approximation to
the inverse normal CDF produced indistinguishable results.

®Notice that the thinning step 3(c)ii in Algorithm 2 is not strictly necessary. However, thinning increases the
effective sample size and therefore ensures that comparisons between the measure of different sets associated with
restrictions R and R’ are not driven by differences in the effective sample size.
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Algorithm 2 Fully Bayesian inference
1. Draw B and @ from p(B,Y|Y).

2. Given B@ and A = chol(2?), compute the following matrix:

S(E — A)BY A@

S
I

where

@ ZSZO(B(d))S Jj if estimated in growth rates,
b (B Jj if estimated in levels.

3. Draw from p(g|B¥,%(@): R)

(a) Initialize 2(*0) = Z_ where 2¢ is the Chebychev center of the set Wz < 0:

[zl

¢ = argminmax r st. Wieq+r||Wio|| < 0Vi.
xT T

(b) Verify that the identified set is non-empty, i.e., proceed if max; |z§| > 0. Otherwise, go
back to Step 1.

(¢) Draw / realizations of ¢(%*) using the following Gibbs sampler:
i Forﬁzl,...,@+f><f:
(d,0)

e For m = 1,...n, draw x;,”’ from the univariate truncated normal distribution

truncated to [l%’é), u%’é)].

e The upper bound is: u%’z) = min {oo, ming;.w,, >0} —

—m

W m(dfl{n>m} 0)
Jjn
Wj :

e The lower bound is: lgd,e) = max {—oo, max(;.yw,, <o} —

anx(id’;ll{n>m},2)
W

ii. Drop the first / draws and then keep every fth draw.

gd);l(d) 2(d:8)

iii. For the remaining draws, compute B T @O
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4 Applications

4.1 News shocks

In our first application, we analyze a productivity news shock, in the spirit of Beaudry and Portier
(2006). Beaudry and Portier (2006), Barsky and Sims (2012) and others summarized in Beaudry
and Portier (2014) have argued that these shocks can be important. For example, Beaudry and
Portier (2014) estimate that at the two year horizon, between 50 and 80% of the variance in
consumption, investment, GDP, and hours can be explained by news shocks. These results are
obtained using zero restrictions. Beaudry et al. (2011) used sign restrictions to identify news shocks.
However, Arias et al. (2014) show their approach uses prior information that is not acknowledged
and, when implemented only with the stated prior, inference becomes imprecise. We now show how
adding readily available information on industry returns sharpens inference substantially, compared
to only using macro time series.

Our added assumption is that productivity news moves the stock returns of the most innovative
sectors the most. To keep the estimation simple, we focus on the five-industry classification by
Fama and French (1997).!7 For firms within each industry, we compute the distribution of R&D
intensities, measured as the ratio of the three-year moving average of R&D expenses relative to
a lagged measure of firm size. Figure 4.1 displays the distribution of the R&D intensity, pooled
across firm-years, for each of the five industries using either gross operating income or total assets
as a measure of size.'® While we focus on the 5-industry classification for simplicity, we show below
that our results hold up using the finer 10-industry data.

We define a news shock to raise real GDP, employment, productivity, and consumer confidence
as well as cumulative real stock returns. Based on the R&D intensities in Figure 4.1, we impose the
following ranking on industry returns: (1) Health and High Tech returns increase more than those
in Manufacturing, (2) Manufacturing returns increase more than those in the Consumer and Other
industries, and (3) Stock returns in the Consumer and Other industries increase. We impose these
restrictions on impact and in the two subsequent quarters. Below we also report an extension that
imposes a (soft) zero restriction on initial TFP, in the spirit of Beaudry and Portier (2006).

Our VAR includes a total of nine variables. We allow for four lags, as a rule of thumb for
quarterly data, and estimate the model in levels with a quadratic trend.'” We work with a flat
prior for the coefficients B and Jeffrey’s prior for the covariance matrix . Throughout, we take
500 reduced form draws, and 10,000 draws from the Gibbs-sampler over ¢, keeping every 10th draw.

Turning to the results, we discuss the impulse responses first, because this is where we impose
the restrictions. We then discuss the forecast error variance decomposition. Then we turn to an

analysis which restrictions are the most important, and conclude the discussion with a robustness

" The returns are available in Kenneth’s French’s data library:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

BWe use Compustat data and drop observations with negative net sales, assets, or employment. Also, we keep
only firms that are incorporated in the US and whose records are denominated in US dollars. For our analysis, we
winsorize the data at the 1st and 99th percentile year by year.

9Tn unreported robustness checks we estimated the model in first differences with comparable results.
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The boxes show the median along with the interquartile range of the R&D intensity for each of the five industries
in the coarsest Fama and French (1997) classification. The upper whiskers end in the values just above to the 75th
percentile plus 1.5 times the interquartile range, and analogous for the lower whiskers. We measure firm size either

as the lagged three year moving average of operating income or total assets.

Figure 4.1: R&D intensity by industry in the 5-industry Fama and French (1997) classification

check. In what follows, we focus on a select number of results, but provide the full set of results in
Appendix D.1

4.1.1 Impulse response functions

Figure 4.2 and 4.4 show the impulse response functions for the four macro variables in the VAR,
computed according to Algorithm 1 and 2, respectively. Figure 4.2 shows the posterior distribution
over the bounds of the identified set, i.e., the prior-robust posterior. Throughout, we contrast the
results with pure sign restrictions, in red, and the heterogeneity restrictions, in blue. All responses
are based on the same reduced form draws, all of which were consistent with the restrictions.

To begin, let us discuss what we learn when we remain robust to the prior over the distribution
within the identified set. Figure 4.2 shows these results for the four macro variables and two
industry returns: The black dashed lines show the bounds of the identified set at the posterior
mean. The shaded areas show the posterior distribution over these bounds — specifically, the 68%,
90% and 95% percentile plus the most extreme bounds. We find that the distributions over the
identified sets always include zero after the restrictions are lifted — here in the third quarter. In
the short-term, most of the uncertainty reflects the width of the identified set, whereas at longer
horizons parameter uncertainty dominates.

Can we still draw substantive conclusions while remaining prior-robust? We see different shapes
in the identified sets, with support for a build-up in the output and employment responses, but a
smooth decline in consumer confidence. Little can be inferred about the shape of the TFP response
when we take parameter uncertainty into account. The exception is TFP: At the posterior mean,
the lower bound for TFP excludes zero after two years when we impose heterogeneity restrictions.

Similarly, the shown industry returns turn significantly negative at the posterior mean with hetero-
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geneity restrictions. With parameter uncertainty, the analysis mainly serves to bound the responses
and the heterogeneity restriction again sharpens the results significantly: For example, for GDP
the sign restrictions tell us that the one standard deviation news shock may raise GDP (relative to
trend) by almost 1.4%. The heterogeneity restrictions imply that the GDP increases no more than
0.8%. We find comparable set reductions of up to 50% for consumer confidence and almost 40%

for employment (for numbers, see Table D.1(a) in the Appendix).

Output TFP Consumer confidence
Sign Restrictions: Heterogeneity Restrictions: Sign R?;:::i’ctions: Heterogeneity Restrictions: Sign Restrictions: Heterogeneity Restrictions:
Output Output 8 Confidence Confidence
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Comparing the identified set at the posterior mean (black dashed lines), we find that heterogeneity restrictions reduced
the identified set substantially compared to sign restrictions, but after the restrictions are eased, we can only infer that
TFP increases in the medium run. However, parameter uncertainty is pervasive at longer horizons and when taking
it into account we can only bound the responses with the restrictions. The bounds with heterogeneity restrictions

are a third smaller for output at the 95th percentile and almost fifty percent smaller for consumer confidence.

Figure 4.2: Prior-robust responses of output, TFP, and consumer confidence productivity news
shock

We now turn to the fully Bayesian analysis and begin with a technical point: Figure 4.3 shows
the fully Bayesian posterior over the three macro responses: The plots show the most extreme
realizations from the sampler (the lightest shaded areas) along with the quasi-analytical bounds
familiar from Figure 4.2. Throughout, the outermost credible sets of the fully Bayesian posterior
track the outermost prior-robust bounds closely. This speaks to the ability of our algorithm to
sample the entire parameter space. However, the upper and lower 2.5% of the posterior mass are
often as wide or wider than the inner 95% — which is why we “zoom” in for our discussion of the
IRFs.

What can researchers with conditionally agnostic priors learn from sign or heterogeneity re-
strictions? Figure 4.4 shows the belief that ¢ is conditionally uniformly distributed sharpens our
inference substantially: The pointwise 95% confidence sets shown all exhibit well-defined shapes.
While we could say little about the shape of the TFP response while being robust to any prior,
our fully Bayesian posterior implies that TFP increases in a hump-shaped fashion in response to
a productivity news shock, plausibly reflecting technology diffusion. Inference about the hump is
much sharper with heterogeneity restrictions which place the peak increase in TFP between 0.5
and 2%, about three years after the initial shock. This causes a hump-shaped expansion in out-

put, peaking one year out between 0.2% and 0.5% with 95% confidence, according to the model
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Here we compare the coverage of the identified set using Monte-Carlo integration using Algorithm 2 compared to the
quasi-analytical characterization using Algorithm 1. We find that the posterior mass is concentrated in the center of
the identified sets, but the top and bottom 2.5% density cover the identified set well.
Figure 4.3: Comparison of fully Bayesian coverage and prior-robust bounds
with heterogeneity restrictions or 0.2% to 0.7% with sign restrictions only. Consumer confidence
increases 0.05% to 0.2% on impact (0.3% with sign restrictions) and then reverts back to zero after
one year. Overall, we see economically sensitive responses that are much sharper with heterogeneity
restrictions.
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Heterogeneity restrictions sharpen the inference with sign restrictions in economically meaningful ways: TFP is found
to increase in a hump-shaped fashion, consistent with slow technology diffusion. We find a smaller increase in output

and consumer confidence with heterogeneity restrictions.

Figure 4.4: Fully Bayesian responses of macro variables to productivity news shock.

The confidence sets alone could obscure irregular posterior distributions — but in Figure 4.5 we
show that they do not.?’ The posterior densities are unimodal and largely symmetric. The plot
also confirms that the densities assign positive measure to almost the extremes of the distribution
over identified sets, shown as thick lines underneath the zero line. On the substantive side the

densities show that for the three macro variables except TFP, the posterior mass is shifted to the

20At short horizons, when the restrictions are still binding, we sometimes observe higher densities around zero,
reflecting the truncation.
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left using heterogeneity restrictions. For TFP, the mass is shifted, in contrast, to the right. For all

four variables the densities are markedly more concentrated with heterogeneity restrictions.

GDP TFP Consumer confidence

Output ‘ ‘ TFP ‘ ‘ ; Confl@enoe

12

SR

PriorRobustBound |

s
HRPri orRobustBound -

SRPriorRobuaBound 1

HR HR

_SRFuIIyBayesian ] 1l _SRFullyBayesian ] 6 = HRFuIIyBay&sian
| HRFuIIyBaym‘an HRFuIIyBayeiian 5L " FullyBayesian
08F mm SR

PriorRobustBound

PriorRobustBound

PriorRobustBound > 061 >
@ ‘B
g g

S o4t ©

2L

02 Al

} or 1 or

- -k e iz - L
N ]
]
. . . . 02 . . . . . 1 . . . . .
-05 0 0.5 1 15 -2 -1 0 1 2 3 4 -06 -04 02 0 0.2 04

Heterogeneity restrictions lead to both a reduction in the identified set, here integrated over all reduced form param-
eters, and the dispersion of the fully Bayesian responses, show as density plots two years after impact. Heterogeneity
restrictions both lead to less dispersed distributions of responses, but can also shift mass away from zero. For exam-
ple, the TFP and consumer confidence responses are zero with sign restrictions, but significantly positive for TFP

(at the 95% level) and negative (at the 68% level) for consumer confidence.

Figure 4.5: Distribution of responses to productivity news shock: Macro variables two years out.

We now turn to the micro-responses of cumulative industry stock returns in Figure 4.6. Hetero-
geneity restrictions on these responses yields tighter bounds on the macro variables. In addition,
we find that the heterogeneity restrictions provide enough structure to rule out identified sets for
the responses that simply drift off into positive or negative territory. Take, for example, the return
in other industries. Even though we bound the return in this industry with that in manufacturing
only up to the second quarter, it rules out expansionary paths over the entire horizon and hints
at a smooth reversal of the initial expansion. We find similar patterns for the all five industries
and show here one of each category: the low R&D intensive other industries, manufacturing, and
high tech. Considering the fully Bayesian posterior reveals very pronounced shapes and reduce the

magnitudes of responses up to 45% on impact and 70% one year our (Table D.1(b)).

4.1.2 Forecast error variance decomposition

We now analyze the forecast error variance decomposition. For simplicity, we focus on results at
the posterior mean. We normalize the explained variance by the unconstrained optimum without
restrictions, i.e., we divide by the maximal variance that could be attained by any single shock, as
derived by Uhlig (2003).

Table 4.1 summarizes the variance reduction relative to pure sign restrictions for each variable
at horizons of up to six years. Table D.2 in the Appendix shows that with sign restrictions alone the
restrictions are uninformative because the forecast error variance contribution typically attain the
maximal contribution, particularly at horizons of up to four quarters. Heterogeneity restrictions,

in contrast, bring a variance reduction of 8% to 33% at the one year horizon for the four macro
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We rank the responses of stock returns of industries from zero to two quarters according to their R&D intensity.
Our main purpose was to sharpen inference about macro variables, but the restrictions also help to rule out paths
for cumulative returns that drift off. For the prior-robust inference, this just bring a substantial set reduction. For
the Fully Bayesian responses, this reveals a swift mean reversion of returns that is fastest for the industry with the
lowest R&D intensity.

Figure 4.6: Responses of (cumulative) industry returns to productivity news shock.

variables. These reductions typically persist up to six years. Overall, the variance reductions due
to heterogeneity restrictions, also for the industry returns, are substantial. Intuitively, they mirror

the reductions in the magnitude of impulse-responses, summarized in Table D.1 in the Appendix.

Reduction in Maximum FEV (% of maximal FEV)
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 185 18.6 189 19.7 20.8 23.0 26.0 282 29.3 29.6
TFP 116 10.8 96 88 &84 72 63 6.1 62 6.5

Confidence 21.0 269 29.8 31.6 329 355 351 332 30.8 286
Employment 12.8 12.6 11.7 13.5 16.5 24.8 29.0 31.0 31.6 31.7
Consumers 40.0 37.7 37.6 381 387 40.2 41.0 40.8 399 384

Manu 16.1 177 189 19.8 203 21.1 21.2 21.0 20.7 204
HiTec 16.8 153 15.1 152 15.6 185 20.5 21.7 222 223
Health 23.2 244 247 254 266 31.0 341 363 375 379
Other 52.3 534 554 569 579 602 63.0 65.0 658 658

We find that the forecast error variance shrinks by about 10% to 35% for macro variables other than TFP over all
horizons thanks to the heterogeneity restrictions. For the micro variables, the reduction is ranges from roughly 15
to 65%. The variance contribution is expressed in percent of the total forecast error variance up to horizon H. All

contributions are computed at the posterior mean.

Table 4.1: Reduction in maximum forecast error variance explained by productivity news due to
heterogeneity restrictions

26



4.1.3 Important restrictions

We impose tighter restrictions to achieve sharper identification. Which of these restrictions matter?
Do they reduce the importance of the “standard” restrictions?

We answer this question using the output of the prior-robust Algorithm 1: For the bound on the
response of each variable over horizon h = 0,..., H, we simply count how often a given restriction
binds with equality. If we took away such a restriction, the bounds would widen.?! We repeat this
for each reduced form draw. Last, we compute the fraction of binding instances. Table 4.2 reports
these statistics both for GDP and averaged across all four macro variables.

Comparing how often a restriction on industry return binds with A = 0 relative to how often
it binds with actual heterogeneity imposed (A = 1) tells us which restriction matters. Consider
the Table 4.2(a): The restriction that manufacturing returns increase more than A times returns in
other industries binds 68% of the time for the upper bound of GDP with heterogeneity, compared
to 4% of the time as a simple sign restriction. We conclude that this restriction is important for
bringing about the reduction in the identified set for GDP. The same is true when averaged across
all macro variables, see Table 4.2(b).

Surprisingly, we find that the importance of the return heterogeneity restrictions does not
generally diminish how often the sign restrictions on macro variables bind with equality.?? Rather
than being slack more often the sign restriction on consumer confidence even binds much more
often in the case of the GDP response (in 14% more of instances). The other three macro sign
restrictions bind about as often. Thus, information from heterogeneity restrictions complements

the standard sign restrictions.

4.1.4 Robustness

Are our results an artifact of the particular industry classification we chose? They are not. We
double the number of industries in our VAR and using the same procedure to order the micro data
responses. In Figure D.3 we contrast the fully Bayesian responses along with the min and max
of the prior-robust results for the four macro variables and the two datasets. With either dataset
we obtain significant set reductions with heterogeneity restrictions, for example, a reduction of the
maximum GDP response from 1.2% to about 0.6% at the three year horizon. The fully Bayesian
confidence sets also imply pronounced shapes. The one exception is the TFP response. Here we find
no build-up, but just a lasting increase in the TFP level when using ten rather than five industries

to impose the micro data restrictions.

4.1.5 Soft zero restrictions

2!'Formally, we compute which rows of W¢ < 0 in Algorithm 1 are equal to zero and then map the rows of W
back into English. We pool the same restriction when imposed at multiple horizons. In practice, we need to set a
numerical threshold for equality. We tried both 10~% and 10~ and obtained almost identical results — unsurprisingly,
given our threshold for the optimizer of 10712

22Qur second application shows a different pattern, revealing that this finding is not mechanical.
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(a) Binding restrictions (as a share of all cases) — GDP

Lower Bound Upper Bound
Restrictions SR(A=0) HR(A=1) SR(A=0) HR (A=1)
Output> 0 0.07 0.07 0.15 0.14
TFP> 0 0.05 0.04 0.64 0.63
Confidence> 0 0.09 0.11 0.23 0.36
Employment> 0 0.26 0.22 0.27 0.27
Consumers> 0 0.13 0.16 0.01 0.12
Other> 0 0.32 0.49 0.00 0.04
Manu> A\ x Consumers 0.16 0.41 0.04 0.25
Manu> Ax Other 0.16 0.26 0.04 0.65
Health> AxManu 0.28 0.45 0.05 0.39
HiTec> AxManu 0.18 0.29 0.11 0.30

(b) Binding restrictions (as a share of all cases) — all macro IRFs

Lower Bound Upper Bound
Restrictions SR(A=0) HR((A=1) SR(A=0) HR(\=1)
Output> 0 0.08 0.08 0.17 0.19
TFP> 0 0.23 0.18 0.49 0.50
Confidence> 0 0.11 0.14 0.25 0.39
Employment> 0 0.31 0.26 0.23 0.19
Consumers> 0 0.11 0.24 0.03 0.15
Other> 0 0.17 0.39 0.03 0.12
Manu> A\ x Consumers 0.16 0.41 0.10 0.39
Manu> Ax Other 0.16 0.36 0.10 0.56
Health> AxManu 0.28 0.42 0.12 0.38
HiTec> AxManu 0.16 0.27 0.10 0.26

We quantify the importance of restrictions by computing for which fraction of responses, averaged over horizons
zero to 24 quarters and all reduced form draws, any given restriction is binding. Although we could distinguish at
which restricted horizon any restriction is binding, we sum them together for horizons zero to three. We find that
the restrictions that manufacturing returns exceed those in other industries is particularly important for sharpening
both the GDP response and the four macro responses more generally. Introducing heterogeneity restrictions does not

diminish the importance of the sign restrictions on macro variables.

Table 4.2: Importance of constraints for identifying macro impulse-responses: Incidence of binding
constaints.
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Beaudry and Portier (2006) identify the news shock by a Cholesky decomposition that imposes that
the impact of the news shock on the level of TFP be zero: TFP news should not, by themselves, raise
TFP immediately. Here we incorporate this assumption as a “soft” zero restriction on the initial
TFP response.?? Table 4.3 shows that this extra restriction yields a very powerful additional set
reduction: For output, this reduces the maximal FEV explained by the TFP news by roughly half,
an additional reduction of 15 to 30% compared to heterogeneity restrictions alone. For employment
we also obtain a significantly lower maximal FEV of 15 to 25%, while consumer confidence is largely
unaffected. By construction, the FEV for TFP that can be explained drops dramatically at short

horizons, but rises with the forecast horizon.

Reduction in Maximum FEV due to heterogeneity restrictions (% of maximal FEV)
plus soft zero restriction on initial TFP
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 51.2 50.4 50.4 50.2 50.0 48.1 473 46.5 45.8 45.0
TFP 99.2 98.1 94.6 90.7 871 76.0 66.1 574 504 44.9

Confidence 229 288 31.9 338 351 373 36.7 35.0 33.1 314
Employment 34.3 36.5 37.2 39.0 41.4 46.3 46.3 455 44.5 43.6
Consumers 61.4 59.2 588 584 57.7 551 53.6 519 49.7 47.2

Manu 44.0 44.6 45.1 452 45.0 43.0 41.0 39.3 378 36.5
HiTec 36.0 321 30.1 288 282 28.0 283 284 28.2 27.7
Health 241 25.0 251 257 268 31.1 343 36.5 37.8 38.2
Other 68.4 689 70.0 7v0.3 70.2 695 70.6 71.6 TL7 71.2

Compared to the results with heterogeneity restrictions but without the soft zero restriction (Table 4.1), we observe a
significant further reduction in the maximal forecast error variance attributable to the fiscal shock. By construction,
this is most pronounced for TFP at the short run, but the identified shock becomes more important for TFP in the
medium term. Reduction for output and employment are between 20 and 30%. The contribution is expressed in

percent of the total forecast error variance up to horizon H. All contributions are computed at the posterior mean.

Table 4.3: Reduction in maximum forecast error variance explained by productivity news: Hetero-
geneity restrictions without and with soft zero restriction

While the explained forecast error variance drops with extra restrictions, we find that the
impulse-responses change little. Figure 4.7 shows the corresponding responses. By construction,
the initial response of TFP is (almost) zero, but there is still a substantial build-up in TFP in
the medium term. The shape of the output and consumer confidence response change little. We
conclude that our identification scheme is robust to the added assumption that TFP news have no

contemporaneous effect on TFP.

4.1.6 Alternative sampler

The more bite a restriction has, the harder it often is to draw while respecting this restriction with
the standard algorithm of drawing ¢ uniformly and keeping only admissible draws. For example,

Inoue and Kilian (2013) report that they need 20,000 draws of the rotation vector for numerical

Z8Formally we impose on impact that: Output > 10 x TFP, in addition to: TFP > 0.
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Qualitatively, imposing that TFP increase (hardly) on impact in response to a news shock changes our results very
little: The build-up in TFP is more pronounced, but takes away little from the medium-term effects. The response

of output, but not confidence is further muted compared to just heterogeneity restrictions in Figure 4.4.

Figure 4.7: Fully Bayesian responses of macro variables to productivity news shock with soft zero
restriction on initial TFP.

stability. Our approach delivers, in contrast, a perfect acceptance rate. In many of our applications
we would be unable to provide fully Bayesian results without it, as Figure 4.8 illustrates: The
median acceptance rate across reduced form draws in our benchmark VAR is just 0.014%. Still, it
is strictly positive for all draws based on 5 million attempts. With the slightly harder problem of
including a soft zero restriction, the median acceptance rate drops by three orders of magnitude,
to 0.00005%. Without the soft zero restriction, but in the higher dimensional version with ten
industry returns, the median acceptance rate is even 0. We conclude that Algorithm 2 is important

in practice.
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Using a simple uniform proposal density, as customary since the seminal paper by Uhlig (2005), becomes impractical
with tight sign restrictions. We show the distribution of acceptance probabilities as a function of the reduced form

parameter draws. The acceptance probability is based on 5 million draws for each vector of reduced form parameters.

Figure 4.8: Distribution of acceptance probabilities for uniform proposal density over reduced form
draws
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4.2 Fiscal shocks

In this application, we analyze a defense spending shock financed through higher taxes. We use the
NBER manufacturing database and 10-table information from Nekarda and Ramey (2011) as the
source of our micro data. For tractability, we aggregate to the 20 SIC2 manufacturing industries.
Our heterogeneity restriction is that shipments of all manufacturing industries rise, but more so in
the industries of which the government is an important client.

Figure 4.9 measures the importance of the government for each SIC2 industry by showing
the median and distribution of the government share in direct shipments (left panel) and overall
shipments to the government (right panel).?* For both measures we can clearly see that the sub-
industries 36 (electronics), 37 (transportation), and 38 (sensors etc.) are the most exposed to
the government. Our strategy is to pick two industries at the two of the distribution, two in the
middle, and two in the bottom of the distribution. We choose the aggregate of 36 and 37 as the most
exposed industries, 29 (petrol and refineries) and 35 (equipment) as industries with an intermediate

exposure, and 21 (tobacco) and 24 (lumber) as those with the lowest exposure.

(a) Relative to industry shipments (b) Relative to aggregate shipments
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The boxes show the median along with the interquartile range of the importance of government shipments each of
2-digit SIC manufacturing industry. The upper whiskers end in the values just above to the 75th percentile plus
1.5 times the interquartile range, and analogous for the lower whiskers. We obtain the data from Nekarda and
Ramey (2011). We choose the aggregate of 36 (electronics) and 37 (transportation) as the industries most exposed
to the government, 29 (petrol and refineries) and 35 (equipment) as industries with an intermediate exposure, and

21 (tobacco) and 24 (lumber) as those with the lowest exposure.

Figure 4.9: Importance of government shipments by industry

Our VAR includes annual data on defense spending, GDP, the real market value of federal debt,

total hours worked (all in logs and per capita terms), and the average marginal tax rate in addition

25

to shipments from the six industries.”> We estimate an annual VAR with one lag in levels and

21Because later we aggregate industries up to the SIC2 level, we focus on direct shipments to avoid double-counting
of indirect shipments.

2»The macro data, except for debt, is taken from Ramey (2011). We use the Dallas Fed data for the nominal
market value of federal debt, available at https://www.dallasfed.org/research/econdata/govdebt, and deflate it
by the CPI.
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include a linear-quadratic trend to remove low-frequency movements.?’

We define a tax-financed defense spending shock as follows: Defense spending, GDP, total hours,
and the average marginal tax rate increase for two years. The most exposed industries increase
their shipments more than those with more modest exposure. The modestly exposed industries,
in turn, increase shipments more than the industries with no exposure. Output in the lumber and
tobacco industries weakly increases. Debt is free to respond in any way. Let us now turn to the

implied responses.

4.2.1 Impulse response functions

Inference that is robust to the prior distribution is hard — but the heterogeneity restrictions tighten
bounds and allow qualitative inference at the posterior mean. Figure 4.10 shows the results for the
three macro variables. As in the analysis of the news shocks, at short horizons the uncertainty is
modest and mostly due to the width of the identified that would also prevail at the posterior mean.
At longer horizons, parameter uncertainty compounds the uncertainty about the identified set at
the posterior mean. Heterogeneity restrictions lower the upper bound — by between 8% (hours at
the three year horizon) and 48% (tax rates at the 8 year horizon), see Table D.5. In addition, at the
posterior mean heterogeneity restrictions permit inference about the shape of the responses. The
unrestricted debt response is positive, despite the tax increase. Defense spending and hours remain

high persistently, while output quickly reverts back towards zero (Figure D.7 shows all responses).
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Heterogeneity restrictions yield set reductions that allow to sign responses for both defense spending and debt at the
posterior mean, even though the debt response is left unrestricted. While parameter uncertainty blurs these findings,
heterogeneity restrictions still lower the 95th percentile of upper bounds by between 10% and 25% for the variables
shown across the different horizons.

Figure 4.10: Prior-robust responses to defense spending shock: Macro variables

A Bayesian would find that her beliefs that rotation matrices are uniformly distributed allow

her to sharpen inference significantly, because there is little mass in the extremes of the identified

26With sign restrictions alone, reduced form draws with explosive eigenvalues often dominated the tails. We
therefore decided to reject draws with eigenvalue above 1.03 in absolute value to give sign restrictions a better chance
to stand their own against heterogeneity restrictions.
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set.?” Already with sign restrictions, a Bayesian can say that output increases for two years after
impact, along with hours worked and tax rates. With heterogeneity restrictions, however, we isolate
a more persistent increase in spending up to four years, find a hump-shaped increase also in output,
and find clear evidence that debt rises initially and, with some confidence, up to eight years after
the shock. The range for a one standard deviation defense spending increase is wide, around 0.25%
to 3.5%, with initial increases in GDP of 0.1% to 0.6%.%8
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Both sign and heterogeneity restrictions produce economically sensible responses: Defense spending shocks are per-
sistent and raise output above trends for two years after impact. Heterogeneity restrictions, however, allow sharper
inference that reveals a more persistent increase in defense spending, and thus lower discounted multipliers, as well

as a pronounced increase in debt even though part of the spending increase is tax financed.

Figure 4.11: Prior-robust responses to defense spending shock: Macro variables
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Here we show the identified set and the fully Bayesian posterior densities over the responses of three macro variables
three years after the initial shock, integrated over the uncertain parameters. We find that some densities are skewed,
but all are unimodal. For total hours and tax rates the sharper inference is particularly clear, but for hours the

heterogeneity restrictions also rule out negative responses.

Figure 4.12: Distribution of responses to defense spending shock: Macro variables three years out.

2THowever, the tails of the numerically computed posterior confidence sets do cover almost all of the identified set.
See Figure D.7 in the Appendix.

28Based on the medians, the impact multiplier is thus roughly three (0.3% over (0.05 x 2%)), but this is driven
by a large increase in the present discounted value of defense spending that generates a big negative wealth effect.
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Figure 4.12 shows the Bayesian densities and the prior-robust bounds at the three year horizon.
It illustrates the set reductions for debt, hours, and tax rates. They are particularly strong for debt
and tax rates: The left tail of the identified set for the debt distribution shrinks by 1.5p.p. and
the mode of the fully Bayesian density shifts to the right by a similar amount. On the flipside, for
taxes heterogeneity restrictions rule out large tax increases and shifts the distribution to the left.
For total hours worked, the shift in the distribution due to heterogeneity rules out very negative
responses of total hours worked.

Shipments in the industries used for heterogeneity restrictions exhibit a sensible pattern, see
Figure 4.13. As for aggregate output, industry shipment revert back to values around zero after
three years. Heterogeneity restriction cut the prior-robust upper bounds by 17% to 63% and almost
shrink the width of the inner 95% credible sets — see Table D.5.
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We rank the responses of real shipments of industries from zero to one year according to the importance of government
purchases to the industry. Our main purpose was to sharpen inference about macro variables, but the restrictions
also help to tighten the range of possible responses, by between 35% and 65% on impact. While the identified set is
consistent with a wide range of responses, the fully Bayesian posterior indicates with 95% probability that there is

mean reversion after the initial increase in shipments.

Figure 4.13: Responses of select industry shipments to defense spending shock.

4.2.2 Forecast error variance decomposition

Already pure sign restrictions help to significantly reduce the forecast error variance that could be
attributed to a defense spending shock at horizons of one year and higher: According to Table D.6
in the Appendix, the macro response account could account for about 60-70% of the variance
relative to what the single most important shock could account for. But heterogeneity restriction
sharpen the inference even further: they imply that only 40% (71.8% minus 32.4%)of the tax rate
variation at the one year horizon could be due to the spending shock, compared to 72% under sign
restrictions alone. The reduction in the forecast error variance for output is almost as strong, with

more modest reductions for the other macro variables.
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Reduction in Maximum FEV due to heterogeneity restrictions (% of maximal FEV)
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending 5.5 4.3 4.2 42 42 43 4.3
Output 349 222 139 104 9.2 6.9 6.3
Debt 80 6.3 51 44 39 1.1 2.5
Hours 83 63 45 36 30 26 2.9
Tax rate 29.8 31.3 324 332 33.6 322 31.2
Tobacco 494 476 456 43.1 405 339 32.1
Lumber 65.0 52.0 444 401 37.7 30.1 27.7
Petrol 46.5 434 41.7 40.0 385 34.0 32.0
Equipment 61.5 59.1 504 38.0 30.2 187 22.2
Electronics 59.0 574 53.8 48.8 429 20.8 13.9
Transportation 294 16.7 10.6 80 6.8 4.7 4.3

We find mixed evidence on the reduction in the maximum forecast error variance (FEV) when comparing heterogeneity
restrictions to pure sign restrictions. While there is a substantial set reduction of more than 30% for tax rates at
all horizons, the set reduction lasts only a few years for output and is below 10% for the other macro variables.
The contribution is expressed in percent of the total forecast error variance up to horizon H. All contributions are

computed at the posterior mean.

Table 4.4: Maximum forecast error variance explained by defense spending shocks: Results for sign
restrictions and heterogeneity restrictions

4.2.3 Important restrictions

Looking at which micro restrictions are important for our results, we find that the restrictions that
petrol shipments increase more than tobacco shipments (rather than just zero) and the restriction
that transportation shipment increase more than equipment shipments (rather than zero) matter
the most: For example, for the lower bound of the macro variables, the restriction on transportation
shipments binds 94% of the time but only 27% of the time when taking a pure non-negativity
constraint. See Table 4.5.

We also find that heterogeneity restrictions substitute for restrictions on defense spending and
tax rates: For example, the non-negativity constraint on defense spending binds for 39% of the
lower bounds of macro variables, but only for 20% when we also have heterogeneity restrictions.
This stands in contrast to our finding for the news shock, where they complemented sign restrictions
on macro variables.

For lower bounds, the most important macro restriction is that taxes rise. It binds half of the
time when we compute lower bounds on macro variables and almost 20% of the time for their
upper bounds. Overall, the restriction that transportation shipments rise more than equipment
shipments is the most important, binding for 92% of the lower and 65% of the upper bounds on
macro variables. Second comes the restriction that petrol rise more than lumber, binding in 55-60%

of all cases.
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Binding restrictions (as a share of all cases) — all macro IRFs

Lower Bound Upper Bound
Restrictions SR(A=0) HR(A=1) SR(A=0) HR(\=1)
Defense spending> 0 0.39 0.19 0.23 0.13
Output> 0 0.04 0.10 0.07 0.05
Hours> 0 0.23 0.17 0.08 0.08
Tax rate> 0 0.58 0.50 0.19 0.18
Tobacco> 0 0.51 0.71 0.56 0.75
Lumber> 0 0.36 0.46 0.26 0.40
Petrol> AxTobacco 0.38 0.44 0.23 0.38
Petrol> Ax Lumber 0.38 0.57 0.23 0.49
Equipment> A xTobacco 0.10 0.23 0.26 0.35
Equipment> AxLumber 0.10 0.27 0.26 0.42
Electronics> A xPetrol 0.25 0.27 0.40 0.38
Electronics> AxEquipment 0.25 0.45 0.40 0.43
Transportation> AxPetrol 0.27 0.39 0.29 0.59
Transportation> Ax Equipment 0.27 0.94 0.29 0.63

We quantify the importance of restrictions by computing for which fraction of responses, averaged over horizons
zero to 10 years and all reduced form draws, any given restriction is binding. Although we could distinguish at
which restricted horizon any restriction is binding, we sum them together for horizons zero and one. We find that
the restrictions that transportation shipment exceed those in the equipment industry is particularly important for
sharpening the five macro responses. Introducing heterogeneity restrictions diminishes the importance of some sign

restrictions on macro variables, in particular the requirement that defense spending rise.

Table 4.5: Importance of constraints for identifying macro impulse-responses: Incidence of binding
constaints.

4.2.4 Robustness

Here, we ask how specification uncertainty affects our results. Does controlling for low frequency
movements via trends matter? The comparison between responses with and without deterministic
trends in the VAR in Figure D.9 in the Appendix show that for the macro variables, our findings
are robust: While the specification without trends generally implies much wider credible sets, the
set reduction with heterogeneity restrictions remains substantial. On impact it varies between 5%
for hours worked and 15% for tax rates. While it remains modest for hours, it rises to 32% at
the four year horizon and over 50% at the eight year horizon for tax rates. Most other variables
experience set reduction of 10-20%. Importantly, the heterogeneity restriction indicate a more

prolonged increase in defense spending and a likely increase in debt.

5 Conclusion

While inference in VARs with sign restrictions is popular, recent papers have pointed to three
issues: First, an intransparent representation of the identified set. Second, unwanted or unnoticed
prior dominance. Third, impractical inference in complex models. Prior-robust and accurately
represented bounds can be large. Here we propose (a) algorithms for prior-robust and efficient
inference and (b) the use of micro data to develop new sets of restrictions. We rank the response of

micro time series to shocks according to the heterogeneous attributes of underlying industries. We
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develop intuitive conditions for bivariate and trivariate models when these ranking restrictions, or
heterogeneity restrictions, lead to sharper inference, both at the macro and micro level.

To implement our approach in quantitative models, we develop algorithms for both prior-robust
and efficient fully Bayesian inference. The prior-robust algorithm provides a distribution over the
bounds of the identified set of the object of interest — impulse-responses or variance decompositions.
The fully Bayesian algorithm is a novel way to draw from sign restrictions with a 100% acceptance
rate, by exploiting a connection between the truncated uniform distribution of rotation vectors and
a truncated multivariate normal distribution. We find that the algorithm works well in several
examples, sampling even in the tails of the identified set and with soft zero restrictions. Both
algorithms are of independent interest.

With these tools at hand we turn to two applications: First, we identify productivity news shocks
with the help of stock return information on sectors with different R&D intensities. Second, we
identify a defense spending shock with the help of information on the importance of the government
as a client. We find that heterogeneity restrictions on micro data, but not pure sign restrictions,
allow inference about the shape of responses for several macro variables at the posterior mean
without imposing any prior over the space of rotation matrices. More generally, we find that
heterogeneity restrictions cut the size of the identified set significantly, with reductions of up to
50% for macro variables in both applications.

Heterogeneity restrictions also help to sharpen fully Bayesian inferences. Interestingly, however,
the extra restrictions do not simply shrink the response towards zero, but can shift posterior mass
away from zero. In the productivity news example, we find that heterogeneity restrictions reveal
an intuitive hump-shaped increase in TFP, whereas sign restrictions would also be consistent with
a only a short-lived response. In the fiscal policy example, we find with heterogeneity restrictions
that debt increases significantly after a tax-financed spending shock, whereas sign restrictions do
not allow to sign the response.

Our approach to inference allows us to provide information about the importance of the different
restrictions. We find that for many macro variables, the tighter heterogeneity restrictions do not
substitute for the pure sign restrictions on macro variables, but represent genuinely new information.

It also allows us to isolate which restrictions are most relevant in our analysis.
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A Derivations

A.1 Bivariate VAR(0)
Recall the restrictions:
a1 = @Ay >0
az = 1 A9y + @2 Ase > A1 Apy

Trivially, the lower bound for a; of zero is always within our set: a; = 0.
Note that if the heterogeneity restriction binds with equality, we have that:

A Ag — \A
22 S |Aa; — AA11]

91 = —= = = = = =
\/A%2 + (43 — AMp)? \/A%2 + (43 — M)

Case (a) Ag <0.

e Upper bound for as: Since ¢; > 0, the upper bound for as is, trivially, s = Ags.

e Lower bound for as: Since Ags > 0, the lower bound is attained by the largest ¢
and the lowest ¢o, i.e. with a binding heterogeneity restriction for gz > 0. Then: the
AA11 Ao
\/A§2+(A§1_)‘All)2 '
e Upper bound for a;: a; is also associated with the binding heterogeneity restriction:
= Ago A
M VR, A

lower bound for ay is ay =

Ajr.

Case (b) )\;111 — 12121 < O,Agl > 0.

e Upper bound for as: as is now weakly positive and the heterogeneity constraint is
slack. The SOC for the unique interior extremum to be a maximum always holds.

At the interior extremum, ¢; = ﬁ and gy = g—zfql. Thus: as = \/12132 + fl%l
22 21

e Lower bound for as: A negative ¢o is now possible, but constrained by the het-
erogeneity constraint, as its RHS is increasing faster in ¢; than its LHS. Thus,
the lower bound is associated with a binding heterogeneity constraint and a, =

AA11 Aga
\/A§2+(A§1_>‘A11)2 .

e Upper bound for a;: Since go = 0,¢q7 = 1 is possible, the upper bound is simply

a1 = A1,

Case (¢) My — Ay > 0,451 >00r0< p < )\%_

e Upper bound for as: We proceed by brute force, checking whether the heterogeneity
A2 A2
constrained is binding at the unconstrained maximum. We find that if A < w =
%, the heterogeneity constraint is slack. Thus:
21

11421

T AtAl s 14T
A2 A2 < S22 22 _ 1 22
gy = 22 —J_ ~21 - 54211.42% 21 P VX1
_ AMnAy A > AptA% _ Sop _ 1VE2
VA2, +(A2, —AAq1)2 - AnAxn Y21 pVEn
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e Lower bound for as: Since the interior extremum is always a maximum, we check
the corners. Comparing the two corners, we find:

i AZ,+A2 13 11VE
> 14%7TA% _ 1Xp _ 11 22
o An /\_QAUAZ% 352~ 2pVEn
=2 AA11 Ago A< 1A% +A% _ 1% _ 11VEy»
VA2, (A2 —2\Aqq)2 = 2 Andan 2%21 2031

e Upper bound for ay: a; is also associated with the binding heterogeneity restriction:
— Az A
\/A§2+(A§1_)‘A11)2

a; A1

A.2 Trivariate VAR(0)
A.2.1 Identified set

Here we only consider bounds for a;. We seek a solution to the following problem:

min or maxAj;q (A.1a)
q q
s.t. [lql] =1 (A.1b)
flllql 2 O (A.lC)
Agiqr + Agaqe > 0
(Az1 — Ma1) g1 + (Azz — M) go + Azzq3 >0 (A.1d)
— —
EA§1 5A§2

Since A;; > 0Vi, we can write equivalently:

min or maX\/l —(g2)* — (g3)3
q

q
s.t. Ay \/1 —(q2)% — (g3)3 + Agage >0
(Az1 — Ma1) /1= (g2)% — (g3)° + (Asa — Aa2) go + Az3g3 > 0
—_———— —

—AX — A
:A31 :A32

Note that a; = 0 is always feasible by setting g3 = 1. We therefore focus on the maximization
problem

Using Lagrange multipliers vgr and vg g to denote the inequality constraints we can equivalently
write the Lagrangian as

min max L = /1 — (2)2 — (¢3)® — vsr(Aa1v/1 — (¢2)% — (¢3)® + As2g0)

VSR,VHR 42,93
—vrr(A3 V1 = (02)% — (43)3 + A3yq2 + As3q3)

with the associated Kuhn-Tucker conditions as:
q2

V1= (22)? - (g)?

vsr(A21v/1 = (2)? — (g3)° + Agaqe) = 0

vsr 2> 0

[vsr]A21v/1 — (q2)2 — (g3)3 + Asago > 0.

[q2] — (1 — vsrAg — vyrAY) = vspAs + vrrAY,
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q3
V1= (q2)? = (g3)°
var(A9 /1 — (q2)% — (43)3 + Adyqo + Assqs) =0
vgr > 0

iRl A3 V1 — (¢2)% — (g3)3 + Ayqo + Aszqs > 0.

lq3] — (1 — vspAar — vyrAY) = vERAs3

Clearly, the Kuhn-Tucker conditions show that the unconstrained optimum, when the multipliers
VSR, VHR are zero, involves setting ¢o = g3 = 0.
We assume throughout that A > 0.

1. All (conditional) covarlances positive, heterogeneity restriction weak:
Note that when 0 < Ay < A31, then A31 > 0and ¢o = g3 = vsg = vgr = 0 is a local
extremum — specifically, an optlmum All conditions are trivially satisfied at zero. This equals
the unconstrained optimum.

2. All (condltlonal) covarlances positive, heterogeneity restriction strong:
Note that when Agy > A31 > 0, then A31 < 0. g0 = q3 = vsg = vgr = 0 no longer satisfies
the optimality condltlons with A > 0, since the HR constraint is violated at this candidate
point. With A = 0, however, ¢go = q3 = 0 is feasible and the unconstrained maximum attains.

3. 12121 <0< /131:
In this case, the first sign restriction is binding, and the second restriction is slack for any
A > 0 that still satisfies A§2 > 0. The constrained maximum with sign restrictions is attained
at:

Note that A3; > 0 by construction.

4. 12131 <0< /121:
In this case, the second sign restriction is binding, and the first restriction is slack. The
heterogeneity restriction leads to a tighter bound because the slope A31 (the penalty for

larger ¢1) increases, while the ability to compensate via higher go decreases (A32 < A32)

A.2.2 General signs

min or maxA ¢ (A.2a)
q q
st [lgl| =1 (A.2b)
s1Aiiqr > 0 (A.2¢)
s2(Aa1q1 + Azagqe) > 0 (A.2d)
s3 | (As1 — Moa1) ¢ + (Aso — AMao) g2 + Aszq3 | >0 (A.2e)
EAél EAéz
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Now, define flij = flij if i = 7 and flij = flij X 8; HLI sg for i = 1,2,3 and j < i. Also define
q; = s;q; and A= s3A. Then we can re-write problem (A.2) as

mqin or m[?xslfill(jl (A.3a)
st. (gl =1 (A.3b)

Apqgr >0 (A.3¢)

Ag1gr + Ao > 0 (A.3d)

(A1 — Aay) 1 + (A2 — Aag) Go + Assds > 0, (A.3e)

—AA =AX
=Az, =Az,

whose constraints are of the same form as (A.2). Thus, the previous solution applies to the trans-
formed vector ¢ in terms of the transformed coefficients Aw However, if s; = —1, maximization
and minimization are interchanged.

Thus, the sufficient condition for set reduction becomes 5\12121 > As3; > 0. In terms of the
original components:

)\838281/121 > 8381/131 > 0.

For these sufficient conditions to apply we need that Agl > 0 and Agl > 0. In terms of the
original components:

82811421 > 0, 83811431 > 0.
Examples include:

1. Traditional New Keynesian example: Variable 1 is the funds rate. Variable 2 is a real activity
measure. Variable 3 is the measure of prices. s; = s3 = —1. so = 1: Inflation and real
activity fall, the FFR rises.

(a) Interest rates rise: s; = +1

(b) Industrial production or PCE falls: sy = —1, and

(c) Prices fall (and more than Ax output): s3 = —1.

T:hus, the sufficient condition here becomes: )\flgl > —12131 > 0. Equivalentl}jz —)\flgl <
As1 < 0. For this condition to apply we also need that Azi, As1 > 0, or —Ag; > 0 and
As1 > 0 in this example.

Choleski of covariance matrix MLE estimate for FFR, PCE prices, and PCE quantities:

0.5086 0 0
0.0610  0.4899 0
—0.0022 0.0425 0.1493

Thus, A3, < 0 and our theorem does not apply.
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Choleski of covariance matrix MLE estimate for FFR, PCE prices, and IP quantities:

0.4990 0 0
0.1645 0.5877 0
0.0002 0.0052 0.1564

Thus, Ay; > 0 and our theorem does not apply. Because our conditions are only sufficient,
we also verify the lack of set reduction numerically. As the right panel of Figure A.1 shows,
there is no set reduction in the Federal Funds Rate response, nor in the response of prices.
By construction, higher A\ enables us to impose soft zero restrictions.

. New Keynesian housing example: Variable 1 is the interest rate. Variable 2 is the measure of
housing starts, variable 3 of house price inflation. s; = s3 = —1. sy = 1: Inflation and real
activity fall, the FFR rises.

(a) Interest rates rise: s; = +1
(b) Housing starts: so = —1, and

(c) House prices fall (and more than Ax output): s3 = —1.

T~‘hus, the sufficient condition here becomes: /\12121 > —flgl > 0. Equivalentlz: —/\12121 <
As1 < 0. For this condition to apply we also need that Azi, As1 > 0, or —Ay > 0 and
As1 > 0 in this example.

Choleski of covariance matrix MLE estimate for FFR, housing prices, and median house
prices:

0.5086 0 0
—0.6119 6.5659 0
—0.0567 0.0538 2.6529

Thus, A3, < 0 and our theorem does not apply. However, we still find a very modest set
reduction, see the upper panel in Figure A.2.

If we replace the median house price with the Case-Shiller index we find that the following
Choleski factor of the covariance matrix MLE estimate:

0.5035 0 0
—0.4178 6.5342 0
0.0105 0.0090 2.1261

Now our theoretical results also apply formally and we expect a set reduction. The bottom
panel of Figure A.2 displays the results and shows that the set reduction is there, but neg-
ligible. In both case it is clear how the large value for A imposes a soft zero restriction on
housing starts, as intended.

. Blanchard and Perotti (2002) example: Variable 1 becomes output. Variable 2 is government
consumption. Variable 3 is the tax rate. s; =1 (arbitrary), so = +1,s3 = +1.

(a) Output rises: s1 = +1,
(b) G rise: sg = +1.
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(c) Taxes T rise (and more than Ax government spending): s3 = 41, and

For high values of A, this restriction imposes a “soft” zero restriction on government spending;:
Spending does not rise (significantly) on impact in response to tax shocks.

The sufficient condition is thus simply: )\flgl > 2131 > 0.

Choleski of Blanchard and Perotti (2002) covariance matrix MLE estimate, after ordering:

0.0086 0 0
0.0135  0.0220 0
0.0044 —0.0007 0.0232

Thus, 12131 =0.0044 > 0 and /\12121 > 12131 A > % R % Figure A.3 shows the corresponding
set reduction. Note the non-linear scale of A that shows that for small A there is not set
reduction, confirming our theoretical analysis.

4. Productivity news example (inspired by Beaudry and Portier, 2006): Variable 1 is output
growth. Variable 2 is utilization-adjusted TFP growth (Fernald, 2014). Variable 3 is the real
growth of the Wilshire 5000 index.

(a) Output rises: s1 = +1,
(b) TFP 7 does not fall: so = +1, and
(¢) The stock market rises (and more than Ax TFP): s3 = +1.

For high values of A, this restriction imposes a “soft” zero restriction on TFP: TFP does not
rise (significantly) on impact in response to positive news.

The Choleski of the covariance matrix MLE estimate, after ordering:

044 O 0
1.02 247 0
0.75 0.68 4.61

Here, A3; = 0.75 > 0 and Ay > Asp iff A > (1):—(7]3 ~ %. Figure A.4 shows the corresponding

set reduction. Note the non-linear scale of A that shows again that for small A\ there is not
set reduction.

A.2.3 Redundant restrictions

Consider a three variable, three-shock case where the true impulse matrix is given by:

2 2
ai1 a2 0 a1 +aiy ajiag1 + agzaiz  aijasl + aiaasz
_ r_ 2 2
A= |az axp 0| =AA = |axan + axnar a3y + ajy a21a31 + 22032 (A4)
2 2 2
asl as2 as3 aszi1a1l +aijzasze  asiaz1 + asaaz2  az; +agg +ajz,

One interpretation of this structure is that there are only two aggregate shocks. These aggregate
shocks affect all three variables while the third variables also contains a third idiosyncratic shock.
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Figure A.3: Set-reduction for impact response in Blanchard and Perotti (2002) application
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Figure A.4: Set-reduction for impact response in News application
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The lower-triangular Choleski decomposition is given by:

A — /.2 2

Aor — Q21011 + a22012
21 = =
Ay
i ]2 2 i2
Agp = \/a21 + b3y — Ay
Aoy — dB1011 + a12a32
31 = -
Ay
as1az + azaa2 — Az1Ag
Ao
Row — ]2 2 ° _ i2 _ 12
Asz = \/‘131 +a33 + a3z — A3 — A3y

12132 =

Now consider the case that a3; = ka9; and azs = Kage. In that case:

12131 = lizzlgl, (A5a)
Azy = KAy, (A.5b)
Ass = |ass|. (A.5¢)

We now show that if the heterogeneity restrictions are weaker than those of the data generating
process, i.e. A < k, then adding the heterogeneity restrictions does not change the identified set
for variables 1 and 3. We start by stating the problem:?"

maxe’ Ag, i€ {1,2}, (A.6a)
q

st gl =1 (A.6b)

ejAqg>0 (A.6¢c)

ehAg >0 (A.6d)

(e3 — Aeg) Ag > 0, (A.6e)

where A is the Cholesky factor of AA’ in (A.4) that satisfies (A.5). e; denotes a selection vector
with zeros except for a one in the i¢th position.
We derive the Kuhn-Tucker conditions using a Lagrangean:

min max £ = e, Aq + pu(1 — ||q||) Zvjequ 3(e3 — Aea)' Ag

;>0 g

The necessary conditions are:

ZV] —v3(e3 — Aeg)’ A—2ud =0

29We focus on the upper bounds because we can always attain the lower bound of zero.
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Vje;-flq:O v;i 20 yJ=1,2
vs(es — Aeg) Ag =0 vz > 0.
Note that v3_; = 0 for i = 1, 2, by the complementary slackness condition. We now guess and verify
that we can ignore the heterogeneity restrictions, i.e., the third set of restrictions. Simplifying:
, 1
Isr = / / A <
I (€ = vsieh_iA) |

v3-iy_;Ag = 0.

! ! A
ei - V3_i€3_i14>

Note that e5gsr = 0. Now, does this solution satisfy the heterogeneity restriction?

(e3 — Ae2)' Agsr = e Aqsp — NehAqsr
= [keh A + egfl]qSR — XehAqsr
= /feéfquR — )\6’2[1qu
= (k — N)ehAgsp > 0,

where the last inequality follows from x > A and the sign restriction esAg > 0. Thus, the solution
without heterogeneity restriction is also a solution with heterogeneity restriction. Thus, the upper
bound coming from the heterogeneity restriction is not binding when A < k, i.e. the imposed
restriction is weaker than the one implied by the data generating process.

Intuitively, in this case the heterogeneity restrictions have no bite because they do not help to
tell the first shock from the second shock, because in the data generating process, responses to both
shocks satisfy the heterogeneity restrictions. They are, thus, redundant.
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B Forecast error variance decomposition

The total forecast error variance for Yy given information up to time ¢ is given by:

H
FEVy =Y ((BXA)(BYA)).
h=0

We can decompose the forecast error variance into the contribution due to an identified shock with

impulse-vector Ag. We call this the conditional forecast error variance (CFEV):

H

CFEVu(q) =Y ((B%Aq)(B%Ag)").
h=0

Let CFEV; i(q) by the (i,7)th element of the CFEV. As shown by Uhlig (2003), we can rewrite
CFEV; (q) as:

H
CFEViu(q) =Y (BXAq)(B%Aq)) iy = d'Si.na, (B.1)
h=0
H ~ ~
Siw =Y (H+1—h)(e;BYA) (e;BYA). (B.2)

>
Il
o

We can compute the upper and lower bound on CFEV; i simply by replacing the objective function
algorithm in Section 4 by ¢'S; gq and keeping the same set of constraints.

To convert the forecast error variance explained by the identified shock, we normalize CFEV; y(q)
by the total forecast error variance for variable ¢ up to horizon H.
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C Data

C.1 News data

We use the following macro variables, taken, unless otherwise stated, from the St. Louis Fed FRED
website:

e Real GDP GDPC1

e Hours worked (nonfarm, business sector) PRS85006032 (growth, accumulated)
e Consumer confidence CSCICPO3USM665S

e PCE price index PCEPI

e Utilization adjusted TFP: Fernald (2014) (accumulated)

All variables enter the VAR in log-levels.

We use industry data from Ken French’s data library, based on Fama and French (1997).
Specifically, we use the FF5 industry returns, and convert them to real ex post returns using the
change in the log of the PCE price index.

To compute industry R&D intensities, we use Compustat data. We drop all firms not head-
quartered in the U.S. and all observations with negative sales or assets. For each year, we winsorize
the data at the 1st and 99th percentile, although our results do not depend on this. We then
compute the R&D intensity as the ratio of the three-month moving average of R&D expenditures
xrd relative to the three year moving average of operating income before depreciation oibdp, net
sales sales, or total assets at. We tabulate the data pooling firm-calendar year observations and
drop observations with multiple fiscal years in a given calendar year.

C.2 Fiscal data

We merge the datasets of Ramey (2011) and Nekarda and Ramey (2011). To this, we add infor-
mation on the market value of publicly held federal debt from the Dallas Fed website®? that we
then deflate by the CPI from Ramey (2011). All variables enter the VAR in log-levels relative to
population.

30See https://www.dallasfed.org/research/econdata/govdebt.
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D Additional results

D.1 News shocks
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Figure D.1: Prior-robust responses of all variables to productivity news shock
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Figure D.2: Fully Bayesian responses of all variables to productivity news shock
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(a) Prior-robust
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 9.7 10.7 151 154 204 349 389 36.0 340 352
TFP 84 6.7 88 106 11.2 5.9 5.3 104 10.5 16.1

Confidence 11.8 20.0 26.6 31.8 343 478 422 31.3 340 347
Employment 7.7 102 11.7 147 184 309 357 30.6 243 233
Consumers 235 206 29.1 387 50.0 593 550 580 620 619

Manu 11.1 13.6 16,5 21.1 31.2 564 60.1 605 61.0 559
HiTec 95 82 107 152 206 332 329 31.8 328 300
Health 122 163 164 224 29.7 30.0 347 370 40.1 40.3
Other 32.7 365 436 524 60.7 61.8 542 532 483 39.7

(b) Fully Bayesian
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 16.9 11.8 138 152 221 440 458 380 316 34.1
TFP 185 148 87 16 -01 -16.6 -11.7 -7.7 -6.3 -6.6

Confidence 19.5 28.9 36.2 427 483 71.3 554 30.2 33.3 458
Employment 7.9 87 88 128 173 33.6 385 28.1 7.1 -7
Consumers 37.1 31.3 425 553 73.7 101.7 98.8 105.0 109.8 111.2

Manu 123 155 19.7 254 409 829 923 953 947 90.6
HiTec 59 1.1 7.0 157 232 342 373 413 421 442
Health 85 108 5.0 147 245 306 384 493 562 60.1
Other 449 448 559 66.0 76.3 825 721 685 66.8 64.9

The contribution is expressed in percent of the 95th percentile of the IRF using sign restrictions only. A negative
number implies a higher IRF with heterogeneity restrictions. Here, this happens in the Fully Bayesian case and
indicates that the heterogeneity restriction shifts posterior mass up. By construction, this cannot happen with

prior-robust bounds.

Table D.1: Reduction of 95th percentile of IRF relative to sign restrictions
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Maximum FEV under pure sign restrictions (% of maximal FEV)
Horizon H (quarters)

Variable 0 2 3 4 8 12 16 20 24
Output 99.0 96.1 938 91.8 89.6 80.7 757 728 70.6 6838
TFP 99.2 982 957 928 904 8.0 822 80.1 784 771
Confidence 100.0 98.1 97.2 958 943 88.6 83.0 778 73.7 705
Employment 92.3 91.6 90.2 89.7 899 89.1 855 824 79.8 77.6
Consumers 96.8 964 956 935 90.7 81.7 76.2 719 678 638
Manu 93.2 936 936 931 920 8.9 80.1 754 716 685
HiTec 96.0 958 946 928 91.5 87.3 83.0 79.2 759 73.0
Health 99.9 985 97.0 947 929 89.5 881 86.6 84.6 82.2
Other 95.8 96.0 958 942 924 86.6 8.0 843 833 820
Maximum FEV under heterogeneity restrictions (% of maximal FEV)
Horizon H (quarters)
Variable 0 2 3 4 8 12 16 20 24
Output 80.6 776 749 721 68.8 57.7 49.7 446 413 39.1
TFP 877 875 86.1 84.0 819 77.8 759 T4.0 722 70.6
Confidence 790 712 673 642 614 53.1 479 446 429 419
Employment 79.6 79.0 78.6 76.2 734 643 56.5 b51.4 48.2 46.0
Consumers 56.8 587 58.0 0554 521 415 352 31.1 279 254
Manu 71 759 747 733 716 648 589 544 509 48.1
HiTec 792 804 795 776 759 688 625 57.5 53.7 50.7
Health 76.8 741 723 69.3 66.3 585 54.0 50.3 47.1 444
Other 43.6 426 403 374 345 264 220 193 175 16.2

The contribution is expressed in percent of the total forecast error variance up to horizon H. All contributions are

computed at the posterior mean.

Table D.2: Maximum forecast error variance explained by productivity news: Results for sign

restrictions

Binding heterogeneity restrictions (as a share of all cases) — all IRFs

Lower Bound

Upper Bound

For sign restrictions, we set the right-hand-side of the heterogeneity restrictions to zero, i.e., “Manu>Other” and

Restrictions SR(A=0) HR(A=1) SR(A=0) HR(\=1)
Output> 0 0.06 0.05 0.19 0.22
TFP> 0 0.12 0.10 0.59 0.60
Confidence> 0 0.09 0.10 0.21 0.37
Employment> 0 0.23 0.19 0.32 0.25
Consumers> 0 0.20 0.30 0.02 0.12
Other> 0 0.24 0.42 0.02 0.10
Manu,Consumers 0.17 0.36 0.06 0.46
Manu;Other 0.17 0.34 0.06 0.60
Health; Manu 0.17 0.29 0.19 0.52
HiTec;Manu 0.12 0.23 0.13 0.32

“Manu>Consumers” both become “Manu>0".

Table D.3: Maximum forecast error variance explained by productivity news: Results for sign

restrictions and heterogeneity restrictions
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Figure D.6: Fully Bayesian responses of macro variables and industry returns to productivity news
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Maximum FEV under pure sign restrictions (% of maximal FEV)
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 99.0 96.1 93.8 91.8 89.6 80.7 757 728 70.6 68.8
TFP 99.2 982 957 92.8 904 85.0 82.2 80.1 784 77.1

Confidence 100.0 98.1 972 95.8 943 886 83.0 7T7.8 T3.7 70.5
Employment 92.3 91.6 90.2 89.7 899 89.1 855 824 7938 77.6
Consumers 96.8 964 956 935 90.7 817 762 719 678 63.8

Manu 93.2 936 936 931 920 859 80.1 754 T71.6 68.5
HiTec 96.0 958 946 928 915 873 83.0 792 759 73.0
Health 99.9 985 97.0 947 929 89.5 881 86.6 84.6 82.2
Other 95.8 96.0 95.8 942 924 86.6 85.0 843 83.3 82.0

Reduction in Maximum FEV due to heterogeneity restrictions (% of maximal FEV)
plus soft zero restriction on initial TFP
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 51.2 504 50.4 50.2 50.0 48.1 47.3 46.5 45.8 45.0
TFP 99.2 981 94.6 90.7 871 76.0 66.1 574 50.4 44.9

Confidence 229 288 319 338 351 373 36.7 350 33.1 31.4
Employment 34.3 36.5 37.2 39.0 414 46.3 46.3 455 445 43.6
Consumers 61.4 59.2 588 584 57.7 551 53.6 5L9 49.7 47.2

Manu 44.0 446 451 452 450 43.0 41.0 393 37.8 36.5
HiTec 36.0 321 30.1 28.8 282 28.0 283 284 282 27.7
Health 241 25.0 251 257 268 31.1 343 365 378 38.2
Other 684 689 70.0 70.3 70.2 69.5 70.6 71.6 T1.7 71.2

The contribution is expressed in percent of the total forecast error variance up to horizon H. All contributions are

computed at the posterior mean.

Table D.4: Reduction in maximum forecast error variance explained by productivity news: Het-
erogeneity restrictions without and with soft zero restriction
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D.2 Fiscal shocks

Prior-robust
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending 11.1 8.8 9.7 118 11.2 133 26.1
Output 239 133 10.6 202 244 26.7 16.9
Debt 13.2  21.2 19.8 11.1 12,5 184 28.1
Hours 8.2 12,5 154 209 344 23.0 21.0
Tax rate 19.7 335 36.1 409 444 486 45.2
Tobacco 63.9 51.0 46.8 442 523 245 379
Lumber 470 293 264 31.0 353 16.7 19.7
Petrol 36.7 369 376 415 40.5 29.8 31.7
Equipment 484 403 23.7 30.7 40.7 45.0 37.5
Electronics 371 364 293 327 354 49.2 33.6

Transportation 22.6 160 173 276 36.3 16.7 24.6

Fully Bayesian
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending -15.8 -32.6 -30.6 -21.2 -16.3 -88 -0.4
Output 9.1 -0.3 -119 -96 -6.8 -39 -83
Debt -23.6 -39.7 -84.1 -934 -35.6 3.8 6.4
Hours 21 -16 -95 -6.7 3.8 7.8 4.5
Tax rate 13.7 323 384 41.0 425 494 33.0
Tobacco 65.5 60.2 442 391 595 208 7.3
Lumber 61.6 156 2.1 222 284 -3.0 -24
Petrol 33.2 343 340 36.8 37.0 17.1 124
Equipment 51.9 379 21.7 26.2 500 60.0 17.7
Electronics 355 306 21.7 27.8 464 94.5 36.9

Transportation 136 -99 -84 -54 -13.6 -123 -9.0

The contribution is expressed in percent of the 95th percentile of the IRF using sign restrictions only. Negative entries

imply a larger response under heterogeneity restrictions.

Table D.5: Reduction of 95th percentile of IRF to defense spending shocks relative to sign restric-
tions
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Figure D.7: Responses to defense spending shock: Macro variables
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Maximum FEV under pure sign restrictions (% of maximal FEV)
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending 86.9 72.5 63.9 59.6 57.4 54.5 53.3
Output 92.1 724 604 528 48.6 39.9 37.6
Debt 72.7 582 499 433 368 274 31.5
Hours 88.7 81.7 739 673 627 54.1 52.5
Tax rate 78.0 73.5 715 69.9 68.1 60.2 57.7
Tobacco 59.0 56.4 54.0 514 489 43.5 42.1
Lumber 97.1 81.8 71.7 65.7 62.2 51.3 48.1
Petrol 89.5 849 81.5 787 76.5 70.2 66.9
Equipment 86.2 83.1 73.5 62.0 52.1 348 37.3
Electronics 88.5 838 779 703 621 41.5 37.1

Transportation 77.5 585 48.7 428 39.7 33.9 32.5

Maximum FEV under heterogeneity restrictions (% of maximal FEV)
Horizon H (year)

Variable 0 1 2 3 4 8 10

Defense spending 81.5 68.1 59.7 554 53.2 50.1 49.0
Output 57.3 50.1 46.5 424 39.4 33.1 31.3
Debt 64.7 519 449 389 329 26.3 29.0
Hours 80.4 754 69.3 63.8 59.6 51.4 49.6
Tax rate 48.2 422 39.1 36.7 34.5 28.0 26.5
Tobacco 95 87 84 83 84 96 10.0
Lumber 32.1 298 273 256 24.6 21.2 20.4
Petrol 43.0 415 39.8 386 38.0 36.2 34.9
Equipment 24.7 24.1 23.1 239 219 16.1 15.1
Electronics 29.6 264 24.1 21.5 19.1 20.7 23.2

Transportation 48.0 41.7 38.1 349 329 29.2 28.2

The contribution is expressed in percent of the total forecast error variance up to horizon H. All contributions are

computed at the posterior mean.

Table D.6: Maximum forecast error variance explained by defense spending shocks: Results for
sign restrictions and heterogeneity restrictions
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Figure D.8: Responses of industry shipments to defense spending shock.
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Figure D.9: Responses to defense spending shock: Macro variables robustness
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