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Abstract We derive computationally simple and intuitive score tests of neglected
serial correlation in unobserved component univariatemodels using frequency domain
techniques. In some common situations in which the alternative model information
matrix is singular under the null, we derive one-sided extremum tests, which are
asymptotically equivalent to likelihood ratio tests, and explain how to compute reliable
Wald tests. We also explicitly relate the incidence of those problems to the model
identification conditions and compare our tests with tests based on the reduced form
prediction errors. Our Monte Carlo exercises assess the finite sample reliability and
power of our proposed tests.
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1 Introduction

The superposition of Arima time series models forms the basis of two dominant
approaches to the classical decomposition of a univariate time series into trend,
cyclical, seasonal and irregular components: the reduced form “model-based” decom-
position analysed by Box et al. (1978) and Pierce (1978) and further extended by
Agustín Maravall and his co-authors, and the so-called “structural time series” models
studied by Nerlove (1967), Engle (1978) and Nerlove et al. (1979) and subsequently
developed by Andrew Harvey and his co-authors.

In both cases, the model parameters are estimated by maximising the Gaussian
log-likelihood function of the observed data, which can be readily obtained either as
a by-product of the Kalman filter prediction equations or from Whittle’s (1962) fre-
quency domain asymptotic approximation. Once the parameters have been estimated,
filtered values of the unobserved components can be extracted bymeans of theKalman
smoother or itsWiener–Kolmogorov counterpart. These estimation and filtering issues
are well understood (see Harvey 1989; Durbin and Koopman 2012 for textbook treat-
ments), and the same can be said of their efficient numerical implementation (see
Commandeur et al. 2011 and the references therein).

In contrast, specification tests for these models are far less known. While sophis-
ticated users will often look at several diagnostics, such as the ones suggested by
Maravall (1987, 1999, 2003), or the ones computed by the Stamp software package
following Harvey and Koopman (1992) (see Koopman et al. 2009 for further details),
formal tests are hardly ever reported in empirical work. One particularly relevant issue
is the correct specification of the parametric Arima models for the unobserved com-
ponents, as the various outputs of the model could be misleading under misspecified
dynamics.

The objective of our paper is precisely to derive tests for neglected serial correlation
in the underlying elements of univariate unobserved components (Ucarima) models.
For computational reasons, we focus most of our discussion on score tests, which
only require estimation of the model under the null. As is well known, though, in
standard situations likelihood ratio (LR), Wald and Lagrange multiplier (LM) tests
are asymptotically equivalent under the null and sequences of local alternatives, and
therefore they share their optimality properties. Another important advantage of score
tests is that they often coincide with tests of easy to interpret moment conditions (see
Newey 1985; Tauchen 1985), which will continue to have non-trivial power even in
situations for which they are not optimal.

Earlier work on specification testing in unobserved component models include
Engle andWatson (1980), who explained how to apply the LM testing principle in the
time domain for dynamic factormodelswith static factor loadings,Harvey (1989),who
provides a detailed discussion of time domain and frequency domain testing methods
in the context of univariate “structural time series” models, and Fernández (1990),
who applied the LM principle in the frequency domain to a multivariate structural
time series model. More recently, in a companion paper (Fiorentini and Sentana 2013)
we have derived tests for neglected serial correlation in the latent variables of dynamic
factor models using frequency domain techniques.
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In the specific context of Ucarima models, the contribution of this paper is three-
fold.

First, we propose dynamic specification test which are very simple to implement,
and even simpler to interpret. Once an model has been specified and estimated, the
tests that we propose can be routinely computed from simple statistics of the smoothed
values of the innovations of the different components. And even though our theoret-
ical derivations make extensive use of spectral methods for time series, we provide
both time domain and frequency domain interpretations of the relevant scores, so
researchers who strongly prefer one method over the other could apply them without
abandoning their favourite estimation techniques.

Second, we provide a thorough discussion of some common situations in which
the standard form of LM tests cannot be computed because the information matrix
of the alternative model is singular under the null. In those irregular cases, we derive
versions of the score tests that remain asymptotically equivalent to the LR tests, which
become one-sided, and explain how to compute asymptotically reliableWald tests.We
also explicitly relate the incidence of those problems to the identification conditions
for Ucarima models, and highlight that they contradict the widely held view that
increases in theMa and Ar polynomials of the same order provide locally equivalent
alternatives in univariate tests for serial correlation (see e.g. Godfrey 1988).

Third, we compare dynamic specification tests for the underlying components with
tests based on the reduced form prediction errors. In this regard, we study their relative
power and discuss some cases in which they are numerical equivalent.

The rest of the paper is organised as follows. In Sect. 2, we review the properties of
Ucarimamodels, their estimators and filters. Then, in Sect. 3 we derive our tests and
discuss their potential pitfalls, comparing them to reduced form tests in Sect. 4. This
is followed by a Monte Carlo evaluation of their finite sample behaviour in Sect. 5.
Finally, our conclusions can be found in Sect. 6. Auxiliary results are gathered in
Appendices.

2 Theoretical background

As we have just mentioned, in this section we formally introduce Ucarima models,
obtain their reduced form representation, reviewmaximum likelihood estimation in the
frequency domain, applyWiener–Kolmogorov filtering theory to optimally extract the
unobserved components and derive the time series properties of the smoothed series.

2.1 UCARIMA models

To keep the notation to a minimum throughout the paper we focus on models for a
univariate observed series yt that can be defined in the time domain by the equations:

yt = μ + xt + ut , (1)

αx (L)xt = βx (L) ft , (2)

αu(L)ut = βu(L)vt , (3)
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(
ft
vt

) ∣∣∣It−1;μ, θ ∼ N

[(
0
0

)
,

(
σ 2
f 0
0 σ 2

v

)]
, (4)

where xt is the “signal” component, ut the orthogonal “non-signal” component, αx (L)

and αu(L) are one-sided polynomials of orders px and pu , respectively, while βx (L)

and βu(L) are one-sided polynomials of orders qx and qu coprime with αx (L) and
αu(L), respectively, It−1 is an information set that contains the values of yt and xt
up to, and including time t − 1, μ is the unconditional mean and θ refers to all the
remaining model parameters.

Importantly, we maintain the assumption that the researcher makes sure that the
parameters θ are identified before estimating the model under the null.1 Hotta (1989)
provides a systematic way to check for identification (see Maravall 1979 for closely
related results). Specifically, let c denote the degree of the polynomial greatest common
divisor of αx (L) and αu(L), so that they share c common roots. Then, the Ucarima
model above will be identified (except at a set of parameter values of measure 0)
when there are no restrictions on the Ar and Ma polynomials if and only if either
px ≥ qx + c + 1 or pu ≥ qu + c + 1, so that at least one of the components must be
a “top-heavy” Arma process in the terminology of Burman (1980) (i.e. a process in
which the Ar order exceeds the Ma one).2 Given the exchangeability of signal and
non-signal components in the formulation above, in what follows we assume without
loss of generality that this identification condition is satisfied by the signal component.
In particular, we assume that px ≥ qx + c + 1 and px − qx ≥ pu − qu , and that in
case of equality, px ≥ pu .

In this paper we are interested in hypothesis tests for px = p0x vs px = p0x + kx or
pu = p0u vs pu = p0u + ku , or the analogous hypotheses for qx and qu . For simplicity,
we focus most of the discussion in those cases in which kx and ku are in fact 1, which
leads to the following four hypothesis of interest:

1. Sar1: Arma(px + 1, qx ) + Arma(pu, qu)
2. Sma1: Arma(px , qx + 1) + Arma(pu, qu)
3. Nar1: Arma(px , qx ) + Arma(pu + 1, qu)
4. Nma1: Arma(px , qx ) + Arma(pu, qu + 1)

Given that they raise no additional issues, extensions to higher kx and ku are only
briefly discussed in Sect. 3.1 below, as well as in our concluding remarks.

2.2 Reduced form representation of the model

Unobserved component models can readily handle integrated variables, but for sim-
plicity of exposition in what followswemaintain the assumption that yt is a covariance
stationary process, possibly after suitable differencing, as in Appendix 1.

1 But see Sect. 6 for a brief discussion of models that are underidentified under the null but identified under
the alternative.
2 Although strictly speaking Proposition 2 in Hotta (1989) applies to stationary models, the emphasis on
common roots is particularly important in the presence of integrated components, in which case px and
pu would represent the total number of Ar roots, including those on the unit circle (see Harvey 1989 for
further details).
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Under stationarity, the spectral density of the observed variable is proportional to

gyy(λ) = gxx (λ) + guu(λ),

gxx (λ) = σ 2
f
βx (e−iλ)βx (eiλ)

αx (e−iλ)αx (eiλ)
,

guu(λ) = σ 2
v

βu(e−iλ)βu(eiλ)

αu(e−iλ)αu(eiλ)
.

Given that

gyy(λ)= σ 2
f βx (e−iλ)βx (eiλ)αu(e−iλ)αu(eiλ)+σ 2

v βu(e−iλ)βu(eiλ)αx (e−iλ)αx (eiλ)

αx (e−iλ)αx (eiλ)αu(e−iλ)αu(eiλ)

= σ 2
a

βy(e−iλ)βy(eiλ)

αy(e−iλ)αy(eiλ)
,

it follows that the reduced formmodel will be anArma process with maximum orders
py = px + pu for theAr polynomial αy(.) = αx (.)αu(.) and qy = max(px +qu, qx +
pu) for theMa polynomialβy(.). Cancellationwill trivially occurwhenαx (.) andαu(.)

share c common roots, but there could also be other cases (see Granger and Morris
1976 for further details). The coefficients of βy(L), as well as σ 2

a , which is the variance
of the univariate Wold innovations, at , are obtained by matching autocovariances (see
Fiorentini and Planas 1998 for a comparison of numerical methods). Assuming strict
invertibility of the Ma part, we could then obtain the reduced form innovations at
from the observed process by means of the one-sided filter

αy(e
−iλ)/βy(e

−iλ).

But as is well known, these reduced form residuals can also be obtained from the
prediction equations of the Kalman filter without making use of the expressions for
αy(.) or βy(.).

2.3 Maximum likelihood estimation in the frequency domain

Let

Iyy(λ) = 1

2πT

T∑
t=1

T∑
s=1

(yt − μ)(ys − μ)e−i(t−s)λ (5)

denote the periodogram of yt and λ j = 2π j/T ( j = 0, . . . , T − 1) the usual Fourier
frequencies. If we assume that gyy(λ) is not zero at any of those frequencies, the
so-called Whittle (discrete) spectral approximation to the log-likelihood function is3

3 There is also a continuous version which replaces sums by integrals (see Dunsmuir and Hannan 1976).
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− NT

2
ln(2π) − 1

2

T−1∑
j=0

ln
∣∣gyy(λ j )

∣∣ − 1

2

T−1∑
j=0

2π Iyy(λ j )

gyy(λ j )
. (6)

The MLE of μ, which only enters through Iyy(λ), is the sample mean, so in what
follows we focus on demeaned variables. In turn, the score with respect to all the
remaining parameters is

sθ (θ) = 1

2

T−1∑
j=0

∂gyy(λ j )

∂θ
M(λ j )m(λ j ),

m(λ) = 2π Iyy(λ) − gyy(λ), (7)

M(λ) = g−2
yy (λ).

The information matrix is block diagonal between μ and the elements of θ , with
the (1, 1)-element being gyy(0) and the (2, 2)-block

Q = 1

4π

∫ π

−π

∂gyy(λ)

∂θ
M(λ)

{
∂gyy(λ)

∂θ

}∗
dλ, (8)

where ∗ denotes the conjugate transpose of a matrix. A consistent estimator will be
provided either by the outer product of the score or by

�(θ) = 1

2

T−1∑
j=0

∂gyy(λ j )

∂θ
M(λ j )

{
∂gyy(λ j )

∂θ

}∗
. (9)

In fact, by selecting an artificially large value for T in (9), one can approximate (8) to
any desired degree of accuracy.

Formal results showing the strong consistency and asymptotic normality of the
resulting ML estimators of dynamic latent variable models under suitable regular-
ity conditions were provided by Dunsmuir (1979), who generalised earlier results
for Varma models by Dunsmuir and Hannan (1976). These authors also show the
asymptotic equivalence between time and frequency domain ML estimators.4

2.4 The (Kalman–)Wiener–Kolmogorov filter

By working in the frequency domain we can easily obtain smoothed estimators of the
latent variables too. Specifically, let

yt − μ =
∫ π

−π

eiλt d Zy(λ),

V [dZy(λ)] = gyy(λ)dλ

4 This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case
(see Choudhuri et al. 2004).
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denote the spectral decomposition of the observed process. The Wiener–Kolmogorov
two-sided filter for the signal xt at each frequency is given by

gxx (λ)g−1
yy (λ)dZy(λ).

Hence, the spectral density of the smoother xKt |T as T → ∞5 will be

gxK xK (λ) = g2xx (λ)

gyy(λ)
= gxx (λ)

gxx (λ) + guu(λ)
gxx (λ) = R2

xx (λ)gxx (λ), (10)

while the spectral density of the final estimation error xt − xKt |∞ will be given by

gxx (λ) − gxK xK (λ) = [1 − R2
xx (λ)]gxx (λ) = ωxx (λ). (11)

It is easily seen that gxK xK (λ) will approach gxx (λ) at those frequencies for which
gxx (λ) is large relatively to guu(λ), i.e. frequencies with a high signal to noise ratio.
In this regard, we can view R2

xx (λ) as a frequency-by-frequency coefficient of deter-
mination.

Having smoothed yt to estimate xt , we can easily obtain the smoother for ft , f Kt |∞,

by applying to xKt |∞ the one-sided filter

αx (e
−iλ)/βx (e

−iλ). (12)

Likewise, we can derive its spectral density, as well as the spectral density of its final
estimation error ft − f Kt |∞.

Entirely analogous derivations apply to the non-signal component ut , with the
peculiarity that

xKt |∞ + uKt |∞ = yt

so that

R2
xx (λ) + R2

uu(λ) = 1 ∀λ.

Finally, we can obtain the autocovariances of xKt |∞, f Kt |∞, uKt |∞, vK
t |∞ and their final

estimation errors by applying the usual inverse Fourier transformation

γzz(k) = cov(zt , zt−k) =
∫ π

−π

eiλkgzz(λ)dλ.

5 The main difference between the Wiener–Kolmogorov filtered values, xKt |∞, and the Kalman filter

smoothed values, xKt |T , results from the dependence of the former on a double infinite sequence of observa-
tions (but see Levinson 1947). As shown by Fiorentini (1995) and Gómez (1999), though, they can be made
numerically identical by replacing both pre- and post-sample observations by their least squares projections
onto the linear span of the sample observations.
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2.5 Autocorrelation structure of the smoothed variables

Aswe have seen in the previous section, smoothed values of the latent variables are the
result of optimal symmetric two-sided filters. As a consequence, their serial correlation
structure is generally different from that of the unobserved state variables. To see the
difference between the spectra of the signal and its estimators, recall that (10) implies
that gxK xK (λ) < gxx (λ) for any λ ∈ (−π, π) for which guu(λ) > 0. Therefore, the
variance of the optimal estimator will underestimate the variance of the unobserved
signal, as expected.

As argued by Maravall (1987, 1999, 2003), the serial dependence structure of the
estimators of the unobserved components can be a useful tool for model diagnos-
tic. Large discrepancies between theoretical and empirical autocovariance functions
of those estimators can be interpreted as indication of model misspecification. On
this basis, Maravall (1987) suggested a (Gaussian) parametric bootstrap procedure to
obtain confidence intervals for the empirical autocovariances of a single smoothed
innovation. Similarly, Maravall (2003) derived expressions for the asymptotic vari-
ance of the sampling variances and autocorrelations of the smoothed components
using classic results for linear stationary Gaussian processes (see e.g. Lomnicki and
Zaremba 1959 or Anderson and Walker 1964). However, in both instances his main
objective was to propose useful model diagnostics rather than deriving the null dis-
tribution of a formal statistical test. As we shall see in Sect. 3.2, our LM tests
carry out the comparison between theoretical and empirical autocovariance func-
tions of the smoothed components in a very precise statistical sense, taking into
account both the sampling variability of the estimators of the parameters of the
null model and the potential rank failure of the information matrix of the alternative
model.

In this regard, an important advantage of our frequency domain approach is that we
implicitly compute the required autocovariances without explicitly obtaining the time
processes for the unobserved components. Nevertheless, for pedagogical purposes it
is of interest to understand those processes.

Given (10), we can write the spectral density of xK as

gxK xK (λ) = σ 4
f β

2
x (e

−iλ)β2
x (e

iλ)αu(e−iλ)αu(eiλ)

σ 2
a αx (e−iλ)αx (eiλ)βy(e−iλ)βy(eiλ)

,

which corresponds to an Arma(px + qy, pu + 2qx ) process in the absence of cancel-
lation. Hence, the spectral density of the final estimation error xt − xKt |∞ in (11) will
be

ωxx (λ) = σ 2
f σ

2
v βx (e−iλ)βx (eiλ)βu(e−iλ)βu(eiλ)

σ 2
a βy(e−iλ)βy(eiλ)

,

which shares the structure of an Arma(qy, qx + qu) under the same circumstances.
In turn, the application of (12) to xKt |∞ implies that the spectral density of f Kt |∞ will

be
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g f K f K (λ) = σ 4
f βx (e−iλ)βx (eiλ)αu(e−iλ)αu(eiλ)

σ 2
a βy(e−iλ)βy(eiλ)

,

which suggests an Arma(qy, pu + qx ) process, while

ω f f (λ) = σ 2
f − g f K f K (λ) = σ 2

f σ
2
v βu(e−iλ)βu(eiλ)αx (e−iλ)αx (eiλ)

σ 2
a βy(e−iλ)βy(eiλ)

points out instead to an Arma(qy, px + qu) for the final estimation error ft − f Kt |∞.
There are special cases, however, in which the resulting models for the smoothed

values of the unobserved variables and their innovations are much simpler. For exam-
ple, if the signal follows a purely autoregressive process and the non-signal component
is white noise, so that βx (L) = αu(L) = βu(L) = 1, then

gxK xK (λ) = σ 2
f σ

2
v

σ 2
a αx (e−iλ)αx (eiλ)βy(e−iλ)βy(eiλ)

,

ωxx (λ) = σ 2
f σ

2
v

σ 2
a βy(e−iλ)βy(eiλ)

,

g f K f K (λ) = σ 4
f

σ 2
a βy(e−iλ)βy(eiλ)

,

and

ω f f (λ) = σ 2
f σ

2
v αx (e−iλ)αx (eiλ)

σ 2
a βy(e−iλ)βy(eiλ)

,

with py = qy = px .
Once again, entirely analogous derivations apply to the non-signal component uKt |∞.

3 Neglected serial correlation tests

In this section we begin by reviewing tests for neglected serial correlation in observ-
able processes. Then,we derive the analogous tests for unobserved components, taking
into account that the model parameters must be estimated under the null. Next, we
investigate the non-standard situations that arise in Ucarima models which become
underidentified under some of the alternatives that we consider. We conclude by pro-
viding a step-by-step procedure for the benefit of practitioners. For simplicity, we
maintain the assumption that there are no common roots in the autoregressive poly-
nomials of the signal and non-signal components.

3.1 Testing for serial correlation in univariate observable processes

For pedagogical purposes, let us initially assume that xt is an observable univariate
time series that has been modelled as an Ar(2) process. A natural generalisation is
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(1 − ψx L)(1 − αx1L − αx2L
2)xt = ft ,

so that the null becomes H0 : ψx = 0.6 Under the alternative, the spectral density of
xt is

gxx (λ|σ 2
f , αx1, αx2, ψx ) = 1

1 + ψ2
x − 2ψx cos λ

· gxx (λ|σ 2
f , αx1, αx2, 0),

where

gxx (λ|σ 2
f , αx1, αx2, 0) = σ 2

f

1 + α2
x1 + α2

x2 − 2αx1(1 − αx2) cos λ − 2αx2 cos 2λ
.

Hence, the derivative of gxx (λ) with respect to ψx under the null is

∂gxx (λ|σ 2
f , αx1, αx2, 0)

∂ψx
= 2 cos λ · gxx (λ|σ 2

f , αx1, αx2, 0). (13)

As a result, the spectral version of the score with respect to ψx under H0 is

T−1∑
j=0

cos λ j g
−1
xx (λ j )[2π Ixx (λ j ) − gxx (λ j )] =

T−1∑
j=0

cos λ j [2π I f f (λ j )],

where we have exploited the fact that

T−1∑
j=0

∂gxx (λ j )

∂ψx
g−1
xx (λ j ) =

T−1∑
j=0

cos λ j = 0. (14)

Given that

I f f (λ j ) = γ̂ f f (0) + 2
T−1∑
k=1

γ̂ f f (k) cos(kλ j ),

the spectral version of the score becomes

T−1∑
j=0

cos λ j [2π I f f (λ j )] = T [γ̂ f f (1) + γ̂ f f (T − 1)]. (15)

6 This is a multiplicative alternative. Instead, we could test H0 : αx3 = 0 in the additive alternative

(1 − αx1L − αx2L
2 − αx3L

3)xt = ft .

In that case, it would be more convenient to reparametrise the model in terms of partial autocorrelations
(see Barndorff-Nielsen and Schou 1973). We stick to multiplicative alternatives, which are closer related
toMa alternatives.
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In turn, the time domain version of the score will be

∑
t

(xt − αx1xt−1 − αx2xt−2)(xt−1 − αx1xt−2 − αx2xt−3) =
∑
t

ft ft−1,

which is essentially identical because γ̂ f f (T − 1) = T−1 fT f1 = op(1). Therefore,
the spectral LM test of Ar(2) versus Ar(3) is simply checking that the first sample
(circulant) autocovariance of ft , which are the innovations in the observed process,
coincides with its theoretical value under H0, exactly like the usual Breusch (1978)–
Godfrey (1978a) serial correlation LM test in the time domain (see also Breusch and
Pagan 1980 or Godfrey 1988).

Let us now consider the following alternative generalisation of an Ar(2)

(1 − αx1L − αx2L
2)xt = (1 − ψ f L) ft .

In this case, the null is H0 : ψ f = 0. In turn, the spectral density of xt under this
alternative is

(1 + ψ2
f − 2ψ f cos λ) · gxx (λ|σ 2

f , αx1, αx2, 0),

whose derivative with respect to ψ f under the null is

∂gxx (λ)

∂ψ f
= −2 cos λ · gxx (λ). (16)

Therefore, the spectral LM test of Ar(2) versus Arma(2, 1) will be numerically
identical to the corresponding test of Ar(2) versus Ar(3), which confirms that these
two alternative hypotheses are locally equivalent for observable time series (see e.g.
Godfrey 1988).

Generalisations to testArma(p, q) vsArma(p+ k, q) for k> 1 are straightforward,
since they only involve higher order (circulant) autocovariances of ft , as in Godfrey
(1978b). Similarly, it is easy to show that Arma(p + k, q) and Arma(p, q + k)
multiplicative alternatives are also locally equivalent.7 Finally, we could also consider
(multiplicative) seasonal alternatives.

3.2 Testing for neglected serial correlation in the unobserved components

Let us now consider univariate unobserved components models, which are the objec-
tive of our study. Initially, we assume that the “top heavy” signal process is such that
px ≥ qx + 2, so that the model is identified under each of the four alternatives stated
in Sect. 2.1 in view of Hotta’s (1989) results, and postpone the discussion of the other
cases to Sects. 3.4 and 3.5.

7 It would also be possible to develop tests of Arma(p, q) against Arma(p + k, q + k) along the lines of
Andrews and Ploberger (1996). We leave those tests, which will also depend on the differences between
sample and population autocovariances of ft , for future research.
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Let us start by considering neglected serial correlation in the signal. Under alterna-
tive Sar1 the model will be

yt = μ + xt + ut ,
(1 − ψx L)αx (L)xt = βx (L) ft ,
αu(L)ut = βu(L)vt ,

⎫⎬
⎭ (17)

so that the null hypothesis is H0 : ψx = 0, as in Sect. 3.1. Given

∂gyy(λ)

∂ψx
= ∂gxx (λ)

∂ψx
(18)

and (13), after some straightforward manipulations we can prove that the score of the
spectral log-likelihood for the observed series yt under the null will be given by

2
∑T−1

j=0
cos λ j gxx (λ j )g

−2
yy (λ j )[2π Iyy(λ j ) − gyy(λ j )].

= 2
∑T−1

j=0
cos λ j g

−1
xx (λ j )[2π IxK xK (λ j ) − gxK xK (λ j )]

= 2
∑T−1

j=0
cos λ j [2π I f K f K (λ j ) − g f K f K (λ j )].

Once more, the time domain counterpart to the spectral score with respect to ψx is
(asymptotically) proportional to the difference between the first sample autocovariance
of f Kt |∞ and its theoretical counterpart under H0. Therefore, the only difference with

the observable case is that the autocovariance of f Kt |∞, which is a forward filter of
the Wold innovations of yt , is no longer 0 when ψx = 0, although it approaches 0
as the signal to noise ratio increases. In that case, our proposed tests would converge
to the usual Breusch–Godfrey LM tests for neglected serial correlation discussed in
Sect. 3.1.8

Let us illustrate our test by means of a simple example. Imagine that xt follows
an Ar(2) process while ut is white noise. The results in Sect. 2.5 imply that when
ψx = 0, f Kt |∞ will follow an Ar(2) with an autoregressive polynomial βy(L) that
satisfies the condition

σ 2
a βy(L)βy(L

−1) = σ 2
f + αx (L)αx (L

−1)σ 2
v ,

so that the smaller σ 2
v is, the closer f Kt |∞ will be to white noise. In any case, the LM

test of H0 : ψx = 0 will simply compare the first sample autocovariance of f Kt |∞
with its theoretical value. As we mentioned before, the advantage of our frequency

8 Given that σ 2
f = g f K f K (λ) + ω f f (λ) for all λ, we can also write the score as 2

∑T−1
j=0

cos λ j [2π I f K f K (λ j ) + ω f f (λ j )] in view of (14). Therefore, the score with respect to ψx also has the
interpretation of the expected value of (15), which is score when xt is observed, conditional on the past,
present and future values of yt (see Fiorentini et al. 2014 for further details).
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domain approach is that we obtain those autocovariances without explicitly computing
σ 2
a , βy(L) or indeed f Kt |∞.
In turn, under alternative Sma1 the equation for the signal in (17) is replaced by

αx (L)xt = (1 − ψ f L)βx (L) ft ,

so that the null hypothesis becomes H0 : ψ f = 0. Then, it is straightforward to prove
that this test will numerically coincide with the test of H0 : ψx = 0 in view of (18),
(13) and (16).

On the other hand, under alternative Nar1 the model will be

yt = μ + xt + ut ,
αx (L)xt = βx (L) ft ,
(1 − ψu L)αu(L)ut = βu(L)vt ,

⎫⎬
⎭ , (19)

while the equation for the non-signal component in (19) will be replaced by

αu(L)ut = (1 − ψvL)βu(L)vt

under alternative Nma1. The exchangeability of signal and non-signal implies that
mutatis mutandis exactly the same derivations apply to tests of neglected serial corre-
lation in ut .

Finally, joint tests that simultaneously look for neglected serial correlation in the
signal and non-signal components can be easily obtained by combining the two scores
involved.

3.3 Parameter uncertainty

So far we have implicitly assumed knownmodel parameters. In practice, some of them
will have to be estimated under the null. Maximum likelihood estimation of the state
space model parameters can be done either in the time domain using the Kalman filter
or in the frequency domain.

As we mentioned before, the sampling uncertainty surrounding the sample mean μ

is asymptotically inconsequential because the information matrix is block diagonal.
The sampling uncertainty surrounding the other parameters, say ϑ , is not necessarily
so.

The solution is the standard one: replace the inverse of Iψψ , which is the (ψ,ψ)
block of the information matrix by the (ψ,ψ) block of the inverse information matrix
Iψψ = (Iψψ − IψϑI−1

ϑϑIϑψ )−1 in the quadratic form that defines the LM test.
As usual, this is equivalent to orthogonalising the spectral log-likelihood scores cor-
responding to the parameters in ψ with respect to the scores corresponding to the
parameters ϑ estimated under the null. In this regard, the analytical expressions that
we provide for the different derivatives involved can be combined with (9) to obtain
computationally efficient expressions for the entire information matrix.
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3.4 Potential pitfalls

As we mentioned in Sect. 2.1, we maintain the innocuous assumption that px > qx ,
so that the signal component is a “top-heavy” model. However, by increasing the
order of the Ma polynomial of the signal, as the Sma1 alternative hypothesis does,
the extended Ucarima model may become underidentified despite the original null
model being identified. This will happen when px = qx +1 but pu < qu +1, in which
case the null model will be just identified. An important example would be:

yt = xt + ut
(1 − αL)xt = (1 − ψ f L) ft

}
(20)

with ft and ut bivariatewhite noise orthogonal at all leads and lags. The null hypothesis
of interest is H0 : ψ f = 0, so that themodel under the null is a univariateAr(1)+white
noise process, while the signal under the alternative is an Arma(1, 1) instead with
moving average coefficient ψ f . In this context, it is possible to formally prove that

Proposition 1 The score with respect to ψ f of model (20) reparametrised in terms of
γyy(0), γyy(1), α and ψ f is 0 when α 	= 0 regardless of the value of ψ f .

Intuitively, the problem is that ψ f cannot be identified because the reduced form
model for the observed series is an Arma(1, 1) fully characterised by its variance,
its first autocovariance and α under both the null and the alternative. As a result, the
original and extended log-likelihood functions would be identical at their respective
optima, which in turn implies that the LR and LM tests will be trivially 0.9

Amore difficult to detect problem arises when the original model is identified under
the null hypothesis and the extended model is identified under the alternative but the
information matrix of the extended model is singular under the null. Following Sargan
(1983), we shall refer to this situation as a first-order underidentified case because in
effect the additional parameter is locally identified but the usual rank condition for
identification breaks down.

Although this may seem as a curiosity, it turns out that this problem necessarily
occurs with the Sar1 alternative hypothesis whenever alternative Sma1 leads to an
underidentified model.

Let us study in more detail the Ar(1) plus white noise example discussed in the
previous paragraphs, for which (17) reduces to

yt = xt + ut
(1 − ψx L)(1 − αL)xt = ft

}
(21)

with ft and ut being bivariate white noise orthogonal at all leads and lags. The null
hypothesis of interest is H0 : ψx = 0, so that the model under the null is still an Ar(1)

9 The only possible exception arises when the model is exactly on the boundary of the admissibility region
under the null but not under the alternative. However, such anomalies tend to be associated to uninteresting
cases. For example, in the Ar(1) plus noise model the null parameter configuration will be at the boundary
of the admissible parameter space if and only if the non-signal component is identically 0 (see Harvey 1989;
Fiorentini and Planas 2001 for other examples of admissibility restrictions on the model parameters).
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plus white noise, while the signal under the alternative follows an Ar(2) process. We
can then show that10

Proposition 2 The informationmatrix of model (21) is singular under the null hypoth-
esis H0 : ψx = 0.

As we saw in Sect. 3.1, the intuition is that under the null the score of an additional
Ar root is the opposite of the score of an additionalMa root, but the latter is identically
0 at the parameter values estimated for the original Ar(1) plus white noise model in
view of Proposition 1. Therefore, a standard LM test is infeasible. In contrast, there is
no linear combination of the first three scores that is equal to 0 under H0 when α 	= 0,
so we can consistently estimate α, σ 2

f and σ 2
u if we impose the null hypothesis when

it is indeed true. Likewise, there is no linear combination of the four scores that is
equal to 0 when the true values of α and ψx are both different from 0, so again we can
consistently estimate σ 2

f , σ
2
u , α and ψx in those circumstances, unlike what happened

with model (20). For those reasons, it seems intuitive to report instead either a Wald
test or a LR one. However, intuitions sometimes prove misleading.

It turns out that one has to be very careful in computing the significance level
for the LR test and especially the Wald test because, as we will discuss below, the
asymptotic distribution of the ML estimator of ψx will be highly unusual under
the null. In contrast, there is a readily available LM-type test along the lines of
Lee and Chesher (1986). Specifically, these authors propose to replace the usual score
test by what they call an “extremum test”. Given that the first-order conditions are
identically 0, their suggestion is to study the restrictions that the null imposes on
higher order conditions. An equivalent procedure to deal with the singularity of the
information matrix is to choose a suitable reparametrisation. We follow this second
route because it will allow us to obtain asymptotically valid LR and Wald tests too.

Our approach is as follows. First, we replace σ 2
f and σ 2

u by γyy(0) and γyy(1), as
in Proposition 1. As the following result shows, this change confines the singularity
to the last element of the score.

Proposition 3 The ψxψx element of the information matrix of model (21) repara-
metrised in terms of γyy(0), γyy(1), α and ψx is zero under the null hypothesis
H0 : ψx = 0.

Second, we replace ψx by either
√

ϕ (positive root) or −√
ϕ (negative root) and

retain the value of ϕ and the sign of the transformation which leads to the largest
likelihood function under the alternative. Using the results of Rotnitzky et al. (2000),
we can show that under the null the asymptotic distribution of the ML estimator of ϕ

will be that of a normal variable censored from below at 0. In contrast, the asymptotic
distribution of the corresponding estimator of ψx will be non-standard, with a faster
rate of convergence, half of its density at 0 and the other half equally divided between
the positive and negative sides. In this context, the LR test of the null hypothesis
H0 : ϕ = 0 will be a 50:50 mixture of a χ2

0 , which is 0 with probability 1, and χ2
1 .

10 Harvey (1989) proved the same result in the special case of α = 1, which we discuss in detail in
Appendix 1.
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As for the Wald test, the square t-ratio associated to the ML estimator of ϕ will
share the same asymptotic distribution. In contrast, Wald tests based on ψx will have
a rather non-standard distribution which will render the t-ratio usually reported for
this coefficient very misleading.

The following result explains how to conduct the score-type test.

Proposition 4 The extremum test of the null hypothesis H0 : ψx = 0 is based on the
influence function

2[cos(2λ) − α cos(λ)] (1 − α2
)
γyy(1)

α
(
1 + α2 − 2α cos λ

)
g2yy(λ|γyy(0), γyy(1), α, 0)

× [
Iyy(λ) − gyy(λ|γyy(0), γyy(1), α, 0)

]
, (22)

where

gyy(λ|γyy(0), γyy(1), α, 0) = γyy(0) + 2(cos λ − α)(
1 + α2 − 2α cos λ

)γyy(1).

Given the scores for γyy(0), γyy(1) and α under the null, this means that the
extremum test is effectively comparing the second sample autocovariance of f Kt |∞
with its theoretical value after taking into account the estimated nature of those model
parameters. Nevertheless, the test must be one-sided because (i) ϕ ≥ 0 under the alter-
native regardless of whether we reparametrise ψx as ±√

ϕ and (ii) the score under
the null is the same in both cases, which implies that the Kuhn–Tucker multiplier will
also coincide.11

Finally, it is worth noting that although ψx is not first-order identified because
the derivative of the log-likelihood function with respect to this parameter is identi-
cally 0 and the expected value of the second derivative under the null is also 0 from
Proposition 4, it is locally identified through higher order derivatives.12

A somewhat surprising implication of our previous results is that in this instance the
usual local equivalence betweenAr(1) andMa (1) alternatives hypotheses for the sig-
nal breaks down. In contrast, there are other seemingly locally equivalent alternatives.
Specifically, consider the following variation on model (21):

yt = xt + ut
(1 − δx L2)(1 − αL)xt = ft

}
. (23)

In this case the null hypothesis of interest is H0 : δx = 0, so that the model under the
null is still an Ar(1) signal plus white noise, while the signal under the alternative is a
“seasonal” Ar(3) with restricted autoregressive polynomial 1−αL − δx L2 +αδx L3.
The “top-heavy” nature of the signal together with the restrictions on the coefficients
imply the model under the alternative should remain identified. We can then show that

11 When α = 0 the test statistic in Proposition 4 breaks down. As Fiorentini and Paruolo (2009) show
for the case of observable processes, the distribution of the residual serial correlation in an Ar(1) model
becomes highly non-standard when the first autocorrelation is in fact 0.
12 See the proof of Proposition 4 for details.
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Proposition 5 The LM test of the null hypothesis H0 : δx = 0 in model (23) will
numerically coincide with a two-sided version of the test discussed in Proposition 4
once we correct for the sampling uncertainty in the estimation of the model parameters
under the null.

Nevertheless, such a test is suboptimal for testing the null hypothesis H0 : ψx = 0
because it ignores the effective one-sided nature of its alternative.

For reasons analogous to the ones explained in Sect. 3.1, the test in Proposition 5
will also coincide with the LM test of H0 : δ f = 0 in the alternative “seasonal” model

yt = xt + ut
(1 − αL)xt = (1 − δ f L2) ft

}
, (24)

which will again be two sided. This equivalence is less obvious than it may seem
because the signal follows a “bottom-heavy” process under the alternative. Neverthe-
less, the fact that the first Ma coefficient is 0 is sufficient to guarantee identifiability
in this case.

Another seemingly locally equivalent alternative to the neglectedAr (1) component
in the signal arises when we are interested in testing for first order serial correlation
in the non-signal component ut . In that case the model under the alternative becomes

yt = xt + ut
(1 − αL)xt = ft
(1 − ψu L)ut = vt

⎫⎬
⎭ (25)

with ft and vt orthogonal at all leads and lags. The null hypothesis of interest is
H0 : ψu = 0. Further, we do not expect any singularity to be present under the
alternative, on the grounds that the contemporaneous aggregation of Ar(1) + Ar(1)
is an Arma(2, 1). We can then show that

Proposition 6 The LM test of the null hypothesis H0 : ψu = 0 in model (25) will
numerically coincide with a two-sided version of the test discussed in Proposition 4
once we correct for the sampling uncertainty in the estimation of the model parameters
under the null.

As expected, the LM test of the null hypothesis H0 : ψv = 0 in the model

yt = xt + ut
(1 − αL)xt = ft
ut = (1 − ψvL)vt

⎫⎬
⎭ (26)

will also coincide because the derivatives of gyy(λ) with respect to ψv in model (26)
and with respect to ψu in model (25) only differ in their signs.

3.5 An intermediate case

So far, we have dealt with regular models in which px ≥ qx + 2 in Sect. 3.2 and
irregular models in which px = qx + 1 but pu < qu + 1 in Sect. 3.4. In this section,
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we study the intermediate case of px = qx + 1 and pu = qu + 1, which shares some
features of the other two.

The results in Sect. 2.2 imply that the reduced form of such a model would be
Arma(px + pu, px + pu −1), whose 2px +2pu parameters are generally sufficient to
identify the structural parameters of the signal and non-signal components. Similarly,
the reduced form models would be Arma(px + pu + 1, px + pu) under alternatives
Sar1 and Nar1, and Arma(px + pu, px + pu) under alternatives Sma1 and Nma1.
Since all these reduced formmodels identify the parameters of the associated structural
models, the corresponding informationmatrices evaluated under the nullwill generally
have full rank. Therefore, tests for neglected first serial correlation in the signal or the
noise will usually be well behaved, as in Sect. 3.2.

Nevertheless, it turns out that both tests are numerically identical. To understand
the reason, let us look at an Ar(1) + Ar(1) process, which is the simplest possible
example. The joint alternatives that we consider are of the following form:

yt = xt + ut
(1 − αx L)(1 − ψx )xt = ft
(1 − αu L)(1 − ψu)ut = vt

⎫⎬
⎭ . (27)

In this context, we can prove the following proposition:

Proposition 7 The nullity of the information matrix of model (27) is one under the
joint null hypothesis H0 : ψx = ψu = 0.

Not surprisingly, the same is true if we replace any of the Ar alternatives by itsMa
counterpart. Intuitively, the reason is the following. The reduced formmodel under the
combination of alternatives Sma1 and Nma1 is an Arma(px + pu, px + pu), which
does not have enough parameters to identify the structural parameters of the signal
and non-signal components.

In principle, it might be possible to reparametrise model (27) in such a way that
the single singularity of the information matrix is due to the score of one of the new
parameters becoming identically 0. In that case, a square root transformation of this
parameter should allow one to derive a joint extremum test of H0 : ψx = ψu = 0
along the lines of Sect. 3.4. In the interest of space, we shall not explore this possibility.

3.6 The tests in practice

Taking into account the theoretical results obtained in the previous sections, the step
by step testing procedure for dynamic misspecification of the unobserved components
can be described as follows:

1. Estimate themodel under the null bymaximum likelihood either in the timedomain
or in the frequencydomain,making sure that it satisfies the identification conditions
stated in Sect. 2.1.

2. Compute the periodogram of the data with the FFT.
3. Compute the theoretical spectral density of the unobserved components and the

observable series at the estimated values of the parameters.
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4. Identify the signal with themore “top-heavy”Arma component, so that px −qx ≥
1 and px − qx ≥ pu − qu , where qx , qu and px , pu are the orders of the Ma and
Ar polynomials (including roots on the unit circle). In case of equality, choose the
signal so that px ≥ pu .

5. If px −qx > 1, so that the model remains identified under all four alternatives and
their combinations, then apply the following steps to both the signal and non-signal
components:

(a) Compute the scores under the alternative but evaluate them at the null.
(b) Compute the information matrix under the alternative but evaluate it at the

null.
(c) Invert the information matrix and retain the elements corresponding to the

scores of the additional parameters.
(d) Compute the two quadratic forms defining the LM test statistics.

6. If px −qx = 1 and pu −qu = 1, so that the model becomes underidentified under
the combination of alternatives Sma1 and Nma1, then proceed as in point 5., but
compute only one of the tests since the other one is numerically identical.

7. If px −qx = 1 and pu −qu < 1, so that the model becomes underidentified under
the Sma1 alternative:

(a) Reparametrise the model as explained in Sect. 3.4.
(b) Compute the scores under the alternative but evaluate them at the null.
(c) Compute the information matrix under the alternative but evaluate it at the

null.
(d) Invert the informationmatrix and retain the element corresponding to the score

of the additional parameter.
(e) Compute the quadratic form defining the LM test statistic, and identify it with

the dynamic misspecification test for the non-signal component.
(f) If the score associated to the new autoregressive signal parameter is negative,

set the dynamic misspecification test for the signal component to 0.
(g) Otherwise, set it to the same value as the non-signal test, but use a one-sided

critical value.

An example of a regular situation would be an Ar(2) + noise process, which is
such that px − qx = 2 and pu − qu = 0. In this case, the model is identified under
all possible alternative hypotheses. In fact, it is overidentified when testing dynamic
misspecification in the noise while it is just identified in the Sma1 case.

An example of the intermediate case would be an Ar(1) + Ar (1) process, for
which px − qx = pu − qu = 1.

An example of an irregular case would be an Ar(1) + noise plus noise model,
including the popular random walk plus noise process. In this instance, px − qx = 1
and pu − qu = 0. As we mentioned at the beginning of Sect. 3.4, this model becomes
an Arma(1, 1) plus noise model under the Sma1 alternative, whose parameters are
not identified.

We will study the finite sample behaviour of our tests for unit root versions of the
first and third examples in Sects. 5.1 and 5.2, respectively.
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4 Comparison with tests based on the reduced form residuals

In the context of univariate time series models written in state space form, Harvey
(1989), Harvey and Koopman (1992) and Durbin and Koopman (2012) suggest the
calculation of neglected serial correlations tests for the reduced form residuals, at ,
which should be white noise under the null of correct dynamic specification. For that
reason, it is of some interest to compare such tests to the tests thatwe have derived in the
previous sections. To do so, let us introduce the following two alternative hypothesis
of interest:

5. Rar1: Arma(px + 1, qx ) + Arma(pu + 1, qu) with a common Ar root.
6. Rma1: Arma(px , qx + 1) + Arma(pu, qu + 1) with a common Ma root.

In this context, we can prove the following result:

Proposition 8 Testing for Rar1 in theUcarimamodel (1)–(4) is equivalent to testing
for Ar(1)-type neglected serial correlation in the reduced form innovations, while
testing for Rma1 in the structural form is the same as testing forMa(1)-type neglected
serial correlation in at .

This means that when we test for first order neglected serial correlation in the
reduced form residuals the model under the alternative hypothesis is in effect:

yt = μ + xt + ut ,
αx (L)(1 − ψa L)xt = βx (L) ft ,
αu(L)(1 − ψa L)ut = βu(L)vt ,

⎫⎬
⎭ . (28)

In contrast, a test for neglected serial correlation in the signal makes use of the
alternative model (17), while a test for neglected serial correlation in the non-signal
component relies on (19). Therefore, while it is indeed true that misspecification of the
dynamics of any of the components will generally result in the reduced form residuals
of the null model being serially correlated under the alternative, as argued by Harvey
and Koopman (1992), it does not necessarily follow that tests for neglected serial
correlation in those residuals are asymptotically equivalent to our neglected serial
correlation tests in the unobserved components.

In fact, the relative power of those three tests when px − qx > 1 will depend on
the nature of the true model under the alternative. Specifically, if we represent ψx

on the horizontal axis and ψu on the vertical axis, the reduced form test of the null
hypothesis H0 : ψa = 0 will have maximum power for alternatives along the 45◦
degree line ψu = ψx since it is locally the best test of neglected serial correlation
in that direction in view of Proposition 8. In contrast, the structural form tests of the
null hypotheses H0 : ψx = 0 and H0 : ψu = 0 will have maximum power along
their respective axis (see Demos and Sentana 1998 for a related discussion in the
context of Arch tests). For the intermediate parameter combinations, we could use
local power calculations along the lines of appendixB in Fiorentini and Sentana (2015)
to compare our LM tests, which are based on the smoothed innovations of the state
variables (the so-called auxiliary residuals), to the LM tests based on the reduced form
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innovations.13 Specifically, we could obtain two isopower lines, defined as the locus
of points in ψx , ψu space for which for which the non-centrality parameter of the
reduced form test is exactly the same as the non-centrality parameter of the structural
tests for H0 : ψx = 0 and H0 : ψu = 0.

In principle, we could consider the joint test of the composite null hypothesis
H0 : ψx = ψu = 0 mentioned at the end of Sect. 3.2, which will generally have
two degrees of freedom instead. For comparing the joint test against the simple tests,
though, wewould have to equate their local power directly since the number of degrees
of freedom would be different.

In view of the discussion in Sects. 3.4 and 3.5, though, the reduced form test and
the two sided versions of the structural tests will be identical when px − qx = 1.

5 Monte Carlo simulation

5.1 A regular case

Wefirst report the results of some simulation experiments based on a special case of the
example discussed at the end of Sect. 3.2, in which the autoregressive polynomial of
the signal contains a unit root. In this way, we can assess the finite sample reliability
of the size of our proposed tests and their power relative to the reduced form test
in a realistic situation in which the model remains identified under each of the four
alternatives stated in Sect. 2.1.

5.1.1 Size experiment

To evaluate possible finite sample size distortions, we generate 10,000 samples of
length 200 (equivalent to 50 years of quarterly data) of the following model

yt = μ + xt + ut ,
(1 − L)(1 − αL)xt = ft ,

}
(29)

with ft and ut being contemporaneously uncorrelated bivariate Gaussian white noise.
Thus, the signal component follows an Ari(1, 1) under the null, while the non-signal
component is white noise. Given that μ is inconsequential, we fix its true value to 0.
We also fix the variance of ut to 1 without loss of generality. As for the remaining
parameters, we choose σ 2

f = 1 and α = .7 to clearly differentiate this design from the
model in Sect. 5.2.

13 Unlike in Fiorentini and Sentana (2015), though, the scores with respect to ψx and ψu will not be
orthogonal to the scores with respect to the remaining structural parameters, ϑ . For that reason, we should
conduct the local power calculationswith the orthogonalised scores, which are the residuals in the regression
of the scores forψx andψu on the scores that define the estimated parameters, with the covariance matrices
computed under the null. This procedure would not only reflect the fact that the quadratic form that defines
the non-centrality parameter requires the relevant block of the inverse, as opposed to the inverse of the
relevant block, but it would also take into account that the expected Jacobian of the other scores with
respect to ψx and ψu will not be 0. Exploiting the information matrix equality, this effectively implies that
the non-centrality parameter will be a quadratic form in the direction of departure from the null with a
weighting matrix equal to Iψψ − IψϑI−1

ϑϑ
Iϑψ .
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Table 1 Monte Carlo rejection
rates (%) of LM tests at 10, 5
and 1 % significance levels

ψx ψu LM signal LM noise Joint LM LM resid

0 0 10.30 9.99 10.26 9.78

5.04 4.94 5.07 4.87

0.90 0.83 0.86 0.81

.5 0 32.54 24.22 28.28 17.90

22.22 14.80 17.72 10.44

7.56 4.46 5.38 2.88

0 .5 13.44 13.44 12.58 12.50

7.24 7.10 6.58 7.16

1.48 1.56 1.42 1.64

.5 .5 11.42 9.50 13.14 12.18

6.08 4.70 7.22 6.86

1.42 0.86 1.64 1.64

.6 .3 19.62 12.38 22.98 15.92

12.06 6.62 14.48 9.42

3.36 1.48 4.04 2.32

For each simulated sample, we use the first differences of the data to compute the
following LM tests:

1. first-order neglected serial correlation in the signal (χ2
1 )

2. first-order neglected serial correlation in the non-signal (χ2
1 )

3. first-order neglected serial correlation in the reduced form residuals (χ2
1 )

4. Joint tests of null hypotheses in points 1. and 2. (χ2
2 ).

The finite sample sizes for the four tests are displayed in the first panel of Table 1.
As can be seen, the actual rejection rates at the 10, 5 and 1% of all four tests fall within
the corresponding asymptotic confidence intervals of (9.41, 10.59), (4.57, 5.43) and
(.80, 1.20), so one can reliably use them.

5.1.2 Power experiments

Next, we simulate and estimate 5,000 samples of length 200 of DGPs in which either
the signal or the noise may have an additional autoregressive root, with everything
else being unchanged. In particular, we consider the following four alternatives:

(a) neglected serial correlation in the signal (ψx = .5;ψu = 0), for which the LM
test in point 1. should be optimal

(b) neglected serial correlation in the noise (ψx = 0;ψu = .5), for which the LM test
in point 2. should be optimal

(c) symmetric neglected serial correlation in signal and noise (ψx = .5;ψu = .5),
for which the residual LM test in point 3. should be optimal

(d) asymmetric neglected serial correlation in signal and noise (ψx = .6;ψu = .3)
for which the joint LM test in point 4. should be optimal.
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The raw rejection rates are reported in the last four panels of Table 1. For alternative
(a), the ranking of the tests is as expected. However, for alternative (b) the LM test
for signal is able to match the power of the LM test for noise, closely followed by
the residual and joint LM tests. Therefore, misspecification in the serial correlation of
the non-signal component seems to substantially alter the serial correlation pattern of
the filtered values of the correctly specified signal component because the parameter
estimators at which the filter is evaluated are biased and the filter weights would be
the wrong ones even if we knew the true values of the estimated parameters.

The most surprising result corresponds to alternative (c), in that the joint LM test
has more power than the asymptotically optimal reduced form test. In contrast, the
rejection rates for alternative (d) conform to the theoretical predictions.

In summary, our results show that the tests that look for neglected serial correlation
in the signal and the noise, either separately or jointly, tend to dominate in terms of
power the traditional tests based on the reduced form innovations.

5.2 Local level model

Next we analyze the local level model in Appendix 1, which is a rather important
practical example of the situation discussed in Sect. 3.4.

5.2.1 Size experiment

To evaluate possible finite sample size distortions, we generate 10,000 samples of
length 200 of the following model

yt = μ + xt + ut ,
(1 − L)xt = ft ,

}

with ft and ut being contemporaneously uncorrelated bivariate Gaussian white noise.
As before, we fix the true value of μ to 0 and the variance of ut to 1 without loss of
generality. Therefore, the design depends on a single parameter: the noise to signal
ratio σ 2

f , which we choose to be 1. This choice implies a Mean Square Error of the

final estimation error of ft relative to σ 2
f of 55.28 % according to expression (33),

which is neither too low nor too high.
For each simulated sample, we use the first differences of the data to compute the

following statistics:

1. one-sided versions of the extremum test for first-order neglected serial correlation
in the signal

2. two-sided version of the same test
3. likelihood ratio version
4. Wald test based on ϕ

5. Wald test based on ψx

6. second-order neglected serial correlation in the signal
7. first-order neglected serial correlation in the non-signal
8. first-order neglected serial correlation in the reduced form residuals.
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Fig. 1 Mixed-typeMonte Carlo distribution of theML estimator ofψx under the null hypothesis ofψx = 0

As expected from the theoretical results in Sect. 3.4, the test statistics in points 2.,
6., 7. and 8. are numerically identical, so we only report one of them under the label
LM2S.

It is also important to emphasise that the statistics in points 3., 4. and 5. require the
estimation of model (29). For the reasons described in Sect. 3.4, this is a non-trivial
numerical task because when its true value is 0 (i) approximately half of the ML
estimators of ψx are identically 0; (ii) the log-likelihood function is extremely flat in a
neighbourhood of 0, especially if we parametrise it in terms of ψx ; and (iii) when the
maximum is not 0 it tends to have two commensurate maxima for positive and negative
values of ψx . To make sure we have obtained the proper ML estimate, we maximise
the spectral log-likelihood of model (29) four times: for positive and negative values of
ψx and with this parameter replaced by±√

ϕ, retaining the maximummaximorum. A
kernel density estimate of the mixed-type discrete-continuous distribution of the ML
estimators is displayed in Fig. 1, with its continuous part scaled so that it integrates to
.48, which is the fraction of non-zero estimates of ψx . In addition to bimodality, the
sampling distribution shows positive skewness, which nevertheless tends to disappear
in non-reported experiments with T = 10, 000. The remaining 52 % of the estimates
of ψx are 0, in which case the test statistics in points 1., 3., 4. and 5. will all be 0
too.

The rejection rates under the null for the tests at the 10, 5 and 1 % are displayed
in Table 2. The only procedure which seems to have a reliable size is the two-sided
LM test. In contrast, its one-sided version is somewhat conservative, while the LR
and especially the twoWald tests are liberal. Reassuringly, though, the size distortions
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Table 2 Monte Carlo rejection
rates (%) of tests at 10, 5 and
1 % significance levels

ψx ψu LM2S LM1S LR W Wnc % Zeros

0 0 10.37 8.63 14.33 21.77 35.54 52.00

4.93 4.28 7.17 14.81 31.37

0.99 0.71 1.40 6.52 23.97

Table 3 Monte Carlo rejection
rates (%) of tests at 10, 5 and
1 % significance levels

ψx ψu LM2S LM1S LR W % Zeros

.5 0 41.20 55.12 62.96 58.20 8.22

29.28 41.08 48.70 43.72

12.34 17.78 24.08 22.52

0 .5 9.42 8.38 14.52 24.52 53.60

4.80 4.00 7.00 19.16

1.14 0.82 1.38 10.40

.5 .5 19.54 29.60 41.62 50.00 22.16

11.94 18.72 28.14 39.66

3.66 5.76 9.10 23.00

.6 .3 49.42 64.00 76.14 77.02 5.54

37.14 49.32 63.68 64.78

17.76 24.28 37.24 41.54

of the one-sided LM test disappear fairly quickly in non-reported experiments with
larger sample sizes, while the distortions of the LR andWald tests for ϕ go down more
slowly and are still noticeable even in samples as big as T = 50,000 despite the fact
that the fraction of 0 estimates converges very quickly to 1/2. As expected, though,
the distortions of the Wald test based on ψx persist no matter how big the sample size
is because the information matrix for this parametrisation is singular.

5.2.2 Power experiments

Next, we simulate and estimate 5000 samples of length 200 of four alternative DGPs
analogous to the ones described in a.-d. of the previous section. However, since our
focus is on tests of the null hypothesis H0 : ψx = 0, we only estimate the model
under the null and under the a. alternative. In this regard, an additional issue that we
encounter in some designs is that from time to time the estimated value of σ 2

u is 0. In
those “pile-up” cases we compute the LM andWald tests excluding the corresponding
row and column of the information matrix.

Given the substantial size distortions, we report not only raw rejection rates based
on asymptotic critical values in Table 3 but also size-adjusted ones in Table 4, which
exploit the Monte Carlo critical values obtained in the simulation described in the
previous subsection. If we focus on this second table, we can conclude that the tests that
explicitly acknowledge the implicit one-sided nature of the alternative to H0 : ψx = 0
dominate the two-sided test, except when ψx = 0 but ψu = .5, when they tend to
be equally powerful. In particular, the one-sided tests for H0 : ψx = 0 dominate the
residual correlation tests even when ψx = ψu = .5.
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Table 4 Size-adjusted Monte
Carlo rejection rates (%) of tests
at 10, 5 and 1 %

ψx ψu LM2S LM1S LR W

.5 0 40.38 58.32 54.82 31.32

29.42 44.28 41.06 17.38

12.66 20.72 20.16 4.56

0 .5 9.02 9.58 10.22 14.06

4.90 4.80 4.72 8.36

1.16 1.04 0.90 3.12

.5 .5 18.92 32.52 34.08 30.64

12.00 20.84 21.70 18.02

3.72 7.14 6.84 4.94

.6 .3 48.56 66.52 69.74 52.16

37.40 52.92 55.40 34.32

18.10 27.54 32.54 13.48

We can also conclude that the relative ranking of the extremum, LR and Wald tests
for H0 : ϕ = 0 depends on the DGP, although when it coincides with the alternative
for which they are asymptotically optimal, the extremum test dominates the LR test,
which in turn dominates the Wald test.

6 Conclusions and extensions

We have derived computationally simple and intuitive expressions for score tests of
neglected serial correlation in unobserved component univariate models using fre-
quency domain methods. Our tests can focus on the state variables individually or
jointly. The implicit orthogonality conditions are analogous to the conditions obtained
by treating the Wiener–Kolmogorov–Kalman smoothed estimators of the innovations
in the latent variables as if they were observed, but they account for their final estima-
tion errors.

In some common situations in which the information matrix of the alternative
model is singular under the null we show that contrary to popular belief it is possible
to derive extremum tests that are asymptotically equivalent to likelihood ratio tests,
which become one-sided. We also explain how to compute asymptotically reliable
Wald tests. As a result, from now on empirical researchers would be able to report test
statistics in those irregular situations too. Further, we explicitly relate the incidence
of those problems to the model identification conditions and compare our tests with
tests based on the reduced form prediction errors.

We conduct Monte Carlo exercises to study the finite sample reliability and power
of our proposed tests. In the regular case of a latent Ari(1, 1) process cloaked in white
noise, our results show that the finite sample size of the different tests is reliable. They
also imply that the tests that look for neglected serial correlation in the signal and
the noise, either separately or jointly, dominate in terms of power the traditional tests
based on the reduced form innovations.

When we look at neglected serial correlation tests in the irregular local level model,
our simulation results confirm that the finite sample distribution of the ML estimator
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of the additional autoregressive root in the signal is highly unusual under the null of
correct specification, with almost half its mass at 0 and two modes, one positive and
one negative. Not surprisingly, aWald test based on this parameter is highly unreliable,
even asymptotically. We also find some size distortions for the asymptotically valid
one-sided tests of H0 : ψx = 0 (but not for the two-sided LM test), which neverthe-
less progressively disappear as the sample size increases. After correcting for those
distortions, though, we find that the one-sided tests dominate the residual correlation
tests even when ψx = ψu = .5, but the relative ranking of the extremum test, the
likelihood ratio test and the Wald test depends on the DGP under the alternative.

Although we have considered reasonable Monte Carlo designs, a more through
analysis of the determinants of the size and power properties of the different tests
would constitute a valuable addition.

The testing procedures we have developed can be extended in several interesting
directions. First, it would be tedious but straightforward to consider models with more
than two components after dealing with identification issues. More interestingly, we
could also consider models with purely seasonal components (see Harvey 1989 for
some examples). Tests of higher order serial correlation also deserve further consid-
eration since they might involve singularity problems too. For example, the Ari(1, 1)
plus white noise process discussed in Sect. 5.1, which yields standard test statistics
for neglected first order serial correlation, gives rise to a singular information matrix
when we consider tests against first and second order serial correlation simultaneously
because those tests are numerically equivalent to tests against the underidentified alter-
native of Arima(1, 1, 2) plus white noise.

Second, we have assumed throughout the paper that the model estimated under the
null is parametrically identified.Nevertheless,Harvey (1989) discusses someexamples
in which an Ucarima model is underidentified under the null but identified under
the alternative. He formally tackles the problem by using the procedure proposed by
Aitchison and Silvey (1960), which effectively adds a matrix to the informationmatrix
to make sure that it has full rank (see also Breusch 1986).

We have also maintained the assumption of normality. To understand its implica-
tions, let μt |t−1 and σ 2

t |t−1 denote the conditional mean and variance of yt given its
past alone, which can be obtained from the prediction equations of the Kalman filter.
Given that the additional serial correlation parameters effectively enter through μt |t−1
only, we would expect the asymptotic distribution of our proposed tests to remain
valid in the presence of non-Gaussian innovations. Dunsmuir (1979) provides a for-
mal result which confirms our conjecture for the important class of Ar(p) plus noise
processes.

Although we have only considered unobserved components with rational spec-
tral densities, in principle our methods could be applied to long memory processes
too. In this regard, it would be worth exploring the fractionally integrated alterna-
tives considered by Robinson (1994). More generally, it would also be interesting
to consider non-parametric alternatives such as the ones studied by Hong (1996), in
which the lag length is implicitly determined by the choice of bandwidth parameter
in a kernel-based estimator of a spectral density matrix. Another potential extension
would directly deal with non-stationary models without transforming the observed
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variables to achieve stationarity. All these topics constitute fruitful avenues for future
research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Local level model

Testing for neglected serial correlation in the trend

Against AR(1) alternatives

Consider the following modified version of model (21)

yt = xt + ut
(1 − ψx L)(1 − L)xt = ft

}
, (30)

with ft and ut orthogonal at all leads and lags. The main difference is that we have
replaced the covariance stationarity hypothesis for the signal xt by a unit root one. As
before, the null hypothesis of interest remains H0 : ψx = 0, so that the model under
the null is simply a random walk signal plus white noise, while the signal under the
alternative is an Ari(1, 1) with autoregressive coefficient ψx .

In order to use spectral methods we need to take first differences of the observed
variable to make it stationary, which yields

�yt = 1

1 − ψx L
ft + (1 − L)ut .

Hence, it is easy to see that

V (�yt ) = γ�y�y(0) = σ 2
f

1 − ψ2
x

+ 2σ 2
u , (31)

cov(�yt ,�yt−1) = γ�y�y(1) = ψx
σ 2
f

1 − ψ2
x

− σ 2
u , (32)

cov(�yt ,�yt− j ) = γ�y�y( j) = ψ
j
x

σ 2
f

1 − ψ2
x

j ≥ 2.

Similarly, the spectral density of �yt will be

g�y�y(λ) = σ 2
f(

1 − ψx e−iλ
) (
1 − ψx eiλ

) + (1 − e−iλ)(1 − eiλ)σ 2
u

= σ 2
f

1 + ψ2
x − 2ψx cos λ

+ 2(1 − cos λ)σ 2
u .
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The reduced form of �yt is an Ima(1, 1) process with Ma coefficient βy given by

βy = 1

2

(√
q2 + 4q − 2 − q

)
,

where q = σ 2
f /σ

2
u denotes the signal to noise ratio, and residual variance

σ 2
a = −σ 2

u /βy .

As is well known (see e.g. Priestley 1981, section 10.3), the variance of the final
estimation error of ft will be given by

1

2π

π∫
−π

(
g f f (λ) −

∣∣g f �y (λ)
∣∣2

g�y�y (λ)

)
dλ = 1

2π
σ 2
f

π∫
−π

(
1 − q

q + 2(1 − cos λ)

)
dλ

= σ 2
f

(
1 − q√

q2 + 4q

)
(33)

because

∫
q

q + 2(1 − cos λ)
dλ = 2

√
q√

q + 4
arctan

(√
q + 4√
q

tan

(
λ

2

))

and

lim
λ→(π/2)−

arctan

(√
q + 4√
q

tan

(
λ

2

))
− lim

λ→(−π/2)+
arctan

(√
q + 4√
q

tan

(
λ

2

))
= π

Interestingly,wewould obtain exactly the same expression byworkingwith pseudo-
spectral densities in levels because

1

2π

π∫
−π

(
gxx (λ) −

∣∣gx�y (λ)
∣∣2

gyy(λ)

)
dλ = 1

2π

π∫
−π

⎛
⎜⎜⎜⎝

σ 2
f

2(1 − cos λ)
−

(
σ 2
f

2(1−cos λ)

)2

σ 2
f

2(1−cos λ)
+ σ 2

u

⎞
⎟⎟⎟⎠ dλ

= 1

2π

π∫
−π

⎛
⎜⎝

σ 2
f σ

2
u

2(1−cos λ)

σ 2
f

2(1−cos λ)
+ σ 2

u

⎞
⎟⎠ dλ

= 1

2π
σ 2
f

π∫
−π

(
1 − q

q + 2(1 − cos λ)

)
dλ

= σ 2
f

(
1 − q√

q2 + 4q

)
.
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The partial derivatives of the spectral density are

∂g�y�y(λ)

∂σ 2
f

= 1

1 + ψ2
x − 2ψx cos λ

,

∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂ψx
= 2σ 2

f (cos λ − ψx )

(1 + ψ2
x − 2ψx cos λ)2

.

Under the null of H0 : ψx = 0 those derivatives become

∂g�y�y(λ)

∂σ 2
f

= 1,

∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂ψx
= 2σ 2

f cos λ,

which implies that

σ 2
f

[
∂g�y�y(λ)

∂σ 2
u

− 2
∂g�y�y(λ)

∂σ 2
f

]
+ ∂g�y�y(λ)

∂ψx
= 0 (34)

for all λ. Obviously, exactly the same linear combination of the elements of
g−1
yy (λ)∂gyy(λ)/∂θ will be singular too. Therefore, the information matrix of the

model, which is given by

∫ π

−π

∂gyy(λ)

∂θ

1

gyy(λ)

1

gyy(λ)

∂gyy(λ)

∂θ ′ dλ,

will only have rank 3 under the null. In view of this result, Harvey (1989) rightly
concludes that a standard LM test is infeasible.

In contrast, there is no linear combination of the first two derivatives that is equal to
0 under H0, sowe can consistently estimate σ 2

f and σ 2
u if we impose the null hypothesis

when it is indeed true. Likewise, there is no linear combination of the three derivatives
that is equal to 0 under the alternative either, so again we can consistently estimate
σ 2
f , σ

2
u and ψx in those circumstances. For that reason, Harvey (1989) recommends

reporting either a Wald test or a LR one, which for reasons explained in Sect. 3.4 turns
out not to be sound advice.

Nevertheless, an LM-type test is readily available once more along the same lines
as in Sect. 3.4. Specifically, we can tackle the problem created by (34) by reparametri-
sation. First, we are going to replace σ 2

f and σ 2
u by γ�y�y(0) and γ�y�y(1). Thus, it

is easy to see from (31) and (32) that
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σ 2
u = 1

2ψx + 1

[
ψxγ�y�y(0) − γ�y�y(1)

]
,

σ 2
f = 1 − ψ2

x

2ψx + 1

[
γ�y�y(0) + 2γ�y�y(1)

]
,

which are well defined as long as ψx 	= − 1
2 (or if γ�y�y(0) + 2γ�y�y(1) = 0 when

ψx 	= − 1
2 ).

With this notation, the spectral density becomes

g�y�y(λ) = 1

1 + ψ2
x − 2ψx cos λ

1 − ψ2
x

2ψx + 1

[
γ�y�y(0) + 2γ�y�y(1)

]

+ 2(1 − cos λ)
1

2ψx + 1

[
ψxγ�y�y(0) − γ�y�y(1)

]
.

The derivatives with respect to these new parameters are

∂g�y�y(λ)

∂γ�y�y(0)
= 1

1 + ψ2
x − 2ψx cos λ

1 − ψ2
x

2ψx + 1
+ 2(1 − cos λ)

ψx

2ψx + 1

∂g�y�y(λ)

∂γ�y�y(1)
= 2

1 + ψ2
x − 2ψx cos λ

1 − ψ2
x

2ψx + 1
− 2(1 − cos λ)

1

2ψx + 1

∂g�y�y(λ)

∂ψx
= −2ψx

[
γ�y�y(0) + 2γ�y�y(1)

]
(2ψx + 1)2

(
1 + ψ2

x − 2ψx cos λ
)2

×
[

(cos λ − 2) ψ3
x + (

4 cos λ − 4 cos2 λ
)
ψ2
x

+ (
4 cos3 λ − 4 cos2 λ + cos λ + 2

)
ψx + (

2 − 4 cos2 λ
)
]

.

Under the null of H0 : ψx = 0, these scores reduce to

∂g�y�y(λ)

∂γ�y�y(0)
= 1

∂g�y�y(λ)

∂γ�y�y(1)
= 2 cos λ

∂g�y�y(λ)

∂ψx
= 0.

Although we have not yet eliminated the singularity, we have at least confined it
to the last element of the score. If we further reparametrise ψx as ±√

ϕ, the spectral
density becomes

g�y�y(λ) = 1

1 + ϕ − 2
√

ϕ cos λ

1 − ϕ

2
√

ϕ + 1

[
γ�y�y(0) + 2γ�y�y(1)

]

+2(1 − cos λ)
1

2
√

ϕ + 1

[√
ϕγ�y�y(0) − γ�y�y(1)

]
.
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Tedious algebra shows that the ∂g�y�y(λ)/∂ϕ evaluated at ϕ = 0 will be equal to

2σ 2
f cos 2λ,

where we have used the fact that

γ�y�y(0) + 2γ�y�y(1) = σ 2
f

under the null. Hence, the extremum test for ψx , which coincides with the LM test for
ϕ, is going to be based on the second autocovariance of the smoothed estimates of ft .
Importantly, Lee and Chesher (1986) show that the one-sided version of this extremum
test continues to be asymptotically equivalent to both the LR and a one-sided version
of the Wald test for ϕ.

Against MA(1) alternatives

Consider now the following variation on model (30):

yt = xt + ut
(1 − L)xt = (1 − ψ f ) ft

}
, (35)

with ft and ut orthogonal at all leads and lags. The null hypothesis of interest is
H0 : ψ f = 0, so that the model under the null is still a random walk signal plus white
noise, while the signal under the alternative is an Ima(1, 1) with moving average
coefficient ψ f .

In this case, the stationary model is

�yt = (1 − ψ f L)wt + (1 − L)ut .

Hence, it is easy to see that

V (�yt ) = γ�y�y(0) = (1 + ψ2
f )σ

2
f + 2σ 2

u , (36)

cov(�yt ,�yt−1) = γ�y�y(1) = −ψ f σ
2
f − σ 2

u , (37)

cov(�yt ,�yt− j ) = γ�y�y( j) = 0 j ≥ 2.

Similarly, the spectral density of �yt will be

g�y�y(λ) = (1 − ψ f e
−iλ)(1 − ψ f e

iλ)σ 2
f + (1 − e−iλ)(1 − eiλ)σ 2

u

= (1 + ψ2
f − 2ψ f cos λ)σ 2

f + 2(1 − cos λ)σ 2
u .

The partial derivatives of this spectral density are

∂g�y�y(λ)

∂σ 2
f

= 1 + ψ2
f − 2ψ f cos λ,
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∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂ψ f
= 2σ 2

f (cos λ − ψ f ).

Under the null of H0 : ψ f = 0 those derivatives become

∂g�y�y(λ)

∂σ 2
f

= 1,

∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂ψ f
= 2σ 2

f cos λ,

which confirms that (34) also holds for this model.
Let us now try and isolate the singularity in a single parameter by using the same

procedure as in the previous section. First, we replace σ 2
f and σ 2

u by γ�y�y(0) and
γ�y�y(1). Thus, it is easy to see from (36) and (37) that

σ 2
u = 1

(1 − ψ f )2
[−ψ f γ�y�y(0) − (1 + ψ2

f )γ�y�y(1)],

σ 2
f = 1

(1 − ψ f )2
[γ�y�y(0) + 2γ�y�y(1)],

which are well defined as long as ψ f 	= 1.
With this notation, the spectral density becomes

g�y�y(λ) = (1 + ψ2
f − 2ψ f cos λ)

(1 − ψ f )2
[γ�y�y(0) + 2γ�y�y(1)]

+2(1 − cos λ)
1

(1 − ψ f )2
[−ψ f γ�y�y(0) − (1 + ψ2

f )γ�y�y(1)].

The derivatives with respect to these new parameters are

∂g�y�y(λ)

∂γ�y�y(0)
= (1 + ψ2

f − 2ψ f cos λ)

(1 + ψ f )2
− 2(1 − cos λ)

ψ f

(1 − ψ f )2

∂g�y�y(λ)

∂γ�y�y(1)
= 2(1 + ψ2

f − 2ψ f cos λ)

(1 + ψ f )2
− 2(1 − cos λ)

(1 + ψ2
f )

(1 − ψ f )2

∂g�y�y(λ)

∂ψ f
= 0.

Since this last derivative is 0 not only under the null but also under the alternative, ψ f

cannot be identified. Intuitively, the reason is that the process for�yt is an unrestricted
Ma(1) under the alternative, which is fully characterised by γ�y�y(0) and γ�y�y(1).
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Thus, the usual local equivalence betweenAr(1) andMa(1) alternatives hypothesis
for the signal breaks down once again.

Against restricted MA(2) alternatives

Consider this alternative variation on model (30):

yt = xt + ut
(1 − L)xt = (1 − δ f L2) ft

}
, (38)

with ut and wt orthogonal at all leads and lags. The null hypothesis of interest is
H0 : δ f = 0, so that the model under the null is still a random walk signal plus
white noise, while the signal under the alternative is an Ima(1, 2) with second moving
average coefficient δ f .

Therefore, the stationary model will be

�yt = (1 − δ f L
2)wt + (1 − L)ut ,

whose spectral density is

g�y�y(λ) = (1 − δ f e
−i2λ)(1 − δ f e

i2λ)σ 2
f + (1 − e−iλ)(1 − eiλ)σ 2

u

= (1 + δ2f − 2δ f cos 2λ)σ 2
f + 2(1 − cos λ)σ 2

u .

The partial derivatives of this spectral density are

∂g�y�y(λ)

∂σ 2
f

= 1 + δ2f − 2δ f cos 2λ,

∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂δ f
= 2σ 2

f (cos 2λ − δ f ).

Under the null of H0 : δ f = 0 those derivatives become

∂g�y�y(λ)

∂σ 2
f

= 1,

∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂δ f
= 2σ 2

f cos 2λ.

Given that the linear span of ∂g�y�y(λ)/∂σ 2
f and ∂g�y�y(λ)/∂σ 2

u is the same as the
linear span of ∂g�y�y(λ)/∂γ�y�y(0) and ∂g�y�y(λ)/∂γ�y�y(1), this test is going to
coincide with the two-sided version of the extremum test against an Ar(1) alternative.
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Against restricted AR(2) alternatives

Consider yet another variation on model (30):

yt = xt + ut
(1 − δx L2)(1 − L)xt = ft

}
, (39)

with ft and ut orthogonal at all leads and lags. The null hypothesis of interest is
H0 : δx = 0, so that the model under the null is still a random walk signal plus white
noise, while the signal under the alternative is an Ari(2, 1) with second autoregressive
coefficient δx .

In this case, the spectral density of �yt will be

g�y�y(λ) = σ 2
f(

1 − δx e−i2λ
) (
1 − δx ei2λ

) + (1 − e−iλ)(1 − eiλ)σ 2
u

= σ 2
f

1 + δ2x − 2δx cos 2λ
+ 2(1 − cos λ)σ 2

u .

The partial derivatives of this spectral density are

∂g�y�y(λ)

∂σ 2
f

= 1

1 + δ2x − 2δx cos 2λ
,

∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂δx
= 2σ 2

f (cos 2λ − δx )

(1 + δ2x − 2δx cos 2λ)2
,

which under the null of H0 : δx = 0 become

∂g�y�y(λ)

∂σ 2
f

= 1,

∂g�y�y(λ)

∂σ 2
u

= 2(1 − cos λ),

∂g�y�y(λ)

∂δx
= 2σ 2

f cos 2λ.

As expected, this test is locally equivalent to a test against a restrictedMa(2), which
is also locally equivalent to the two-sided version of the test against an unrestricted
Ar(1).

Testing for neglected serial correlation in the noise

Let us know see what happens if we are interested in testing for first order serial
correlation in ut . The model under the alternative becomes
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yt = xt + ut
(1 − L)xt = ft
(1 − ψu L)ut = vt

⎫⎬
⎭

with ut and ft orthogonal at all leads and lags. The null hypothesis of interest is
H0 : ψu = 0.

Taking first differences of the observed variables to make them stationary yields

�yt = ft + 1 − L

1 − ψu L
vt .

Using the expressions for the autocovariances of an Arma(1,1) with a unit root in
the Ma part, it is easy to see that

V (�ut ) = γ�u�u(0) = 2

1 + ψu
σ 2

v

cov(�ut ,�ut−1) = γ�u�u(1) = − (1 − ψu)

1 + ψu
σ 2

v

cov(�ut ,�ut− j ) = γ�u�u( j) = ψuγ�u�u( j − 1) j ≥ 2,

As a result,

V (�yt ) = γ�y�y(0) = σ 2
f + 2

1 + ψu
σ 2

v ,

cov(�yt ,�yt−1) = γ�y�y(1) = − (1 − ψu)

1 + ψu
σ 2

v ,

cov(�yt ,�yt− j ) = γ�y�y( j) = ψuγ�y�y( j − 1) j ≥ 2.

Similarly, the spectral density of �yt will be

g�y�y(λ) = σ 2
f + (1 − e−iλ)(1 − eiλ)

(1 − ψue−iλ)(1 − ψueiλ)
σ 2

v

= σ 2
f + 2(1 − cos λ)

1 + ψ2
u − 2ψu cos λ

σ 2
v ,

and its partial derivatives

∂g�y�y(λ)

∂σ 2
f

= 1

∂g�y�y(λ)

∂σ 2
v

= 2(1 − cos λ)

1 + ψ2
u − 2ψu cos λ

∂g�y�y(λ)

∂φ
= 4σ 2

f (cos λ − ψu)(1 − cos λ)

(1 + ψ2
u − 2ψu cos λ)2
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Under the null of H0 : ψu = 0 those derivatives become

∂g�y�y(λ)

∂σ 2
f

= 1

∂g�y�y(λ)

∂σ 2
v

= 2(1 − cos λ)

∂g�y�y(λ)

∂φ
= 4σ 2

f cos λ (1 − cos λ)

Given that the spectral density under the null is

σ 2
f + 2(1 − cos λ)σ 2

v ,

wecan compute the informationmatrix by integrating the outerproduct of the following
vector:

∂g�y�y(λ)

∂σ 2
f

1

g�y�y(λ)
= 1

σ 2
f + 2(1 − cos λ)σ 2

v

,

∂g�y�y(λ)

∂σ 2
v

1

g�y�y(λ)
= 2(1 − cos λ)

σ 2
f + 2(1 − cos λ)σ 2

v

,

∂g�y�y(λ)

∂ψu

1

g�y�y(λ)
= 4σ 2

f cos λ (1 − cos λ)

σ 2
f + 2(1 − cos λ)σ 2

v

.

Unlike what happens in the test for ψx = 0, the information matrix will be regular
when ψu = 0. Given that the score with respect to ψu involves a square cosine, which
can always be expanded in terms of cos 2λ by using the trigonometric identity

cos 2λ = 2 cos2 λ − 1, (40)

the test for neglected serial correlation in the noisewill also coincidewith the two-sided
version of the extremum test.

Finally, it is easy to see that apart from a sign change, one would get the same
derivative under the null if we were considering an Ma(1) alternative for ut .

Appendix 2: Proofs of propositions

Proposition 1

Given that ψ f 	= α−1 if we choose an invertible Ma polynomial, Lemma 1 allows
us to replace σ 2

f and σ 2
u by the theoretical variance and first autocovariance of the

observed series as follows:
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σ 2
f =

(
1 − α2

)
(1 − αψ f )(α − ψ f )

γyy(1),

σ 2
u = γyy(0) − (1 + ψ2

f − 2αψ f )

(1 − αψ f )(α − ψ f )
γyy(1)

under the assumption that ψ f 	= α, which is valid in a neighbourhood of ψ f = 0
since we maintain the assumption that the true value of α is different from 0.

In this notation we can write the spectral density (45) as

gyy(λ) = 1 + ψ2
f − 2ψ f cos λ

1 + α2 − 2α cos λ

(
1 − α2

)
(1 − αψ f )(α − ψ f )

γyy(1) + γyy(0)

− (1 + ψ2
f − 2αψ f )

(1 − αψ f )(α − ψ f )
γyy(1) = γyy(0) + 2(cos λ − α)

1 + α2 − 2α cos λ
γyy(1),

which does not depend on ψ f . 
�

Proposition 2

The partial derivatives of the spectral density (49) are:

∂gyy(λ|σ 2
f , σ

2
u , α, ψx )

∂σ 2
f

= 1

(1 + ψ2
x − 2ψx cos λ)(1 + α2 − 2α cos λ)

,

∂gyy(λ|σ 2
f , σ

2
u , α, ψx )

∂σ 2
u

= 1,

∂gyy(λ|σ 2
f , σ

2
u , α, ψx )

∂α
= 2σ 2

f (cos λ − α)

(1 + α2 − 2α cos λ)2(1 + ψ2
x − 2ψx cos λ)

,

∂gyy(λ|σ 2
f , σ

2
u , α, ψx )

∂ψx
= 2σ 2

f (cos λ − ψx )

(1 + ψ2
x − 2ψx cos λ)2(1 + α2 − 2α cos λ)

.

When ψx = 0, these derivatives reduce to

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
f

= 1

(1 + α2 − 2α cos λ)
,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

= 1,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂α
= 2σ 2

f (cos λ − α)

(1 + α2 − 2α cos λ)2
,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂ψx
= 2σ 2

f cos λ

(1 + α2 − 2α cos λ)
.
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Given that the spectral density under the null is

gyy(λ|σ 2
f , σ

2
u , α, 0) = σ 2

f

(1 + α2 − 2α cos λ)
+ σ 2

u ,

and its reciprocal

g−1
yy (λ|σ 2

f , σ
2
u , α, 0) = (1 + α2 − 2α cos λ)

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

,

we will have that for ψx = 0

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
f

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

= 1

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

= (1 + α2 − 2α cos λ)

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂α

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

= 2σ 2
f (cos λ − α)

(1 + α2 − 2α cos λ)

1

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂ψx

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

= 2σ 2
f cos λ

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

.

It is then easy to see that

σ 2
f

[
∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂σ 2
u

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

− (1 + α2)
∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂σ 2
f

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

]

+α
∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂ψx

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

= (1 + α2 − 2α cos λ)σ 2
f

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

− (1 + α2)σ 2
f

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

+ 2σ 2
f α cos λ

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

= 0.

Given (8), this result implies that the information matrix of model (21) will only have
rank 3 under the null when the true value of α is not zero. 
�
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Proposition 3

Let us replace σ 2
f and σ 2

u by the variance and the first autocovariance of the observed
series. Assuming that α +ψx 	= 0, which is valid in a neighbourhood ofψx = 0 when
the true value of α is different from 0, the solution will be

σ 2
f = (1 − α2)(1 − ψ2

x )(1 − αψx )

α + ψx
γyy(1),

σ 2
u = γyy(0) − (1 + αψx )

α + ψx
γyy(1).

so that

∂σ 2
f

∂γyy(0)
= 0,

∂σ 2
f

∂γyy(1)
= (1 − α2)(1 − ψ2

x )(1 − αψx )

α + ψx
,

∂σ 2
f

∂α
= (1 − ψ2

x )

(α + ψx )2
[2α3ψx + α2(3ψ2

x − 1) − 2αψx − (1 + ψ2
x )]γyy(1),

∂σ 2
f

∂ψx
= (1 − α2)

(α + ψx )2
[2ψ3

xα + ψ2
x (3α

2 − 1) − 2αψx − (1 + α2)]γyy(1),

and

∂σ 2
u

∂γyy(0)
= 1,

∂σ 2
u

∂γyy(1)
= − (1 + αψx )

α + ψx
,

∂σ 2
u

∂α
= 1 − ψ2

x

(α + ψx )2
γyy(1),

∂σ 2
u

∂ψx
= 1 − α2

(α + ψx )2
γyy(1).

Under the null of ψx = 0 these derivatives simplify to

∂σ 2
f

∂γyy(0)
= 0,

∂σ 2
f

∂γyy(1)
= 1 − α2

α
,

∂σ 2
f

∂α
= −1 + α2

α2 γyy(1) = −1 + α2

α

σ 2
f

1 − α2 ,
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∂σ 2
f

∂ψx
= − (1 − α2)(1 + α2)

α2 γyy(1) = − (1 + α2)

α
σ 2
f ,

and

∂σ 2
u

∂γyy(0)
= 1,

∂σ 2
u

∂γyy(1)
= − 1

α
,

∂σ 2
u

∂α
= 1

α2 γyy(1) = 1

α

σ 2
f

1 − α2 ,

∂σ 2
u

∂ψx
= 1 − α2

α2 γyy(1) = 1

α
σ 2
f ,

where we have used the fact that when ψx = 0

γyy(0) = σ 2
u + σ 2

f

1 − α2 ,

γyy(1) = α
σ 2
f

1 − α2 .

If we apply the chain rule to this reparametrisation, the new derivative wrt ψx

evaluated at ψx = 0 will be

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
f

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
f

∂ψx
+ ∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂σ 2
u

× 1

gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

∂ψx
+ ∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂ψx

1

gyy(λ|σ 2
f , σ

2
u , α, 0)

= − (1 + α2)

α
σ 2
f

1

σ 2
u

(
1 + α2 − 2α cos λ

) + σ 2
f

+ 1

α
σ 2
f

(1 + α2 − 2α cos λ)

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

+ 2σ 2
f cos λ

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

= σ 2
f

σ 2
u (1 + α2 − 2α cos λ) + σ 2

f

(
− (1 + α2)

α
+ 1

α
(1 + α2 − 2α cos λ) + 2 cos λ

)

= 0,

as desired. Obviously, we would obtain exactly the same result had we expressed the
spectral density of yt in terms of γyy(0), γyy(1), α and ψx as
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gyy(λ|γyy(0), γyy(1), α, ψx ) = γyy(0)

+ (1−α2)(1−ψ2
x )(1−αψx )−(1+αψx )(1+α2−2α cos λ)(1+ψ2

x −2ψx cos λ)

(α+ψx )(1+α2−2α cos λ)(1+ψ2
x −2ψx cos λ)

γyy(1),

(41)

derived this expression with respect to ψx obtaining

∂gyy(λ|γyy(0), γyy(1), α, ψx )

∂ψx

= − 2(α2 − 1)ψxγyy(1)

(α + ψx )2(1 + α2 − 2α cos(λ))(1 + ψ2
x − 2ψx cos λ)2

×
(

ψx
(
α2

(
ψ2
x + 4

) + 4αψx + ψ2
x

) − (2α + ψx )
(
2αψ2

x + α + 2ψx
)
cos(λ)

+(α(ψx (α + 2ψx ) + 2) + ψx ) cos(2λ) − αψx cos(3λ)

)

and evaluated this derivative at ψx = 0. 
�

Proposition 4

If we choose ψx = +√
ϕ, the spectral density of yt written in this form will be

g+
yy(λ|γyy(0), γyy(1), α, ϕ) = γyy(0)

+ (1−α2)(1−ϕ)
(
1−α

√
ϕ
)−(1+α

√
ϕ)(1+α2−2α cos λ)(1+ϕ−2

√
ϕ cos λ)

(α+√
φ)(1+α2−2α cos λ)(1+ϕ−2

√
ϕ cos λ)

γyy(1)

while if we choose ψx = −√
ϕ it becomes

g−
yy(λ|γyy(0), γyy(1), α, ϕ) = γyy(0)

+ (1−α2)(1−ϕ)
(
1+α

√
ϕ
)−(1−α

√
ϕ)(1+α2−2α cos λ)(1+ϕ+2

√
ϕ cos λ)

(α−√
φ)(1+α2−2α cos λ)(1+ϕ−2

√
ϕ cos λ).

γyy(1)

Next we must obtain the derivative under the alternative, and then evaluate it under
the null. In this way we obtain

∂g+
yy(λ|γyy(0), γyy(1), α, ϕ)

∂ϕ
= (α2−1)γyy(1)(

α+√
ϕ
)2

(1+α2−2α cos(λ))(1+ϕ−2
√

ϕ cos λ)2

×
(− (

(α2+1)
√

ϕ+2αϕ+2α
)
cos(2λ)−√

ϕ
(
α2(ϕ+4)−α cos(3λ)+4α

√
ϕ+ϕ

)
+ (

2α+√
ϕ
) (
2αϕ+α+2

√
ϕ
)
cos λ

)

so that

∂g+
yy(λ|γyy(0), γyy(1), α, 0)

∂ϕ
= 2(1 − α2)(cos(2λ) − α cos λ)

α(1 + α2 − 2α cos(λ))
γyy(1). (42)
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Similarly,

∂g−
yy(λ|γyy(0), γyy(1), α, ϕ)

∂ϕ
=

(
α2−1

)
γyy(1)(

α−√
ϕ
)2 (

1+α2−2α cos(λ)
) (
1+ϕ+2

√
ϕ cos λ

)2
×

((
(α2+1)

√
ϕ−2αϕ−2α

)
cos(2λ)+√

ϕ
(
α2(ϕ+4)−α cos(3λ)−4α

√
ϕ+ϕ

)
+(

2α−√
ϕ
) (
2αϕ+α−2

√
ϕ
)
cos(λ)

)

so that

∂g−
yy(λ|γyy(0), γyy(1), α, 0)

∂ϕ
= 2(1 − α2)(cos(2λ) − α cos(λ))

α
(
1 + α2 − 2α cos(λ)

) γyy(1),

which coincides with (42). Hence, the score test for the null hypothesis H0 : ϕ : 0
will indeed be based on the “influence function” (22).

We can also try the alternative route proposed by Lee and Chesher (1986). Given
that

∂2gyy(λ|γyy(0), γyy(1), α, ψx )

∂ψx∂ψx
=− 4

(
α2−1

)
γyy(1)

(α+ψx )3
(
1+α2−2α cos(λ)

) (
1+ψ2

x −2φ cos λ
)3

×

⎛
⎜⎜⎝

(−3
(
α2+1

)
ψ4
x +α

(
α2−10

)
ψ3
x −3α2ψ2

x +α2−3αφ5
)
cos(2λ)

+(−α3
(
3φ2+1

)+α2
(
6φ4+8φ2−3

)
ψx+2α

(
ψ2
x +6

)
ψ4
x +3φ5

)
cos(λ)

−ψx
(−3α3+α2

(
ψ4
x +9φ2−3

)
ψx+6αφ4+ψ5

x

)−αφ3 cos(4λ)

+ψ2
x (α(ψx (α+3φ)+3)+ψx ) cos(3λ)

⎞
⎟⎟⎠ ,

we will have that

∂2gyy(λ|γyy(0), γyy(1), α, 0)

∂ψx∂ψx
= 4(1 − α2)(cos(2λ) − α cos(λ))

α(1 + α2 − 2α cos(λ))
γyy(1).

Having obtained the derivative of the original spectral density, we can obtain the
second derivative of the spectral log-likelihood function with respect ψx by taking
first derivatives of the score (7). But since we have seen that

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂ψx
= 0,

the second derivative of the log-likelihood function will be

T−1∑
j=0

γyy(1)
4(1−α2)(cos(2λ j ) − α cos(λ j ))

α(1+α2 − 2α cos(λ j ))

[Iyy(λ j ) − gyy(λ j |γyy(0), γyy(1), α, 0)]
g2yy(λ j |γyy(0), γyy(1), α, 0)

so that the tests will be indeed identical.
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Finally, we can tediously show that

∂3gyy(λ|γyy(0), γyy(1), α, ψx )

(∂ψx )3

= 12
(
α2 − 1

)
γyy(1)

(α + ψx )4
(
α2 − 2α cos(λ) + 1

) + (−2ψx cos(λ) + ψ2
x + 1

)4

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψx

⎛
⎜⎝

6α4ψx + 4α3
(
7ψ2

x + 1
)

−α2
(
ψ6
x + 16ψ4

x − 16ψ2
x − 6

)
ψx

−8αψ6
x − ψ7

x

⎞
⎟⎠

−
⎛
⎜⎝
4α4

(
ψ3
x + ψx

) + α3
(
17ψ4

x + 28ψ2
x + 1

)
+4α2

(−2ψ6
x − 5ψ4

x + 7ψ2
x + 1

)
ψx

−2α
(
ψ2
x + 11

)
ψ6
x − 4ψ7

x

⎞
⎟⎠ cos(λ)

+
⎛
⎜⎝

α4
(
ψ4
x + 1

) + 4α3
(
ψ4
x + ψ2

x + 2
)
ψx

+α2
(−6ψ6

x − 15ψ4
x + 16ψ2

x + 1
)

−4α
(
ψ2
x + 7

)
ψ5
x − 6ψ6

x

⎞
⎟⎠ cos(2λ)

+
(−α3

(
ψ4
x + 1

) + 4α2
(
ψ4
x + ψ2

x − 1
)
ψx

+α
(
6ψ2

x + 17
)
ψ4
x + 4ψ5

x

)
cos(3λ)

−ψ3
x (α(ψx (α + 4ψx ) + 4) + ψx ) cos(4λ)

+αψ4
x cos(5λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so that

∂3gyy(λ|γyy(0), γyy(1), α, 0)

(∂ψx )3
= 12(α2 − 1) cos(2λ)

α2 γyy(1),

which in turn implies the local identifiability of ψx under the null. 
�

Proposition 5

The derivatives of the spectral density will be

∂gyy(λ|σ 2
f , σ

2
u , α, δx )

∂σ 2
f

= 1

(1 + α2 − 2α cos λ)(1 + δ2x − 2δx cos(2λ))
,

∂gyy(λ|σ 2
f , σ

2
u , α, δx )

∂σ 2
u

= 1,

∂gyy(λ|σ 2
f , σ

2
u , α, δx )

∂α
= 2(cos λ − α)

(1 + α2 − 2α cos λ)2(1 + δ2x − 2δx cos(2λ))
σ 2
f ,

∂gyy(λ|σ 2
f , σ

2
u , α, δx )

∂δx
= 2(cos(2λ) − α)

(1 + α2 − 2α cos λ)(1 + δ2x − 2δx cos(2λ))2
σ 2
f ,
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which under the null reduce to

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
f

= 1(
1 + α2 − 2α cos λ

) ,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

= 1,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂α
= 2(cos λ − α)(

1 + α2 − 2α cos λ
)2 σ 2

f ,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂δx
= 2 cos(2λ)(

1 + α2 − 2α cos λ
)σ 2

f .

Given that the spectral density under the null is

gyy(λ|σ 2
f , σ

2
u , α, 0) = σ 2

f(
1 + α2 − 2α cos λ

) + σ 2
u ,

and its reciprocal

g−1
yy (λ|σ 2

f , σ
2
u , α, 0) =

(
1 + α2 − 2α cos λ

)
σ 2
u

(
1 + α2 − 2α cos λ

) + σ 2
f

,

wewill have that the contribution of frequency λ to the log-likelihood scores evaluated
at δx = 0 will be

sσ 2
f
(λ|σ 2

f , σ
2
u , α, 0)

= (1 + α2 − 2α cos λ)

(σ 2
u (1 + α2 − 2α cos λ) + σ 2

f )
2
[2π Iyy(λ) − gyy(λ|σ 2

f , σ
2
u , α, 0)],

sσ 2
u
(λ|σ 2

f , σ
2
u , α, 0)

= (1 + α2 − 2α cos λ)2

(σ 2
u (1 + α2 − 2α cos λ) + σ 2

f )
2
[2π Iyy(λ) − gyy(λ|σ 2

f , σ
2
u , α, 0)],

sα(λ|σ 2
f , σ

2
u , α, 0)

= 2(cos λ − α)σ 2
f

(σ 2
u (1 + α2 − 2α cos λ) + σ 2

f )
2
[2π Iyy(λ) − gyy(λ|σ 2

f , σ
2
u , α, 0)],

sδx (λ|σ 2
f , σ

2
u , α, 0)

= 2 cos(2λ)(1 + α2 − 2α cos λ)σ 2
f

(σ 2
u (1 + α2 − 2α cos λ) + σ 2

f )
2

[2π Iyy(λ) − gyy(λ|σ 2
f , σ

2
u , α, 0)].

Given that these scores are not orthogonal under the null, we will have to orthogo-
nalise the last one with respect to the first three using the information matrix under the
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null, whichwill be given by (8), with the spectral derivatives obtained above. But given
that the linear span of ∂gyy(λ|σ 2

f , σ
2
u , α, 0)/∂σ 2

f and ∂gyy(λ|σ 2
f , σ

2
u , α, 0)/∂σ 2

u is the
same as the linear span of ∂gyy(λ|γyy(0), γyy(1), α, 0)/∂γyy(0) and ∂gyy(λ|γyy(0),
γyy(1), α, 0)/∂γyy(1) when they are both evaluated under the null, the adjusted test
is going to coincide with a two-sided version of the extremum test against an Ar(1)
alternative in Proposition 4. 
�

Proposition 6

As usual, it is convenient to reparametrise the model by replacing σ 2
f and σ 2

u by γyy(0)
and γyy(1) from (54) as follows

σ 2
f = (1 − α2)(γyy(1) − ψuγyy(0))

α − ψu
(43)

σ 2
u = (1 − ψ2

u )(γyy(1) − αγyy(0))

ψu − α
(44)

under the maintained assumption that α 	= ψu . The spectral density then becomes

gyy(λ|γyy(0), γyy(1), α, ψu)

= (1 − α2)(γyy(1) − ψuγyy(0))

(α − ψu)
(
1 + α2 − 2α cos λ

) + (1 − ψ2
u )(γyy(1) − αγyy(0))

(ψu − α)
(
1 + ψ2

u − 2ψu cos λ
)

=
(

(1 − ψ2
u )α

1 + ψ2
u − 2ψu cos λ

− (1 − α2)ψu

1 + α2 − 2α cos λ

)
γyy(0)

α − ψu

+
(

(1 − ψ2
u )(

1 + ψ2
u − 2ψu cos λ

) − (1 − α2)(
1 + α2 − 2α cos λ

)
)

γyy(1)

ψu − α
.

Hence, the derivatives will be

∂gyy(λ|γyy(0), γyy(1), α, ψu)

∂γyy(0)

=
(

(1 − ψ2
u )α

1 + ψ2
u − 2ψu cos λ

− (1 − α2)ψu

1 + α2 − 2α cos λ

)
1

α − ψu
,

∂gyy(λ|γyy(0), γyy(1), α, ψu)

∂γyy(1)

=
(

(1 − ψ2
u )(

1 + ψ2
u − 2ψu cos λ

) − (1 − α2)(
1 + α2 − 2α cos λ

)
)

1

ψu − α
,

∂gyy(λ|γyy(0), γyy(1), α, ψu)

∂α

=
(

(α4 − 1 − 4α(α − ψu)) − 2((1 + α2)ψu − 2α) cos λ(
1 + α2 − 2α cos λ

)2
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+ 1 − ψ2
u

1 + ψ2
u − 2ψu cos λ

)
(γyy(1) − ψuγyy(0))

(ψu − α)2
,

∂gyy(λ|γyy(0), γyy(1), α, ψu)

∂ψu

=
(

(ψ4
u − 1 − 4ψu(ψu − α)) − 2((1 + ψ2

u )α − 2ψu) cos λ(
1 + ψ2

u − 2ψu cos λ
)2

+ 1 − α2

1 + α2 − 2α cos λ

)
(γyy(1) − αγyy(0))

(ψu − α)2

Under the null hypothesis of H0 : ψu = 0 the derivatives become

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂γyy(0)
= 1,

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂γyy(1)
= 2(cos λ − α)

1 + α2 − 2α cos λ
,

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂α
= 2

(
2 cos2 λ − 2α cos λ + α2 − 1

)
(
1 + α2 − 2α cos λ

)2 γyy(1),

and

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂ψu
= 2

(
2 cos2 λ − α cos λ − 1

)
1 + α2 − 2α cos λ

(γyy(1) − αγyy(0)).

Let us double check these expressions using the chain rule. The partial derivatives
of the spectral density (53) with respect to the original parameters are:

∂gyy(λ|σ 2
f , σ

2
u , α, ψu)

∂σ 2
f

= 1(
1 + α2 − 2α cos λ

) ,

∂gyy(λ|σ 2
f , σ

2
u , α, ψu)

∂σ 2
u

= 1(
1 + ψ2

u − 2ψu cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , α, ψu)

∂α
= 2σ 2

f (cos λ − α)(
1 + α2 − 2α cos λ

)2 ,

∂gyy(λ|σ 2
f , σ

2
u , α, ψu)

∂ψx
= 2σ 2

u (cos λ − ψx )

(1 + ψ2
x − 2ψx cos λ)2

.

When ψu = 0, these derivatives reduce to

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
f

= 1(
1 + α2 − 2α cos λ

) ,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

= 1,
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∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂α
= 2σ 2

f (cos λ − α)(
1 + α2 − 2α cos λ

)2 ,

∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂ψu
= 2σ 2

u cos λ.

In view of (43) and (44), the elements of the Jacobian matrix of the original para-
meters in terms of the new parameters will be

∂σ 2
f

∂γyy(0)
= (1 − α2)ψu

ψu − α

∂σ 2
f

∂γyy(1)
= 1 − α2

α − ψu

∂σ 2
f

∂α
= 2αψu − 1 − α2

(α − ψ)2
(γyy(1) − ψuγyy(0))

∂σ 2
f

∂ψu
= (1 − α2)

(α − ψu)2
(γyy(1) − αγyy(0))

and

∂σ 2
u

∂γyy(0)
= (1 − ψ2

u )α

α − ψu

∂σ 2
u

∂γyy(1)
= 1 − ψ2

u

ψu − α

∂σ 2
u

∂α
= (1 − ψ2

u )

(α − ψu)2

(
γyy(1) − ψuγyy(0)

)
∂σ 2

u

∂ψu
= 2αψu − 1 − ψ2

u

(α − ψ)2
(γyy(1) − αγyy(0)),

which under the null become

∂σ 2
f

∂γyy(0)
= 0

∂σ 2
f

∂γyy(1)
= 1 − α2

α

∂σ 2
f

∂α
= −1 + α2

α2 γyy(1)

∂σ 2
f

∂ψu
= (1 − α2)

α2 (γyy(1) − αγyy(0))
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and

∂σ 2
u

∂γyy(0)
= 1

∂σ 2
u

∂γyy(1)
= − 1

α

∂σ 2
u

∂α
= 1

α2 γyy(1)

∂σ 2
u

∂ψu
= − 1

α2 (γyy(1) − αγyy(0)).

The chain rule for derivatives then implies that

∂gyy(λ)

∂σ 2
f

= 1(
1 + α2 − 2α cos λ

) ,

∂gyy(λ)

∂σ 2
u

= 1,

∂gyy(λ)

∂α
= 2σ 2

f (cos λ − α)(
1 + α2 − 2α cos λ

)2 ,

∂gyy(λ)

∂ψu
= 2σ 2

u cos λ.

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂γyy(0)
= ∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂σ 2
f

∂σ 2
f

∂γyy(0)

+∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

∂σ 2
u

∂γyy(0)
= 1,

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂γyy(1)
= ∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂σ 2
f

∂σ 2
f

∂γyy(1)

+∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

∂σ 2
u

∂γyy(1)

= 2(cos λ − α)

1 + α2 − 2α cos λ
,

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂α
= ∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂σ 2
f

∂σ 2
f

∂α

+∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

∂σ 2
u

∂α
+ ∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂α

123



170 SERIEs (2016) 7:121–178

= 2

(
2 cos2 λ − 2α cos λ + α2 − 1

)
(
1 + α2 − 2α cos λ

)2 γyy(1),

and

∂gyy(λ|γyy(0), γyy(1), α, 0)

∂ψu
= ∂gyy(λ|σ 2

f , σ
2
u , α, 0)

∂σ 2
f

∂σ 2
f

∂ψu

+∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂σ 2
u

∂σ 2
u

∂ψu

+∂gyy(λ|σ 2
f , σ

2
u , α, 0)

∂ψu
= 2

(
2 cos2 λ − α cos λ − 1

)
1 + α2 − 2α cos λ

(γyy(1) − αγyy(0)),

where we have used the fact that

σ 2
f = (1 − α2)γyy(1)

α
,

σ 2
u = − (γyy(1) − αγyy(0))

α

under the null. Obviously, the first three derivatives are the same for all the models
which reduce to an Ar(1) plus white noise under the corresponding null.

If we now scale them by the inverse spectral density under the null, we get

∂gyy(λ)

∂σ 2
v

g−1
yy (λ) = 1

σ 2
u

(
1 + α2 − 2α cos λ

) + σ 2
f

,

∂gyy(λ)

∂σ 2
ε

g−1
yy (λ) =

(
1 + α2 − 2α cos λ

)
σ 2
u

(
1 + α2 − 2α cos λ

) + σ 2
f

,

∂gyy(λ)

∂α
g−1
yy (λ) = 2σ 2

f (cos λ − α)(
1 + α2 − 2α cos λ

) 1

σ 2
u

(
1 + α2 − 2α cos λ

) + σ 2
f

,

∂gyy(λ)

∂ψx
g−1
yy (λ) = 2σ 2

f cos λ

(
1 + α2 − 2α cos λ

)
σ 2
u

(
1 + α2 − 2α cos λ

) + σ 2
f

.

If we take the factor [σ 2
u

(
1 + α2 − 2α cos λ

) + σ 2
f ]−1 out, we are left with

[σ 2
u (1 + α2 − 2α cos λ) + σ 2

f ]
∂gyy(λ)

∂σ 2
v

g−1
yy (λ) = 1,

[σ 2
u (1 + α2 − 2α cos λ) + σ 2

f ]
∂gyy(λ)

∂σ 2
ε

g−1
yy (λ) = (1 + α2 − 2α cos λ),

[σ 2
u (1 + α2 − 2α cos λ) + σ 2

f ]
∂gyy(λ)

∂α
g−1
yy (λ) = 2σ 2

f (cos λ − α)

(1 + α2 − 2α cos λ)
,

[σ 2
u (1 + α2 − 2α cos λ) + σ 2

f ]
∂gyy(λ)

∂ψx
g−1
yy (λ) = 2σ 2

f cos λ(1 + α2 − 2α cos λ).
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At first sight, it may seem that we no longer have an equivalent test. However, if
we make use of the trigonometric identity (40), we can write the last derivative as

2σ 2
f (1 + α2) cos λ − α(1 + cos 2λ).


�
Proposition 7

The partial derivatives of the spectral density (55) are:

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, ψx , ψu)

∂σ 2
f

= 1(
1 + ψ2

x − 2ψx cos λ
) (
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, ψx , ψu)

∂σ 2
u

= 1(
1 + ψ2

u − 2ψu cos λ
) (
1 + α2

u − 2αu cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, ψx , ψu)

∂αx
= 2σ 2

f (cos λ − αx )(
1 + α2

x − 2αx cos λ
)2 (

1 + ψ2
x − 2ψx cos λ

) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, ψx , ψu)

∂αu
= 2σ 2

v (cos λ − αu)(
1 + α2

u − 2αu cos λ
)2 (

1 + ψ2
u − 2ψu cos λ

) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, ψx , ψu)

∂ψx
= 2σ 2

f (cos λ − ψx )

(1 + ψ2
x − 2ψx cos λ)2

(
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, ψx , ψu)

∂ψu
= 2σ 2

v (cos λ − ψu)

(1 + ψ2
u − 2ψu cos λ)2

(
1 + α2

u − 2αu cos λ
) .

When ψx = 0 and ψu = 0, these derivatives reduce to

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂σ 2
f

= 1(
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂σ 2
u

= 1(
1 + α2

u − 2αu cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂αx
= 2σ 2

f (cos λ − αx )(
1 + α2

x − 2αx cos λ
)2 ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂αu
= 2σ 2

u (cos λ − αu)(
1 + α2

u − 2αu cos λ
)2 ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂ψx
= 2σ 2

f cos λ(
1 + α2

x − 2αx cos λ
)

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂ψu
= 2σ 2

v cos λ(
1 + α2

v − 2αv cos λ
) .
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Given that the spectral density under the null is

gyy(λ|σ 2
f , σ

2
u , α, 0) = σ 2

f(
1 + α2

x − 2αx cos λ
) + σ 2

v(
1 + α2

u − 2αu cos λ
) ,

and its reciprocal

g−1
yy (λ|σ 2

f , σ
2
u , αx , αu, 0, 0) =

(
1 + α2

x − 2αx cos λ
) (
1 + α2

u − 2αu cos λ
)

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
) ,

we will have that

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂σ 2
f

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

=
(
1 + α2

u − 2αu cos λ
)

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂σ 2
u

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

=
(
1 + α2

x − 2αx cos λ
)

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂αx

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

= 2σ 2
f (cos λ − αx )(

1 + α2
x − 2αx cos λ

)
(
1 + α2

u − 2αu cos λ
)

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂αx

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

= 2σ 2
u (cos λ − αu)(

1 + α2
u − 2αu cos λ

)
(
1 + α2

x − 2αx cos λ
)

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂ψx

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

=
(
1 + α2

u − 2αu cos λ
)
2σ 2

f cos λ

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
) ,

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂ψu

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

=
(
1 + α2

x − 2αx cos λ
)
2σ 2

v cos λ

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
) .
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It is then easy to see that

(1 + α2
x )

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂σ 2
f

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

−αx

σ 2
f

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂ψx

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

=
(
1 + α2

u − 2αu cos λ
)
(1 + α2

x )

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
)

−
(
1 + α2

u − 2αu cos λ
)
2αx cos λ

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
)

=
(
1 + α2

u − 2αu cos λ
) (
1 + α2

x − 2αx cos λ
)

σ 2
f

(
1 + α2

u − 2αu cos λ
) + σ 2

u

(
1 + α2

x − 2αx cos λ
)

= (1 + α2
u)

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂σ 2
v

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

−αu

σ 2
v

∂gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

∂ψx

1

gyy(λ|σ 2
f , σ

2
u , αx , αu, 0, 0)

.

Given (8), this result implies that the information matrix of model (27) will only have
rank 5 under the null when the true values of αx and αu are different from 0 and from
each other because the Ar(2) + Ar(1) model corresponding to both the Sar1 and
Nar1 alternatives is first-order identified in those circumstances. 
�

Proposition 8

Consider model (28). The spectral score with respect to ψa will be given by the sum
of the spectral scores with respect to ψx and ψu evaluated at ψx = ψu = ψa . More
specifically, given that

∂gyy(λ)

∂ψx
= ∂gxx (λ)

∂ψx
,

∂gyy(λ)

∂ψu
= ∂guu(λ)

∂ψu

and that

∂gxx (λ)

∂ψx
= 2 cos λgxx (λ),

∂guu(λ)

∂ψu
= 2 cos λguu(λ)

under the simple null hypothesis H0 : ψx = ψu = ψa = 0, the score of the spectral
log-likelihood for the observed series yt with respect to ψa will be given by

2
T−1∑
j=0

cos λ j [gxx (λ j ) + guu(λ j )]g−2
yy (λ j )[2π Iyy(λ j ) − gyy(λ j )]
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= 2
T−1∑
j=0

cos λ j2π Iaa(λ j ),

which involves the first circulant autocorrelation of the reduced form residuals at . An
analogous proof applies to the Ma tests. 
�

Appendix 3: Auxiliary results

Lemma 1 The spectral density of the observed process generated according to (20)
will be

gyy(λ) = 1 + ψ2
f − 2ψ f cos λ

1 + α2 − 2α cos λ
σ 2
f + σ 2

u (45)

and its autocovariances

γyy(0) = (1 + ψ2
f − 2αψ f )

(1 − α2)
σ 2
f + σ 2

u , (46)

γyy(1) = (1 − αψ f )(α − ψ f )

(1 − α2)
σ 2
f , (47)

γyy( j) = αγxx ( j − 1), j ≥ 2. (48)

Proof Since ft and ut are orthogonal at all leads and lags, the expression for the
spectral density follows directly from the expressions for the spectral density of an
Arma(1, 1) process. The same is true for the autocovariances, where we simply have
to add σ 2

u up to the zero order term. 
�
Lemma 2 The spectral density of the observed process generated according to (21)
will be

gyy(λ) = σ 2
f(

1 + ψ2
x − 2ψx cos λ

) (
1 + α2 − 2α cos λ

) + σ 2
u (49)

and its autocovariances

γyy(0) = (αψx + 1)σ 2
f(

1 − α2
) (
1 − ψ2

x

)
(1 − αψx )

+ σ 2
u , (50)

γyy(1) = (α + ψx )σ
2
f(

1 − α2
) (
1 − ψ2

x

)
(1 − αψx )

, (51)

γyy(2) = (α + ψx )γxx ( j − 1) − αψxγxx ( j − 2), j ≥ 2. (52)

Proof Given that the autoregressive polynomial is 1− (α + ψx )L + αψx L2, the first
autocorrelation of the signal can be obtained from the Yule–Walker equation

ρxx (1) = (α + ψx ) − αψxρxx (1),

which yields
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ρxx (1) = α + ψx

αψx + 1
,

while the remaining ones can be obtained from the recursion

ρxx ( j) = (α + ψx )ρxx ( j − 1) − αψxρxx ( j − 2), j ≥ 1.

As for the unconditional variance, we can use the fact that

γxx (0)[1 − (α + ψx )ρxx (1) + αψxρxx (2)] = σ 2
f ,

with

[1 − (α + ψx )ρxx (1) + αψxρxx (2) = (1 − α2)(1 − ψ2
x )
1 − αψx

αψx + 1

to obtain

γxx (0) = (αψx + 1)σ 2
f

(1 − α2)(1 − ψ2
x )(1 − αψx )

.

Similarly, the spectral density will be

gxx (λ) = σ 2
f

(1 + ψ2
x − 2ψx cos λ)(1 + α2 − 2α cos λ)

.

Since xt and ut are orthogonal at all leads and lags, the result follows. 
�
Lemma 3 The spectral density of the observed process generated according to (23)
will be

gyy(λ) = σ 2
f

(1 + α2 − 2α cos λ)(1 + ψ2
x − 2ψx cos 2λ)

+ σ 2
u .

Proof The proof is entirely analogous to the proof of Lemma 1. 
�
Lemma 4 The spectral density of the observed process generated according to (25)
will be

gyy(λ) = σ 2
f

(1 + α2 − 2α cos λ)
+ σ 2

u

(1 + ψ2
u − 2ψu cos λ)

, (53)

while the autocovariances become

γyy( j) = α j

1 − α2 σ 2
f + ψ

j
u

1 − ψ2
u
σ 2
u , j ≥ 2. (54)

Proof The autocovariances of the signal are
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γxx ( j) = α j
σ 2
f

1 − α2 , j ≥ 0

while its spectral density is

gxx (λ) = σ 2
f(

1 + α2 − 2α cos λ
) .

Similarly, the autocovariances of the noise are

γuu( j) = ψ
j
u

σ 2
v

1 − ψ2
u
, j ≥ 0

while its spectral density

guu(λ) = σ 2
v(

1 + ψ2
u − 2ψu cos λ

) .

Since we are assuming that ft and vt are uncorrelated at all leads and lags, the auto-
covariances and the spectral density of yt will be the sum of those of their underlying
components. 
�
Lemma 5 The spectral density of the observed process generated according to (26)
will be

gyy(λ) = σ 2
f

(1 + α2 − 2α cos λ)
+ (1 + ψ2

u − 2ψu cos λ)σ 2
v ,

while the autocovariances become

γyy(0) = 1

1 − α2 σ 2
f + (1 + ψ2

u )σ 2
u

γyy(1) = α

1 − α2 σ 2
f − ψuσ

2
u

γyy( j) = α j

1 − α2 σ 2
f , j ≥ 2.

Proof The proof is entirely analogous to the proof of Lemma 4. 
�
Lemma 6 The spectral density of the observed process generated according to (27)
will be

gyy(λ) = σ 2
f

(1 + α2
x − 2αx cos λ)(1 + ψ2

x − 2ψx cos 2λ)

+ σ 2
v

(1 + α2
u − 2αu cos λ)(1 + ψ2

u − 2ψu cos 2λ)
, (55)
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while the autocovariances become

γyy(0) = (αxψx + 1)σ 2
f

(1 − α2
x )(1 − ψ2

x )(1 − αxψx )
+ (αuψu + 1)σ 2

v

(1 − α2
u)(1 − ψ2

u )(1 − αuψu)
,

γyy(1) = (αx + ψx )σ
2
f

(1 − α2
x )(1 − ψ2

x )(1 − αxψx )
+ (αu + ψu)σ

2
v

(1 − α2
u)(1 − ψ2

u )(1 − αuψu)
,

γyy( j) = (αx + ψx )γxx ( j − 1) − αxψxγxx ( j − 2)

+(αu + ψu)γuu( j − 1) − αuψuγuu( j − 2), j ≥ 2.

Proof The proof is entirely analogous to the proof of Lemma 2. 
�
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