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Abstract

This paper develops a pairs trading framework based on a mean-reverting jump-diffusion

model and applies it to minute-by-minute data of the S&P 500 oil companies from 1998

to 2015. The established statistical arbitrage strategy enables us to perform intraday and

overnight trading. Essentially, we conduct a 3-step calibration procedure to the spreads of all

pair combinations in a formation period. Top pairs are selected based on their spreads’ mean-

reversion speed and jump behavior. Afterwards, we trade the top pairs in an out-of-sample

trading period with individualized entry and exit thresholds. In the back-testing study, the

strategy produces statistically and economically significant returns of 60.61 percent p.a. and

an annualized Sharpe ratio of 5.30, after transaction costs. We benchmark our pairs trading

strategy against variants based on traditional distance and time-series approaches and find

its performance to be superior relating to risk-return characteristics. The mean-reversion

speed is a main driver of successful and fast termination of the pairs trading strategy.
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jump-diffusion model, mean-reversion.
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1. Introduction

Pairs trading is a relative-value arbitrage strategy which has been emerged by a quantita-

tive group at Morgan Stanley in the 1980s (Vidyamurthy 2004). The strategy identifies pairs

of stocks whose prices move together historically. Upon divergence, go long in the underval-

ued stock and go short in the overvalued stock. If history repeats itself, prices converge to

their historical equilibrium and a profit can be collected. The seminal paper of Gatev et al.

(2006) reports average annualized excess returns of 11 percent for U.S. CRSP securities from

1962 until 2002. Ever since this publication, academical interest in statistical arbitrage pairs

trading has surged. Key contributions are provided by Vidyamurthy (2004), Elliott et al.

(2005), Do and Faff (2010), Avellaneda and Lee (2010), Rad et al. (2016), and Liu et al.

(2017).

Krauss (2017) identifies five streams of pairs trading research – among them is the time-

series approach which focuses on mean-reverting spreads. Meaningful representatives are

Elliott et al. (2005), Bertram (2009, 2010), Avellaneda and Lee (2010), Ekström et al. (2011),

Cummins and Bucca (2012), Bogomolov (2013), Zeng and Lee (2014), Göncü and Akyıldırım

(2016a), and Liu et al. (2017). These studies use an Ornstein-Uhlenbeck (OU) process for

modeling the price spread between two stocks. Research studies on the time-series approach

either focus on discussing theoretical frameworks or center the development of a trading

algorithm.

Elliott et al. (2005) provide an analytic framework by describing the spread with a mean-

reverting Gaussian Markov chain model, observed in Gaussian noise. Essential parts of

this method are the state equation, in which the state variable follows a mean-reverting

process, and the observation equation, the sum of some Gaussian noise and the state vari-

able. Bertram (2009, 2010) and Zeng and Lee (2014) identify the optimal trading levels by

maximizing the expected rate of profit. The optimal stopping problem for pairs trading is

formulated and explicitly solved by Ekström et al. (2011). In Göncü and Akyıldırım (2016a),

the optimal entry and exit signals are derived by maximizing the probability of successful

termination of the pairs trading strategy.

Avellaneda and Lee (2010) describe relative-value models based on the OU process and

conduct a back-testing framework on U.S. equities from 1997 to 2007. In Cummins and
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Bucca (2012), the model of Bertram (2010) is applied to oil stocks of NYMEX and ICE

from 2003 to 2010. Bogomolov (2013) extends the method of renko and kagi constructions

to pairs trading spread processes, shows their theoretical profitability for the OU process,

and examines the strategy performance on the American and Australian stock exchanges

from 1996 until 2011. Recently, Liu et al. (2017) introduce a doubly mean-reverting process

based on conditional modeling to describe spreads. For empirical study, the authors opt for

oil stocks of NYSE and NASDAQ from June 2013 to April 2015 and in 2008.

Given the available literature, financial data are exposed to more than only one source

of uncertainty – an obvious deficit of the OU process, where low-probability large-amplitude

variations are attributed to a Gaussian framework (Barlow 2002, Carr et al. 2002, Cont

and Tankov 2003, Cartea and Figueroa 2005, Meyer-Brandis and Tankov 2008, Jing et al.

2012, Jondeau et al. 2015). In consequence, modeling high-frequency dynamics with an OU

process leads to unreasonable parameter estimations and disregarding of stylized facts, e.g.,

fat tails. This drawback is eliminated by extending the OU process with a jump term, which

drives uncertainty in addition to the diffusive component (Cartea et al. 2015), creating a

jump-diffusion model. Merton (1976, 1992) introduces the class of jump-diffusion models to

explain stock price dynamics. It is surprising that there are only two academic studies in the

context of statistical arbitrage pairs trading which generalize the OU process to allow jumps.

Larsson et al. (2013) conduct an initial abstraction by formulating an optimal stopping

theory. Göncü and Akyıldırım (2016b) introduce a stochastic model for daily commodity

pairs trading where the noise term is driven by a Lévy-process.

We enhance the existing research in several aspects. First, our manuscript contributes to

the literature by introducing a pairs selection and trading strategy based on a jump-diffusion

model (JDM) in the context of high-frequency data. The existence of jumps is confirmed by

a preliminary analysis on the oil sector of the S&P 500 constituents from 1998 to 2015. We

construct a statistical arbitrage framework which is able to capture jumps, mean-reversion,

volatility cluster, and drifts. Specifically, the spread dynamics are handled using a 3-step

calibration procedure. For the reason of considering the effects of jumps during the night,

our strategy is able to perform both intraday and overnight trading. Second, we benchmark

our strategy based on a JDM to well-established quantitative trading strategies. Among
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pairs trading with the distance approach, this paper checks the performance of a strategy

which models the spread with a simple OU process. Thus, we are in position to evaluate

the additional benefit of regarding jumps in the context of pairs trading. The comparison of

several pairs trading strategies represents a novelty in academic research with high-frequency

data. Third, we conduct a large-scale empirical study on the oil companies of the S&P 500

based on minute-by-minute data from January 1998 until December 2015. The vast majority

of studies about pairs trading with stochastic differential equations use daily data – a clear

drawback within the framework of stochastic processes in continuous time (Bertram 2009,

2010, Avellaneda and Lee 2010, Cummins and Bucca 2012, Bogomolov 2013, Zeng and

Lee 2014, Göncü and Akyıldırım 2016a). Sole exception is provided by Liu et al. (2017)

who apply frequencies of 5 minutes. We present the first academic study on pairs trading

using a minute-by-minute frequency over a sample period of 18 years. We find out that our

strategy based on a JDM achieves statistically and economically significant returns of 60.61

percent p.a., after transaction costs. The results are far superior compared to the benchmark

strategies ranging from 1.76 percent p.a. for a naive buy-and-hold strategy of the S&P 500

index to 50.45 percent p.a. for a strategy based on the OU process. In contrast to traditional

pairs trading, our strategy is not adversely affected by consistently negative performance in

the recent years of our sample. Fourth, we analyze the effects of strong exposure to the mean-

reverting process. Spreads exhibiting a high mean-reversion speed are found to generate the

best performance. Thus, we confirm the assumption that the mean-reversion speed is a main

driver of the achieved returns.

The remainder of this paper is organized as follows. Section 2 briefly depicts data and

software used in this study. Section 3 describes the methodology and section 4 provides

the study design. In section 5, we present our results and discuss key findings in light of

the existing literature. Finally, section 6 concludes and summarizes directions for further

research.

2. Data and Software

For our empirical application, we opt for minute-by-minute data of the S&P 500 from

January 1998 to December 2015. This highly liquid subset consists of the leading 500 com-
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panies in the U.S. stock market, covering approximately 80 percent of available market

capitalization (S&P 500 Dow Jones Indices 2015). The data set serves as a crucial test

for any potential capital market anomaly, given intense analyst reporting and high investor

investigation. Following Krauss and Stübinger (2017), we conduct a 2-stage process with

the objective of eliminating survivor bias from our data base. First, a daily constituent list

for the S&P 500 from January 1998 to December 2015 is transformed into a binary matrix,

indicating whether the stock is a constituent of the index in the present day or not. Second,

for all stocks having ever been a constituent of the index, we download minute-by-minute

data from QuantQuote (QuantQuote 2016). The data is adjusted for dividends, stock splits,

and further corporate actions. By applying these two steps, we get the constituency for the

S&P 500 and the respective prices over time.

The entire methodology and all relevant analyses are implemented in the programming

language R (R Core Team 2017). Table 1 lists the additional packages for dependence

modeling, data handling, and financial modeling.

Application R package Authors of the R package

Dependence modeling

fBasics Rmetrics Core Team et al. (2014)
lmtest Zeileis and Hothorn (2002)

MASS Venables and Ripley (2002)
rootSolve Soetaert (2009)

Data handling

dplyr Wickham and Francois (2016)
readr Wickham et al. (2016)

readxl Wickham (2016)
texreg Leifeld (2013)

xlsx Dragulescu (2014)
xts Ryan and Ulrich (2014)
zoo Zeileis and Grothendieck (2005)

Financial modeling

PerformanceAnalytics Peterson and Carl (2014)
QRM Pfaff and McNeil (2016)

quantmod Ryan (2016)
sandwich Zeileis (2006)

timeSeries Rmetrics Core Team et al. (2015)
tseries Trapletti and Hornik (2017)

TTR Ulrich (2016)

Table 1: R packages used in this paper for dependence modeling, data handling, and financial modeling.

3. Methodology

3.1. Jump-diffusion model

Pairs trading strategies aim at identifying pairs of stocks that follow an equilibrium

relationship which can be achieved by focusing on mean-reverting spreads. Mathematically,
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the spread at time t is defined by

Xt = ln

(
SA(t)

SA(0)

)
− ln

(
SB(t)

SB(0)

)
, t ≥ 0, (1)

where SA(t) and SB(t) denote the prices of stocks A and B at time t. The OU process is

one of the most well-known processes capturing the effect of mean-reversion, modeling the

spread {Xt}t≥0 by the following stochastic differential equation:

dXt = θ(µ−Xt)dt+ σdWt, X0 = x, (2)

where θ ∈ R+, µ ∈ R, σ ∈ R+, and the standard Brownian motion {Wt}t≥0. The mean-

reversion speed θ measures the degree of reversion to the equilibrium level µ, i.e., the higher

the value θ is, the faster the process Xt tends back to its mean level. The OU process of

equation (2) can be explicitly solved resulting in

Xt = xe−θt + µ(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs.

Incorporating a non constant mean-reversion level µ(t) induces a time-dependent OU

process. The spread Xt randomly fluctuates around the deterministic drift function µ(t):

dXt = θ(µ(t)−Xt)dt+ σdWt, X0 = x. (3)

The solution to the stochastic differential equation (3) is given by

Xt = xe−θt + θ

∫ t

0

µ(u)e−θ(t−u)du+ σ

∫ t

0

e−θ(t−s)dWs.

The above described OU models with their continuous paths are unlikely to produce large

movements of the underlying process over a short time-period. To explain discontinuous

spread variations, the OU model is extended to account for jumps in addition to the simple

Gaussian shocks. Integrating a jump term into equation (3) leads to a mean-reverting JDM:

dXt = θ(µ(t)−Xt)dt+ σdWt + ln JdNt, X0 = x, (4)

where {Nt}t≥0 is a Poisson process, creating jumps at frequency λ(t). Discontinuous path

changes with randomly arriving jumps at random jump size are captured. The frequency is

chosen time-dependent to account for variations in the jump occurrence. Villaplana (2003),
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Seifert and Uhrig-Homburg (2007), and Escribano et al. (2011) present academic studies

allowing for non-constant jump intensities. In our model, the probability that a jump hap-

pens intraday is assumed to be zero. Overnight, jumps occur randomly at probability λdt.

Therefore, the last component in equation (4) affects spreads only overnight. We define the

varying intensity λ(t) such that

λ(t) =

0 if the observation is intraday

λ otherwise (overnight, weekend).

For the overnight variations it is

dNt =

1 with probability λdt

0 with probability 1− λdt

and intraday dNt = 0 with probability 1. J is a random variable modeling the magnitudes

of the jumps. Supposing ln J ∼ N (µJ , σ
2
J), we apply a typical assumption on the jump size

distribution (Cartea and Figueroa 2005, Benth et al. 2012). Despite the jump component,

the mean-reverting nature of the model is still present: After a jump, the spread does not

stay in the new level, but reverts back to the equilibrium level with a speed determined by

the parameter θ.

An adjusted form of equation (4) is

Xt = g(t) + Yt

dYt = −θYtdt+ σdWt + ln JdNt,
(5)

where the spread Xt is represented by a deterministic drift function g(t), modeling mean

variations of the spread evolution, and a stochastic process Yt, reverting around zero. The

time dependent mean-reversion level µ(t), introduced in equation (4), depends on the drift

function g(t) in the following way (Lucia and Schwartz 2002, Cartea and Figueroa 2005):

µ(t) =
1

θ

dg(t)

dt
+ g(t). (6)

The solution of equation (5) is given by

Xt = g(t) + (x− g(0))e−θt + σ

∫ t

0

e−θ(t−s)dWs +

∫ t

0

e−θ(t−s) ln JdNs.
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In our empirical application, we use equation (5) for modeling the dependence structure of

pairs of stocks, opting for high-frequency data with an interval length of one minute. Per

pair, we observe 391 spread values each day during trading hours from 9:30 am to 4:00 pm.

Following Liu et al. (2017), we denote the discretized observations of the spread process Xt

on day i as

X391(i−1)+1, X391(i−1)+2, ..., X391i, i = 1, 2, . . . , I

where I is the number of considered days. The overnight variation from the market’s close

of day i until the market’s open of the next trading day i+ 1 is described by

X391i+1 −X391i, i = 1, 2, . . . , I − 1.

3.2. Preliminary analysis

The majority of academic research in the pairs trading context aims at capturing spread

processes with strong mean-reversion by neglecting any jumps, e.g., Avellaneda and Lee

(2010) and Liu et al. (2017). In the following preliminary analysis, we examine the existence

of jumps in our data set – the results justify the selection of the JDM clearly. Therefore, our

data set from 1998 to 2015 is portioned into disjoint sub-periods with a length of 40 days.

For each sub-period, we regard the companies of the oil sector and determine the spreads

of all possible pair combinations. The absolute first differences of each spread are splitted

into the subsets overnight variations and intraday variations. For the overnight and intraday

variations, we consider the highest 1− q variations for q ∈ {0.90, 0.95, 0.97, 0.99, 0.999}. The

choice of q is inspired by Meyer-Brandis and Tankov (2008) who propose a method for spike

detection where they remove a percentage of 5 percent of the highest absolute returns.

Table 2 depicts characteristics of the conditional distributions for varying q. The mean of

the overnight variations ranges from 0.0251 to 0.1351 – high values compared to an interval

from 0.0033 to 0.0169 for the intraday variations. This picture barely changes considering the

probability mass of extreme values. In contrary, the maximum intraday variation (0.4708)

exceeds the greatest overnight variation (0.3942) caused by the fact that we have a 390 times

greater data base in the intraday context.

Now, the jump threshold cq (cq ∈ R+) is calculated based on the q-quantile of the

whole data base of overnight and intraday variations together. Following Meyer-Brandis and
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Tankov (2008), we estimate the jump intensity λ by the following:

λ overnight (intraday) =
number of overnight (intraday) variations greater than cq

total number of overnight (intraday) variations
.

Across all jump thresholds, the jump intensity overnight is clearly higher than intraday, such

as, regarding the highest 0.1 percent values leads to a jump intensity of 11.83 percent for the

overnight variations and 0.07 percent for the intraday variations. Our preliminary results

are well in line with the literature. Jondeau et al. (2015) estimate a model containing jumps

and apply it to data at tick frequency. On average, their model explains 47.7 percent of

the total variation of stock returns, split into continuous innovations, intraday jumps and

overnight returns. About 7 percent of those variations are represented by overnight returns,

which is a substantial part in the context of tick-by-tick data.

In summary, we confirm the statements of the literature that both including a jump

component is necessary and disregarding intraday jumps takes place without any significant

interference.

Overnight variations Intraday variations

Quantile 90% 95% 97% 99% 99.9% 90% 95% 97% 99% 99.9%

Mean 0.0251 0.0338 0.0415 0.0627 0.1351 0.0033 0.0044 0.0053 0.0078 0.0169

Minimum 0.0139 0.0199 0.0252 0.0401 0.0941 0.0019 0.0027 0.0033 0.0052 0.0111

Quartile 1 0.0162 0.0227 0.0287 0.0449 0.1065 0.0022 0.0030 0.0038 0.0057 0.0123

Median 0.0199 0.0273 0.0340 0.0525 0.1233 0.0027 0.0036 0.0044 0.0066 0.0141

Quartile 3 0.0273 0.0366 0.0449 0.0682 0.1486 0.0036 0.0047 0.0057 0.0082 0.0179

95% Quantile 0.0525 0.0682 0.0820 0.1233 0.2168 0.0066 0.0082 0.0097 0.0141 0.0311

99% Quantile 0.0941 0.1233 0.1435 0.1770 0.3462 0.0111 0.0141 0.0168 0.0247 0.0527

Maximum 0.3942 0.3942 0.3942 0.3942 0.3942 0.4708 0.4708 0.4708 0.4708 0.4708

Standard deviation 0.0169 0.0205 0.0234 0.0306 0.0450 0.0022 0.0028 0.0033 0.0047 0.0106

Jump intensity λ 0.6433 0.5655 0.5028 0.3610 0.1183 0.0986 0.0487 0.0288 0.0091 0.0007

Table 2: Preliminary analysis of the relevant S&P 500 data base from 1998 to 2015 regarding spread variations

overnight and intraday.

4. Study design

For our back-testing application, we follow Liu et al. (2017) and decide on the oil sector

of the S&P 500 constituents from January 1998 to December 2015 (section 2). Following

Jegadeesh and Titman (1993) and Gatev et al. (1999, 2006), we divide the data set into
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4484 overlapping study periods (figure 1). Each study period is shifted by one day and

consists of a 40-day formation period (subsection 4.1) and a 5-day trading period (subsection

4.2). The length of the formation period is consistent with Liu et al. (2017) – the first

10 days of the formation period are used for determining the jump threshold. For our

intraday and overnight trading strategy, the length of the trading period follows Bowen

et al. (2010). Typically, there are 32 oil companies member of the S&P 500 and each

stock contains 391 minute-by-minute data points per day. Consequently, approximately

4484 · 45 · 32 · 391 = 2, 524, 671, 360 stock prices are handled during one simulation run from

January 1998 to December 2015.

Jan 98

4484

4483

2

1

Mar 98 Dec 15

.

.

.

Formation period Trading period Current trading period1

+1 d

+4482 d

+4483 d

1

40 d 5 d

40 d 5 d

40 d 5 d

40 d 5 d

Figure 1: The back-testing application deals with 4484 overlapping study periods from January 1998 to

December 2015. Each study period consists of a 40-day formation and a 5-day out-of-sample trading period.

4.1. Formation period

In the 40-day formation period Tfor, we fit models from the type of equation (5) to

all possible combinations of pairs. Therefore, we follow a 3-step calibration procedure by

(i) extracting jumps, (ii) adjusting drifts, and (iii) estimating parameters. This subsection

describes the 3-step logic outlined above in detail.

In the first step, we apply a threshold method for detecting and filtering the jumps.

Overnight spread variations above a fixed threshold are considered to be caused by jumps.

According to Meyer-Brandis and Tankov (2008), this is the most common way to separate

10



the continuous part of a jump-diffusion process from discontinuous variations. However, the

procedure is not sensitive to outliers. In the spirit of Cartea and Figueroa (2005) and Meyer-

Brandis and Tankov (2008), we extract some percentage of returns with highest absolute

value. The standard deviation of the remaining returns corresponds to the noise level of

common fluctuations which is smaller than the standard deviation of the original series.

Specifically, the formation period is divided into a 10-day initialization period and a 30-

day out-of-sample training period. We calculate mean µ and standard deviation σ of all

overnight variations based on the initialization period. In the remaining training period,

absolute returns greater than µ+ kσ are identified as jumps (k ∈ R+). We receive the jump

adjusted time series Xt by filtering out the identified jumps from the original series.

In the second step, we align the adapted spread series by a time-varying drift adjustment.

In the spirit of Kim (2003) and Ng et al. (2003), the spread at time t (t ∈ Tfor) is subtracted

by the running mean of the past 1955 minutes (5 days) resulting in the drift adjusted time

series Xt.

In the third step, we estimate the parameters of the remaining process using maximum

likelihood estimation. The discretization of the OU process, now reverting around zero, at

time t is given by

Xt+1 = Xte
−θδ + σ

√
1− e−2θδ

2θ
Zt, t = 1, ..., N

with time step δ, Zt
i.i.d.∼ N (0, 1), and N = 391 · 30− 1. In the sense of Liu et al. (2017), we

approximate the interval length from one observation to the next by effective time instead

of real time. Specifically, it is assumed that the overnight periods are as long as the intraday

periods. This seems reasonable as we already extract the jumps over night. Therefore, each

period has the length δ = δ1
391

with δ1 = 1
250

representing one day. The conditional density

of Xt satisfies

f(Xt+1|Xt; θ, σ) =
1

σ̃
√

2π
exp

(
−(Xt+1 −Xte

−θδ)2

2σ̃2

)
with

σ̃ = σ

√
1− e−2θδ

2θ
.
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The corresponding log-likelihood function is given by

L(θ, σ;X1, . . . , XN+1) =
N∑
t=1

ln f(Xt+1|Xt; θ, σ)

= −N
2

ln(2π)−N ln(σ̃)− 1

2σ̃2

N∑
t=1

(
Xt+1 −Xte

−θδ)2
.

The parameters θ and σ are estimated using the limited memory algorithm for bound con-

strained optimization by Byrd et al. (1995). We transfer the top p pairs (p ∈ N) exhibiting

both a high mean-reversion speed and a high number of overnight jumps to the trading

period. This procedure relies on the assumption that overnight jumps create trading oppor-

tunities in addition to the Gaussian fluctuations, while high speed of mean-reversion pull

the process back to its equilibrium level, where pairs trading profits are taken.

4.2. Trading period

The top pairs are transferred to the 5-day trading period Ttra and every newly incoming

price on time t (t ∈ Ttra) is used to calculate the spread Xt outlined in equation (1). We

suppose that spreads with a minimum of overnight variation and strong mean-reversion

lead to desired performance results. If our assumption holds and the 3-step calibration

procedure is feasible over time, we are in position to take permanent advantage of temporary

mispricings. We strive to capture these characteristics with a trading strategy on the basis

of Bollinger bands (Bollinger 1992, 2001).

For obtaining the Bollinger bands, we calculate moving mean and standard deviation of

the spread series of the past 1955 minutes (see subsection 4.1). Specifically, we determine

the moving mean µ(t) using equation equation (6), where g(t) is estimated by the simple

moving average. The moving standard deviation σ(t) is calculated by the simple running

standard deviation2. By adding (subtracting) k-times the running standard deviation σ(t)

to (from) the mean level µ(t), we construct the upper and lower band µ(t)±kσ(t) (k ∈ R+).

We define the following trading entry signals:

2Calculating the variance of the JDM analytically would require estimating the parameters of the jump

size distribution. Dealing with a data base of only 30 days does not allow reasonable estimates.
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• Xt < µ(t) − kσ(t), i.e., stock 1 is undervalued and stock 2 overvalued. Consequently,

we simultaneously go long in stock 1 and go short in stock 2.

• Xt > µ(t) + kσ(t), i.e., stock 1 is overvalued and stock 2 undervalued. Consequently,

we simultaneously go short in stock 1 and go long in stock 2.

• µ(t) − kσ(t) ≤ Xt ≤ µ(t) + kσ(t), i.e., the spread does not exhibit any mispricings.

Consequently, we do not execute any trades.

Upon every entry signal we buy 1 dollar worth of the undervalued stock and short 1

dollar worth of the overvalued stock. Further entry signals are neglected until the position is

closed, so that only one active position per pair is allowed. Trades are held until the spread

reverts back to equilibrium, i.e., crosses the time-varying mean level. We also exit the trade

when the trading period ends or if one of the stocks of the respective pair is delisted.

According to Miao (2014) and Krauss et al. (2017), we focus on a portfolio consisting

of the top p = 10 pairs. For constructing the Bollinger bands, we follow the vast majority

of literature and set k = 2, a value suggested by Bollinger (1992, 2001) and applied by

Avellaneda and Lee (2010), Clegg and Krauss (2016), and Stübinger et al. (2016).

Return computation follows Gatev et al. (2006). Specifically, we relate the sum of daily

payoffs across all pairs to the sum of invested capital at the end of the previous day. We

show both the return on committed capital (invest one dollar for each pair) and the return

on employed capital (invest one dollar for each active pair). Following Avellaneda and Lee

(2010), Stübinger et al. (2016), and Liu et al. (2017), we depict transaction costs of 5 bps

per share per half-turn. This procedure is feasible in light of our high-frequency data in a

highly liquid investment universe.

To assess the additional benefit of our JDM-based strategy, we benchmark it with pairs

trading variants based on the (i) classic distance model (CDM), (ii) Bollinger bands model

(BBM), (iii) Ornstein-Uhlenbeck model (OUM), and a (iv) S&P 500 buy-and-hold strategy

(MKT) – all well-established quantitative strategies in the literature. Data and general

framework are set identical to the JDM. In the following, we depict the key facts of the four

benchmarks.
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Classic distance model (CDM). With the seminal paper of Gatev et al. (2006), interest

for pairs trading has surged in the academic community. We follow their approach and

implement the strategy on our circumstances. Pairs are determined possessing the smallest

sum of squared deviations between normalized prices during the formation period. In the

subsequent trading period, pairs are opened if the spread diverges more than two standard

deviations in absolute value. The trade is closed at the next crossing of prices. For further

details about this approach, see Gatev et al. (2006) and Do and Faff (2010, 2012).

Bollinger bands model (BBM). For the second benchmark, we enlarge the CDM using time-

varying trading thresholds in the spirit of Bollinger (1992, 2001). Again, we select the

pairs with the minimal sum of squared deviations. The fixed trading thresholds of Gatev

et al. (2006) are replaced by time-varying entry and exit signals. Specifically, the upper

(lower) Bollinger band are determined by adding (subtracting) 2-times the running standard

deviation to (from) the running mean. We calculate the running ratios of the past 1955

minutes to be in accord with subsection 4.2. By using Bollinger bands, we aim to capture

drifts and volatility clusters – typical characteristics of financial time series (Ou and Penman

1989, Lux and Marchesi 2000, Cont 2007).

Ornstein-Uhlenbeck model (OUM). In spirit of Elliott et al. (2005), Avellaneda and Lee

(2010), and Göncü and Akyıldırım (2016a), the dynamics of the spread are described by a

mean-reverting OU process. Similar to the JDM, we select the pairs based on the highest

mean-reversion speed and the highest variance. The second selection criterion is motivated

by Liu et al. (2017), who aim at capturing volatile intraday movements and thus many

trading opportunities by a high short-term variance. Trading thresholds are identical to the

JDM. Summarizing, the OUM is a reduced version of the JDM with the deficit of being not

able to capture overnight price changes (Kappou et al. 2010).

S&P 500 buy-and-hold strategy (MKT). Last but not least, we compare our JDM to a naive

S&P 500 buy-and-hold strategy. We buy the S&P 500 index in March 1998 and hold it

during the complete trading period. This passive investment strategy runs regardless of any

market conditions.
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5. Results

We follow Krauss and Stübinger (2017) and conduct a fully-fledged performance evalua-

tion on the JDM from March 1998 to December 2015 – compared to the CDM, BBM, OUM,

and MKT. The key results for the top p = 10 pairs are depicted in two panels – before and

after transaction costs. First, we analyze the performance of all strategies (subsection 5.1)

and execute a sub-period analysis (subsection 5.2). The majority of the used performance

metrics is regarded by Bacon (2008). Second, we investigate the exposure to common sys-

tematic risk factors (subsection 5.3) and check the robustness of the JDM (subsection 5.4).

Finally, we examine the influence of the mean-reversion speed on the performance of the

JDM (subsection 5.5).

5.1. Strategy performance

Table 3 reports daily return characteristics and corresponding risk metrics for the top 10

pairs per strategy from March 1998 until December 2015. We observe statistically significant

returns for the CDM, BBM, OUM, and JDM, with Newey-West (NW) t-statistics above 11.76

before transaction costs and above 7.00 after transaction costs. This picture barely changes

considering the economic perspective – the mean of daily returns varies from 0.04 percent

for the CDM to 0.19 percent for the JDM after transaction costs. The return distribution

of the JDM achieves right skewness – following Cont (2001) a desired characteristic for any

investor. In line with Mina and Xiao (2001), we report historical Value at Risk (VaR)

measures. Tail risk after transaction costs is greatly reduced for the JDM in contrast to

the general market, e.g., the historical VaR (1%) is -1.49 percent for the JDM versus -3.50

percent for the buy-and-hold strategy. The maximum drawdown confirms this statement –

the decline from a historical peak is at a very low level for the JDM (15.08%), compared

to the CDM (20.29%), BBM (30.95%), OUM (65.47%), and MKT (64.33%). Also, the hit

rate of the JDM outperforms clearly with approximately 64 percent after transaction costs.

Summarizing, the JDM achieves convincing return characteristics and risk metrics – this

statement remains true even after transaction costs. We have to survey the robustness of

this strategy to systematic sources of risk.
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Before transaction costs After transaction costs

CDM BBM OUM JDM CDM BBM OUM JDM MKT

Mean return 0.0007 0.0015 0.0025 0.0027 0.0004 0.0009 0.0017 0.0019 0.0001

Standard error (NW) 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002

t-Statistic (NW) 11.7621 16.5427 12.6959 20.1463 7.0059 10.1834 8.8740 14.6688 0.8889

Minimum -0.0203 -0.1706 -0.1560 -0.0442 -0.0209 -0.1719 -0.1563 -0.0447 -0.0947

Quartile 1 -0.0005 -0.0003 -0.0018 -0.0008 -0.0007 -0.0008 -0.0025 -0.0015 -0.0056

Median 0.0004 0.0011 0.0024 0.0024 0.0002 0.0006 0.0017 0.0016 0.0005

Quartile 3 0.0015 0.0029 0.0071 0.0057 0.0012 0.0022 0.0063 0.0048 0.0061

Maximum 0.0408 0.0471 0.1034 0.0983 0.0388 0.0462 0.1012 0.0942 0.1096

Standard deviation 0.0024 0.0043 0.0112 0.0070 0.0024 0.0042 0.0110 0.0068 0.0126

Skewness 2.6553 -13.0216 -1.3027 1.4535 2.4223 -14.3790 -1.4063 1.3595 -0.1983

Kurtosis 30.5440 571.4109 22.6129 15.1016 28.8833 641.5760 23.4490 14.9369 7.5250

Historical VaR 1% -0.0048 -0.0055 -0.0289 -0.0142 -0.0052 -0.0060 -0.0298 -0.0149 -0.0350

Historical CVaR 1% -0.0066 -0.0121 -0.0503 -0.0192 -0.0069 -0.0126 -0.0510 -0.0198 -0.0506

Historical VaR 5% -0.0024 -0.0027 -0.0125 -0.0070 -0.0027 -0.0032 -0.0132 -0.0077 -0.0197

Historical CVaR 5% -0.0039 -0.0055 -0.0245 -0.0116 -0.0042 -0.0059 -0.0252 -0.0123 -0.0302

Maximum drawdown 0.0471 0.1706 0.2703 0.1083 0.2029 0.3095 0.6547 0.1508 0.6433

Share with return > 0 0.6258 0.6895 0.6530 0.6992 0.5612 0.6095 0.6175 0.6412 0.5306

Table 3: Daily return characteristics and risk metrics for the top 10 pairs of the CDM, BBM, OUM, and

JDM, compared to a S&P 500 long-only benchmark (MKT) from March 1998 until December 2015. NW

denotes Newey-West standard errors with five-lag correction and CVaR the Conditional Value at Risk.

Table 4 depicts summary statistics on trading frequency. The number of actually traded

pairs is vastly different for the CDM (6.13), compared to the BBM, OUM, JDM (above 9.47)

– this dissimilarity is originated by the two different trading strategies. Higher number of

tradings generate increasing transaction costs, such as, the difference of daily mean return

before and after transaction costs amounts to 0.03 percentage points for the CDM versus

0.08 percentage points for the JDM (table 3). The trade duration of approximately 2 days

across all systems illustrates the importance of considering overnight effects in financial data

(Kappou et al. 2010). The half of the pairs have to be closed at the end of the trading

period. Specifically, for the CDM, 5.14 pairs are closed of necessity – a value similar to the

finding of Clegg and Krauss (2016) (10.86 out of 20 pairs).
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CDM BBM OUM JDM

Average number of pairs traded per 5-day period 6.1321 9.4795 9.8173 9.8450

Average number of round-trip trades per pair 1.1266 1.7162 1.9533 2.0956

Standard deviation of number of round-trip trades per pair 0.4453 1.1236 1.1162 1.4975

Average time pairs are open in days 2.3403 1.7755 1.9216 1.8471

Standard deviation of time open, per pair, in days 1.4277 1.5153 1.3389 1.3146

Average number of pairs where closing is forced 5.1381 5.3913 6.0874 5.9871

Table 4: Trading statistics for the top 10 pairs of the CDM, BBM, OUM, and JDM per 5-day trading period.

Table 5 contains return characteristics and risk metrics of trades where closing is forced.

As expected, the mean return of all strategies is negative before and after transaction costs –

latter ranges from -0.45 percent for the CDM to -2.66 percent for the OUM. This finding is not

surprising since we only close a trade during the trading period if the spread converges back

to the supposed equilibrium level. We observe an asymmetry of the return distributions when

closing is forced – across all strategies, the absolute value of the minimum is approximately

two to four times higher than the maximum. Specifically, adding the jump component in

our model seems to have a strong positive effect on the risk of loss – the minimum return

of the JDM (-24.58 percent) is much greater than the minimum return of the OUM (-59.45

percent).

Before transaction costs After transaction costs

CDM BBM OUM JDM CDM BBM OUM JDM

Mean return -0.0025 -0.0070 -0.0247 -0.0177 -0.0045 -0.0090 -0.0266 -0.0197

Minimum -0.5074 -1.0000 -0.5937 -0.2443 -0.5084 -1.0000 -0.5945 -0.2458

Median -0.0008 -0.0024 -0.0142 -0.0105 -0.0028 -0.0044 -0.0162 -0.0125

Maximum 0.2877 0.2264 0.1853 0.1072 0.2851 0.2239 0.1829 0.1050

Standard deviation 0.0343 0.0326 0.0399 0.0277 0.0342 0.0326 0.0398 0.0277

Table 5: Return characteristics of trades where closing is forced for the top 10 pairs of the CDM, BBM,

OUM, and JDM, from March 1998 until December 2015.

Table 6 summarizes annualized risk-return measures for all four strategies. The JDM

achieves annualized returns of 98.55 percent before and 60.61 percent after transaction costs

– classic pairs trading strategies and a naive buy-and-hold strategy are clearly outperformed.

Modeling overnight jumps pays off – compared to the OUM, the JDM produces higher returns

at approximately half the standard deviation, resulting in Sharpe ratios after transaction
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costs of 5.30 for the JDM and 2.71 for the OUM. The mean returns and Sharpe ratios for

the BBM, OUM, and JDM show similar results for employed and committed capital – not

surprising since the top pairs open in almost all cases (table 4).

Before transaction costs After transaction costs

CDM BBM OUM JDM CDM BBM OUM JDM MKT

Mean return 0.1784 0.4375 0.8324 0.9855 0.0990 0.2382 0.5045 0.6061 0.0176

Mean excess return 0.1549 0.4089 0.7960 0.9461 0.0771 0.2136 0.4746 0.5742 -0.0027

Standard deviation 0.0386 0.0685 0.1773 0.1116 0.0376 0.0668 0.1749 0.1084 0.2005

Downside deviation 0.0179 0.0460 0.1168 0.0514 0.0198 0.0477 0.1205 0.0558 0.1441

Sharpe ratio 4.0105 5.9734 4.4907 8.4750 2.0520 3.1986 2.7131 5.2982 -0.0136

Sortino ratio 9.9497 9.5119 7.1270 19.1603 4.9942 4.9894 4.1882 10.8676 0.1218

Mean return on employed capital 0.2862 0.4535 0.8518 0.9994 0.1512 0.2429 0.5164 0.6133 0.0176

Sharpe ratio on employed capital 4.7664 6.0554 4.5592 8.5225 2.3925 3.1874 2.7563 5.3154 -0.0136

Table 6: Annualized risk-return measures for the top 10 pairs of the CDM, BBM, OUM, and JDM, compared

to a S&P 500 long-only benchmark (MKT) from March 1998 until December 2015.

5.2. Sub-period analysis

Do and Faff (2010), Bowen and Hutchinson (2015), and Krauss et al. (2017) report varying

performance over time of their pairs trading strategies. Table 7 analyzes the annualized risk-

return measures of the four strategies during sub-periods of 3 years.

The first period ranges from 1998 to 2000 and corresponds with the growth of the dot-com

bubble. We observe that all strategies achieve much better results compared to the overall

period in table 6. Specifically, the JDM and the OUM with annualized returns of 247.62

percent and 261.23 percent after transaction costs outperform clearly simple pairs trading.

Returns are most likely driven by bid-ask bounces in consequence of fractional pricing during

this time.

The second period ranges from 2001 to 2003 and includes the dot-com crash, the Septem-

ber 11 attacks and the start of the Iraq war. In contrast to the general market with annual-

ized returns of -7.81 percent, strategy returns are still far above zero – even after transaction

costs. We note that the JDM is the only strategy that reduces significantly its downside

deviation in comparison to the previous sub-period, resulting in a Sortino ratio of 28.77.

The third period ranges from 2004 to 2006 and describes the time of moderation. Prices

are leveling out reducing the standard deviation of the general market to 10.46 percent.

18



Since pairs trading takes profit from temporal deviations between the stocks, we may care-

fully conclude that pairs trading strategies have hardly a chance to perform during this

financial recovery. We observe satisfying performance results, such as, annualized returns

after transaction costs range from 58.03 percent for the OUM to 6.66 percent for the CDM.

The forth period ranges from 2007 to 2009 and is in accord with the global financial crisis.

Contrary to the market, all strategies generate positive returns varying from 70.14 percent of

the JDM to 13.70 for the CDM. This fact is not surprising since Do and Faff (2010), Krauss

et al. (2017), and Liu et al. (2017) show that pairs trading outperforms during bear markets.

The fifth period ranges from 2010 to 2012 and specifies the time of deterioration. In

contrast to the market with annualized returns of 6.71 percent, negative returns range from

-2.36 percent for the JDM to -15.57 percent for the OUM. The JDM still achieves positive

returns before transaction costs of 16.49 percent. In conclusion, the model detects structure,

but the resulting profits are not large enough considering the impact of transaction costs.

The sixth period ranges from 2013 to 2015 and characterizes the period of comebacks.

Across all strategies, the mean excess returns equal the mean returns because the daily risk

free rate is zero during this sub-period. The market with annualized returns of 11.82 percent

outperforms all strategies varying from 5.07 percent for the JDM to -15.21 percent for the

OUM. The majority of academic research shows declining returns for the recent years, e.g.,

Clegg and Krauss (2016) and Krauss et al. (2017). However, the JDM produces positive

mean returns prior and after transaction costs.
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Before transaction costs After transaction costs

CDM BBM OUM JDM CDM BBM OUM JDM MKT

1998-2000

Mean return 0.4248 1.1973 3.5260 3.4726 0.3193 0.8545 2.6123 2.4762 0.0625

Mean excess return 0.3554 1.0905 3.3065 3.2558 0.2550 0.7643 2.4370 2.3075 0.0107

Standard deviation 0.0438 0.0705 0.2190 0.1475 0.0427 0.0681 0.2158 0.1434 0.2056

Downside deviation 0.0166 0.0196 0.1069 0.0566 0.0184 0.0218 0.1109 0.0605 0.1443

Sharpe ratio 8.1124 15.4669 15.0954 22.0789 5.9727 11.2152 11.2926 16.0888 0.0519

Sortino ratio 25.5682 61.1825 32.9859 61.3774 17.3495 39.2157 23.5488 40.9134 0.4327

2001-2003

Mean return 0.2592 0.6743 1.3355 1.7033 0.1746 0.4199 0.8600 1.0794 -0.0781

Mean excess return 0.2324 0.6387 1.2859 1.6459 0.1496 0.3897 0.8205 1.0353 -0.0978

Standard deviation 0.0349 0.1128 0.2067 0.1052 0.0336 0.1119 0.2032 0.1000 0.2184

Downside deviation 0.0146 0.1002 0.1447 0.0327 0.0162 0.1014 0.1477 0.0375 0.1538

Sharpe ratio 6.6585 5.6607 6.2223 15.6511 4.4494 3.4829 4.0387 10.3494 -0.4478

Sortino ratio 17.7391 6.7319 9.2320 52.0796 10.7860 4.1416 5.8236 28.7702 -0.5080

2004-2006

Mean return 0.1430 0.3961 0.9527 0.7613 0.0666 0.2028 0.5803 0.4241 0.0787

Mean excess return 0.1099 0.3558 0.8964 0.7105 0.0358 0.1681 0.5347 0.3830 0.0475

Standard deviation 0.0286 0.0437 0.1089 0.0790 0.0279 0.0418 0.1067 0.0765 0.1046

Downside deviation 0.0160 0.0188 0.0616 0.0367 0.0178 0.0219 0.0659 0.0412 0.0720

Sharpe ratio 3.8430 8.1335 8.2287 8.9896 1.2801 4.0237 5.0115 5.0081 0.4542

Sortino ratio 8.9274 21.0538 15.4739 20.7273 3.7324 9.2449 8.8101 10.2841 1.0935

2007-2009

Mean return 0.2228 0.4830 0.9379 1.0620 0.1370 0.2789 0.6069 0.7014 -0.1177

Mean excess return 0.1977 0.4526 0.8982 1.0198 0.1136 0.2526 0.5740 0.6665 -0.1358

Standard deviation 0.0542 0.0610 0.1478 0.1268 0.0526 0.0586 0.1459 0.1242 0.2995

Downside deviation 0.0223 0.0225 0.0835 0.0581 0.0242 0.0257 0.0878 0.0623 0.2209

Sharpe ratio 3.6481 7.4212 6.0780 8.0404 2.1613 4.3118 3.9328 5.3656 -0.4534

Sortino ratio 9.9951 21.4665 11.2390 18.2726 5.6629 10.8624 6.9143 11.2638 -0.5328

2010-2012

Mean return 0.0298 0.0710 -0.0040 0.1649 -0.0340 -0.0589 -0.1557 -0.0236 0.0671

Mean excess return 0.0290 0.0702 -0.0047 0.1640 -0.0347 -0.0596 -0.1564 -0.0244 0.0663

Standard deviation 0.0280 0.0432 0.1595 0.0847 0.0276 0.0422 0.1588 0.0835 0.1856

Downside deviation 0.0178 0.0281 0.1269 0.0577 0.0201 0.0313 0.1310 0.0625 0.1341

Sharpe ratio 1.0363 1.6241 -0.0297 1.9366 -1.2562 -1.4122 -0.9847 -0.2920 0.3572

Sortino ratio 1.6690 2.5311 -0.0313 2.8572 -1.6882 -1.8826 -1.1889 -0.3778 0.5004

2013-2015

Mean return 0.0478 0.1072 0.0023 0.2571 -0.0196 -0.0331 -0.1521 0.0507 0.1182

Mean excess return 0.0478 0.1072 0.0023 0.2571 -0.0196 -0.0331 -0.1521 0.0507 0.1182

Standard deviation 0.0319 0.0398 0.1832 0.0902 0.0312 0.0381 0.1824 0.0889 0.1282

Downside deviation 0.0191 0.0238 0.1501 0.0597 0.0211 0.0272 0.1538 0.0642 0.0905

Sharpe ratio 1.4989 2.6953 0.0124 2.8503 -0.6293 -0.8683 -0.8342 0.5700 0.9222

Sortino ratio 2.5055 4.5038 0.0151 4.3036 -0.9298 -1.2165 -0.9895 0.7888 1.3058

Table 7: Annualized risk-return measures for the top 10 pairs of the CDM, BBM, OUM, and JDM, compared

to a S&P 500 long-only benchmark (MKT) for sub-periods of 3 years from March 1998 until December 2015.
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5.3. Common risk factors

Table 8 explores the systematic risk exposure for the top 10 pairs of the JDM after

transaction costs. We follow Krauss and Stübinger (2017) and conduct three types of re-

gression. First, we capture the return anomalies by the three-factor model (FF3) of Fama

and French (1996). The model measures the sensitivity to the overall market, small minus

big capitalization stocks (SMB), and high minus low book-to-market stocks (HML). Second,

we depict the Fama-French 3+2 factor model (FF3+2) in line with Gatev et al. (2006). It

augments the baseline model by the additional factors momentum and short-term reversal.

Third, we extend the first model by adding two factors, i.e., portfolios of stocks with robust

minus weak profitability (RMW) and with conservative minus aggressive (CMA) investment

behavior. According to Fama and French (2015), we call this model Fama-French five-factor

model (FF5). We download the data related to these models from Kenneth R. French’s

website3. Irrespective of the applied Fama-French model, we find statistically and economi-

cally significant alphas of 0.18 percent per day. Since our strategy is dollar-neutral, it is not

surprising that the returns show slight exposure to the general market – therefore FF3+2

and FF5 indicate no loading. Loadings on SMB, HML, SMB5, HML5, RMW5, and CMA5

are insignificant and very close to zero. We observe a statistical significant positive loading

on the reversal factor – a clear evidence that our strategy buys short-term losers and shorts

short-term winners. As expected, loading on the momentum factor is small and statistically

insignificant. The FF3+2 model has the highest explanatory power caused by the short-term

reversal factor. Summarizing, the JDM produces statistically and economically significant

returns, obtains almost no loading on systematic sources of risk, and outperforms classic

pairs trading approaches.

3We thank Kenneth R. French for providing all relevant data for these models on his website.
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FF3 FF3+2 FF5

(Intercept) 0.0018∗∗∗ 0.0018∗∗∗ 0.0018∗∗∗

(0.0001) (0.0001) (0.0001)

Market 0.0186∗ 0.0006 0.0171

(0.0080) (0.0089) (0.0093)

SMB −0.0139 −0.0137

(0.0162) (0.0162)

HML −0.0256 −0.0106

(0.0152) (0.0163)

Momentum 0.0087

(0.0113)

Reversal 0.0736∗∗∗

(0.0114)

SMB5 −0.0109

(0.0175)

HML5 −0.0183

(0.0173)

RMW5 0.0019

(0.0226)

CMA5 −0.0152

(0.0277)

R2 0.0019 0.0111 0.0019

Adj. R2 0.0012 0.0100 0.0008

Num. obs. 4484 4484 4484

RMSE 0.0068 0.0068 0.0068

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 8: Exposure to systematic sources of risk after transaction costs for the daily returns of the top 10

pairs of the JDM from March 1998 until December 2015. Standard errors are depicted in parentheses.

5.4. Robustness checks

Whenever strategies produce high returns it appears the suspicion of data snooping.

Therefore, we run a series of robustness checks on our input parameters.

First of all, we contrast the performance of the JDM with the results of 200 random

bootstrap tradings. In the spirit of Gatev et al. (2006), we combine each original trading

signal of the JDM with two random securities of the oil sector at that time. As expected, the

average daily returns of bootstrapped pairs account for -0.01 percent per day – a reasonable

value and well in line with the findings of Gatev et al. (2006). The JDM produces daily

returns of 0.27 percent before transaction costs which are far superior to the results of
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random bootstrap trading. Hence, our strategy identifies temporal variations and exploits

market inefficiencies.

In subsection 4.2, the input parameters are motivated based on the literature – we set a

number of 10 top pairs (p = 10) and a trading threshold of two standard deviations (k = 2).

Table 9 depicts annualized mean returns and Sharpe ratios for the JDM after transaction

costs varying the input parameters p and k in two directions. Furthermore, we consider

varying d-day trading periods (d ∈ {1, 2, 3, 4, 5}). First of all, a smaller number of top pairs

leads to a better performance indicating that our pairs selection algorithm introduced in

section 4 is meaningful. Higher annualized returns and Sharpe ratios can generally be found

at lower levels of k – higher transaction costs in consequence of increasing trading frequency

are compensated by rising returns. Regarding overnight effects in context of high-frequency

data pays off – we observe that a larger trading period increases the profitability of our

strategy. Overall, the initial parameter setting hits not the optimum, our model identifies

correct pairs, and considering overnight effects has a positive impact on the trading results.

Return Sharpe ratio

k \ d 1 2 3 4 5 1 2 3 4 5

Top 5

1 0.8537 1.0629 1.1244 1.1489 1.1568 4.6786 6.0104 6.3887 6.6330 6.7488

2 0.6162 0.6522 0.6695 0.6731 0.6686 4.5233 4.8030 4.8267 4.8896 4.8829

3 0.3172 0.3273 0.3343 0.3420 0.3419 3.4314 3.3932 3.3729 3.4420 3.4389

Top 10

1 0.6501 0.8843 0.9787 1.0138 1.0204 4.3839 6.0263 6.6895 6.9871 7.0872

2 0.4993 0.5646 0.5972 0.6084 0.6061 4.5429 5.0761 5.2433 5.3209 5.2982

3 0.2528 0.2681 0.2860 0.2953 0.2982 3.4568 3.4713 3.5547 3.6304 3.6267

Top 20

1 0.5466 0.7421 0.8112 0.845 0.8587 4.2517 5.8778 6.4085 6.6511 6.7839

2 0.4361 0.4780 0.4976 0.5079 0.5085 4.6075 4.9659 5.0366 5.0793 5.0707

3 0.2257 0.2303 0.2369 0.2454 0.2493 3.6147 3.5175 3.4520 3.5098 3.5207

Table 9: Annualized mean return and Sharpe ratio after transaction for a varying number of top pairs (p),

the k-times of the standard deviation, and the length of the trading period in days (d) from March 1998

until December 2015.

Figure 2 depicts the annualized returns after transaction costs (left axis), the average

number of pairs traded (right axis), and the average number of pairs where closing is forced

(right axis) for a varying trading period measured in days for our initial parameter setting.

We observe that a larger trading period increases the annualized returns ranging from 49.93
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percent for a 1-day trading period to 60.61 percent for a 5-day trading period. As expected,

the average number of pairs opened during the trading period shows a similar picture –

the number increases from 6.18 pairs (1-day trading period) to 9.85 pairs (5-day trading

period). In contrast, the average number of pairs where closing is forced decreases for a

longer trading period – a favorable property for investors (subsection 5.1). Overall, we

conclude that overnight trading reduces downside risks and improves the performance of our

strategy.
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Figure 2: Annualized return after transaction costs (left axis), average number of pairs traded (right axis),

and average number of pairs where closing is forced (right axis) for a varying trading period measured in

days for our initial parameter setting.

5.5. Influence of mean-reversion speed

Our trading strategy outlined in subsection 4.1 relies on the mean-reversion of the under-

lying spread process (Leung and Li 2015, Cartea et al. 2015). Spreads of pairs with a strong

exposure to mean-reversion provide the highest process’ predictability and thus, generate

profits from trading. The joint information from two return series is used to create exit

signals, which are mainly driven by the mean-reverting nature of their linear combination –

the spread. Specifically, spreads with a high mean-reversion speed θ converge fast back to

equilibrium and thus produce the best performance (Cartea et al. 2015).
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Besides a successful termination of the pairs trading strategy (Göncü and Akyıldırım

2016a), the speed of trading plays a fundamental role. Bertram (2010) emphasizes the

importance of time in financial markets. The author measures the strategy’s return by

dividing the return per trade by the time to complete a trade cycle. Consequently, the time

over which a return takes place should also be taken into consideration. This applies for our

strategy – pairs that revert too slow are closed at the end of the trading period and may

produce losses.

In the following, we vindicate the theoretical construct relying on mean-reversion by

analyzing the relationship between achieved returns, exposure to the mean-reverting process,

and the factor of time represented by the period over which a return takes place. Specifically,

the attribute “return” describes the achieved daily returns after transaction costs for the top

10 pairs of the JDM, “θ” defines the average mean-reversion speed of the selected top pairs,

and “duration” specifies the average holding period per round-trip trade.

Figure 3 summarizes the attributes “return”, “θ”, and “duration” – the daily data base

is monthly aggregated. Most interesting is the fact that the three variables depict a strong

multivariate dependence, illustrated in plot (a). Furthermore, we analyze the relationship

of two variables c.p., i.e., the third variable is held constant. We observe in plot (b) that

“return” is powerfully linked to “θ”. This fact confirms the assumption that mean-reversion

is a driving component of positive returns. Thus, we may carefully infer that our pairs

selection algorithm outlined in subsection 4.1 is meaningful. Considering plot (c), “return”

and “duration” show a strong relationship. This is an interesting finding since the strategy’s

return in the sense of Bertram (2010) is optimized in two ways at the same time: For

an increasing return, the time over which the return takes place becomes shorter and vice

versa. Third, “duration” is strongly associated with “θ”, which is illustrated in plot (d). It

is not surprising that an increasing mean-reversion speed θ leads directly to a lower holding

period. Concluding, the results are in line with the literature – mean-reversion is a driver

for successful and fast termination of our pairs trading strategy.
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Figure 3: Monthly aggregated data of daily returns after transaction costs (return), average holding period

per round-trip trade per pair (duration), and the mean-reversion rate of the top pairs (θ) in three-dimensional

scatter plot (a) and two-dimensional scatter plots (b), (c), (d). The color scheme in each scatter plot

represents the monthly aggregated daily returns.

6. Conclusion

In this paper, we introduce an integrated pairs trading framework based on a JDM and

deploy it on minute-by-minute data of the S&P 500 oil sector from January 1998 to December

2015. In this respect, we make three contributions to the literature.

The first contribution relies on the developed pairs trading framework based on a mean-
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reverting JDM. To our knowledge, we are the first authors considering a jump component for

pairs formation and trading in the context of high-frequency data – this fact enables us to

include intraday and overnight effects. In a preliminary study, we re-confirm the necessity of

considering overnight jumps. Our strategy selects pairs based on their mean-reversion speed

and jump behavior, thereby receiving profitable pairs. Finally, we implement individualized

trading rules based on Bollinger bands.

The second contribution focuses on the performance evaluation of our trading strategy

and the implemented benchmark approaches. We find that JDM-based pairs trading out-

performs traditional distance and time-series approaches. Specifically, our strategy achieves

statistically and economically significant returns of 60.61 percent p.a. after transaction costs.

These returns yield to an annualized Sharpe ratio of 5.30 after transaction costs – pairs trad-

ing with the distance and time-series approach ranges between 2.05 and 3.20. The returns

can partially be attributed to systematic risk exposure, mostly driven by the short-term

reversal factor, but daily alpha still remains at 0.18 percent after transaction costs. A series

of robustness checks confirms the necessity of regarding jumps in spread modeling.

The third contribution is rooted in the influence of the mean-reversion speed on the

performance of the strategy. We find that successful termination as well as fast trading speed

of the pairs trading strategy are strongly influenced by the exposure to mean-reversion.

For further research, we identify three possible directions: First, the model may be

extended by integrating a general Lévy-process, which is able to capture stylized facts in

a more common way than the Poisson process. Second, the model performance should

be evaluated by applying the pairs trading strategy on other stock universes. Third, the

Bollinger bands may be refined by an exponential moving average to consider the time

structure.
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Cartea, Á., Jaimungal, S., Penalva, J., 2015. Algorithmic and high-frequency trading. Cam-

bridge University Press.

Clegg, M., Krauss, C., 2016. Pairs trading with partial cointegration. FAU Discussion Papers

in Economics, University of Erlangen-Nürnberg.

Cont, R., 2001. Empirical properties of asset returns: Stylized facts and statistical issues.

Quantitative Finance 1 (2), 223–236.

Cont, R., 2007. Volatility clustering in financial markets: Empirical facts and agent-based

models. In: Teyssière, G., Kirman, A. P. (Eds.), Long Memory in Economics. Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 289–309.

Cont, R., Tankov, P., 2003. Financial modelling with jump processes. Vol. 2. CRC Press.

Cummins, M., Bucca, A., 2012. Quantitative spread trading on crude oil and refined products

markets. Quantitative Finance 12 (12), 1857–1875.

Do, B., Faff, R., 2010. Does simple pairs trading still work? Financial Analysts Journal

66 (4), 83–95.

Do, B., Faff, R., 2012. Are pairs trading profits robust to trading costs? Journal of Financial

Research 35 (2), 261–287.

Dragulescu, A. A., 2014. xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003

files.

Ekström, E., Lindberg, C., Tysk, J., 2011. Optimal liquidation of a pairs trade. In: Di

Nunno, G., Øksendal, B. (Eds.), Advanced Mathematical Methods for Finance. Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 247–255.

29



Elliott, R. J., van der Hoek, J., Malcolm, W. P., 2005. Pairs trading. Quantitative Finance

5 (3), 271–276.

Escribano, A., Ignacio Peña, J., Villaplana, P., 2011. Modelling electricity prices: Interna-

tional evidence. Oxford Bulletin of Economics and Statistics 73 (5), 622–650.

Fama, E. F., French, K. R., 1996. Multifactor explanations of asset pricing anomalies. The

Journal of Finance 51 (1), 55–84.

Fama, E. F., French, K. R., 2015. A five-factor asset pricing model. Journal of Financial

Economics 116 (1), 1–22.

Gatev, E., Goetzmann, W. N., Rouwenhorst, K. G., 1999. Pairs trading: Performance of a

relative value arbitrage rule. Working paper, Yale School of Management’s International

Center for Finance.

Gatev, E., Goetzmann, W. N., Rouwenhorst, K. G., 2006. Pairs trading: Performance of a

relative-value arbitrage rule. Review of Financial Studies 19 (3), 797–827.
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