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Abstract

We study the structural correlations in the Italian overnight money market over the

period 1999-2010. We show that the structural correlations vary across different ver-

sions of the network. Moreover, we employ different configuration models and examine

whether higher-level characteristics of the observed network can be statistically recon-

structed by maximizing the entropy of a randomized ensemble of networks restricted

only by the lower-order features of the observed network. We find that often many of

the high order correlations in the observed network can be considered emergent from

the information embedded in the degree sequence in the binary version and in both the

degree and strength sequences in the weighted version. However, this information is

not enough to allow the models to account for all the patterns in the observed higher

order structural correlations. In particular, one of the main features of the observed

network that remains unexplained is the abnormally high level of weighted clustering

in the years preceding the crisis, i.e. the huge increase in various indirect exposures

generated via more intensive interbank credit links.

JEL classification: G21; G01; E42.

Keywords: Interbank Network; Structural Correlations; Clustering Coefficients;

Configuration Models; Network Reconstruction.



1 Introduction

Understanding the topological structure of complex systems is crucial in many areas, e.g.

in ecology, physics, neuroscience, epidemiology, economics, and finance. Statistics pertaining

to properties related to single nodes, linked node pairs and linked node triplets are often

referred to as structural correlations of the first, second and third order respectively. The

study of these structural correlations is one of the most common approaches for examining

the properties of a network. The degree and strength sequences are examples of first order

structural correlations. Statistics pertaining to properties related to linked node pairs reveal

information about the type of mixing (assortative vs disassortative) that takes place in the

network, while those related to linked node triplets are indicative of the clustering behavior.

In terms of second order correlations, a network would exhibit assortative mixing if its

nodes are predominantly connected to other nodes having similar degrees or strengths. In

contrast, disassortative mixing occurs when the connected nodes are dissimilar (see, for ex-

ample, Newman, 2002; Newman, 2003a). This concept can be extended to directed networks

yielding four mixing categories, i.e. in-in, in-out, out-in, and in-in mixing as illustrated in

Figure (1) (see, for example, Foster et al., 2010; Piraveenan et al., 2012; van der Hoorn

and Litvak, 2015). It should be emphasized that, in many real world networks, the mixing

behavior of the directed version can differ a lot from the one observed in the undirected

version. Furthermore, the same directed network can have assortative and disassortative

aspects related to the mixing categories mentioned above (see, for example, Foster et al.,

2010).

At the level of a single node, in the binary case, second order structural correlations

can be expressed in terms of a relationship describing the average degree of the nearest

neighbors (ANND) of a node as a function of that node’s own degree. If the ANND is an

increasing function of degree, this can be considered evidence in favor of assortative mixing.

In contrast, a decreasing function would signal disassortativity. For the whole network, the

Pearson correlation coefficient between the degrees of pairs of linked nodes is often used

to assess whether a network displays disassortative or assortative mixing (Newman, 2002;

Newman, 2003a).

In addition, we can decompose the overall assortativity coefficient into the contributions

of each node, i.e. we can measure the local assortativity associated with each node. Such

a decomposition can reveal which nodes contribute to the overall observed mixing nature

of the network and which are associated with the opposite type of mixing (see, for exam-

ple, Piraveenan at al., 2012). For instance, a globally assortative network may be locally
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disassortative and vice versa. It is worth noting that two networks with the same degree

distribution and the same global level of assortativity may display different patterns of local

assortativity.

The analysis of the second order structural correlations in the binary case can be straight-

forwardly extended to weighted networks by employing a measure that takes the average

strength of the nearest neighbors (ANNS) of a node or by computing the Pearson correla-

tion coefficient between the strengths of pairs of linked nodes.

As is common in the literature, we use clustering coefficients as measures of the third

order structural correlations in the network. A clustering coefficient measures the tendency

of two neighbors of a particular node to also be connected to each other (e.g. Newman,

2003b). If we define a node triplet as three nodes connected by at least 2 edges, then,

considering a network as a whole, the transitivity ratio (T) is equal to the number of triplets

in which all three nodes are directly connected (forming a triangle) as a fraction of all node

triplets (e.g. Newman, 2003b). An alternative measure is proposed by Watts and Strogatz

(1998), which can capture the observed local clustering. The average of these local clustering

coefficients can be used as an alternative measure of clustering for the whole network. The

difference between the transitivity ratio and the average clustering coefficient is that, while

in the former we calculate the ratio of the means, in the latter we take the mean of the

ratios. In addition, for the directed version of a network, it is useful to differentiate between

different relationship types depending on the direction of the edges in a triangle, i.e. inward,

outward, cyclic, and middleman relationships, since as shown in Figure (2), the different

relationships have different implications in terms of the risk exposure the individual banks

are facing and in terms of systemic risk (see, for example, Fagio, 2007; Tabak et al., 2014).

In weighted networks, the weighted clustering coefficients can be formulated in several ways,

depending on how we take into account the roles of the strengths and weights of the nodes in

each triangle (see, for example, Barrat et al., 2004; Onnela et al., 2005; Zhang and Horvath,

2005; Holme et al., 2007 1).

To assess whether the observed higher order structural correlations in a network are

typical of a network with the observed lower order structural correlations, we can employ

a randomization procedure based on the observed lower order patterns in the attempt to

arrive at a suitable null model to test against non-random patterns. Such null models create

a whole ensemble of networks out of a subset of the information necessary to completely

define the observed network. This is why this technique can also be used for filling in

1We refer the readers to Saramäki et al. (2007) for a comparison between different methods for calculating
the local weighted clustering coefficients.
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unavailable information. The most basic null models are the random graph models (RGM),

which specify only global constraints such as the node degree average in the binary case or

the node strength average in the weighted case. Since in these models, all nodes are treated

homogeneously, there is no difference between the expected topological properties across

nodes, which does not happen often in real world networks. In order to capture the intrinsic

heterogeneity in the capacity of the individual nodes, a popular approach is to generate the

microcanonical ensemble of networks having exactly the same degree sequence (or the same

strength sequence in weighted networks) as the one in the observed network (see, for example,

Maslov and Sneppen, 2002; Maslov et al., 2004; Zlatic et al., 2011). However, this “hard”

approach suffers from various limitations 2. Based on the maximum-entropy and maximum-

likelihood methods, recent advances in the specification of configuration models propose a

“soft” approach that enforces the constraints on average over an ensemble of randomized

networks (e.g. Garleschelli and Loffredo, 2008; Squartini and Garlaschelli, 2011; Squartini

et al., 2011a; Squartini et al., 2011b; Mastrandrea et al., 2014; Squartini et al., 2015). This

approach allows us to sample network ensembles more efficiently and in an unbiased manner

(Squartini et al., 2015).

In this paper we analyze the structural correlations in a particular financial system, i.e.

the Italian electronic market for interbank deposits (e-MID). While some of the network

properties of the e-MID market have been previously studied (see, for example, De Masi

et al., 2006; Fricke, 2012; Fricke et al., 2013; Finger et al., 2013; Fricke and Lux, 2015a;

Fricke and Lux, 2015b; Squartini et al., 2015; Cimini et al., 2015a), what is novel in our

paper is that: (i) we provide a more comprehensive analysis of the structural correlations in

all versions of the network, and employ both local as well as global measures for analyzing

such patterns; (ii) we employ configuration models to investigate whether the intrinsic node

heterogeneity represented by the degree sequence (in the binary network) and/or strength

sequence (in the weighted network) can explain higher order structural correlations observed

in the system; (iii) we utilize the so called Directed Enhanced Configuration Model as a null

model for the directed weighted version of the network, which makes use of the available

information about the direction of the edges in the network.

We use quarterly data for the e-MID network over the period 1999-2010 and restrict our

analysis to the Italian banks participating in this market, because foreign banks are not

frequently active in the market. Particularly, from the onset of the financial crisis in 2008

onward, non-Italian banks have basically withdrawn from this electronic market (e.g. see

2See Squartini and Garlaschelli (2011) or Squartini et al. (2015) for a deeper discussion.
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Fricke et al., 2013) 3.

The remainder of this paper is structured as follows. In Sec. 2 we provide a general

framework for analyzing the structural correlations in different versions of the observed net-

work as well as the algorithm for generating an ensemble of randomized networks from given

constraints. In Sec. 3, we analyze the structural correlations in the undirected and directed

binary versions of the e-MID network, and then compare the results to those obtained from

the associated null models. In Sec. 4, we provide a similar analysis of the undirected as

well as directed weighted versions of the network. Sec. 5 contains a discussion of the results

as well as directions for future research. At the end of this paper, the Appendix provides

additional details concerning the measures of structural correlations.

2 Structural correlations in complex networks

2.1 Undirected networks

2.1.1 General notation

In the undirected version, suppose we have a network (of size n) characterized by a

symmetric adjacency matrix A = {aij}nxn and a symmetric weighted matrix W = {wij}nxn
(aii = wii = 0). The degree and strength sequences for each node i are respectively defined

as

kun
i =

n
∑

j=1

aij, (1)

and

suni =
n

∑

j=1

wij. (2)

The total degree and total strength over all nodes in the network are given by

m =
1

2

n
∑

i=1

kun
i , (3)

3The transactions between banks are aggregated into quarterly data, since at the higher frequencies the
matrix of the trades between banks is very sparse. From the network perspective, we are more interested
in existing long-term relationships (credit lines) rather than single transactions. Since such credit lines will
typically not be activated on each day, a sufficiently long horizon is necessary to extract such information
from the data. For a more detailed description of the e-MID dataset, we refer the readers to the studies of
Fricke et al. (2013) and Finger et al. (2013), or to the e-MID website http://www.e-mid.it/.
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and

wtol =
1

2

n
∑

i=1

suni . (4)

2.1.2 Structural correlations in undirected networks

Assortativity Analysis

Regarding assortativity, we use two measures, i.e. the average degree (strength in the

weighted case) of the nearest neighbors as well as the Pearson correlation coefficient (here-

after: Pearson coefficient) between degrees (strengths in the weighted case).

The average degree and strength of the nearest neighbors

The average degree of the nearest neighbors (ANND) of node i in the binary version of

a network is given by

kun
nn,i =

∑n

j=1 aijk
un
j

kun
i

. (5)

For the weighted version, the average strength of the nearest neighbors (ANNS) of node i is

defined as

sunnn,i =

∑n

j=1 aijs
un
j

kun
i

. (6)

Treating kun
nn as a function of kun, an overall positive (negative) correlation between kun

nn and

kun suggests assortative (disassortative) mixing in the binary version of the network. In the

weighted case, a positive (negative) correlation between sunnn and sun evidences assortative

(disassortative) mixing.

We can also compute the averages of ANND and ANNS over the whole network respec-

tively as

k̄un
nn =

1

n

n
∑

i=1

kun
nn,i (7)

and

s̄unnn =
1

n

n
∑

i=1

sunnn,i. (8)

Pearson correlation coefficient of the node degrees and of the node strengths

The second measure of mixing computes the Pearson’s correlation between two degree

sequences (see the Appendix for details). Practically, the main idea to measure such a

correlation is that, from the adjacency matrix, first, we obtain a list of m edges, that is the

list of pairs of nodes (ie, je) where aieje = 1, ( for e = 1, 2, ...,m, 1 ≤ ie, je ≤ n). Next, for

each e, we get two degrees kun
ie
, kun

je
, and two strengths sunie , s

un
je

associated with the pair of

nodes (ie, je) and compute the correlation coefficients of the degrees and strengths at either
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ends of an edge (e.g. Newman, 2002; Newman, 2003a). In the binary case, if the correlation

coefficient of the degrees, runbin, is negative, it signals the presence of disassortativity, while a

positive value implies the opposite. In the weighted case, the same interpretation holds for

the correlation coefficient of the strengths, runw , but runbin and runw are not necessary equal.

Clustering coefficients

According to Watts and Strogatz (1998), the undirected binary clustering associated with

node i is defined as

Cun
bin,i =

∑

j 6=i

∑

k 6=i,j aijajkajk
∑

j 6=i

∑

k 6=i,j aijaik
. (9)

Following Onnela et al. (2005), we obtain the local weighted clustering associated with

node i in undirected version of the network as

Cun
w,i =

∑

j 6=i

∑

k 6=i,j w
1

3

ijw
1

3

jkw
1

3

jk
∑

j 6=i

∑

k 6=i,j aijaik
. (10)

Note that Cun
w,i in Eq. (10) is invariant to weight permutation for each triangle and it takes

into account the weights of all associated edges. In addition, it is easy to show that if A = W ,

we will have cunw,i = cunbin,i.

To analyze the evolution of the third order correlations over time, we define the average

of {Cun
bin,i}ni=1 as

C̄un
bin =

1

n

n
∑

i=1

Cun
bin,i, (11)

and the average of {Cun
w,i}ni=1 as

C̄un
w =

1

n

n
∑

i=1

Cun
w,i. (12)

2.2 Directed networks

2.2.1 General definitions

In a directed network, the two matrices A and W may not be symmetric (i.e. A 6= AT

and W 6= W T ). We then distinguish between in-degree and out-degree for every node i as

kin
i =

n
∑

j=1

aji, (13)

7



and

kout
i =

n
∑

j=1

aij. (14)

Similarly, instead of the total strength of the undirected version, we can distinguish between

in-strength and out-strength for every node i.

Matters become even more complex for the higher-order structural correlations. Taking

the directions of edges into account (as in Figure (1)), two types of nodes (giving and

receiving) give rise to four types of relationships and four versions of ANND and ANNS for

each node i: in-in, in-out, out-in, and out-out versions of ANND and ANNS, e.g.

kin−in
nn,i =

∑n

j=1 ajik
in
j

kin
i

, (15)

and

sin−in
nn,i =

∑n

j=1 ajis
in
j

kin
i

, (16)

with the other three types of statistics being obtained by replacing in-degrees and in-strengths

by the pertinent entities.

In each version, the interpretation of the relationship between the ANND and node degree

and between the ANNS and node strength is similar to the one for the measures discussed

in the undirected case. That is, a negative (positive) relationship signals disassortativity

(assortativity) in the respective class of relationships.

Similarly, the four possible combinations between giving and receiving nodes are associ-

ated with four global assortativity coefficients, i.e. rin−in
bin , rin−out

bin , rout−in
bin , and rout−out

bin (see

the Appendix for further details). Their weighted counterparts are rin−in
w , rin−out

w , rout−in
w ,

and rout−out
w . The algorithm for calculating these binary (weighted) coefficients is still similar

to the one used for runbin (or runw for the weighted case), except for the requirement that the

directions of edges (see Figure (1)) must be taken into account.
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In- In In- Out 

Out- In Out- Out 

Figure 1: Degree-degree dependencies in the directed version.

(a) Cycle 

(b) Middleman 

(c) In 

(d) Out 

i 

i 

i 

i 

i 

i 

i 

i 

Figure 2: Directed triangles and the corresponding (binary) clusterings associated with a
node i. (a) Cycle clustering, (b) Middleman clustering, (c) In clustering, (d) Out clustering.
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Clustering coefficients also come in four different versions in the directed network. The

different types are exhibited in Figure (2). The local binary clustering coefficient in a directed

network associated with cyclical clustering is, for example, defined as:

C
cyc
bin,i =

∑

j 6=i

∑

k 6=i,j aijajkaki

(
∑

j 6=i aij
∑

j 6=i aji)− (
∑

j 6=i aijaji)
. (17)

Note that, in the binary case we have a2ij = aij (∀i, j), so that

C
cyc
bin,i =

∑

j 6=i

∑

k 6=i,j aijajkaki

kin
i kout

i − k↔
i

, (18)

and other types are obtained by appropriate variation of the indices, where k↔
i is the number

of nodes j in the neighborhood of the node i such that aij = aji = 1.

The local clustering coefficient associated with cyclical combination in the directed weighted

version is defined as

C
cyc
w,i =

∑

j 6=i

∑

k 6=i,j w
1

3

ijw
1

3

jkw
1

3

ki

(
∑

j 6=i aij
∑

j 6=i aji)− (
∑

j 6=i aijaji)
=

∑

j 6=i

∑

k 6=i,j w
1

3

ijw
1

3

jkw
1

3

ki

kin
i kout

i − k↔
i

. (19)

2.3 Configuration models

In this subsection we will summarize the main ideas behind the algorithm involved in

the extraction of hidden (latent) variables from an observed network and their role in the

network randomization process (see, for example, Squartini and Garlaschelli, 2011; Squartini

et al., 2011a; Squartini et al., 2011b; Mastrandrea et al., 2014; Squartini et al., 2015). For

a more detailed explanation of the derivation of the family of Exponential Random Graph

Model based on the maximum-entropy method, as well as on how to use the maximum-

likelihood method to solve for the hidden variables under given constraints, we refer readers

to the studies by Park and Newman (2004), Squartini and Garlaschelli (2011), and Squartini

et al. (2015).

Undirected Binary Configuration model (UBCM)

In the UBCM, briefly, the entropy of a randomized ensemble of networks is maximized

under the constraint that the node degrees in the observed network {kun
i }ni=1 should match

the averages of node degrees in the randomized ensemble. Mathematically, we need to solve

the following system of n equations to obtain the non-negative hidden variables {x∗
i }ni=1 that

carry the information from the constraints and allow us to perform an efficient unbiased
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sampling of the ensemble

∑

j 6=i

x∗
ix

∗
j

1 + x∗
ix

∗
j

= kun
i , ∀i = 1, 2, ..., n. (20)

Once obtained, the hidden variables can be used to compute the probability pij of a link

between any two nodes i and j, which in turn allows us to easily sample the ensemble

associated with the above constraints

pij = 〈aij〉 =
x∗
ix

∗
j

1 + x∗
ix

∗
j

, (21)

where 〈aij〉 is the notation for the expectation of aij over the ensemble.

Directed Binary Configuration model (DBCM)

In the DBCM, the constraints are the observed out-degree and in-degree sequences

{kout
i }ni=1 and {kin

i }ni=1. We need to solve the following system of 2n equations to obtain

the associated non-negative hidden variables {x∗
i }ni=1 and {y∗i }ni=1







∑

j 6=i

x∗

i y
∗

j

1+x∗

i y
∗

j

= kout
i , ∀i = 1, 2, ..., n,

∑

j 6=i

x∗

j y
∗

i

1+x∗

j y
∗

i

= kin
i , ∀i = 1, 2, ..., n.

(22)

The probability of a link from node i to j is given by

pij = 〈aij〉 =
x∗
i y

∗
j

1 + x∗
i y

∗
j

, (23)

and the probability of a link from node j to i is given by

pji = 〈aji〉 =
x∗
jy

∗
i

1 + x∗
jy

∗
i

. (24)

Undirected Weighted Configuration model (UWCM)

Similarly, suppose that in an undirected weighted network we want to extract n hidden

variables {x∗
i }ni=1 associated with the observed strength sequence {suni }ni=1, ({x∗

i }ni=1 ∈ [0, 1)).

The maximum likelihood method involves solving the following system of n equations for

the hidden variables
∑

j 6=i

x∗
ix

∗
j

1− x∗
ix

∗
j

= suni , ∀i = 1, 2, ..., n. (25)

11



The expected link weight between node i and node j is given by

〈wij〉 =
x∗
ix

∗
j

1− x∗
ix

∗
j

. (26)

The probability of a link weight wij between node i and node j in the UWCM is

q(wij) = (pij)
wij(1− pij), (27)

for wij > 0, where pij = 〈aij〉 is the probability of a link between two nodes (i, j), which is

given by

pij = 〈aij〉 = x∗
ix

∗
j . (28)

Directed Weighted Configuration model (DWCM)

In the DWCM, the constraints are the observed out-strength and in-strength sequences

(i.e. {souti }ni=1 and {sini }ni=1). Mathematically, we need to solve the following system of 2n

equations to obtain the hidden variables {x∗
i }ni=1 and {y∗i }ni=1 ∈ [0, 1), which are respectively

associated with {souti }ni=1 and {sini }ni=1







∑

j 6=i

x∗

i y
∗

j

1−x∗

i y
∗

j

= souti , ∀i = 1, 2, ..., n,
∑

j 6=i

x∗

j y
∗

i

1−x∗

j y
∗

i

= sini , ∀i = 1, 2, ..., n.
(29)

The expected link weights between node i and node j are given by

〈wij〉 =
x∗
i y

∗
j

1− x∗
i y

∗
j

, (30)

and the probability of a link weight wij from node i to node j in the DWCM is the same as

in the equation (27).

Undirected Enhanced Configuration model (UECM)

In the UECM, we use both the degree sequence {kun
i }ni=1 as well as the strength sequence

{suni }ni=1 as constraints. The associated non-negative hidden variables {x∗
i }ni=1 and {y∗i }ni=1

({y∗i }ni=1 ∈ [0, 1)) are then the solution to the following system of 2n equations







∑

j 6=i

x∗

i x
∗

j y
∗

i y
∗

j

1−y∗i y
∗

j+x∗

i x
∗

j y
∗

i y
∗

j

= kun
i , ∀i = 1, 2, ..., n,

∑

j 6=i

x∗

i x
∗

j y
∗

i y
∗

j

(1−y∗i y
∗

j )(1−y∗i y
∗

j+x∗

i x
∗

j y
∗

i y
∗

j )
= suni , ∀i = 1, 2, ..., n.

(31)

It should be noted that, in the UECM, the probability of a link (i.e. 〈aij〉) and the
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expected weight (i.e. 〈wij〉) between node i and node j depend on the information encoded

in the strengths as well as in the degrees. More specifically, they are given by

pij = 〈aij〉 =
x∗
ix

∗
jy

∗
i y

∗
j

1− y∗i y
∗
j + x∗

ix
∗
jy

∗
i y

∗
j

, (32)

and

〈wij〉 =
x∗
ix

∗
jy

∗
i y

∗
j

(1− y∗i y
∗
j )(1− y∗i y

∗
j + x∗

ix
∗
jy

∗
i y

∗
j )
. (33)

In this model the probability of a link weight wij between two nodes (i, j) is given by

q(wij) =







1− pij, if wij = 0

pij(rij)
wij−1(1− rij), if wij > 0,

(34)

where rij = y∗i y
∗
j , and pij is defined by Eq. (32).

Directed Enhanced Configuration model (DECM)

In the DECM, the non-negative hidden variables {x∗
i }ni=1, {y∗i }ni=1, {z∗i }ni=1, {t∗i }ni=1 ({z∗i }ni=1,

{t∗i }ni=1 ∈ [0, 1)) extracted from the four sequences of constraints {kout
i }ni=1, {kin

i }ni=1, {souti }ni=1,

and {sini }ni=1 are the solution to the following system of 4n equations
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) = sini , ∀i = 1, 2, ..., n.

(35)

Similar to the UECM, in the DECM, the probability of a link (i.e. 〈aij〉) and the expected

weight (i.e. 〈wij〉) from node i to node j depend on information encoded in the two sequences

of observed degrees as well as in the two sequences of observed strengths. More specifically,

we have

pij = 〈aij〉 =
x∗
i y

∗
j z

∗
i t

∗
j

1− z∗i t
∗
j + x∗

i y
∗
j z

∗
i t

∗
j

, (36)

〈wij〉 =
x∗
i y

∗
j z

∗
i t

∗
j

(1− z∗i t
∗
j)(1− z∗i t

∗
j + x∗

i y
∗
j z

∗
i t

∗
j)
, (37)

The probability of a link weight wij from node i to node j is still defined as in equation (34).

Note that, the expected values of the second and third structural correlations in the

randomized networks can be analytically computed via the hidden variables extracted from

13



each configuration model or numerically computed by taking the average over a simulated

ensemble. In our study, for each considered null model, we generate an ensemble of 1000

randomized networks, and then take the averages of the measures in question over the

ensemble.

3 Findings for the binary network

3.1 Structural correlations in the undirected binary e-MID net-

work

We first investigate the degree dependencies in the undirected binary e-MID network

by examining the relationship between the node degree (kun) and the average degree of its

neighbors (kun
nn). The overall disassortativity in this version of the network is evidenced by

the negative relationship between these two quantities as shown in panels (a) and (b) of

Figure (3), in which the measures for the networks from Q1 (the first quarter in our data

set) and from Q48 (the last quarter in our data set) are plotted as an example. Note that

the overall negative correlation between kun
nn and kun is also observed in all 48 quarters from

1999 to 2010. In addition, generally, we find that the absolute value of this correlation is

declining over time.
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Figure 3: ANND (panels a, b), local assortativity ρun (panels c, d), and local clustering
coefficients Cun

bin (panels e, f) in the undirected binary e-MID network, in Q1 and Q48.

Next, we now turn to the Pearson correlation coefficient of degrees runbin as an overall

indicator of degree dependencies in the network. As shown in Figure (4), over time, overall,

the network exhibits disassortativity as signaled by the negative coefficient. Consistent with

what we discovered in our analysis of the measure ANND, the absolute value of runbin is also

declining from 1999 to 2010.
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Figure 4: Evolution of the overall assortativity indicator runbin in the undirected binary e-MID
network.

For a more comprehensive assessment of the degree dependencies in the network, we

employ the local assortativity coefficients ρun that indicate the contribution of each node to

the global level of assortativity runbin (see the Appendix for further details). The basic idea is

that the numerator in the Pearson correlation coefficient proposed by Newman (2002, 2003a)

can be reformulated based on the contribution of the individual nodes instead of in terms of

the edges (see, for example, Piraveenan et al., 2010) leading to the decomposition

runbin =
n

∑

i=1

ρuni . (38)

In panels (c) and (d) of Figure (3) we plot ρun against kun to investigate which nodes

(in terms of their degrees) contribute most to runbin. It appears that the hubs are the mainly

contributors to the overall disassortativity of the network, while smaller degree nodes some-

times exhibit assortativity. This also reveals that adding or removing a hub from a network

may have a large impact on its overall mixing nature.
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Figure 5: Evolution of the average of local clustering coefficients (i.e. C̄un
bin) in the undirected

binary e-MID network.

For the third order correlations, we employ the local clustering coefficient proposed by

Watts and Strogatz (1998). In this simple version of the network (undirected binary case)

clustering refers to the extent to which two connected nodes in the network have common

neighbors. We observe that, overall, the undirected local clustering is a decreasing function

of degree (panels (e) and (f) of Figure (3)), meaning that the neighbors of highly (poorly)

connected banks are poorly (highly) interconnected. In fact, this relationship is typically

found in many real world networks exhibiting a high heterogeneity in the degrees and a

disassortative mixing nature (e.g. see Newman, 2003b). In our network, the bank degrees

are highly heterogeneous, and the small (large) degree banks seem to have larger (smaller)

local clustering coefficients because they are mostly connected to large (small) degree banks.

The evolution of the average of the undirected local binary clustering coefficients over all

nodes is shown in Figure (5), where we can see a significant reduction in C̄un
bin around the

time of the financial crisis.
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3.2 Structural correlations in the directed binary e-MID network

We now extend our analysis to the directed version of the binary network. Figures (6)

and (7) show the relationship between ANND and node degree for the four types of mixing,

i.e. in-in, in-out, out-in, and out-out. In the same network some types of mixing can

be assortative, while others disassortative. For instance, while in Q1, overall, ANND is a

decreasing function of the associated degree in all four cases, this relationship breaks down

for the in-in and out-out mixing in Q48. In contrast, the overall negative correlation between

ANND and the associated degree for the in-out and out-in mixing is observed in almost all

quarters.

For a more general assessment of the overall mixing nature in the directed binary network,

we calculate the Pearson correlation coefficient in each category of mixing and show its

evolution over time (see Figure (8)). In comparison to the undirected version, the directed

binary network displays more complicated degree dependencies. We can see that rout−in
bin and

rin−out
bin display a different behavior than rin−in

bin and rout−out
bin . More specifically, while in the

out-in and out-in categories we persistently observe disassortativity in all quarters, the other

two categories switch between displaying assortativity and disassortativity over time. The

interpretation of the mixing observed in the various categories is similar to the interpretation

of mixing in an undirected binary network. For instance, a negative value of rout−in
bin , signaling

disassortativity in the out-in category, indicates that a high out-degree bank tends to have

out-going links to low in-degree banks, and/or that a low out-degree bank tends to have

out-going links to high in-degree banks. The mixing we observe in the out-in category

(rout−in
bin ) comes closest to the one observed in the undirected network captured by runbin. The

similarity between these two quantities was mathematically proven by van der Hoorn and

Litvak (2015). In addition, although the in-out mixing category exhibits disassortativity, in

many quarters the coefficient rin−out
bin is very close to zero.
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Figure 6: ANND in the directed binary e-MID network, in Q1. kin−in
nn (panel a), kin−out

nn

(panel b), kout−in
nn (panel c), kout−out

nn (panel d).
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Figure 7: ANND in the directed binary e-MID network, in Q48. kin−in
nn (panel a), kin−out

nn

(panel b), kout−in
nn (panel c), kout−out

nn (panel d).
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Figure 8: Evolution of the overall assortativity indicators in the directed binary e-MID
network.

Similarly to the undirected case, we define the local assortativity measures for a given

node i as ρin−in
i , ρin−out

i , ρout−in
i , and ρout−out

i corresponding to the four mixing categories in

the directed version of the network. Note that again equalities of the following form must

hold:

rin−in
bin =

n
∑

i=1

ρin−in
i , (39)

and analogously for the other measures. The measures ρin−in
i , ρin−out

i , ρout−in
i , and ρout−out

i

give us useful information about the contribution of each node to the respective overall

assortativity indicators.
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Figure 9: Local assortativity in the directed binary e-MID network, in Q1. ρin−in (panel a),
ρin−out (panel b), ρout−in (panel c), ρout−out (panel d).
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Figure 10: Local assortativity in the directed binary e-MID network, in Q48. ρin−in (panel
a), ρin−out (panel b), ρout−in (panel c), ρout−out (panel d).

The local assortativity indicators in the two quarters Q1 and Q48 are respectively shown

in Figures (9) and (10). In these figures, each local assortativity indicator is shown as a

function of the corresponding degree 4. The results indicate that, first, given an overall level

4In the cases of ρin−out and ρout−in, we plot them against kin−out =
√
kinkout, since each of them
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of assortativity in a particular category, the contribution of nodes of different degrees varies

across the four mixing categories. In the out-in mixing category, we observe that, on the

one hand, the hubs contribute most to the overall level of assortativity; on the other hand,

small degree nodes are characterized by small values of assortativity or disassortativity. In

addition, the contributions of medium degree nodes are more volatile than those of the small

degree nodes. This is very similar to what we found in the undirected version of the network.

However, the behavior of the local assortativity indicators becomes more complicated for the

other mixing categories. For example, the contributions of hubs and medium degree nodes

can fluctuate a lot, so that it becomes difficult to classify which type of nodes plays an

important role for the overall level of assortativity.

Next, we turn to the third order correlations between banks in the directed binary net-

work. We focus on investigating local clustering as a function of degree for the four cases

shown in Figure (2) (see, for example, Fagiolo, 2007). In the following discussion we will be

referring to nodes i, j, k as an example of three vertices in a network building a triangle. It

is clear that the directions of the edges now matter for the clustering analysis. The measures

Cmid, Ccyc, Cout and C in summarize the prevalence of a particular type of relationship that

a node has with its neighbors. For instance, larger values of Cmid (see panel (b) of Figure

(2)) may represent a higher systemic risk associated with that node, since bank i can be a

source of risk as well as be exposed to risk from other banks. Clustering relationships of the

type shown in panel (c) of Figure (2) are also conducive to systemic risk since a default of

bank i would affect both its partners. Larger values of C in indicate a higher systemic risk

dependence on the same funding sources in the interbank market. This is, however, not the

case for cyclical clustering relationships (captured by Ccyc) since in this type of relationships

exposures can cancel each other out (see panel (a) of Figure (2)). Finally, large values of

Cout associated with bank i indicate risk exposure of bank i itself, since both banks j and k

can affect bank i in case either of them would default (see panel (d) of Figure (2).

For each type of clustering relationship, we first consider the local clustering coefficient

as the function of the corresponding degree 5. Typically, in each case, a general negative

relationship is observed in the first quarters, but for later quarters this relationship becomes

flatter (see, for example, Figures (11) and (12)).

depends on both kin and kout (see the Appendix for more detailed derivations).
5In the cases of Ccyc

bin and Cmid
bin , we plot them against kin−out =

√
kinkout.
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Figure 11: Local clustering coefficients Ccyc
bin (panel a), Cmid

bin (panel b), C in
bin (panel c), Cout

bin

(panel d) in the directed binary e-MID network, in Q1.
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Figure 12: Local clustering coefficients Ccyc
bin (panel a), Cmid

bin (panel b), C in
bin (panel c), Cout

bin

(panel d) in the directed binary e-MID network, in Q48.

We now take the averages of the local clustering coefficients across all nodes and then

investigate their evolution over time. We observe that, first, for the most part, the averages

C̄mid, C̄ in, C̄out, and C̄cyc are in descending order, with clustering relationships of the cyclical

23



and out-type being much less common than the other two. We consider this prevalence of

the middleman and in-type clustering relationships as evidence of the presence of systemic

risk in the network. Second, similarly to what we observed in the undirected network for

C̄un
bin, the averages of the local clustering coefficients for all four clustering types dramatically

decrease around the time of the financial crisis, evidencing structural change in the third

order correlations between banks.
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Figure 13: Evolution of the averages of local clustering coefficients (i.e. C̄mid, C̄ in, C̄out, and
C̄cyc) in the directed binary e-MID network.

3.3 Comparisons to the configuration models

When comparing the phenomenological properties of the data to those of the configura-

tion models, we basically ask the question whether the higher-level characteristics are the

mere consequence of the observed features of lower order. Features that could not be ac-

counted for by the configuration model would indicate facets of the data that need additional

behavioral explanations.

Undirected Binary Network

We first employ the undirected binary configuration model (UBCM), which maintains

the intrinsic heterogeneity in the degree sequence of the undirected binary version of the

observed e-MID network. Figure (14) shows a comparison between various higher order

structural correlations observed in the e-MID network and the same structural correlations

observed in the randomized ensemble for the first and last quarters. Note that, in each

panel of Figure (14), besides the observed and the expected values (over the randomized
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ensemble), we also report the regions of ±1 standard deviation (std.) and ± 2 std. away

from the expectations. In most cases, as shown in panels (a) to (f), the local behavior of

the structural correlations is well replicated by the UBCM. As shown in panel (a) of Figure

(15), the average of the ANNDs over all nodes (k̄un
nn) is also located inside the ±2 std. band

when plotted over time. In contrast, in terms of our measure of global assortativity (runbin),

in almost all of the quarters, the observed values lie outside the ±2 std. band (see panel

(b) of Figure (15)). A similar result is obtained for the evolution of the average of the local

clustering coefficients (C̄un
bin) with many significant deviations, but the main trends of the

observed and the expected values are similar (see panel (c) of Figure (15)).
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(d) ρun in Q48
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Figure 14: ANND (panels a, b), local assortativity ρun (panels c, d), local clustering co-
efficients Cun

bin (panels e, f) in the observed e-MID network and in the UBCM, in Q1 and
Q48.
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Figure 15: Evolution of k̄un
nn (panel a), runbin (panel b), and C̄un

in (panel c) in the observed
e-MID network and in the UBCM.

Directed Binary Network

Recalling that under the directed binary configuration model (DBCM), both out-going

and in-coming degrees are enforced on average over the ensemble, we show the comparisons

between the structural correlations of observed network and those obtained from that model

in Figures (16) and (17) (for ANND), Figures (18) and (19) (for the local assortativity

indicators), and Figures (20) and (21) (for the local clustering coefficients).

In addition, as for the undirected version, we also compare the evolution of the global

indicators with the evolution of their expected values obtained from the DBCM. We show

the results for the averages of the ANNDs (i.e. k̄in−in
nn , k̄in−out

nn , k̄out−in
nn , k̄out−out

nn ) in Figure

(22), for the global assortativity indicators (rin−in
bin , rin−out

bin , rout−in
bin , rout−out

bin ) in Figure (23),

and for the averages of the local clustering coefficients (C̄ in−in
bin , C̄ in−out

bin , C̄out−in
bin , C̄out−out

bin ) in

Figure (24).

First, regarding the local indicators (see from Figure (16) to Figure (21)), in most cases,

the observed ANNDs, local assortativity indicators, and local clustering coefficients are in

agreement with those evaluated under the DBCM. Since the few observed points significantly

deviating from the expected ones might not reveal any patterns (under the DBCM), they

might be seen as the expected rejections one obtains for a large sequence of simultaneous

tests.

Second, regarding the evolution of the averages of the ANNDs, Figure (22) shows that,

k̄in−in
nn , k̄in−out

nn , and k̄out−in
nn always lie within the ±2 std. band, while k̄out−out

nn is underesti-

mated for most of the time.

Third, in terms of the global assortativity indicators, for the most part, rin−in
bin and rout−in

bin

are located inside the ± 2 std. band, while rin−out
bin and rout−out

bin are mostly being overestimated

(see Figure (23)).

Finally, over time, the averages of the local clustering coefficients C̄ in−in
bin , C̄ in−out

bin , C̄out−in
bin ,
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and C̄out−out
bin are generally in agreement with their expected values from the DBCM, as shown

in Figure (24).
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Figure 16: ANND in the observed e-MID network and in the DBCM, in Q1. kin−in
nn (panel

a), kin−out
nn (panel b), kout−in

nn (panel c), kout−out
nn (panel d).
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Figure 17: ANND in the observed e-MID network and in the DBCM, in Q48. kin−in
nn (panel

a), kin−out
nn (panel b), kout−in

nn (panel c), kout−out
nn (panel d).
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(d) ρout−out

Figure 18: Local assortativity in the observed e-MID network and in the DBCM, in Q1.
ρin−in (panel a), ρin−out (panel b), ρout−in (panel c), ρout−out (panel d).
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(c) ρout−in
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(d) ρout−out

Figure 19: Local assortativity in the observed e-MID network and in the DBCM, in Q48.
ρin−in (panel a), ρin−out (panel b), ρout−in (panel c), ρout−out (panel d).
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(a) Ccyc
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(b) Cmid
bin in Q1
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(c) Cin
bin in Q1
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(d) Cout
bin in Q1

Figure 20: Local clustering coefficients Ccyc
bin (panel a), Cmid

bin (panel b), C in
bin (panel c), Cout

bin

(panel d) in the observed e-MID network and in DBCM, in Q1.
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(a) Ccyc
bin in Q48
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(b) Cmid
bin in Q48
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(c) Cin
bin in Q48

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
out

lo
ca
l
cl
u
st
er
in
g
c
o
u
t

b
in

 

 

real
average
std
2std
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Figure 21: Local clustering coefficients Ccyc
bin (panel a), Cmid

bin (panel b), C in
bin (panel c), Cout

bin

(panel d) in the observed e-MID network and in DBCM, in Q48.
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Figure 22: Evolution of the averages of ANNDs in the observed e-MID network and in the
DBCM. k̄in−in

nn (panel a), k̄in−out
nn (panel b), k̄out−in

nn (panel c), k̄out−out
nn (panel d).
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Figure 23: Evolution of the global assortativity indicators in the observed e-MID network
and in the DBCM. rin−in

bin (panel a), rin−out
bin (panel b), rout−in

bin (panel c), rout−out
bin (panel d).
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Figure 24: Evolution of the averages of clustering coefficients in the observed e-MID network
and in the DBCM. C̄cyc

bin (panel a), C̄mid
bin (panel b), C̄ in

bin (panel c), C̄out
bin (panel d).
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4 Findings for the weighted network

In the binary version of the observed network, we treat all edges as if they were homo-

geneous. However, in reality, the capacity and intensity of the relations between banks can

be very heterogeneous, consequently the weighted version can have different properties com-

pared to its binary counterpart. In this section, we investigate the structural correlations

in the weighted e-MID network. For the sake of simplicity, we do not consider the local

weighted assortativity in this section, since breaking down the overall weighted assortativity

measure into the contributions of the individual nodes is much more complicated than in

the binary case.

Regarding the null models, instead of preserving the observed degree sequence(s) as in the

Binary Configure Models (i.e. UBCM, DBCM), first, we employ the weighted configuration

model preserving the observed strength sequence(s) (i.e. the UWCMmodel in the undirected

case and the DWCMmodel in the directed case) and examine whether the chosen null models

can replicate the structural correlations in the observed weighted network. As a second step,

we consider the enhanced configuration models which maintain both the observed degree as

well as strength sequences (i.e. the UECM and the DECM respectively in the undirected

and directed cases) and repeat the same exercise.

4.1 Structural correlations in the undirected weighted e-MID net-

work

We report the strength dependencies in Figure (25) by considering the relationship be-

tween sunnn (ANNS) and sun in the first and last quarters. We observe that sunnn is generally a

declining function of sun, although this feature becomes less pronounced towards the end of

our time series. This relationship is confirmed by the negative value of the global weighted

assortativity measure runw (see Figure (26)). This signals that the prevalence of disassortative

mixing in the undirected weighted e-MID network does not only apply to the degrees, but

also to the strengths of nodes. Furthermore, it should be emphasized that, in comparison to

the undirected binary version of the network, the undirected weighted network exhibits less

disassortativity overall, since runw is smaller than runbin in absolute value.

In our analysis of the third order correlations, in contrast to what we discovered in

the binary version, we find that, on average banks with higher strength also have higher

local clustering coefficients (see Figure (27)). This is mainly because the heterogeneity in

the transaction volumes across banks in every triangle is now taken into account and the
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average transactions of banks with high strength are much larger than those of banks with

low strength. Furthermore, we observe three very distinct phases in the evolution of the

average of the local weighted clustering coefficients, i.e. before 2002, from 2002 to 2006, and

from 2007 onward, which might reflect effects arising from the adoption of the euro as well

as from the recent financial crisis (see Figure (28)). In particular, we find that C̄un
w is much

higher from 2002 to 2006 than in the years before and after. The same results still hold if

we normalize all weights by the total weight average.

0 2 4 6 8 10 12

x 10
4

0

1

2

3

4

5

6
x 10

4

s
un

s
u
n

n
n

(a) sunnn in Q1

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2000

4000

6000

8000

10000

12000

s
un

s
u
n

n
n

(b) sunnn in Q48

Figure 25: ANNS in the undirected weighted e-MID network, in Q1 and Q48.
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Figure 26: Evolution of global weighted assortativity runw in the undirected weighted e-MID
network.
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Figure 27: Local clustering coefficients Cun
w in the undirected weighted e-MID network, in

Q1 and Q48.
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Figure 28: Evolution of the average of local weighted clustering coefficients (i.e. C̄un
w ) in the

undirected weighted e-MID network.

4.2 Structural correlations in the directed weighted e-MID net-

work

In the directed weighted version of the e-MID network, to analyzing the structural cor-

relations, we employ average nearest neighbor strength measures for the various mixing

categories (sin−in
nn,i , sin−out

nn,i , sout−in
nn,i , sout−out

nn,i ), global weighted assortativity indicators (rin−in
w ,

rin−out
w , rout−in

w , rout−out
w ), and weighted clustering coefficients (Ccyc

w , Cmid
w , Cin

w , Cout
w ).

First, Figures (29) and (30) show the relationship between the ANNSs and the associated

strengths for all four mixing categories in Q1 and Q48. Over time, while in the first quarters,

the ANNSs are a declining function of the associated strengths, in many later quarters this

relationship again seems to break down, especially for the mixing categories in-in, in-out, and
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out-out. To obtain the overall level of strength dependency of bank interactions for each mix-

ing category, we calculate the global assortativity indicators rin−in
w , rin−out

w , rout−in
w , rout−out

w ,

and show their evolution over time in Figure (31). The results indicate that, while the out-in

mixing is disassortative for the most part, the other three categories do not seem to exhibit a

distinct mixing nature. In comparison to the directed binary version, the absolute values of

rin−in
w , rin−out

w , rout−in
w , rout−out

w are often smaller than those of rin−in
bin , rin−out

bin , rout−in
bin , rout−out

bin .

An interesting observation is that, among the four mixing categories, the weighted assortativ-

ity in the out-in category is closest to the undirected weighted assortativity, i.e. rout−in
w ∼ runw .

For the binary versions of the network, when comparing the mixing patterns in the directed

and undirected case, we made the same observation.
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Figure 29: ANNSs in the directed weighted e-MID network, in Q1. sin−in
nn (panel a), sin−out

nn

(panel b), sout−in
nn (panel c), sout−out

nn (panel d).
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Figure 30: ANNSs in the directed weighted e-MID network, in Q48. sin−in
nn (panel a), sin−out

nn

(panel b), sout−in
nn (panel c), sout−out

nn (panel d).
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Figure 31: Evolution of the directed weighted assortativity indicators, i.e. rin−in
w , rin−out

w ,
rout−in
w , and rout−out

w in the directed weighted e-MID network.

Second, the local weighted clustering coefficients for the four clustering types Ccyc
w , Cmid

w ,

C in
w , Cout

w are plotted against the associated strengths in Figures (32) and (33) 6. We ob-

serve that, generally, higher (lower) strengths correspond to higher (lower) local weighted

clustering coefficients.

6In the cases of Ccyc
w and Cmid

w , we plot them against sin−out =
√
sinsout.
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The evolution of the averages of the local weighted clustering coefficients also exhibits

three different phases, i.e. before 2002, from 2002 to 2006, and from 2007 onward. For

all types of clustering, the averages in the period from 2002 to 2006 are higher than those

in the other two periods. Recall that, on average, larger values of C̄mid
w , C̄ in

w imply higher

risk from concentrated funding lines, while larger values of C̄out
w reveal the high exposure of

the associated bank to risk from defaults of their borrowers. The order and magnitude of

different combinations of C̄w shown in Figure (34) thus reveal the importance of both types

of risk in the period from 2002 to 2006 in the weighted version of the network. It should

be emphasized that, even when all weights are normalized by the average weight over the

whole network, we still observe a similar trend, signaling that the evolution of the averages

of the directed local weighted clustering coefficients is not only driven by changes in the

overall transaction volume (overall strength of the interactions) but also by changes in the

frequency of aforementioned tripartite relations among banks.
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Figure 32: Local weighted clustering coefficients in the directed weighted e-MID network, in
Q1. Ccyc

w (panel a), Cmid
w (panel b), C in

w (panel c), Cout
w (panel d).
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Figure 33: Local weighted clustering coefficients in the directed weighted e-MID network, in
Q48. Ccyc

w (panel a), Cmid
w (panel b), C in

w (panel c), Cout
w (panel d).
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Figure 34: Evolution of the averages of local weighted clustering coefficients, i.e. C̄cyc
w , C̄mid

w ,
C̄ in

w , and C̄out
w in the directed weighted e-MID network.
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4.3 Comparisons to the weighted configuration models

Undirected Weighted Network

To examine the role of the heterogeneity in the local constraints for the emergence of

higher order structural correlations in the weighted version of the observed network, we em-

ploy the UWCM, which preserves the observed strength sequence, and the UECM, which

enforces both the observed degree as well as strength sequences onto the randomized ensem-

ble.

First, the observed values of the measure ANNS as well as of the local weighted clustering

coefficients (as can be seen in Figures (35) and (36)) strongly deviate from their respective

expectations under the UWCM. In contrast, we find that the UECM model is able to repro-

duce the main features of such measures (see Figures (37) and (38)).

For a more detailed comparison between the two models, we compare the z-scores of the

measure ANNS as well as of the local weighted clustering coefficients evaluated under the

UWCM with those for the same measures evaluated under the UECM (see subsection B of

the Appendix for a more detailed explanation). More specifically, for every bank i, we define

the z-scores

zUWCM
ANNS (i) =

ANNS(i)− 〈ANNS(i)〉UWCM

σ[ANNS(i)]UWCM

, (40)

and

zUECM
ANNS (i) =

ANNS(i)− 〈ANNS(i)〉UECM

σ[ANNS(i)]UECM

, (41)

where ANNS(i)〉UWCM and ANNS(i)〉UECM are respectively the expected values of the mea-

sure ANNS for bank i evaluated under the UWCM and the UECM; and σ(ANNS(i))UWCM

and σ(ANNS(i))UECM are respectively the standard deviations of ANNS(i) evaluated under

the UWCM and the UECM 7.

Similarly, the z-scores for the local weighted clustering coefficients for bank i evaluated

under the UWCM and the UECM are defined as

zUWCM
Cw

(i) =
Cun

w (i)− 〈Cun
w (i)〉UWCM

σ[Cun
w (i)]UWCM

, (42)

and

zUECM
Cw

(i) =
Cun

w (i)− 〈Cun
w (i)〉UECM

σ[Cun
w (i)]UECM

. (43)

We show the comparisons between the z-scores under the two considered configuration

7Throughout this paper, the notation 〈X〉null model and σ[X]null model are respectively the expected value
and standard deviation of X evaluated under the referenced null model.
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models in Figure (39) and Figure (40). For almost all banks, we find that |zUECM
ANNS | < |zUWCM

ANNS |
and |zUECM

Cun
w

| < |zUWCM
Cun

w
|.
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Figure 35: ANNS in the observed e-MID network and in the UWCM, in Q1 and Q48.
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Figure 36: Local weighted clustering coefficients Cun
w in the observed e-MID network and in

the UWCM, in Q1 and Q48.
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Figure 37: ANNS in the observed e-MID network and in the UECM, in Q1 and Q48.
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Figure 38: Local weighted clustering coefficients Cun
w in the observed e-MID network and in

the UECM, in Q1 and Q48.
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Figure 39: z-scores of sunnn vs. sunnn in the UWCM and the UECM, in Q1 and in Q48. Panel
(a) for z-scores of sunnn in Q1, panel (b) for z-scores of sunnn in Q48.
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Figure 40: z-scores of Cun
w vs. Cun

w in the UWCM and the UECM. Panel (a) for z-scores of
Cun

w in Q1, panel (b) for z-scores of Cun
w in Q48.

We now compare the evolution of s̄unnn, r
un
w , and C̄un

w for the observed network with the

one obtained for these measures under the UWCM and the UECM. In Figure (41), we see

that for most of the time, the observed values of s̄unnn, r
un
w , and C̄un

w lie outside the ± 2 bands

associated with the UWCM. In contrast, in Figure (42), we see that the evolution of these

measures is well captured by the ECM. The observed values of s̄unnn and C̄un
w and the expected

ones obtained from the ECM are in very close agreement. Even in the case of runw , for which
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several significant deviations are found, the main features of its evolution are well reproduced

by the ECM.
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Figure 41: Evolution of s̄unnn (panel a), runw (panel b), and C̄un
w (panel c) in the observed

e-MID network and in the UWCM.
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Figure 42: Evolution of s̄unnn (panel a), runw (panel b), and C̄un
w (panel c) in the observed

e-MID network and in the UECM.

Directed Weighted Network

We now extend our comparison between the observed network and the configuration

models to the directed weighted version. For this purpose, again the two relevant null

models are employed, i.e. the DWCM and the DECM.

First, regarding the directed versions of the measure ANNS, we compare sin−in
nn , sin−out

nn ,

sout−in
nn , and sout−out

nn of the observed network in the two chosen quarters with those obtained

from the DWCM in Figures (43) and (44), and with those obtained from the DECM in

Figures (45) and (46). Similar to the undirected weighted case, the z-scores of the directed

weighted versions of the measure ANNS evaluated under these two models are also reported

in Figures (47) and (48). Overall, we see that the main features of the measure ANNS are

replicated much better by the DECM than by the DWCM. Furthermore, typically for almost

all banks, we find that |zDECM
ANNS | < |zDWCM

ANNS |.
In terms of the third order structural correlations, the DECM again outperforms the

DWCM in terms of reproducing the main features of local weighted clustering coefficients.
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This is visualized in Figures (49), (50), (51), and (52). In addition, for each type of local

weighted clustering coefficients we also calculate the z-scores evaluated under the DWCM

and the DECM. As shown in Figures (53) and (54), we observe that on average |zDECM
C

cyc
w

| <
|zDWCM

C
cyc
w

|, |zDECM
Cmid

w
| < |zDWCM

Cmid
w

|, |zDECM
Cin

w
| < |zDWCM

Cin
w

|, and |zDECM
Cout

w
| < |zDWCM

Cout
w

|, although there

is often a certain deviation from this general tendency at the lower end of the spectrum of

degrees and strengths.
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Figure 43: ANNSs in the observed e-MID network and in the DWCM, in Q1. sin−in
nn (panel

a), sin−out
nn (panel b), sout−in

nn (panel c), sout−out
nn (panel d).

43



0 0.5 1 1.5 2 2.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

s
in

s
i
n
−
i
n

n
n

 

 

real
average
std
2std

(a) sin−in
nn

0 0.5 1 1.5 2 2.5

x 10
4

0

2000

4000

6000

8000

10000

12000

s
in

s
i
n
−
o
u
t

n
n

 

 

real
average
std
2std

(b) sin−out
nn

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

s
out

s
o
u
t
−
i
n

n
n

 

 

real
average
std
2std

(c) sout−in
nn

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

s
out

s
o
u
t
−
o
u
t

n
n

 

 

real
average
std
2std

(d) sout−out
nn

Figure 44: ANNSs in the observed e-MID network and in the DWCM, in Q48. sin−in
nn (panel

a), sin−out
nn (panel b), sout−in

nn (panel c), sout−out
nn (panel d).
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Figure 45: ANNSs in the observed e-MID network and in the DECM, in Q1. sin−in
nn (panel

a), sin−out
nn (panel b), sout−in

nn (panel c), sout−out
nn (panel d).
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Figure 46: ANNSs in the observed e-MID network and in the DECM, in Q48. sin−in
nn (panel

a), sin−out
nn (panel b), sout−in

nn (panel c), sout−out
nn (panel d).
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Figure 47: z-scores of ANNSs vs. ANNSs, in the DWCM and DECM models, in Q1. Panels
(a) for sin−in

nn , (b) for sin−out
nn , (c) for sout−in

nn , (d) for sout−out
nn .
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Figure 48: z-scores of ANNSs vs. ANNSs, in the DWCM and DECM models, in Q48. Panels
(a) for sin−in

nn , (b) for sin−out
nn , (c) for sout−in

nn , (d) for sout−out
nn .
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Figure 49: Local weighted clustering coefficients in the observed e-MID network and in the
DWCM, in Q1. Ccyc

w (panel a), Cmid
w (panel b), C in

w (panel c), Cout
w (panel d).
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Figure 50: Local weighted clustering coefficients in the observed e-MID network and in the
DWCM, in Q48. Ccyc

w (panel a), Cmid
w (panel b), C in

w (panel c), Cout
w (panel d).
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Figure 51: Local weighted clustering coefficients in the observed e-MID network and in the
DECM, in Q1. Ccyc

w (panel a), Cmid
w (panel b), C in

w (panel c), Cout
w (panel d).
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Figure 52: Local weighted clustering coefficients in the observed e-MID network and in the
DECM, in Q48. Ccyc

w (panel a), Cmid
w (panel b), C in

w (panel c), Cout
w (panel d).
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Figure 53: z-scores of Cw vs. Cw, evaluated under the DWCM and DECM models, in Q1.
Panel (a) for Ccyc

w , panel (b) for Cmid
w , panel (c) for C in

w , panel (d) for Cout
w .
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Figure 54: z-scores of Cw vs. Cw, evaluated under the DWCM and DECM models, in Q48.
Panel (a) for Ccyc

w , panel (b) for Cmid
w , panel (c) for C in

w , panel (d) for Cout
w .

Finally, we analyze the predictive power of the two considered null models in terms of the

evolution of the averages of the various versions of the measure ANNSs (i.e. s̄in−in
nn , s̄in−out

nn ,

s̄out−in
nn and s̄out−out

nn ), the global weighted assortativity indicators (i.e. rin−in
w , rin−out

w , rout−in
w

and rout−out
w ), and the averages of the local weighted clustering coefficients (i.e. C̄cyc

w , C̄mid
w ,

C̄ in
w and C̄out

w ) (see also the next subsection for a further comparison).

Figures (55), (56), and (57) show significant deviations of the observed network from

the DWCM over time. A comparison between the DECM and the observed network in

terms of the aforementioned measures is shown in Figures (58), (59), and (60). Overall, we

observe that, on the one hand, the DWCM is clearly dominated by the DECM, on the other

hand, significant deviations from the DECM are still present in several quarters, regarding

such as the average of the measure ANNS in the mixing category out-out (s̄out−out
nn ), the

global weighted assortativity indicators in the in-in and in-out categories, the average of the

local weighted clustering coefficients C̄cyc
w and the average of the local weighted clustering

coefficients C̄out
w .

We emphasize that one of the main features not explained by the sequences of degrees

and strengths of the network nodes themselves is the high level of clustering in the years

preceding the crisis, i.e. the huge increase in various indirect exposures generated via more

intensive interbank credit links.
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Figure 55: Evolution of the averages of ANNSs in the observed e-MID network and in the
DWCM. s̄in−in

nn (panel a), s̄in−out
nn (panel b), s̄out−in

nn (panel c), s̄out−out
nn (panel d).
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Figure 56: Evolution of the global weighted assortativity indicators in the observed e-MID
network and in the DWCM. rin−in

w (panel a), rin−out
w (panel b), rout−in

w (panel c), rout−out
w

(panel d).
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Figure 57: Evolution of the averages of local weighted clustering coefficients in the observed
e-MID network and in the DWCM. C̄cyc

w (panel a), C̄mid
w (panel b), C̄ in

w (panel c), C̄out
w (panel

d).
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Figure 58: Evolution of the averages of ANNSs in the observed e-MID network and in the
DECM. s̄in−in

nn (panel a), s̄in−out
nn (panel b), s̄out−in

nn (panel c), s̄out−out
nn (panel d).
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Figure 59: Evolution of the global weighted assortativity indicators in the observed e-MID
network and in the DECM. rin−in

w (panel a), rin−out
w (panel b), rout−in

w (panel c), rout−out
w

(panel d).
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Figure 60: Evolution of the averages of local weighted clustering coefficients in the observed
e-MID network and in the DECM. C̄cyc

w (panel a), C̄mid
w (panel b), C̄ in

w (panel c), C̄out
w (panel

d).

Note that, although, in general, we find that the family of Enhanced Configuration

Models outperforms the family of Weighted Configuration Models in terms of replicating the
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main features of the structural correlations in the weighted version of the observed network,

solving the system (35) to extract the hidden variables in the DECM (or system (31) in the

UECM for the undirected version of the network) is much more computationally demanding

than solving the system (29) for the DWCM (or sys. (25) for the UWCM for the undirected

version of the network) 8,9.

4.4 z-scores analysis revealing structural changes in the weighted

system

To analyze the evolution of the discrepancies between the referenced models and the

observed network, we define z-scores for the global indicators, i.e. for s̄unnn, r
un
w , C̄w

un in

the undirected weighted network (evaluated under the UWCM and the UECM) and for

s̄in−in
nn , s̄in−out

nn , s̄out−in
nn , s̄out−out

nn , rin−in
w , rin−out

w , rout−in
w , rout−out

w , C̄cyc
w , C̄mid

w , C̄ in
w , and C̄out

w in the

directed weighted network (evaluated under the DWCM and the DECM).

Before going into details, it should be noted that from Figure (61) to Figure (64), when

comparing the UECM with the UWCM in the undirected version or the DECM with the

DWCM in the directed version, some of the high z-scores under the UECM (or under the

DECM) are blurred because of the presence of much larger z-scores under the UWCM (or

under the DWCM).

In the undirected weighted case, two important findings are obtained. First, overall,

the z-scores are mostly smaller in absolute value under the UECM than under the UWCM

(see Figure (61)). This is consistent with what we found for the local indicators and re-

emphasizes the finding that the UECM out-performs the UWCM. Second, interestingly, in

panel (c) of Figure (61) we see that the distance between the z-scores for C̄un
w evaluated under

the UWCM and the UECM increases over the period from 2002 to 2006, and then decreases

sharply after the financial crisis. This suggests that the importance of particular basic

features of a network (like its degree sequence or its strength sequence) for the emergence of

higher order correlations structures can vary over time.

In the directed weighted case, similarly, we find that the z-scores under the DECM

8According to Squartini et al. (2015), solving system (35) for the DECM and solving the system (31)
for the UECM may be very time consuming if the strength distribution contains big outliers and the degree
distribution is narrow. This also happens in our study, and in fact our data set shows that the strength
distribution is much wider than the degree distribution.

9Following Mastrandrea et al. (2014) and Squartini et al. (2015), in order to speed up the process of
solving system (31) for the UECM and system (35) for the DECM, we have used the iteration method, which
uses the output of the previous iteration as the initial value for the current one. However, it remains a very
time consuming process to obtain an acceptable solution for the hidden variables.
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are much smaller in absolute value than those evaluated under the DWCM (see Figures

(62), (63), and (64)). As we can see in Figure (64), similar to the undirected version, the

distance between the z-scores for each of the C̄w evaluated under the DWCM and the DECM

continuously increases during the period 2002 to 2006, and then decreases dramatically after

the financial crisis.
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Figure 61: Evolution of z-scores for s̄unnn (panel a), runw (panel b), and C̄un
w (panel c) evaluated

under the UWCM (red dashed lines) and the UECM (blue dashed lines).
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Figure 62: Evolution of z-scores for rin−in
w (panel a), rin−out

w (panel b), rout−in
w (panel c), and

rout−out
w evaluated under the DWCM (red dashed lines) and the DECM (blue dashed lines).
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Figure 63: Evolution of z-scores for s̄in−in
nn (panel a), s̄in−out

nn (panel b), s̄out−in
nn (panel c), and

s̄out−out
nn evaluated under the DWCM (red dashed lines) and the DECM (blue dashed lines).
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Figure 64: Evolution of z-scores for C̄cyc
w (panel a), C̄mid

w (panel b), C̄ in
w (panel c), and C̄out

w

evaluated under the DWCM (red dashed lines) and the DECM (blue dashed lines).
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5 Conclusions

In this study, we investigated the structural correlations in the e-MID network. We find

that the observed structural correlations can vary across different versions of the network

(binary vs weighted and undirected vs directed). In the undirected version of the network,

the mixing is disassortative in both the binary and the weighted case. In addition, when the

directions of the edges are taken into account, we find that among the four mixing categories

(i.e. in-in, in-out, out-in, and out-out), the global assortativity in the out-in category comes

closest to the mixing observed in the undirected network. The similarity between these two

quantities is suggested in the study by van der Hoorn and Litvak (2015). Due to the fact that

only in the out-in mixing category the considered edge (see the out-in category in Figure (1))

contributes to the node degrees on both of its sides, this mixing category can be considered

a generalization of the mixing in undirected networks. During our analysis of the evolution

of the third order correlations among banks over time, we detected dramatic changes in the

network structure surrounding the recent financial crisis in 2007. More specifically, in the

weighted network, the averages of the local weighted clustering coefficients appear elevated

from the adoption of the Euro up until 2006, and then decrease dramatically around the

time of the financial crisis. We also report strong indications of elevated shared risk in the

network, evidenced by the prevalence of the “middleman” and “inward” types of clustering

in the network.

Moreover, by employing the various configuration models, we examined whether the

information encoded in the local constraints (like the observed degree sequence and/or the

strength sequence of a network) can explain higher order structural correlations. We find

that, in the binary case, the degree sequence is informative in terms of explaining the main

features of the structural correlations in the e-MID network. However, under closer scrutiny,

the binary e-MID network does display some patterns that cannot simply be explained by

the degree sequence in conjunction with the configuration model.

In the weighted version of the network, for the most part, the structural correlations

in the observed e-MID network are deviating strongly from their respective expectations

evaluated under the Weighted Configuration Models, which capture only the heterogeneity

in the strength sequence(s) (i.e. the UWCM in the undirected version and the DWCM

in the directed version). One possible explanation is that while all measures of structural

correlations used in the weighted network depend on the elements of both the adjacency

as well as the weighting matrices, neither the UWCM or DWCM utilize information about

the node degrees (degree sequence), which is, in fact, found to be more important than the
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strength sequence in reproducing the topological properties of real world networks (see, for

example, Squartini et al., 2011a, Squartini et al., 2011b; Squartini et al., 2015).

Due to the failures of the UWCM and the DWCM, we consider the family of Enhanced

Configuration Models, which constrains the degree as well as the strength sequences of

the randomized ensemble to match those of the observed network on average (i.e. UECM

in the undirected case and the DECM in the directed case). Our findings indicate that

the randomized ensembles produced by the Enhanced Configuration Model have a much

greater predictive power. This is in line with what was found in previous studies such as

Mastrandrea et al. (2014) and Squartini et al. (2015), and is not very surprising since the

Enhanced Configuration Models utilize more information when replicating the structural

correlations of the observed network. The results obtained from the analysis of the DECM

confirms the role that the distribution of the in-coming and out-going degrees together with

their strengths (volumes) in directed weighted networks plays for the emergence of higher

order structural correlations.

Still, a detailed comparison between the observed network and the Enhanced Configu-

ration Models reveals that even this family of Configuration Models is not able to produce

accurate estimates for all the measures of structural correlations we used, meaning that

some of the patterns can be considered non-random or unexplained by the models. For

instance, in the undirected network, we find that even when using the UECM, the weighted

assortativity deviates significantly from the respective expected value in a couple of times.

In the directed weighted network, the global weighted assortativity in the in-in as well as

in the in-out mixing categories and the average of the local weighted clustering coefficients

of “inward”,“outward”, and “cyclical” clustering also display patterns in several quarters,

mainly from 2002 to 2006, that deviate from the expectations based on the configuration

model. The high degree of clustering in this episode is the one characteristic that can not

be explained satisfactorily via the influence of lower-order characteristics like the degree and

strength sequences. Hence, this finding points to a behavioral change in the formation of

the credit network: A deliberate increase of indirect exposure through multiple credit rela-

tions. Interestingly, with the crisis year 2007, we find an abrupt reduction of all clustering

coefficients to their “normal” levels implied by the degree and strength sequences.

The Enhanced Configuration Models also fail to reproduce the local behavior of certain

banks captured by the local indicators of structural correlations. Unfortunately, because of

the lack of more detailed information about the banks in the system, we can not identify the

factors for the formations of such deviating patterns.
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Interestingly, similar to the study of Squartini et al. (2013) 10, we also observe the evi-

dence for structural changes when comparing the weighted version of the e-MID network with

the weighted configuration models. More specifically, the distance between the predictions

of the Weighted Configuration Models and of the Enhanced Configuration Models for the

averages of local weighted clustering coefficients continuously increases from the adoption of

the Euro up until the financial crisis in 2007 and then sharply decreases after that. This re-

sult can be interpreted as an indication of structural changes in the network associated with

these two critical events. It also suggests that the importance of particular basic features

of a network (like its degree sequence or its strength sequence) for the emergence of higher

order correlation structures can vary over time.

Due to issues of confidentiality, in many cases, the biggest challenge in the analysis of

complex real financial systems lies in the utilization of the limited available information.

Our results can be understood as an evaluation of the potential of configuration models to

reconstruct higher order topological properties of a network from limited information (e.g.

see Mastrandrea et al., 2014; Cimini et al., 2015a). Meaningful systemic risk evaluation can

be conducted on reconstructed networks only to the extent to which the reconstruction is

reliable (see, for example, Cimini et al., 2015b).

In addition, the configuration models translate the local constraints in the observed

network into hidden variables associated with the individual banks. It would be interesting

to investigate whether some individual node characteristics (i.e. non-topological properties)

correlate with the extracted hidden variables (see, for example, Garlaschelli and Loffredo,

2004; Garlaschelli et al., 2007; Garlaschelli and Loffredo, 2008; Almog et al., 2015), however,

such additional information is unfortunately not available in our data set. This can be a

fruitful direction for future research into financial networks.

Moreover, since the Exponential Random Graph Model is generic and flexible enough,

one may want to investigate the extent to which it can be useful to use other statistics of the

observed network as ensemble constraints. For instance, the average degree of the nearest

neighbors or the local clustering coefficients might also prove informative in explaining par-

ticular topological properties of the observed network (see, for example, Park and Newman

(2004) and Bianconi (2009) for employing different constraints). In addition, since the sec-

ond and third order structural correlations are the main focus of this study, we suggest that

the role of various constraints for the emergence of higher order correlations (or motifs) and

for the meso-scale network structures such as the core-periphery and community structures

10Squartini et al. (2013) focus on the analysis of the binary version of the network of interbank exposures
among Dutch banks over the period 1998-2008.
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should be studied further.
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7 Appendix

Assortativity Coefficients

Overall Assortativity

In an undirected network, define the list of m edges {AeBe}me=1, where for each index

e, the two nodes Ae, Be stand for the ends of an edge. Note that, the overall assortativity
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indicator runbin can be calculated via {kun
i }ni=1 and {kun

nn,i}ni=1 as

runbin =

∑n

i=1 (k
un
i )2kun

nn,i − 1
2m

[
∑n

i=1 (k
un
i )2]2

∑n

i=1(k
un
i )3 − 1

2m
[
∑n

i=1 (k
un
i )2]2

, (44)

where m = 1
2

∑n

i=1 k
un
i (e.g. Park and Newman, 2003).

In a directed network, suppose that we have a list of M edges {AeBe}Me=1, where for each

index e, the two nodes Ae, Be respectively stand for the source and target nodes (note that

M =
∑n

i=1 k
in
i =

∑n

i=1 k
out
i ).

A B

Four combinations of correlations over all edges:�� − �� , �� − � , � − �� , � −�
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Figure 65: In-coming, out-going degrees to two vertices of an edge in directed networks.

Each node Ae or Be has an in-coming degree and an out-going degree (see Figure (65)).

Consequently, we have four combinations of degrees associated with each edge as men-

tioned in Figure (1). Therefore, regarding the degree dependencies, four separate indica-

tors can be obtained, i.e. rin−in
bin , rout−in

bin , rin−out
bin , rout−out

bin . Similar to the undirected case,

mathematically, these measures of overall assortativity actually depend on the degree se-

quences {kin}ni=1, {kout}ni=1 as well as the sequences of the average nearest neighbor degrees

kin−in
nn,i , kin−out

nn,i , kout−in
nn,i , kout−out

nn,i (e.g. Piraveenan et al., 2012; van der Hoorn and Litvak, 2015).

More specifically, accordingly, they are given by

rin−in
bin =

1
2
[
∑n

i=1 (k
in
i )2kin−in

nn,i + kin
i kout

i kout−in
nn,i ]− 1

M
[
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i=1 (k
in
i )2
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i=1(k
in
i kout

i )]
√

{
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in
i )3 − 1

M
[
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in
i )2]2}{

∑n

i=1(k
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i )2kout

i − 1
M
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i kout

i )]2}
, (45)
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rin−out
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and
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(48)

Local Assortativity

The local assortativity statistics is obtained as the (unbiased) contribution of individual

nodes to the overall (global) assortativity. The basic idea is that the numerator in the

Pearson correlation coefficient proposed by Newman (2003) can be reformulated based on

the contribution of individual nodes instead of edges (e.g. Piraveenan et al., 2010; Piraveenan

et al., 2012).

It should be emphasized that, for the directed version of the measure of local assortativity

introduced in Piraveenan et al. (2012), the two in-out and out-in degree dependencies are

not differentiated, when in fact they exhibit totally different behaviors (as found in Foster

et al. (2010) and in Sec. 3 of our study). In our study, the contributions to the in-out and

out-in degree dependencies are distinguishable.

We denote the local assortativity measures for a given node i as ρin−in
i , ρin−out

i , ρout−in
i ,

and ρout−out
i corresponding to the four mixing categories in the directed version and ρuni is

used for the undirected version. Note that the following equalities must hold:

runbin =
n

∑

i=1

ρuni , (49)

rin−in
bin =

n
∑

i=1

ρin−in
i , (50)
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rin−out
bin =

n
∑

i=1

ρin−out
i , (51)

rout−in
bin =

n
∑

i=1

ρout−in
i , (52)

rout−out
bin =

n
∑

i=1

ρout−out
i . (53)

First, we define

µun =
1

2m

n
∑
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(kun
i )2, (54)
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M
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i )2, (56)

and

µin−out = µout−in =
1

M

n
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(kin
i kout

i ). (57)

Note that, in the undirected case, it can be shown that µun is equal to the average of the

degrees of the target and source nodes in the edge list {AeBe}me=1, i.e. µun = 1
2m

(
∑m

e=1 k
un
Ae

+
∑m

e=1 k
un
Be
). Similarly, in the directed case, given the edge list {AeBe}Me=1, it can be shown

that µin−in and µout−out are respectively equal to the averages of the in-coming and out-going

degrees from target and source nodes in the edge list. Mathematically, µin = 1
M

∑M

e=1 k
in
Be

and

µout =
1
M

∑M

e=1 k
out
Ae

. In contrast, µin−out (µout−in) gives the average of out-going (in-coming)

degrees of the target (source) nodes in the edge list. We have that µin−out =
1
M

∑M

e=1 k
in
Ae

and µout−in = 1
M

∑M

e=1 k
out
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.

Second, we define
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The denominators in Eqs. (44), (45), (46), (47), (48) are respectively equal to σ2
un, σinσin′ ,

σin′σout′ , σoutσin, and σoutσout′ .

By decomposing the overall assortativity coefficient runbin in Eq. (44), we obtain the local

assortativity indicators. More specifically, the contribution of node i to r is

ρuni =
(kun

i )2kun
nn,i − (kun

i )2µun

σ2
un

. (63)

Similarly, in the directed case, for each node i, we have four local assortativity indicators:

ρin−in
i =

kin
i [kin

i ∗ (kin−in
nn,i − µin−out) + kout

i (kout−in
nn,i − µin−in)]

2σinσin′

, (64)

ρin−out
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, (65)
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nn,i − µout−in) + kin

i (kin−out
nn,i − µout−out)]

2σoutσout′
. (67)
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