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Abstract

We show that continuous models of stimulus-driven attention can account for
skewness-relatedpuzzles in decision-makingunder risk. First, wedelineate that these
models provide a well-defined theory of choice under risk. We therefore prove that in
continuous—in contrast to discrete—models of stimulus-driven attention each lottery
has a unique certainty equivalent that is monotonic in probabilities (i.e., it monotoni-
cally increases if probability mass is shifted to more favorable outcomes). Second, we
show that whether an agent seeks or avoids a specific risk depends on the skewness
of the underlying probability distribution. Since unlikely, but outstanding payoffs at-
tract attention, an agent exhibits a preference for right-skewed and an aversion toward
left-skewed risks. While cumulative prospect theory can also account for such skew-
ness preferences, it yields implausible predictions on their magnitude. We show that
these extreme implications can be ruled out for continuousmodels of stimulus-driven
attention.
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1 Introduction

Few individuals are globally risk averse or risk seeking. Instead, many individuals buy
insurance (i.e., behave risk averse) and gamble in casinos (i.e., behave risk seeking) at the
same time. Whether an agent seeks or avoids a specific risk depends on the skewness of
the underlying probability distribution. Typically, agents insure against large potential
losses that rarely occur (e.g., Sydnor, 2010; Barseghyan et al., 2013). For example, natural
disasters belong to this group of left-skewed risks. At the same time, individuals seek
right-skewed risks such as casino gambling according to which a large gain is realized
with a very small probability (e.g., Golec and Tamarkin, 1998; Garrett and Sobel, 1999;
Forrest et al., 2002). The observation that agents tend to seek right-skewed and avoid
left-skewed risks (e.g., Ebert and Wiesen, 2011; Ebert, 2015) is referred to as skewness pref-
erences.

A compelling explanation for skewness preferences is still missing. As expected utility
theory (EUT) implies a valuation for risky options that is linear in probabilities, it predicts
either risk-averse or risk-seeking behavior. Thus, it cannot account for risk attitudes that
depend on the skewness of a given probability distribution. In order to match experimen-
tal and empirical evidence, cumulative prospect theory (CPT; Tversky and Kahneman,
1992) has proposed a non-linear probabilityweighting. As a CPT agent overweights small
probabilities by assumption, she exhibits a preference for right-skewed and an aversion
toward left-skewed risks. This mechanism, however, does not offer any psychologically
sound explanation for why skewness matters. In addition, cumulative prospect theory
makes implausible predictions on the magnitude of skewness preferences (e.g., Rieger
and Wang, 2006; Azevedo and Gottlieb, 2012; Ebert and Strack, 2015, 2016). Altogether,
neither expected utility theory nor cumulative prospect theory convincingly address the
role of skewness in choice under risk.

Models of stimulus-driven attention offer a more intuitive explanation for skewness
preferences. According to these models, individuals are local thinkers whose attention is
automatically directed toward certain outstanding choice features while less attention-
grabbing aspects tend to be neglected.1 Similar to cumulative prospect theory, these ap-
proaches incorporate probability weighting, but the distortion of a probability weight is
endogenously determined by the relative size of the corresponding payoff. Probabili-
ties of outstanding outcomes are inflated, while probabilities of less attention-grabbing
outcomes are underweighted. In a typical lottery game, for instance, the large jackpot
stands out relative to the rather low price of the lottery ticket, thereby attracting a great
deal of attention. Overweighting the probability of winning the salient jackpot, a local
thinker behaves risk seeking. In contrast, an agent typically demands insurance against
unlikely, but potentially large losses. Compared to the rather small insurance premium
the large loss stands out, its probability is inflated, and a local thinker behaves risk averse.
Importantly, this line of argumentation holds for different models of stimulus-driven at-

1We have borrowed the notion of local thinking from a related model by Gennaioli and Shleifer (2010).
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tention, that are, salience theory of choice under risk (Bordalo et al., 2012, henceforth: BGS)
and a model of focusing (Kőszegi and Szeidl, 2013, henceforth: KS). Accordingly, models
of stimulus-driven attention can account for both a preference for right-skewed and an
aversion toward left-skewed risks.

Our contributions in this paper are threefold. First, we show that continuousmodels of
stimulus-driven attention satisfy basic axioms of choice under risk. In particular, for any
lotterywith finitelymany outcomes, there exists awell-defined certainty equivalent that is
monotonic in outcomes and probabilities. Kontek (2016) has shown that in discretemodel
variants (i) certainty equivalents may not exist and (ii) monotonicity in probabilities may
be violated. These results hinge on the assumption that in the discrete salience model, for
instance, the objective probability of the ith most salient outcome is discounted via a factor
δi+1 for some salience-parameter δ < 1. Then, for example, monotonicity in probabilities
may be violated if the probabilitymass is shifted froma low, salient outcome to a larger but
less salient outcomewhich is strongly discounted. BGSuse the simplified, discrete version
of their model for analytical ease which arguably, it is best thought of as an approximation
to the more realistic, but also complex, continuous model. We show that all problems
raised by Kontek are resolved in the continuous salience and focusing models.

Second, we show that models of stimulus-driven attention predict skewness prefer-
ences. For the discrete salience model, Bordalo et al. (2013a) have argued that salient
thinkers like right-skewed and dislike left-skewed assets, but they have not precisely dis-
entangled a salient thinker’s preferences for risk and skewness. In contrast, we derive
skewness preferences formally, that is, we show that a salient thinker is more likely to
choose a binary risk if it is ceteris paribus (i.e., for a given expected value and variance)
skewed further to the right. In addition, we single out the channel (contrast effects) through
which the salience model predicts skewness preferences. The contrast effect means that,
when comparing a risky and a safe option, a risky outcome receives themore attention the
more it differs from the safe option’s payoff. As the models of salience (BGS) and focusing
(KS) share the assumption of contrast effects, both predict skewness preferences.

Third, we show that unrealistic predictions of cumulative prospect theory on themag-
nitude of skewness preferences (e.g., Rieger andWang, 2006; Azevedo and Gottlieb, 2012;
Ebert and Strack, 2015, 2016) can be resolved in the continuous salience and focusingmod-
els. For CPT agents, there always exists a sufficiently skewed, small binary risk with neg-
ative expected value that is attractive. As a consequence, a CPT agent either gambles until
bankruptcy or, if she anticipates her behavior, never starts to gamble (Ebert and Strack,
2015, 2016). In addition, gambling at risk of an arbitrarily large expected loss may at-
tract CPT agents (Rieger andWang, 2006; Azevedo and Gottlieb, 2012). For appropriately
chosen functional forms, models of stimulus-driven attention do not share these extreme
predictions.

Beyond the examples given at the beginning of this paper, skewness preferences are
also relevant in several other important economic—including many financial—decision
situations. Barberis (2013), for instance, argues that skewness preferences can account for
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the puzzle that the average return of stocks conducting an initial public offering (IPO) is
below that of comparable stocks that did not conduct an IPO. This could be explained
by the fact that stocks that conduct an IPO are typically right-skewed and therefore over-
priced (Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013). In this line, Green and
Hwang (2012) find that the more skewed the distribution of expected returns is, the lower
the long-term average return of an IPO-stock is. Chen et al. (2001) even argue that man-
agers strategically disclose information in order to create positive skewness in the distri-
bution of stock returns. This also relates to the well-known growth puzzle (Fama and
French, 1992) according to which value stocks, which are underpriced relative to finan-
cial indicators, yield higher average returns than (overpriced) growth stocks. Bordalo et al.
(2013a) suggest that this discrepancy arises as value stocks are typically left-skewedwhile
growth stocks are usually right-skewed. Relatedly, skewness preferences play an impor-
tant role for portfolio selection (Chunhachinda et al., 1997; Prakash et al., 2003; Mitton and
Vorkink, 2007). They further allow us to understand the prevalent use of technical analy-
sis for asset trades, even though it is futile in light of the efficient market hypothesis (Ebert
and Hilpert, 2016). Finally, a preference for skewness also matters in labor economics as
Hartog and Vijverberg (2007) or Berkhout et al. (2010) argue that workers accept a lower
expected wage if the distribution of wages in a cluster (i.e., education-occupation com-
bination) is right-skewed. Altogether, skewness preferences help to understand various
puzzles of economic decision-making.

We proceed as follows. Throughout the paper, we restrict our analysis to the model
of salience (BGS) while we establish the analogous results for the focusing model (KS)
in Appendix B. In Section 2, we present the continuous salience model. Subsequently,
we prove that in this model a lottery has a well-defined certainty equivalent that satisfies
monotonicity (Section 3). In Section 4, we show that the salience model predicts skewness
preferences. In Section 5, we delineate that puzzles on the magnitude of skewness pref-
erences emerging for CPT agents can be resolved in the salience model. Finally, Section 6
discusses our findings and concludes. All proofs are relegated to Appendix A.

2 Model

According to salience theory of choice under risk, a choice problem is defined by some
choice set C, which contains a finite number of lotteries yielding risky monetary payoffs,
and the corresponding space of states of the world S. Each state of the world corresponds
to a payoff-combination of the available lotteries. Suppose an agent chooses a lottery from
the set C := {Lx, Ly} where Lx := (x1, p1; . . . ;xn, pn) and Ly := (y1, q1; . . . ; ym, qm) with
n,m ∈ N and

∑n
i=1 pi =

∑m
i=1 qi = 1. Thereby the payoffs xi denote pairwisely distinct

monetary outcomes, which occur with strictly positive probabilities pi > 0 for 1 ≤ i ≤ n

(we impose analogous conventions for lottery Ly’s outcomes). If a lottery is degenerate,
we call it a safe option. The decision-maker evaluates monetary outcomes via a strictly
increasing value function u(·) with u(0) = 0. Each state of the world sij := (xi, yj) occurs
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with some objective probability πij . According to expected utility theory, lottery Lx’s
expected utility U(·) equals

U(Lx) =
∑
sij∈S

πiju(xi).

According to salience theory of choice under risk, a decision-maker evaluates a lottery
by assigning a subjective probability to each state sij that depends on the state’s objective
probability πij and on its salience. In particular, the salience of state sij ∈ S is determined
by a symmetric, bounded, and continuously differentiable salience function σ(·, ·) that
satisfies the following three properties:

1. Ordering. Let µ = sgn(u(xi)− u(yj)). Then for any ε, ε′ ≥ 0 with ε+ ε′ > 0,

σ(u(xi) + µ ε, u(yj)− µ ε′) > σ(u(xi), u(yj)).

2. Diminishing sensitivity. Let u(xi), u(yj) ≥ 0. Then for any ε > 0,

σ(u(xi) + ε, u(yj) + ε) < σ(u(xi), u(yj)).

3. Reflection. For any u(xi), u(yj), u(xk), u(yl) ≥ 0, we have

σ(u(xi), u(yj)) < σ(u(xk), u(yl))

if and only if σ(−u(xi),−u(yj)) < σ(−u(xk),−u(yl)).

We say that a state sij is the more salient the larger its salience value σ(u(xi), u(yj)) is.
Thus, the ordering property implies that a state is the more salient the more the lotteries’
payoffs in this state differ. In this sense ordering captures the contrast effect, according to
which a large difference in the values assigned to the outcomes in a given state attracts a
salient thinker’s attention.2 Diminishing sensitivity reflectsWeber’s law of perception and
implies that the salience of a state decreases if the outcomes’ values uniformly increase in
absolute terms. Hence diminishing sensitivity captures the level effect according to which
a given contrast in the value of outcomes is more salient for lower outcome levels. As
contrast and level effects are more intuitive and easier to understand than the properties
of ordering and diminishing sensitivity, we refer to these notions whenever it is possible
in the following analysis. Throughout the paper, we use σβ,θ(x, y) := β(x−y)2

(|x|+|y|+θ)2 for some
β, θ > 0 as our leading example of a parametric salience function.

Following the smooth salience characterization proposed in Bordalo et al. (2012, page
1255), each state sij receives the salience weight ∆−σ(u(xi),u(yj)) for some salience function
σ(·, ·) and some constant ∆ ∈ (0, 1] that captures an agent’s susceptibility to salience. A
rational decision-maker is captured by ∆ = 1, while the smaller ∆ is, the stronger the
salience bias is. We call an agent with ∆ < 1 a salient thinker.

2If we fix one argument of the salience function then the ordering property is equivalent to the contrast
effect, that is, the salience of a state increases if and only if the difference in values increases.
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Definition 1. A salient thinker’s decision utility U s(·) for Lx ∈ {Lx, Ly} is given by

U s(Lx) =
∑
sij∈S

πij u(xi) ·
∆−σ(u(xi),u(yj))∑

sij∈S πij ∆−σ(u(xi),u(yj))
.

This gives the decision utility according to the continuousmodel proposed by BGS, where
the normalization factor in the denominator ensures that the distorted probabilities sum
up to one. Note that for safe options c ∈ R, we have U s(c) = U(c) = u(c). Hence, the
normalization ensures that a salient thinker’s valuation for a safe option c is undistorted,
irrespective of the composition of the choice set.

Importantly, the results that we derive in this paper do not hinge onmost assumptions
specific to the above salience model, but hold for a broader class of models that exhibit
contrast effects. We can relax, for instance, the assumption that agents evaluate lotteries
based on the objective state space. Indeed, our results would be identical if the salient
thinker considers a subset of the state space as long as each outcome of each option is in-
cluded in (at least) one of this subset’s states (see, for instance, themodel variant proposed
in Dertwinkel-Kalt and Köster, 2015). This is due to the fact that our analysis builds only
on choices between a lottery and a safe option. In Appendix B, we further present the
analogous results for the closely related focusing model (KS). According to focusing, an
agent’s attention directed to a given state is determined through a focusing function (i.e.,
the pendant to the salience function) that satisfies the contrast, but not the level effect.

3 Certainty equivalents and monotonicity

Models of choice under risk should allow certainty equivalents to be identified for all lot-
teries to ensure that a lottery’s evaluation is well-defined. Certainty equivalents are typi-
cally required to satisfy the axiom ofmonotonicity according towhich a lottery’s certainty
equivalent increases if either probability mass is shifted toward more favorable outcomes
or if some outcomes increase. We precisely define these properties as follows.

Definition 2. Let L := (x1, p1; . . . ;xn, pn) denote some lottery with xi ∈ R for all 1 ≤ i ≤ n.
Outcomes are ordered such that x1 < . . . < xn and probabilities p1, . . . , pn sum up to one.

(a) The certainty equivalent is defined as the minimum monetary sum c that makes a salient
thinker indifferent between taking lottery L and getting c for sure. Formally, suppose an
agent faces some choice set {L, c} comprising a lottery L and a safe option c. Then c is the
certainty equivalent to lottery L if and only if U s(L) = U s(c) .

(b) Denote L′ := (x1, p
′
1; . . . ;xn, p

′
n) where p′i = pi + ε and p′l = pl − ε for some i > l and

some ε > 0 and p′k = pk for all k 6= i, l. Suppose that c denotes the certainty equivalent to
L and c′ denotes the certainty equivalent to L′. The certainty equivalent is monotonic in
probabilities if and only if c′ > c.

6



(c) Denote L′′ := (x′′1, p1; . . . ;x
′′
n, pn) where x′′l > xl for some l ∈ {1, . . . , n} and x′′k = xk for

all k 6= l. Suppose that c denotes the certainty equivalent to L and c′′ denotes the certainty
equivalent toL′′. The certainty equivalent is monotonic in outcomes if and only if c′′ > c.

Kontek (2016) establishes that in the discrete salience model certainty equivalents do
not satisfy monotonicity in probabilities and may not even exist. We will illustrate that
these observations are artefacts of the simplified, discrete salience model that Kontek
(2016) analyzes. Here, the objective probability of the ith most salient outcome is dis-
counted via a factor δi+1 for some salience-parameter δ < 1. Therefore, a change in the
salience ranking of states induces a discontinuous jump in a salient thinker’s valuation for
a given lottery. As a consequence, for some lotteries a certainty equivalent may not exist.

For illustrative reasons, consider a binary lottery that pays $1 with probability p and
$0 with probability 1− p. If the lottery’s upside of winning $1 is unlikely (i.e., p is small),
a certainty equivalent—being close to the downside of winning $0—exists. Here, the lot-
tery’s upside is salient. If p increases gradually, the certainty equivalent increases like-
wise, which implies that the lottery’s upside becomes less and its downside becomesmore
salient, which however does not alter the salience weights. Note that we can find some
p̂ for which a certainty equivalent exists and the lottery’s up- and downside are equally
salient. According to the discrete model, a salient thinker’s valuation for the above lot-
tery drops discontinuously at p = p̂ because for larger p the downside becomes the most
salient outcome. Hence, there exist some ε > 0 such that for any p ∈ [p̂ − ε, p̂) no cer-
tainty equivalent exists (for a formal analysis, see Kontek, 2016). In addition, for lotteries
with more than two outcomes, monotonicity in probabilities may be violated if probabil-
ity mass is shifted from a low, salient outcome to a larger, but less salient outcome which
is strongly discounted.

BGS apply the simplified, discrete version of their model for analytical ease when the
continuous model would yield identical, but harder to derive, insights. In contrast, the
above counterintuitive properties rely on the use of the discrete model. We resolve the
issues of non-existing and non-monotonic certainty equivalents by investigating the more
involved continuous salience model proposed in the previous section. First, we show
that given continuous salience distortions each binary lottery has a well-defined certainty
equivalent, which also satisfies monotonicity in probabilities and outcomes. Second, we
generalize our findings toward lotteries with finitely many outcomes.

Binary lotteries. Suppose an agent faces a choice set {L, c}where L := (x1, p;x2, 1− p)
is a binary lottery with x2 > x1 and c denotes the option that pays an amount of c with
certainty. Then, lottery L is (weakly) preferred over the safe option c if and only if

U s(c) ≤ U s(L) =
u(x1) p ∆−σ(u(x1),u(c)) + u(x2) (1− p) ∆−σ(u(x2),u(c))

p ∆−σ(u(x1),u(c)) + (1− p) ∆−σ(u(x2),u(c))
=: f(c),
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while the safe option c is a salient thinker’s certainty equivalent to lottery L if and only if

c = u−1 (f(c)) .

For p = 0 the certainty equivalent is given by c = u−1(u(x2)) = x2 while for p = 1 it
is equal to c = u−1(u(x1)) = x1. We conclude that the certainty equivalent—given it
exists—lies between x1 and x2 for any p ∈ (0, 1) because u−1(·) is strictly increasing and
U s(L) is a convex combination of u(x1) and u(x2). Then,

u−1 ◦ f : [x1, x2]→ [x1, x2], c 7→ u−1(f(c))

is a well-defined continuous function on a closed, convex set which has—by Brouwer’s
fixed-point theorem—a fixed point. By the ordering property, σ(u(x1), u(c)) strictly in-
creases in c, while σ(u(x2), u(c)) strictly decreases in c. It follows that f(c) strictly de-
creases in c, so that the certainty equivalent is unique. Thus, for any p ∈ [0, 1] a well-
defined certainty equivalent c exists.

In order to verify monotonicity in probabilities and outcomes, we define

h(x1, x2, p, c) := u−1(f(c))− c

where c = c(x1, x2, p) denotes the unique certainty equivalent of lottery L. As ordering
implies that σ(u(x1), u(c)) strictly decreases in x1 and σ(u(x2), u(c)) strictly increases in
x2, we obtain that f(c) strictly increases in xk for k ∈ {1, 2}. Remembering that f(c) strictly
decreases in c, we have

∂h(x1, x2, p, c)

∂c
< 0 and ∂h(x1, x2, p, c)

∂xk
> 0, k ∈ {1, 2}.

In addition, straightforward computations show that

∂h(x1, x2, p, c)

∂p
= u′ (f(c))−1︸ ︷︷ ︸

>0

·
(
−∆1∆2(u(x2)− u(x1))

(p∆1 + (1− p)∆2)2

)
︸ ︷︷ ︸

<0

< 0,

where ∆k := ∆−σ(u(xk),u(c)) for k ∈ {1, 2}. The implicit function theorem then yields

∂c

∂p
= −

∂h(x1,x2,p,c)
∂p

∂h(x1,x2,p,c)
∂c

< 0 and ∂c

∂xk
= −

∂h(x1,x2,p,c)
∂xk

∂h(x1,x2,p,c)
∂c

> 0, k ∈ {1, 2}.

Hence a salient thinker’s certainty equivalent to any binary lottery is well-defined and
monotonic in probabilities and outcomes.

Lotteries with finitely many outcomes. We extend our preceding analysis and show
that also for amore general, discrete lotteryL := (x1, p1; . . . ;xn, pn) with n ≥ 2 pairwisely
distinct outcomes, a certainty equivalent exists and is well-defined. Consider again some
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choice set {L, c}, where option c gives the monetary outcome c with certainty. A salient
thinker (weakly) prefers lottery L to the safe option c if and only if

U s(c) ≤ U s(L) =

∑n
i=1 pi u(xi)∆

−σ(u(xi),u(c))∑n
i=1 pi ∆−σ(u(xi),u(c))

=: f(c).

Furthermore, without loss of generality, we label outcomes such that x1 < . . . < xn.
Note that a salient thinker’s certainty equivalent to L is implicitly given by c = u−1(f(c)).
Analogous to the case of a binary lottery, the continuous function u−1 ◦ f : [x1, xn] →
[x1, xn] has at least one fixed point due to Brouwer’s fixed-point theorem and we obtain
the following proposition.

Proposition 1 (Certainty equivalent to a discrete lottery). A salient thinker’s certainty equiv-
alent to a lottery with n ≥ 2 outcomes is unique and monotonic in outcomes and probabilities.

For a given lottery L, we can define a salient thinker’s risk premium r as the difference
in the lottery’s expected value E[L] and its certainty equivalent c, that is r := E[L] − c.
Given Proposition 1, a salient thinker’s risk premium for lottery L is well-defined. In the
next section, we will investigate a salient thinker’s risk preferences by determining the
size and the sign of her risk premium.

4 Risk attitudes and skewness preferences

We investigate how salience shapes risk attitudes by analyzing under which conditions a
salient thinker prefers a lottery over a safe option that pays the lottery’s expected value.
In Section 4.1, we show that salient thinkers are risk averse with respect to sufficiently left-
skewed lotteries and risk seeking with respect to sufficiently right-skewed lotteries. This
can explain the simultaneous demand for insurance and casino gambling. We thereby
extend findings by BGS (see their Section IV) to the continuous salience model. In Section
4.2, we precisely show that salient thinkers exhibit a preference for skewness. While for
general lotteries different notions of skewness exist, they coincide in the case of binary
gambles. We therefore restrict attention to binary lotteries. These are uniquely charac-
terized by their first three standardized central moments: expected value, variance, and
skewness. Thus, we can precisely analyze a salient thinker’s preferences over the skew-
ness of lotteries. We relate our findings to the growing literature on skewness preferences.

4.1 Stylized facts on skewness preferences

Suppose a decision-maker decides whether to buy some binary lottery L at its fair price.
Formally, the decision-maker faces the choice set {L,E[L]}where L := (x1, p;x2, 1− p) is
a binary lottery with outcomes x2 > x1 and the expected value E[L] := p ·x1 + (1−p) ·x2.
We refer to E[L] as the actuarially fair price of lottery L. In order to deal with indifference,
we say that the decision-maker buys the lottery at its fair price if and only if she strictly
prefers the risky option L over the safe option E[L].
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In line with BGS, in this section we assume a linear value function u(x) = x.3 Then, a
salient thinker chooses the safe option over the risky lottery if and only if

p · x1 + (1− p) · x2 ≥
p · x1 ·∆−σ(x1,E[L]) + (1− p) · x2 ·∆−σ(x2,E[L])

p ·∆−σ(x1,E[L]) + (1− p) ·∆−σ(x2,E[L])
.

Rearranging this inequality gives ∆−σ(x1,E[L]) ≥ ∆−σ(x2,E[L]), or, equivalently,

σ(x1,E[L]) ≥ σ(x2,E[L]).

Thus, whenever the lottery’s downside x1 is weakly more salient than its upside x2, the
agent behaves risk averse and prefers the safe option; otherwise, the agent chooses the
risky lottery. This highlights a crucial difference in probability weighting under salience
and cumulative prospect theory. While the CPT agent overweights small probabilities
independent of the corresponding outcome’s size, the salient thinker inflates decision
weights on salient outcomes.

On the one hand, salience distortions can induce risk-averse behavior. For illustrative
reasons, let x1 ≥ 0 and p ≤ 1/2. This immediately implies E[L]− x1 ≥ x2 − E[L], that is,
the contrast in the downside payoff and expected value exceeds the contrast in the upside
payoff and expected value. Thus, we obtain

σ(x1,E[L]) > σ(E[L],E[L] + E[L]− x1)

≥ σ(E[L],E[L] + x2 − E[L])

= σ(x2,E[L]),

where the first inequality follows from diminishing sensitivity, the second one from or-
dering, and the final equality from symmetry. We conclude that a salient thinker behaves
risk averse if a non-negative downside payoff is (weakly) less likely than the upside payoff.

On the other hand, a salient thinker might be risk seeking. As before, suppose x1 ≥ 0.
If the lottery’s upside is unlikely but large compared to its expected value, the salient
thinker might buy the lottery at its fair price. In fact, we can construct a binary lottery
with a salient upside so that the salient thinker goes for the risky instead of the safe option.
Note that ordering implies

lim
p→1

σ(x2,E[L]) = σ(x2, x1) > σ(x1, x1) = lim
p→1

σ(x1,E[L]).

Since the salience function is continuous, there exists some p̂ = p̂(x1, x2) ∈ (1/2, 1) such
that for any p > p̂ the lottery’s upside is salient and the salient thinker chooses the risky
option. Due to diminishing sensitivity, a salient thinker behaves risk seeking only if the
lottery’s upside x2 occurs with a strictly lower probability than its non-negative downside

3In contrast to expected utility theory, salience theory does not have to assume a curved value function
in order to generate risk-averse or risk-seeking behavior. As salience distortions suffice to generate different
risk attitudes, the use of a linear value function is justified (Bordalo et al., 2012).
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x1. More generally, we obtain the following proposition.4

Proposition 2 (Risk attitudes). Suppose a salient thinker chooses between the binary lottery
L := (x1, p;x2, 1− p) and the safe option that pays the lottery’s expected value. Then, there exists
some value p̂ = p̂(x1, x2) ∈ (0, 1) such that she prefers the safe option if and only if p ≤ p̂.

Next, we relate a salient thinker’s risk attitude to a lottery’s skewness. Ebert (2015)
defines the skewness of a binary lottery as its third, standardized central moment

S(L) := E

( L− E[L]√
V ar(L)

)3
 =

2p− 1√
p(1− p)

(1)

where V ar(L) := p(1 − p)(x2 − x1)2 denotes the variance of lottery L. Other notions of
skewness refer to “long and lean” tails of the risk’s probability distribution. There exist
several measures of skewness, which are, however, all equivalent for binary risks (Ebert,
2015, Proposition 2). Thus, the impact of skewness on risk attitudes can only be unam-
biguously assessed for binary lotteries. In the following, we adopt the short, intuitive
notion of skewness which refers to the probability that the lottery’s downside payoff is
realized.

Definition 3 (Skewness of binary risks). Consider two binary lotteries Lx := (x1, p;x2, 1−p)
and Ly := (y1, q; y2, 1 − q) with x2 > x1 and y2 > y1. We say that Lx is more (less, equally)
skewed than Ly if p > q (p < q, p = q). Lottery Lx is called right-skewed if p > 1

2 , left-skewed if
p < 1

2 and symmetric otherwise.

From equation (1) it is straightforward to see that S < 0 for any left-skewed lottery,
S > 0 for any right-skewed lottery and S = 0 for any symmetric lottery. Therefore, we
also say that a left-skewed (right-skewed) lottery is negatively (positively) skewed and that
a lottery is more skewed the larger S is.

The distribution of various downside risks such as car accidents or natural disasters
is typically left-skewed: these events are rare, but if they happen they are severe. In this
context, optionE[L]may reflect a fair-priced insurance contract against the downside risk.
The distribution of casino gambling, lottery games or specific investments, on the other
hand, is typically right-skewed: gains are large, but occur rarely. Here, option E[L] can be
interpreted as the fair price to bet on an upside risk.

The finding that agents seek right-skewed risks but tend to avoid left-skewed risks is
established in the literature as skewness preferences. A tendency to choose right-skewed
risks has been observed by Golec and Tamarkin (1998) with respect to horse-race betting,
byGarrett and Sobel (1999) in the context of lottery games, and in several studies on invest-
ment behavior (Boyer et al., 2010; Bali et al., 2011; Green and Hwang, 2012; Conrad et al.,
2013). At the same time, consumers insure against left-skewed risks as demonstrated by
Sydnor (2010) and Barseghyan et al. (2013) who analyze deductible choices in auto and

4BGS derive a similar result for the discrete salience model.
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home insurance contracts. The following stylized examples illustrate that salience theory
can account for this empirical evidence.5

Example 1 (Insurance). Suppose the agent has to decide whether to pay the fair insur-
ance premium in order to avoid a binary risk L. In a typical insurance example, the risky
option yields a large loss (i.e., x1 < 0) with a small probability and zero payoff (i.e., x2 = 0)
otherwise. Then, according to Proposition 2, a salient thinker buys the insurance if the
probability of the loss is sufficiently small.

Example 2 (Gambling). Suppose the agent decides whether to buy a lottery ticket at
its fair price. When participating in the lottery, she could win either a large amount (i.e.,
x2 > 0) or nothing (i.e., x1 = 0). Due to diminishing sensitivity, the salient thinker might
prefer the gamble only if the risk is right-skewed. According to Proposition 2, the salient
thinker buys the lottery ticket if the probability of the gain is sufficiently small.

Example 3 (Investments). Suppose the agent decides whether to buy an asset—that ei-
ther pays x1 < 0 or x2 > 0 in the future—at its fair price. If the probability of the gain
is sufficiently high, the downside payoff x1 stands out and the salient thinker does not
invest in the asset. If the probability of the loss is high, the upside payoff x2 is salient
and the decision-maker buys the asset at its fair price. This implies a tendency to buy
right-skewed assets, as Bordalo et al. (2013a) have already pointed out.6

4.2 Salience and skewness preferences

In linewith the empirical evidence, salience theory suggests that the skewness of the risk’s
probability distribution affects risk attitudes. Most field studies, however, do not precisely
test for the role of skewness in risk-taking as the variance and skewness of typical casino
gambling or lottery games are not independent, but are highly correlated. Thus, risk and
skewness preferences cannot be disentangled. Ebert (2015) argues, for instance, that in-
ferring skewness preferences at the horse track from the study by Golec and Tamarkin
(1998) might be misleading. In fact, increasing the skewness of a stylized horse race bet
L = (1/p, p; 0, 1 − p), while holding the expected value and the variance (i.e., the cor-
responding risk) constant, does not yield a new horse race bet, but a lottery with very
different properties. Ebert (2015) concludes that “a choice between two horse-race bets is
never a choice between different levels of skewness only.”

5Notably, salience theory can also explain the demand for small scale insurance, e.g. insurance for con-
sumption goods such as TVs or smartphones, where the potential loss is high relative to the insurance pre-
mium but not large overall. Cicchetti and Dubin (1994), for instance, report that many consumers pay a
substantial premium in order to avoid the small risk (less than one percent) of having to pay $55 for repair in
case their internal telephone wiring breaks down.

6While Bordalo et al. (2013a) state that salience predicts a “taste for skewness” in the context of asset
choices, we will precisely disentangle a salient thinker’s preferences for risk and skewness. Thereby, we are
the first to formally derive a salient thinker’s preference for skewness.
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Hence, in order to disentangle a salient thinker’s preference for skewness from her
preference for risk, a lottery’s skewness needs to be varied for a fixed expected value and
variance. As for given outcomes x1 and x2 a change in the probability p also induces a
change in the lottery’s expected value E[L] and its variance V ar(L), we cannot infer from
Proposition 2 whether it is the skewness of the risk that induces the aversion toward left-
skewed and the preference for right-skewed lotteries.

Lemma 1 (Ebert (2015)’s moment characterization of binary risks). For constants E ∈ R,
V ∈ R+ and S ∈ R, there exists exactly one binary lottery L = (x1, p;x2, 1 − p) with x2 > x1

such that E[L] = E, V ar(L) = V and S(L) = S. Its parameters are given by

x1 = E −

√
V (1− p)

p
, x2 = E +

√
V p

1− p
, and p =

1

2
+

S

2
√

4 + S2
. (2)

For a proof of Lemma 1 see Ebert (2015). In the following, we will refer to the unique
binary lottery that has expected valueE, variance V , and skewness S asL(E, V, S). Using
this moment characterization of binary risks, we can assess the impact of skewness on the
salient thinker’s risk attitude. As before, we assume u(x) = x so that the salient thinker’s
risk premium for the binary lottery L(E, V, S) equals

r(E, V, S) =
√
V p(1− p) ·

(
∆−σ(x1,E) −∆−σ(x2,E)

p∆−σ(x1,E) + (1− p)∆−σ(x2,E)

)
(3)

where outcomes xk = xk(E, V, S), k ∈ {1, 2}, and probability p = p(S) are defined in (2).
A salient thinker strictly prefers the risky option L(E, V, S) over the safe option E if and
only if the lottery’s risk premium is strictly negative, or, equivalently, its upside payoff is
salient. We conclude:

Proposition 3 (Skewness preferences). For a given expected value E and variance V , there
exists a unique skewness threshold value Ŝ = Ŝ(E, V ) <∞ such that r(E, V, Ŝ) = 0. A salient
thinker strictly prefers the binary lottery L(E, V, S) over its expected valueE if and only if S > Ŝ.

Suppose the lottery’s expected value andvariance are fixed. Then, by (2) increasing the
lottery’s skewness S increases the probability that its downside payoff is realized. If the
lottery’s downside payoff becomes more likely, the difference between its upside payoff
and the expected value increases, therebymaking the lottery’s upsidemore salient. At the
same time, the difference between the downside payoff and the expected value decreases
so that the lottery’s downside becomes less salient. Hence, a salient thinker is the more
likely to take a binary risk the more skewed this risk is. By continuity of the salience
function we obtain the following corollary.

Corollary 1. For a given expected valueE and variance V , there exists a sufficiently skewed binary
lottery for which a salient thinker is willing to pay more than its fair price E.
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Comparative statics of the skewness threshold value. Webrieflydiscuss how the thresh-
old value Ŝ depends on the lottery’s expected value E.

Lemma 2. The threshold value Ŝ defined in Proposition 3 satisfies

∂

∂E
Ŝ(E, V ) < 0 if and only if ∂

∂E

(
σ(x2(E, V, S), E)− σ(x1(E, V, S), E)

)∣∣∣∣
S=Ŝ

> 0.

We use the above Lemma to characterize the relationship between skewness prefer-
ences and expected payoffs using our leading example of a salience function, σβ,θ.

Corollary 2. Consider the lottery L(E, V, Ŝ) with outcomes x̂k := xk(E, V, Ŝ) for k ∈ {1, 2}.
For salience function σβ,θ we obtain:

∂

∂E
Ŝ(E, V )

> 0, if x̂1 < 0 < x̂2,

< 0, otherwise.

This implies that for any lottery with x̂1 ≥ 0 or x̂2 ≤ 0 skewness preferences become
stronger if the lottery’s expected valueE increases in absolute terms. To see this, note that
diminishing sensitivity implies Ŝ > 0 if x̂1 ≥ 0 while it yields Ŝ < 0 if x̂2 ≤ 0. Hence, for
these lotteries, an absolute increase in the expected value E shifts the threshold value Ŝ
closer to zero and thereby reinforces a salient thinker’s preference for right-skewed and
her aversion toward left-skewed risks. In contrast, for lotteries with x̂1 < 0 < x̂2 skewness
preferences become stronger if the expected value decreases in absolute terms.

Skewness preferences and the contrast effect. Intuitively, in the salience model, skew-
ness preferences are driven by the contrast effect. The stronger the contrast effect, themore
pronounced is a large difference between a lottery’s payoff and its expected value. For a
positively skewed lottery, the upside payoff differs by more from the expected value than
the downside payoff, while the opposite holds for a negatively skewed lottery. Therefore,
if the contrast effect becomes stronger, a salient thinker’s preference for positive skewness
is enhanced. We formalize this idea as follows.

Definition 4. We say that the contrast effect is stronger for salience function σ than for salience
function σ̂ if for any y ∈ R the difference σ(x, y)− σ̂(x, y) is increasing in |x− y|.

The contrast between two values is typically measured by their difference. Thus, the
preceding definition captures the intuitive notion that the contrast effect is stronger for
one salience function than another if their difference (i.e., the difference in salience values)
increases in the difference of their arguments.

Proposition 4 (Contrast and skewness preferences). Let the contrast effect be stronger for
salience function σ than for salience function σ̂. Then, a salient thinker’s risk premium r(E, V, S)

is larger for σ than for σ̂ if and only if S < 0, that is, the lottery is left-skewed.
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This implies that a stronger contrast effect enhances a salient thinker’s aversion toward
left-skewed risks and her preference for right-skewed risks. Since we derive the prefer-
ence for skewness from lotteries with the same expected value, the salience function’s sec-
ond argument is held fixed so that the contrast effect is equivalent to the ordering property
in this context. In other words, a salient thinker’s preference for skewness is the stronger
the more important ordering is relative to diminishing sensitivity. This is in line with the
comparative statics results derived above. BGS have shown that, for any non-negative
or non-positive arguments, the salience function σβ,θ satisfies weaker diminishing sensi-
tivity if its arguments uniformly increase in absolute terms.7 According to Corollary 2,
for any lottery with either non-negative or non-positive outcomes, skewness preferences
are stronger if the lottery’s expected value increases in absolute terms or, equivalently,
ordering becomes more important relative to diminishing sensitivity.

Notably, as amodel of focusing (KS) also builds on the contrast effect it shares all of our
central results on skewness preferences (see Appendix B for a formal proof). In contrast,
a model of relative thinking (Bushong et al., 2016) that builds on the setup by KS, but
assumes reverse contrast effects (i.e., attention assigned to a state decreases in the payoff
range) cannot account for skewness preferences.

Experimental evidence on skewness preferences. Ourpreceding results are in linewith
experimental evidence on skewness preferences. In contrast to studieswith field data, lab-
oratory experiments allow us to precisely test for skewness preferences (i.e., the skewness
of a lottery can be varied ceteris paribus). Ebert and Wiesen (2011) find that a majority of
subjects chooses a right-skewed over a left-skewed binary lottery with the same expected
value and variance.8 They also show that prudence (i.e., u′′′(·) < 0) does not suffice to
explain skewness preferences.9 Ebert (2015) confirms this preference for right-skewed
over left-skewed binary risks. In addition, he observes that a majority of subjects who
have to choose between a symmetric and a right-skewed lottery, which has the same ex-
pected value and variance, opt for the more skewed alternative. If the choice is between a

7This follows from the fact that the salience functionσβ,θ is convex in the sense of BGS (see theirDefinition
3). Formally, a salience function is convex if and only if, for any y, z ≥ 0 and x, ε > 0, the difference σβ,θ(y +
x, z + x)− σβ,θ(y + x+ ε, z + x+ ε) is a decreasing function of x. From this definition it is straightforward
to see that for any convex salience function diminishing sensitivity becomes weaker relative to ordering if
x increases. Note that, for any y, z ≤ 0 and x, ε < 0, convexity of the salience function implies that the
difference σβ,θ(y + x, z + x) − σβ,θ(y + x + ε, z + x + ε) is an increasing function in x. Here, diminishing
sensitivity is the weaker the smaller x is.

8More precisely, subjects have to choose between two binary lotteries that form a Mao pair (Mao, 1970).
For any p ∈ (0, 1/2), two perfectly correlated, binary lotteriesLx := (x1, p;x2, 1−p) andLy := (y1, 1−p; y2, p)
form a Mao pair if both have the same expected value and variance. Lotteries of a Mao pair differ only in
their skewness (Ebert andWiesen, 2011). Lottery Lx is left-skewed (i.e., its high payoff x2 occurs with a high
probability), while lottery Ly is right-skewed (i.e., its high payoff y2 occurs with a small probability). In line
with Definition 3, Ebert and Wiesen (2011) state that “an individual is said to be skewness seeking if, for any
given Mao pair, she prefers Ly over Lx.” In Appendix C we prove that, for any Mao pair, a salient thinker
prefers Ly over Lx.

9Prudence can explain a preference for positive skewness given a fixed expected value and variance.
While subjects making prudent choices also tend to choose right-skewed lotteries in the experiment by Ebert
and Wiesen (2011), prudence is not sufficient to explain the number of skewness-seeking choices.
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symmetric and a left-skewed lottery, subjects tend to avoid the left-skewed risk, thereby
again choosing the more skewed lottery. Further studies using binary (e.g., Brünner et al.,
2011) or more complex lotteries (e.g., Grossman and Eckel, 2015) report similar results on
skewness-seeking choices. In line with Proposition 3, Åstebro et al. (2015) observe that
subjects tend to make riskier decisions if the choice set includes right-skewed lotteries.
Altogether, a substantial body of research documents skewness preferences and related
predictions under controlled conditions in the laboratory.

5 Puzzles on skewness preferences

In many respects, the predictions by salience theory of choice under risk coincide with
the predictions by cumulative prospect theory (for a detailed discussion, see BGS). For
instance, both theories predict that whether an agent buys insurance or prefers to gamble
depends on the skewness of a risk. The skewness of a distribution may, however, induce
implausible predictions for cumulative prospect theory, as shown by three articles. On
the one hand, Ebert and Strack (2015) argue that for any value function (and any refer-
ence point), there exists a right-skewed and arbitrarily small binary risk with a negative
expected value that is attractive to a CPT agent. This results in unrealistic predictions for
dynamic investment or gambling decisions. On the other hand, Rieger andWang (2006) as
well as Azevedo and Gottlieb (2012) delineate that under “virtually all functional forms
that have been proposed in the literature” (Azevedo and Gottlieb, 2012, page 1294) an
CPT-agent’s willingness to pay for a binary lottery with some fixed expected payoff is un-
bounded if the lottery’s upside payoff becomes arbitrarily large. In the following, we will
compare salience and cumulative prospect theory’s predictions on skewness preferences
in the small (Ebert and Strack, 2015) and in the large (Rieger and Wang, 2006; Azevedo
and Gottlieb, 2012).

5.1 Skewness preferences in the small

Consider a dynamic setup where a decision-maker gambles according to the following
strategy: she decides to start gambling, but will stop as soon as she has realized either
a rather small loss x1 or a large gain x2. This stopping strategy with two absorbing end-
points can be represented as a binary lottery that gives a small losswith a large probability,
and a large gain with a small probability. According to Corollary 1, a salient thinker is
willing to pay more than the fair price to enter the corresponding gamble if this binary
risk is sufficiently skewed. If the decision-maker is naïve and cannot commit to a long-
run stopping strategy, but can revise her strategy after every single gain or loss, she never
stops gambling as she can always construct a sufficiently skewed stopping strategy that
attracts her. Independent of previous gains or losses, a salient thinker decides to gamble
in every period anew and therefore continues until bankruptcy.

Likewise, CPT agents that cannot commit to a certain gambling strategy will gam-
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ble “until the bitter end” (Ebert and Strack, 2015). Ebert and Strack show that without
commitment a naïve CPT agent that uses the preceding stopping strategy will never stop
gambling irrespective of her value function’s curvature.10 In particular, Ebert and Strack
(2015) verify that CPT agents reveal skewness preferences in the small: that is, sufficiently
right-skewed binary lotteries with outcomes x1 and x2 that are sufficiently small in ab-
solute terms are attractive even if these lotteries’ expected values are negative. For these
lotteries probability weighting may predominate loss aversion so that the CPT agent par-
ticipates in an unfair gamble.

While even salient thinkers might gamble until the bitter end, the lotteries which are
attractive to a salient thinker are fundamentally different. An attractive lottery’s downside
payoff should be close to the lottery’s expected value, therefore being non-salient. At
the same time, the upside payoff should be very large, thereby exceeding the expected
value by much in order to stand out and attract the decision-maker’s attention. Thus, it is
not a preference for skewness in the small that induces a salient thinker to gamble until
bankruptcy. It is a preference for lotteries with a large, outstanding upside payoff, which
we regard as the more plausible driver of taking up unfair gambles. Forrest et al. (2002)
precisely capture this intuition by stating that the purchase of a lottery ticket corresponds
to “buying a dream.” A decision-maker might dream of winning the large jackpot, which
allows her to quit her tedious job or to buy an expensive car, thereby overweighting the
probability that her dream will come true.

Cumulative prospect theory’s prediction that an agent will, irrespective of her value
function, play until bankruptcy has been regarded as implausible and therefore as aweak-
ness of the model. We will show that the prediction does not necessarily hold for salient
thinkers once the assumption of a linear value function has been dropped. Precisely, we
investigate conditions under which Corollary 1 breaks down so that a salient thinker will
not follow the above stopping strategy until her entire wealth is lost. In fact, if the value
function is strictly concave, a salient thinker may or may not be inclined to gamble, de-
pending on the interplay of her value function’s and her salience function’s curvature.11

Static salience predictions. Suppose a salient thinker faces some choice set {L,E[L]}.
For simplicity and in line with the gambling example, let x2 > x1 ≥ 0. We drop our pre-
vious assumption of a linear value function and assume that the decision-maker’s value
from money is strictly increasing and strictly concave, that is, u′(·) > 0 and u′′(·) < 0. As
before, we normalize u(0) = 0. Then, a salient thinker strictly prefers the risky lottery L

10Thenaïve agent does not anticipate that shewill not stick to her initial plan in the future. At every point in
time, she constructs a new, attractive gambling strategywith negative expected value and continues gambling
until she has lost her entire wealth. In contrast, a sophisticated agent who cannot commit to future behavior
never starts to gamble (Ebert and Strack, 2016). The sophisticated agent is aware of her time-inconsistency
and foresees that she will not stop gambling. Hence, she decides not to gamble in the first place.

11The fundamentals of the salience model, that is, the value function u, the salience function σ and the
salience parameter∆ can be estimated simultaneously from real choice data as they are not perfectly collinear.
Dertwinkel-Kalt et al. (2016a), for instance, conduct such an estimation for the closely related focusingmodel,
simultaneously estimating the value and the focusing function.
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over the safe option E[L] if and only if

u(x2)− u(E[L])

u(E[L])− u(x1)
· 1− p

p
>

∆1

∆2
,

where ∆k := ∆−σ(u(xk),u(E[L])), k ∈ {1, 2}. For any given expected value E = E[L], substi-
tuting p = (x2 − E)/(x2 − x1) yields

u(x2)−u(E)
x2−E

u(E)−u(x1)
E−x1

>
∆1

∆2
. (C.1)

The left-hand side of this inequality constitutes the ratio of the secants’ slopes through
the points (E, u(E)) and (xk, u(xk)) for k ∈ {1, 2}, which is smaller than one for any
strictly concave value function. The right-hand side of inequality (C.1) gives the ratio
of the salience weights which is below one if and only if the lottery’s upside is salient.
Analogously to the previous section, we can conclude that the lottery’s downside is salient
whenever the lottery is left-skewed or symmetric.12 While there exists a right-skewed
lottery with a salient upside for any value function, it remains uncertain whether a salient
thinker buys this lottery or not.

Intuitively, onewould expect that condition (C.1) is less likely to hold if the value func-
tion’s curvature increases as (context-independent) risk aversion becomes stronger. Com-
pared to a linear value function, the contrast between the values assigned to the upside
payoff and the expected value, respectively, is reduced. As the preference for skewness is
driven by the contrast effect, salience distortions are weaker and are therefore less likely
to induce risk-seeking behavior if the value function is concave. Indeed the left-hand side
of (C.1) decreases in the value function’s curvature. But the corresponding effect on the
ratio of salience weights is ambiguous as it depends on how the relative importance of
ordering and diminishing sensitivity changes with the level of values assigned to the out-
comes. Therefore, it is impossible tomake a general statement on how the value function’s
curvature affects a salient thinker’s risk attitude (see Example 5 for an illustration).

More can be said about the properties of the salience function that facilitate risk-
seeking behavior. As established in Proposition 4, a salient thinker’s preference for right-
skewed risks is driven by the contrast effect. A salient thinker is especially prone to gam-
bling if a large gain occurring with small probability stands in sharp contrast to the lot-
tery’s expected value, thereby grabbing much attention. Hence a salient thinker is the
more risk seeking with respect to sufficiently right-skewed lotteries the stronger the con-
trast effect is relative to the level effect. In order to verify this intuition for a concave value
function, we compare salience functions that differ in the strength of the contrast effect.

12Note that u(E) − u(x1) ≥ u(x2) − u(E) for any p ≤ 1/2 due to strict concavity of the value function.
Then, diminishing sensitivity implies that the lottery’s downside is weakly more salient than its upside since
u(x2) > u(x1) ≥ 0 holds by assumption.
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Proposition 5. Let the contrast effect be stronger for salience function σ than for salience function
σ̂. If lottery L satisfies (C.1) for salience function σ̂, it also satisfies (C.1) for salience function σ.

If the value function is very concave and the salience function exhibits a weak contrast
effect, there exists no lottery that the agent prefers to its expected value (i.e., condition
(C.1) is never satisfied). We show this with the use of two examples for which we assume
power utility u(x) = xα with α ∈ (0, 1) and our standard salience function σβ,θ(x, y) with
β, θ > 0. Let θ = 0.1 and ∆ = 0.7.

Example 5 (Value function). For a linear value function, the left-hand side of (C.1) equals
one and the salient thinker chooses a lottery if its upside is salient. This lottery exists by
Proposition 3. Then, due to continuity, condition (C.1) also holds for a mildly concave
value function u(x) = xα with α being close to one. Let β = 1 so that the salience function
is σβ,θ(x, y) = (x−y)2

(|x|+|y|+0.1)2
. If the value function’s curvature increases, that is, the param-

eter α decreases, we observe that inequality (C.1) is less likely to hold. More specifically,
numerical computations show that there exists some threshold value α̂ ∈ (0, 1) such that
for any α ∈ (0, α̂) no unfair, attractive gamble exists. For α = 0.95 and α = 0.5, Figure
1 illustrates the risk premium r as a function of probability p and upside payoff x2 for a
given downside payoff x1 = 1.

Risk premium for α = 0.95. Risk premium for α = 0.5.

Figure 1: The above graphs show the risk premium as a function of the upside payoff x2 and the
probability p that the downside payoff x1 is realized. For α = 0.95, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For α = 0.5, the risk premium is non-negative for any feasible lottery.

Example 6 (Salience function). Fix α = 3/4 so that the value function is u(x) = x3/4.
We observe that inequality (C.1) is more likely to hold for at least some binary lottery L
if parameter β increases.13 In fact, numerical computations show that there exists some

13The larger β is the stronger is the contrast effect for salience function σβ,θ . This, however, holds only
using the following notion of a stronger contrast effect which is weaker than that stated in Definition 4: for
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β̂ > 1 such that for any β > β̂ at least one unfair, attractive gamble exists. For β = 1 and
β = 10, Figure 2 illustrates the risk premium r as a function of probability p and upside
payoff x2 for a given downside payoff x1 = 1.

Risk premium for β = 1. Risk premium for β = 10.

Figure 2: The above graphs show the risk premium as a function of the upside payoff x2 and the
probability p that the downside payoff x1 is realized. For β = 10, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For β = 1, the risk premium is non-negative for any feasible lottery.

Comparison to the discrete salience model. Note that for the discrete salience model
there always exists an unfair, binary lottery with a salient upside that is attractive to a
salient thinker. This result is driven by the fact that for a lottery with a salient upside
the right-hand side of inequality (C.1) simplifies to the salience-parameter δ < 1 (as in-
troduced in the discussion of the discrete salience model after Definition 2). Therefore,
the right-hand side of inequality (C.1) is bounded away from one, while its left-hand side
approaches one if the variance of lottery L goes to zero. Thus, the resolution of Ebert and
Strack (2015)’s skewness puzzle relies on the use of the continuous salience model.

Dynamic salience predictions under asset integration. Suppose the decision-maker as-
set integrates—that is, she evaluates a lottery’s outcomes not separately, but based on the
wealth levels the lottery potentially induces. Again we consider a naïve agent who does
not anticipate that she will not stick to her initial plan in the future. If a naïve salient
thinker asset integrates, she may follow the delineated stopping strategy only until a cer-
tain wealth level has been reached. We briefly discuss for which wealth levels an unfair,
but attractive binary lottery might exist. Whether such a lottery exists for a particular
wealth level depends on how the value function’s and the salience function’s curvature
change in wealth. First, suppose the value function satisfies decreasing absolute risk aver-

any β > β̃ and x, y, z ∈ R, we have σβ,θ(x, z)− σβ̃,θ(x, z) > σβ,θ(y, z)− σβ̃,θ(y, z) if x > y ≥ z or x < y ≤ z.
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sion. For a suitable salience function, it may be the case that a salient thinker gambles only
at high wealth levels, but stops after her wealth has sufficiently decreased. Second, if the
value function satisfies increasing absolute risk aversion the opposite may arise: if the
agent’s wealth increases, her value function’s relative curvature increases as well and it
becomes more likely that no binary lottery satisfies inequality (C.1). The salient thinker
then stops gambling if her wealth is sufficiently large. In contrast, for low wealth levels
the curvature of the agent’s value function is weak such that inequality (C.1) is more likely
to hold for at least some lottery. This observation relates to the disposition effect (Shefrin
and Statman, 1985; Odean, 1998) according towhich private investors aremore inclined to
sell assets that have increased in value than assets which have decreased in value. Thus,
salience theory might account for the disposition effect under certain circumstances.

5.2 Skewness preferences in the large

Rieger and Wang (2006) and Azevedo and Gottlieb (2012) have shown that cumulative
prospect theory also yields implausible predictions for right-skewed lotteries with large
absolute payoffs. Denote L(E) as the set of all binary lotteries with some expected value
E ∈ R. Azevedo and Gottlieb (2012) argue that the expected gain that can be earned by
selling a lottery L ∈ L(E) to a CPT agent may be unbounded. This prediction arises from
the fact that probabilityweightingmight induce an unbounded valuation of a lotterywith
finite expected value (Rieger andWang, 2006). If small probabilities are overweighted, in-
creasing the upside payoff and reducing the corresponding probability canmake a lottery
more attractive. This allows a firm to realize arbitrarily large gains if it offers a binary lot-
tery with an arbitrarily large upside payoff (skewness preferences in the large).

We show that this puzzle can be resolved for salient thinkers as long as we consider
only lotteries with a bounded expected value. Restricting our analysis to lotteries with
a bounded expected value makes sense for the following two reasons: first, Rieger and
Wang (2006) argue that it is practically not feasible for a firm to offer a lottery with a very
large expected value. Second, a consumer with a constrained budget is not able to pay a
very large price to participate in a lottery.

As before, suppose the decision-maker has a (weakly) concave value function and faces
some choice set {L, z} where z denotes the price of lottery L. The agent buys the lottery
as long as it is strictly preferred over the monetary sum z. Since the salience function
is bounded, there exists some threshold value ∆̄ < ∞ such that ∆−σ(x,y) < ∆̄ for any
(x, y) ∈ R2. The following proposition states that for any expected value E, the price a
salient thinker is willing to pay for lottery L ∈ L(E) is bounded.

Proposition 6. Let L(E) denote the set of binary lotteries L with finite expected value E ∈ R. A
salient thinker’s valuation for some L ∈ L(E) is bounded by a function which is affine in E.

Suppose a firm offers a binary lottery L ∈ L(E) at some price z. Optimally, it will
set a price equal to the lottery’s certainty equivalent, which is well-defined according to
Proposition 1. Therefore, the firm will, for a given E, choose to sell that lottery L ∈ L(E)
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that has the largest certainty equivalent. According to Proposition 6, this is bounded such
that the gain a firm can earn from selling a lottery with a fixed expected value cannot
become arbitrarily large.14

6 Discussion and Conclusion

We have identified the contrast effect as a plausible driver of skewness preferences. Ac-
cording to the contrast effect, when comparing a risky and a safe option, a risky outcome
receives the more attention the more it differs from the safe option’s payoff. Thereby, the
contrast effect induces a focus on the large but unlikely upside gain in the case of right-
skewed risks, and a focus on the large potential loss in the case of left-skewed risks. As
a consequence, salience theory and related approaches to local thinking that incorporate
contrast effects, such as a model of focusing, predict a preference for positive skewness.
In contrast, a model of relative thinking (Bushong et al., 2016) that assumes reverse contrast
effects (i.e., the weight assigned to a risky outcome decreases in its contrast to the safe
option’s payoff) cannot account for skewness preferences.

Models of local thinking offer an explanation for skewness preferences that funda-
mentally differs from approaches previously proposed in the literature. According to
cumulative prospect theory, for instance, an agent exhibits a preference for skewness be-
cause she overweights small probabilities per se. In contrast, local thinkers overweight a
small probability only if the corresponding payoff stands out. This mechanism of probability
weighting is not only psychologically sound, but also allows for more realistic predic-
tions. If the agent’s value function becomes more concave, large payoffs are less attractive
and less attention-grabbing so that also the corresponding probabilities are less distorted.
Thereby, local thinking in combination with a concave value function rules out cumula-
tive prospect theory’s implausible predictions on the magnitude of skewness preferences
(Rieger and Wang, 2006; Azevedo and Gottlieb, 2012; Ebert and Strack, 2015, 2016). Dy-
namically, a naïve CPT agent will never stop gambling until bankruptcy and will buy, but
never exercise American options on assets (Ebert and Strack, 2015). Conversely, if the CPT
agent is aware of her time-inconsistent behavior, she will not even acquire an option or
start to gamble (Ebert and Strack, 2016). These predictions stand in stark contrast to ro-
bust empirical findings such as the disposition effect that states that options are exercised,
assets are sold and gambles are quit if gains can be realized. As we have delineated, our
explanation for skewness preferences does not necessarily go alongwith such drastic pre-
dictions. Concludingly, models of local thinking offer a more compelling explanation for
skewness preferences than cumulative prospect theory.

Our approach has also advantages over other behavioral explanations for skewness
preferences such as the model on optimal expectations proposed by Brunnermeier and
Parker (2005). Here, an agent receives utility not only from her actions, but also from her

14Note, however, that the profit that can be earned from selling a lottery L ∈
⋃
E∈R L(E) is unbounded.
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beliefs over favorable future outcomes. Therefore, an agent inflates the “perceived likeli-
hood” of upside events in order to enhance the pleasure from expecting these events. As
a consequence, the demand for right-skewed lotteries is excessive. This model, however,
yields weaker predictions on skewness preferences than our approach (see Proposition 2
in Brunnermeier and Parker, 2005). First, Brunnermeier and Parker explain an affection
toward sufficiently right-skewed risks, but they do not obtain precise predictions on the
demand for less skewed or left-skewed assets. Second, the puzzle investigated by Ebert
and Strack (2015) cannot be resolved in their framework as long as the value function
is unbounded. Finally, utility from pleasant expectations can be obtained only before an
event is realized. Thus, it is plausible that optimal expectations matter only when there
is some considerable amount of time between an investment decision and the event real-
ization. Models of local thinking instead can explain skewness preferences irrespective
of whether the realization of outcomes is delayed or not.

Besides skewness preferences, local thinking can account for a wide range of decision
anomalies. In particular the salience model explains biases such as the Allais paradox
(Bordalo et al., 2012), decoy effects (Bordalo et al., 2013b) and the newsvendor problem
(Dertwinkel-Kalt and Köster, 2016) in one coherent framework, thereby challenging cu-
mulative prospect theory as the major behavioral model of individual decision-making.
Its assumptions have been supported both by empirical (Hastings and Shapiro, 2013) and
experimental (Dertwinkel-Kalt et al., 2016b) work. Consequently, models that build on
the assumption of stimulus-driven attention are promising candidates for improving our
predictions on when agents seek and when they shy away from risk.
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Appendix A: Proofs

Proof of Proposition 1. Consider some discrete lottery L := (x1, p1; . . . ;xn, pn) with n ≥ 2.
Denote∆i := ∆−σ(u(xi),u(c)) and σi := σ(u(xi), u(c)) aswell as σix := ∂σi

∂u(xi)
and σiy := ∂σi

∂u(c) .
First we verify that the certainty equivalent is unique. For that, it is sufficient to show

∂Us(L)

∂u(c)
= − ln(∆)

((∑n
k=1 pk u(xk)∆kσ

k
y

) (∑n
k=1 pk ∆k

)
−
(∑n

k=1 pk∆kσ
k
y

) (∑n
k=1 pk u(xk)∆k

)(∑n
k=1 pk ∆k

)2
)
< 0.

Now it is straightforward to see that ∂U
s(L)

∂u(c) < 0 holds if and only if

∑n
k=1 pk u(xk)∆k∑n

k=1 pk ∆k︸ ︷︷ ︸
=u(c)

(
n∑
k=1

pk∆kσ
k
y

)
>

n∑
k=1

pk u(xk)∆kσ
k
y .

Denote X := {k ∈ {1, . . . , n}|u(xk) ≤ u(c)} and X := {k ∈ {1, . . . , n}|u(xk) > u(c)}.
Then, we can rewrite the above inequality as∑

k∈X
pk ∆k σky︸︷︷︸

≥0

(u(c)− u(xk))︸ ︷︷ ︸
≥0

+
∑
k∈X

pk ∆k σky︸︷︷︸
<0

(u(c)− u(xk))︸ ︷︷ ︸
<0

> 0.

Hence, ∂U
s(L)

∂u(c) < 0 always holds and the certainty equivalent is unique.
Second, we verify that the certainty equivalent is monotonic in outcomes. Denote

H(x,p, c) := u−1

(∑n
i=1 pi u(xi)∆

−σ(u(xi),u(c))∑n
i=1 pi ∆−σ(u(xi),u(c))

)
− c,

where x := (x1, . . . , xn), p := (p1, . . . , pn). Then, we observe that

∂

∂c
H(x,p, c) = (u−1)′ (U s(L))︸ ︷︷ ︸

>0

u′(c)︸︷︷︸
>0

∂U s(L)

∂u(c)︸ ︷︷ ︸
<0

−1 < 0
(C.2)

and
∂

∂xk
H(x,p, c) = (u−1)′ (U s(L))︸ ︷︷ ︸

>0

u′(xk)︸ ︷︷ ︸
>0

∂U s(L)

∂u(xk)

where

∂Us(L)

∂u(xk)
=

[pk∆k − pk∆k ln(∆)σkxu(xk)]
(∑n

i=1 pi ∆i

)
− [pk∆k(− ln(∆))σkx]

(∑n
i=1 pi u(xi)∆i

)(∑n
i=1 pi ∆i

)2 .

Thus, we have ∂Us(L)
∂u(xk)

> 0 if and only if

pk∆k

[
1− ln(∆)σkxu(xk)

]
> pk∆k(− ln(∆))σkx

(∑n
i=1 pi u(xi)∆i∑n

i=1 pi ∆i

)
︸ ︷︷ ︸

=u(c)
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or, equivalently,

1 + ln(∆)︸ ︷︷ ︸
<0

σkx
(
u(c)− u(xk)

)︸ ︷︷ ︸
≤0

> 0.

This inequality is always fulfilled as σkx ≥ 0 holds if and only if u(c) ≤ u(xk). Hence,
we have ∂H(x,p, c)/∂xk > 0 and the implicit function theorem yields monotonicity in
outcomes, that is,

∂c

∂xk
= −

∂H(x,p,c)
∂xk

∂H(x,p,c)
∂c

> 0.

Third, we assess whether the certainty equivalent is also monotonic in probabilities.
Suppose that probability mass is c.p. shifted from outcome xl to outcome xi for some
i, l ∈ {1, . . . , n}, i 6= l. By definition, a salient thinker’s certainty equivalent is monotonic
in probabilities if and only if

∂c

∂pi
> 0⇔ xi > xl.

Denote pl = 1−
∑

j 6=l pj so that an increase in pi induces a corresponding decrease in pl.
The implicit function theorem yields

∂c

∂pi
= −

∂H(x,p,c)
∂pi

∂H(x,p,c)
∂c

.

Using ineq. (C.2) the certainty equivalent is monotonic in probabilities if and only if

∂H(x,p, c)

∂pi
> 0⇔ xi > xl.

Suppose xi > xl. Then we observe that

∂H(x,p, c)

∂pi
= (u−1)′ (Us(L))︸ ︷︷ ︸

>0

(
[u(xi) ∆i − u(xl) ∆l]

∑n
k=1(pk ∆k)− [∆i −∆l]

∑n
k=1(pk u(xk)∆k)(∑n

k=1 pk ∆k

)2
)
> 0,

which holds if and only if

(
u(xi)− u(c)

)
∆i >

(
u(xl)− u(c)

)
∆l. (C.3)

We distinguish the following three cases:

(1) xi > xl > c: In this case u(xi)−u(c) > u(xl)−u(c) > 0 and ∆i > ∆l due to ordering.
Thus, (C.3) is satisfied.

(2) xi > c > xl: The left-hand side of (C.3) is positive, while its right-hand side is
negative, so that inequality (C.3) holds.

(3) c > xi > xl: Here, 0 > u(xi) − u(c) > u(xl) − u(c) and ∆i < ∆l due to ordering
which gives (u(xi)− u(c))∆i > (u(xi)− u(c))∆l > (u(xl)− u(c))∆l.
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The case xi < xl is analogous. Altogether, we conclude

∂H(x,p, c)

∂pi
> 0 if and only if xi > xl.

This completes the proof.

Proof of Proposition 2. Let L := (x1, p;x2, 1− p) with x2 > x1. Ordering implies

lim
p→0

σ(x1,E[L]) = σ(x1, x2) > σ(x2, x2) = lim
p→0

σ(x2,E[L]).

Since the salience function is continuous, there exists some p̂ = p̂(x1, x2) ∈ (0, 1) such
that the lottery’s downside is weakly more salient than its upside for any p ≤ p̂. Then,
the statement immediately follows from the fact that—due to ordering—the salience of
the lottery’s downside payoff x1 monotonically decreases in the probability p, while the
salience of its upside payoff monotonically increases in p.

Proof of Proposition 3. Consider a binary lottery L with expected value E and variance V .
For a given skewness S, its parameters x1, x2 and p are uniquely defined as delineated
in Lemma 1. Now suppose the lottery’s skewness increases. Then, we observe that the
lottery’s downside payoff becomes more likely. Formally, we have

∂p

∂S
= 2 · (S2 + 4)−3/2 > 0.

Using (2), this implies that both the downside payoff x1 and the upside payoff x2 increase
in the skewness S. Therefore, the difference between the downside (upside) payoff and
the expected value decreases (increases) in the lottery’s skewness S. Formally, we have

∂(E − x1)
∂S

< 0 and ∂(x2 − E)

∂S
> 0.

Since the expected value E is fixed, an increase in contrast is equivalent to an increase in
salience due to ordering. Hence, the downside payoff’s salience decreases in S, while the
upside payoff’s salience increases in S.

Since limS→∞ x2 =∞ > E, we obtain

lim
S→∞

σ(x2, E) > σ(E,E) = lim
S→∞

σ(x1, E)

by the ordering property. Now by continuity of the salience function we can conclude
that there exists some Ŝ < ∞ such that for any S > Ŝ the lottery’s upside is salient. As
we have seen that the salience of both outcomes is monotonic in the lottery’s skewness S,
we conclude that the salient thinker chooses the risky option if and only if S > Ŝ. Finally,
limS→−∞ σ(x1, E) > σ(E,E) = limS→−∞ σ(x2, E) and monotonicity ensure that there
exists a unique skewness value Ŝ ∈ R such that r(E, V, Ŝ) = 0.
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Proof of Lemma 2. Consider the lottery L(E, V, S), which has outcomes xk = xk(E, V, S),
k ∈ {1, 2}, and a downside probability p = p(S) as defined in (2). We divide the proof into
two parts. First, we investigate how the salient thinker’s risk premium r(E, V, S) depends
on the lottery’s expected value E. Second, we use this result to prove our lemma.

PART (1). We need to determine the sign of

∂

∂E
r(E, V, S) =

√
V p(1− p) · ∂

∂E

(
∆−σ(x1,E) −∆−σ(x2,E)

p∆−σ(x1,E) + (1− p)∆−σ(x2,E)

)
, (4)

which equals the sign of

∂
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p ∂∆1
∂E

+ (1− p) ∂∆2
∂E

)
(p∆1 + (1− p)∆2)2 (5)

with ∆k := ∆−σ(xk,E) for k ∈ {1, 2}. Plugging

∂∆k

∂E
= − ln(∆)∆k

∂

∂E
σ(xk, E)

into (5) yields

∂

∂E

(
∆1 −∆2
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)
=

− ln(∆)∆1∆2
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2︸ ︷︷ ︸

>0

·
(
∂

∂E
σ(x1, E)− ∂

∂E
σ(x2, E)

)
.

Hence, we conclude

∂

∂E
r(E, V, S) < 0 if and only if ∂

∂E
(σ(x2, E)− σ(x1, E)) > 0.

PART (2). By definition, the threshold value Ŝ = Ŝ(E, V ) solves r = r(E, V, S) = 0.
Applying the implicit function theorem yields

∂Ŝ

∂E
= −

∂
∂E r(E, V, S)
∂
∂S r(E, V, S)

∣∣∣∣
S=Ŝ

.

Thus, we have to determine the sign of

∂r

∂S
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S=Ŝ

=
√
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where ∆̂k := ∆−σ(xk(E,V,Ŝ),E) for k ∈ {1, 2}. Hence, we only need to derive the sign of

Ψ(E, V, Ŝ) =

(
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∂∆1
∂S
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+
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which is equivalent to the sign of(
∂∆1

∂S
− ∂∆2

∂S

)∣∣∣∣
S=Ŝ

= − ln(∆)∆̂1

(
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We conclude
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Altogether, we have
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∂S > 0. This implies ∂r

∂S
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< 0. Using PART (1), we obtain

∂Ŝ

∂E
< 0 if and only if ∂

∂E

(
σ(x2(E, V, S), E)− σ(x1(E, V, S), E)
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> 0.

Proof of Corollary 2. Suppose salience function σβ,θ(x, y) = β(x−y)2
(|x|+|y|+θ)2 for some β, θ > 0.

Consider the lottery L(E, V, S) and denote x̂k := xk(E, V, Ŝ), k ∈ {1, 2}, where Ŝ is de-
fined in Proposition 3. We distinguish the following three cases.

CASE (1). Suppose x2 > x1 ≥ 0. Then, using (2), we obtain

σβ,θ(x2, E)− σβ,θ(x1, E) =
βV p

(1− p)
(
E +

√
V p
1−p + E + θ

)2 −
βV (1− p)

p
(
E −

√
V (1−p)

p
+ E + θ

)2 .

Now taking the partial derivative with respect to E yields

∂
∂E

(
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)
= −4βV p
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(
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p
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V (1−p)

p
+E+θ

)3

=
4σβ,θ(x1,E)

E−
√
V (1−p)

p
+E+θ

− 4σβ,θ(x2,E)

E+
√

V p
1−p+E+θ

.

By definition of Ŝ, we have σβ,θ(x̂1, E) = σβ,θ(x̂2, E). Thus, it follows

∂

∂E

(
σβ,θ(x2, E)− σβ,θ(x1, E)

)∣∣∣∣
S=Ŝ

= σβ,θ(x̂1, E)

 4

E −
√

V (1−p)
p

+ E + θ
− 4

E +
√

V p
1−p + E + θ

 > 0.
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By Lemma 2, we conclude ∂Ŝ
∂E < 0.

CASE (2). Let x2 > 0 > x1. First, consider the subcase with E > 0. Then, we have

σβ,θ(x2, E)− σβ,θ(x1, E) = βV p

(1−p)
(
E+
√

V p
1−p+E+θ

)2 − βV (1−p)

p

(
−
(
E−
√
V (1−p)

p

)
+E+θ

)2

= βV p

(1−p)
(
E+
√

V p
1−p+E+θ

)2 − βV (1−p)

p

(√
V (1−p)

p
+θ

)2 .

according to (2). Thus, we obtain

∂

∂E

(
σβ,θ(x2, E)− σβ,θ(x1, E)

)
=

−4βV p

(1− p)
(
E +

√
V p
1−p + E + θ

)3 < 0

for any x2 > 0 > x1 and ∂Ŝ
∂E > 0 follows from the proof of Lemma 2.

Second, consider the subcase with E < 0. Then, using equation (2), we obtain

σβ,θ(x2, E)− σβ,θ(x1, E) = βV p

(1−p)
(
E+
√

V p
1−p+−E+θ

)2 − βV (1−p)

p

(
−
(
E−
√
V (1−p)

p

)
+−E+θ

)2

= βV p

(1−p)
(√

V p
1−p+θ

)2 − βV (1−p)

p

(
−E+

√
V (1−p)

p
−E+θ

)2 .

Thus, we have

∂

∂E

(
σβ,θ(x2, E)− σβ,θ(x1, E)

)
= − 4βV (1− p)

p

(
−E +

√
V (1−p)

p − E + θ

)3 < 0

for any x2 > 0 > x1 and again ∂Ŝ
∂E > 0 follows from the proof of Lemma 2.

CASE (3). Suppose x1 < x2 ≤ 0. Then, using equation (2), we obtain

σβ,θ(x2, E)− σβ,θ(x1, E) =
βV p

(1− p)
(
−
(
E +

√
V p
1−p

)
− E + θ

)2 −
βV (1− p)

p
(
−
(
E −

√
V (1−p)

p

)
− E + θ

)2 .

Analogously to CASE (1), we have

∂

∂E

(
σβ,θ(x2, E)− σβ,θ(x1, E)

)
=

4σβ,θ(x2, E)

−E −
√

V p
1−p − E + θ

−
4σβ,θ(x1, E)

−E +
√

V (1−p)
p − E + θ

.

By definition of Ŝ, it holds that σβ,θ(x̂1, E) = σβ,θ(x̂2, E). Thus, it follows

∂

∂E

(
σβ,θ(x2, E)−σβ,θ(x1, E)

)∣∣∣∣
S=Ŝ

= σβ,θ(x̂1, E)

 4

−E −
√

V p
1−p − E + θ

− 4

−E +
√

V (1−p)
p
− E + θ

 > 0.

By Lemma 2, we conclude ∂Ŝ
∂E < 0.
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Proof of Proposition 4. Consider two salience functions σ and σ̂. Suppose that the contrast
effect is stronger for salience function σ than for salience function σ̂. For the binary lottery
Lwith expected valueE, variance V , and skewness S, denote r(E, V, S) the risk premium
if the salience of outcomes is assessed via σ and r̂(E, V, S) the risk premium if the salience
of outcomes is assessed via σ̂. Then, it holds r(E, V, S) > r̂(E, V, S) if and only if√

V p(1− p)(∆1 −∆2)

p∆1 + (1− p)∆2
>

√
V p(1− p)(∆̂1 − ∆̂2)

p∆̂1 + (1− p)∆̂2

(C.4)

where ∆k := ∆−σ(xk,E) and ∆̂k := ∆−σ̂(xk,E) for k ∈ {1, 2}. Rewriting (C.4) gives

∆1/∆2 − 1

p∆1/∆2 + (1− p)
>

∆̂1/∆̂2 − 1

p∆̂1/∆̂2 + (1− p)

or, equivalently,

∆1

∆2
>

∆̂2

∆̂2

.

Then, applying the definition of salience weights yields

∆−σ(x1,E)+σ(x2,E) > ∆−σ̂(x1,E)+σ̂(x2,E),

which holds if and only if

σ(x2, E)− σ(x1, E) < σ̂(x2, E)− σ̂(x1, E).

Rearranging this inequality gives

σ(x2, E)− σ̂(x2, E) < σ(x1, E)− σ̂(x1, E).

This holds if and only if√
V p

1− p
= x2 − E < E − x1 =

√
V (1− p)

p
(C.5)

since the contrast effect is stronger for σ than for σ̂. Finally, we conclude that (C.5) holds
if and only if p < 1/2 or, equivalently, S < 0. By Definition 3, this is the case if and only if
the lottery L(E, V, S) is left-skewed.

Proof of Proposition 5. For x2 > x1 ≥ 0, let lottery L := (x1, p;x2, 1 − p) satisfy condition
(C.1) given salience function σ̂. Then, it is immediate that the upside of lottery L is salient
under salience function σ̂. As a consequence, it has to hold that

u(x2)− u(E[L]) > u(E[L])− u(x1). (C.6)
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To see this, assume the opposite. Then, since u(x2) > u(x1) ≥ 0, we have

σ̂(u(x1), u(E[L])) > σ̂(u(E[L]), u(E[L]) + u(E[L])− u(x1))

≥ σ̂(u(E[L]), u(E[L]) + u(x2)− u(E[L]))

= σ̂(u(x2), u(E[L])),

where the first inequality follows from diminishing sensitivity, the second one from or-
dering, and the final equality from symmetry. This yields a contradiction to the fact that
the upside of lottery L is salient.

From condition (C.6), we conclude

σ(u(x2), u(E[L]))− σ̂(u(x2), u(E[L])) > σ(u(x1), u(E[L]))− σ̂(u(x1), u(E[L]))

by Definition 4 as the contrast effect is stronger for salience function σ than for salience
function σ̂. Rearranging the above inequality yields

σ(u(x2), u(E[L]))− σ(u(x1), u(E[L])) > σ̂(u(x2), u(E[L]))− σ̂(u(x1), u(E[L])).

As ∆ < 1 and σ̂(u(x2), u(E[L])) > σ̂(u(x1), u(E[L])) we conclude

∆σ(u(x2),u(E[L]))−σ(u(x1),u(E[L])) < ∆σ̂(u(x2),u(E[L]))−σ̂(u(x1),u(E[L])).

Thus, if lottery L satisfies condition (C.1) for salience function σ̂, then lottery L also satis-
fies condition (C.1) for salience function σ. This completes the proof.

Proof of Proposition 6. For a given expected value E ∈ R, consider a lottery L ∈ L(E)

which is sold at some price z ∈ R. Hence the choice set comprises {L, z}. As u is concave
there exist some a, b ≥ 0 such that u(x) ≤ ax + b. Denote ∆k := ∆−σ(u(xk),u(z)) for
k ∈ {1, 2}. Using p = (x2 − E)/(x2 − x1) we get

U s(L) =
∆1(x2 − E)u(x1) + ∆2(E − x1)u(x2)

∆1(x2 − E) + ∆2(E − x1)

≤∆1(x2 − E)(ax1 + b) + ∆2(E − x1)(ax2 + b)

∆1(x2 − E) + ∆2(E − x1)

=b+ a · ∆1(x2 − E)x1 + ∆2(E − x1)x2
∆1(x2 − E) + ∆2(E − x1)

≤b+ a∆̄ · (x2 − E)x1 + (E − x1)x2
x2 − x1

=b+ a∆̄E.

Here, the first inequality follows from the concavity of the value function, while the sec-
ond inequality follows from using the upper bound of ∆̄ for the salience weights in the
numerator and the lower bound of 1 for the salience weights in the denominator.
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Appendix B: Skewness preferences according to a model of focus-
ing (Kőszegi and Szeidl, 2013)

In this section, we verify that our explanation for skewness preferences does not hinge
on the specific assumptions of salience theory of choice under risk, but also holds under
a related approach to stimulus driven attention—a model of focusing (Kőszegi and Szeidl,
2013). As Kőszegi and Szeidl analyze deterministic choice problems only, we extend their
model toward risky choices along the lines of salience theory, that is, the agent evaluates
an option according to the underlying state space. As discussed in Section 2, this assump-
tion can be relaxed for both the salience and the focusing model.

Model. Suppose some choice set C := {Lx, Ly} where Lx := (x1, p1; . . . , xn; pn) and
Ly := (y1, q1; . . . ; ym, qm) are discrete lotteries with n,m ∈ N and

∑n
i=1 pi =

∑m
i=1 qi = 1.

We impose the same conventions for the lotteries’ outcomes as in themain text (i.e., the lot-
teries’ ouctomes are pairwisely distinct and occur with strictly positive probability). The
state spaceS comprises all feasible payoff-combinations of the available lotteries. Thereby,
each state of the world sij := (xi, yj) occurs with some objective probability πij . Again
we assume that the decision-maker evaluates monetary outcomes via a strictly increasing
value function u(·) with u(0) = 0.

According to the focusing model, a decision-maker assigns a weight to each state sij
that depends on the state’s objective probability πij and on the absolute difference in the
values of the feasible outcomes in this state, denoted as dij := |u(xi) − u(yj)|. The larger
the range of values assigned to the outcomes in a state is, the higher the agent’s focus on
this particular state. Formally, the agent’s focus on state sij ∈ S is given by g(dij) where
the focusing function g : R+ → R+ is bounded and strictly increasing.15

For reasons of comparability, we adopt the smooth salience characterization intro-
duced in Section 2 for the focusing model. That is, each state sij receives focus weight
∆−g(dij) for some focusing function g(·) and some constant ∆ ∈ (0, 1] that captures the
agent’s susceptibility to focusing. We call an agent with ∆ < 1 a focused thinker.

Definition 5. A focused thinker’s decision utility Uf (·) for Lx ∈ {Lx, Ly} is given by

Uf (Lx) =
∑
sij∈S

πiju(xi) ·
∆−g(dij)∑

sij∈S πij∆
−g(dij)

.

The normalization factor in the denominator ensures that the distorted probabilities sum
up to one and that the valuation for a safe option c ∈ R is undistorted; that is, irrespective
of the composition of the choice set we have Uf (c) = U(c) = u(c).

15Relatedly, Bushong et al. (2016) propose amodel of relative thinking that differs from the preceding focusing
model only in the assumption on the slope of g: while we have g′(dij) > 0 for the focusing model, we have
g′(dij) < 0 for the model of relative thinking. In words, a relative thinker’s probability weight on state sij
decreases in the corresponding absolute difference in values dij .
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Certainty equivalents andmonotonicity. Suppose the agent faces some choice set {L, c}
where L := (x1, p1; . . . ;xn, pn) is a lottery with n ≥ 2 pairwisely distinct ouctomes and
c denotes the option that pays an amount of c ∈ R with certainty. A focused thinker
(weakly) prefers the lottery L over the safe option c if and only if

Uf (c) ≤ Uf (L) =

∑n
i=1 piu(xi)∆

−g(|u(xi)−u(c)|)∑n
i=1 pi∆

−g(|u(xi)−u(c)|)
=: F (c).

Without loss of generality we assume x1 < . . . < xn. Then a focused thinker’s certainty
equivalent is implicitly given by c = u−1(F (c)). As for the salience model, we conclude
that u−1 ◦ F : [x1, xn]→ [x1, xn] has at least one fixed point due to Brouwer’s fixed-point
theorem and we obtain the following proposition.

Proposition 7 (Certainty equivalent to a discrete lottery). A focused thinker’s certainty equiv-
alent to a lottery with n ≥ 2 outcomes is unique and monotonic in outcomes and probabilities.

Proof. Note that for any salience function σ(·, ·) and any focusing function g(·) we have

sgn
(
∂σ(u(xi),u(c))

∂u(xi)

)
= sgn

(
∂g(|u(xi)−u(c)|)

∂u(xi)

)
and sgn

(
∂σ(u(xi),u(c))

∂u(c)

)
= sgn

(
∂g(|u(xi)−u(c)|)

∂u(c)

)
.

Then, the statement simply follows from replacing the salience function in the proof of
Proposition 1 by a focusing function.

Skewness preferences under a linear value function. To investigate a focused thinker’s
attitude toward skewness, suppose some choice set {L,E[L]}where L := (x1, p;x2, 1− p)
is a binary lotterywith outcomes x2 > x1 and the expected valueE[L] := p·x1+(1−p)·x2.
As in Section 4, we assume a linear value function u(x) = x.

Using the characterization of binary risks in Lemma 1, a focused thinker’s risk pre-
mium for the binary lottery Lwith expected value E, variance V , and skewness S equals

r(E, V, S) =
√
V p(1− p) ·

(
∆−g(E−x1) −∆−g(x2−E)

p∆−g(E−x1) + (1− p)∆−g(x2−E)

)
(6)

where outcomes xk = xk(E, V, S), k ∈ {1, 2}, and probability p = p(S) are defined in (2).
A focused thinker strictly prefers the lottery L(E, V, S) over the safe option E if and only
if the lottery’s risk premium is strictly negative, or, equivalently, the agent’s focus lies on
the lottery’s upside payoff. We conclude:

Proposition 8 (Skewness preferences). For any given expected value E and variance V , a fo-
cused thinker strictly prefers the lottery L(E, V, S) over its expected value E if and only if S > 0.

Proof. It is straightforward to show that a focused thinker’s risk premium is strictly neg-
ative if and only if g(x2 − E) > g(E − x1); that is, her focus lies on the lottery’s upside
payoff. As g is a strictly increasing function, this is the case if and only if

√
V

√
p

1− p
= x2 − E > E − x1 =

√
V

√
1− p
p

,
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or equivalently, p > 1/2. Then, from equation (1), we conclude that a focused thinker
strictly prefers the lottery over its expected value if and only if S > 0.

Hence, a focused thinker seeks right-skewed but avoids left-skewed risks.16,17 Similar
to the saliencemodel, we observe that a focused thinker’s preference for right-skewed and
aversion toward left-skewed risks is enhanced if the contrast effect becomes stronger.

Definition 6. We say that the contrast effect is stronger for focusing function g than for focusing
function ĝ if the difference g(x)− ĝ(x) is increasing in x ∈ R+.

Note that the argument of the focusing function represents the difference in values
assigned to the outcomes that are feasible in a given state. Thus, the preceding definition
of the strength of the contrast effect is analogous to the definition given for the salience
model. We conclude:

Proposition 9 (Contrast and skewness preferences). Let the contrast effect be stronger for
focusing function g than for focusing function ĝ. Then, a focused thinker’s risk premium r(E, V, S)

is larger for g than for ĝ if and only if S < 0, that is, the lottery is left-skewed.

Proof. Analogous to the proof of Proposition 4.

Puzzles on skewness preferences. Similar to salience theory of choice under risk, the fo-
cusing approach yields more reasonable predictions on the magnitude of skewness pref-
erences than cumulative prospect theory. Wewill show that the puzzles on skewness pref-
erences in the small (Ebert and Strack, 2015, 2016) and in the large (Rieger andWang, 2006;
Azevedo and Gottlieb, 2012) arising for CPT agents can be resolved for focused thinkers.

First, we argue that focusingdoes not necessarily yield the sameunrealistic predictions
on skewness preferences in the small as cumulative prospect theory (Ebert and Strack,
2015). Formally, suppose that a focused thinker faces some choice set {L,E[L]}. In line
with Section 5, let x2 > x1 ≥ 0 and assume that the decision-maker’s value from money
is strictly increasing and strictly concave, that is, u′(·) > 0 and u′′(·) < 0. As before, we
normalize u(0) = 0. Then, a focused thinker strictly prefers the risky lottery L over the
safe option E[L] if and only if

u(x2)− u(E[L])

u(E[L])− u(x1)
· 1− p

p
>

∆1

∆2
,

where ∆k := ∆−g(|u(xk)−u(E[L])|), k ∈ {1, 2}. For any given expected value E = E[L],
16Note that, for any expected value E and variance V , a relative thinker (Bushong et al., 2016, see also

footnote 12) prefers the binary lottery L(E, V, S) over its expected value E if and only if S < 0. It is straight-
forward to show that, for a relative thinker, we have g(x2 − E) > g(E − x1) if and only if p < 1/2 as g is
strictly decreasing by assumption. Hence a relative thinker seeks left-skewed but avoids right-skewed risks.

17In contrast to the salience model, focusing predicts that the risk premium is independent of the lottery’s
expected value E (using (2) and equation (6) this result follows immediately).
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substituting p = (x2 − E)/(x2 − x1) yields

u(x2)−u(E)
x2−E

u(E)−u(x1)
E−x1

>
∆1

∆2
. (C.1–Focus)

Using the following two examples, we show that depending on the value function’s
curvature there might not exist a binary lottery satisfying condition (C.1–Focus). As in
Section 5, we assume power utility u(x) = xα for some α ∈ (0, 1). Furthermore, we
consider the focusing function g(x) = 1− 1

1+γx for some γ > 0 and x ∈ R+. Let ∆ = 0.7.

Example 7 (Value function). Assume γ = 1 so that the focusing function is given by
g(x) = 1 − 1

1+x . If the value function’s curvature increases, that is, the parameter α de-
creases, we observe that inequality (C.1–Focus) is less likely to hold. More specifically,
numerical computations show that there exists some threshold value α̃ ∈ (0, 1) such that
for any α ∈ (0, α̃) no unfair, attractive gamble exists. For α = 0.95 and α = 0.5, Figure
3 illustrates the risk premium r as a function of probability p and upside payoff x2 for a
given downside payoff x1 = 1.

Risk premium for α = 0.95. Risk premium for α = 0.5.

Figure 3: The above graphs show the risk premium as a function of the upside payoff x2 and the
probability p that the downside payoff x1 is realized. For α = 0.95, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For α = 0.5, the risk premium is non-negative for any feasible lottery.

Example 8 (Focusing function). Fix α = 1/2 so that the value function is u(x) =
√
x. We

observe that inequality (C.1–Focus) is more likely to hold for at least some binary lottery
L if parameter γ increases, that is, the contrast effect becomes stronger. In fact, numerical
computations show that there exists some γ̂ > 1 such that for any γ > γ̂ at least one unfair,
attractive gamble exists. For γ = 1 and γ = 10, Figure 4 illustrates the risk premium r as
a function of probability p and upside payoff x2 for a given downside payoff x1 = 1.
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Risk premium for γ = 1. Risk premium for γ = 10.

Figure 4: The above graphs show the risk premium as a function of the upside payoff x2 and
the probability p that the downside payoff x1 is realized. For γ = 10, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For γ = 1, the risk premium is non-negative for any feasible lottery.

Second, we show that a focused thinker’s valuation for binary lotteries with a given
expected value E < ∞ is bounded. Hence, cumulative prospect theory’s predictions on
skewness preferences in the large—as delineated by Rieger andWang (2006) andAzevedo
and Gottlieb (2012)—can be resolved in the focusing model.

Proposition 10. Let L(E) denote the set of binary lotteries L with finite expected value E ∈ R.
A focused thinker’s valuation for some L ∈ L(E) is bounded by a function which is affine in E.

Proof. Since the focusing function is bounded there exists some threshold value ∆̃ < ∞
such that ∆−g(x) < ∆̃ for any x ∈ R+. The remainder of the proof is analogous to the
proof of Proposition 6.

Appendix C: Mao’s lotteries and skewness preferences

Suppose choice set C := {Lx, Ly}where Lx := (x1, p;x2, 1− p) and Ly := (y1, q; y2, 1− q)
with outcomes x2 > x1 and y2 > y1 and probabilities p, q ∈ (0, 1). As in Section 4, we
assume a linear value function u(x) = x. Mao (1970) introduced the following class of
binary lotteries that allow us to identify skewness preferences.

Definition 7. Let p ∈
(
0, 12
)
. Two perfectly correlated, binary lotteries Lx := (x1, p;x2, 1 − p)

and Ly := (y1, 1− p; y2, p) denote aMao pair if both have the same expected value and variance.

Mao lotteries differ only in their skewness: Lx is left-skewed as its high payoff x2

occurs with a high probability while lottery Ly is right-skewed as its high payoff y2 occurs
with a small probability (for a formal proof see Ebert and Wiesen, 2011). In line with
Definition 3, Ebert andWiesen (2011) state that “an individual is said to be skewness seeking
if, for any given Mao pair, she prefers Ly over Lx.”
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Proposition 11. For any given Mao pair, a salient thinker prefers Ly over Lx.

Proof. Due to the perfect correlation of the lotteries, the state space S comprises only two
states, that is, S = {(x1, y2), (x2, y1)}. Hence a salient thinker prefers the right-skewed
lottery Ly over the left-skewed lottery Lx if and only if

U s(Ly)− U s(Lx) = p(y2 − x1)∆−σ(x1,y2) + (1− p)(y1 − x2)∆−σ(x2,y1) > 0.

Since p(y2 − x1) = −(1 − p)(y1 − x2) > 0 by definition—remember that both lotteries
have the same expected values—the above inequality simplifies to σ(x1, y2) > σ(x2, y1).
As p < 1/2 by Definition 7, Lemma 1 yields

x1 < y1 < x2 < y2.

Thus, ordering implies σ(x1, y2) > σ(x2, y1), which was to be proven.

Finally, it is straightforward to see from the proof above that also a focused thinker
prefers Ly over Lx for any given Mao pair. In contrast, a relative thinker in the spirit of
Bushong et al. (2016) would choose Lx over Ly for any given Mao pair.

References

Åstebro, T., Mata, J. and Santos-Pinto, L. (2015). Skewness seeking: Risk loving, opti-
mism or overweighting of small probabilities? Theory and Decision, 78 (2), 189–208.

Azevedo, E. M. and Gottlieb, D. (2012). Risk-neutral firms can extract unbounded profits
from consumers with prospect theory preferences. Journal of Economic Theory, 147 (3),
1291–1299.

Bali, T. G., Cakici, N. and Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the
cross-section of expected returns. Journal of Financial Economics, 99 (2), 427–446.

Barberis, N. C. (2013). Thirty years of prospect theory in economics: A review and assess-
ment. Journal of Economic Perspectives, 27 (1), 173–195.

Barseghyan, L., Molinari, F., O’Donoghue, T. and Teitelbaum, J. C. (2013). The nature of
risk preferences: Evidence from insurance choices. American Economic Review, 103 (6),
2499–2529.

Berkhout, P., Hartog, J. and Webbink, D. (2010). Compensation for earnings risk under
worker heterogeneity. Southern Economic Journal, 76 (3), 762–790.

Bordalo, P., Nicola Gennaioli and Shleifer, A. (2012). Salience theory of choice under
risk. Quarterly Journal of Economics, 127 (3), 1243–1285.

37



—,— and Shleifer, A. (2013a). Salience and asset prices.American Economic Review, Papers
& Proceedings, 103 (3), 623–628.

—, — and Shleifer, A. (2013b). Salience and consumer choice. Journal of Political Economy,
121 (5), 803–843.

Boyer, B., Mitton, T. and Vorkink, K. (2010). Expected idiosyncratic skewness. Review of
Financial Studies, 23 (1), 169–202.
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