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Abstract

We consider the possibility of switching between two technological stan-
dards when there are network externalities and imprecise market informa-
tion. Multiple equilibria in terms of market shares can arise. The main
result is that lock-in to one of multiple equilibria is not a permanent out-
come when the source of lock-in is network externalities. The market lingers
at prevalence of one standard with Intermittent transitions to prevalence of

the other. In other words, lock-in is a temporary occurrence.
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1 Introduction

Path dependent dynamical systems of self-reinforcing (i.e., positive feedback)
mechanisms tend to possess a multiplicity of possible asymptotic states. The
initial state combined with early random events or fluctuations acts to push the
dynamics into the domain of one of these asymptotic states and thus to select the
structure that the system eventually locks into.

Some economic examples have recently been analysed. Lock-in may occur
in the case of sequential choice between competing technologies with increasing
returns to adoption [1]. If one technology gets ahead by good fortune, it gains
an advantage, with the result that the adoption market may ‘tip’ in its favour
and may end up dominated by it. Given other circumstances, a different tech-
nology might have been favoured early on and eventually dominated the market.
Ordinarily, in the problem of competition between technologies with Increasing
returns to adoption there are multiple equilibria. As to which actual outcome is
selected from the multiple candidates, it is argued that the prevailing outcome
depends heavily on the initially chosen path. In particular, the resulting outcome
can be inefficient, i.e., the market can be locked-in to the ‘wrong’ technology.

A question arising in this context is the following: If an economic system 1s
locked-in to an inferior local equilibrium, is ‘escape’ into a superior one possible?
Do we need policies for the cconomic system, or will spontaneous actions at g
local level suffice?

An answer depends on the degree to which the advantages accrued by the
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mnferior equilibrium are transferable to an alternative. Where learning effects and
specialized fixed costs are the source of the self-reinforcing mechanisms, advan-
tages are not usually transferable to an alternative equilibrium. Where coordi-
nation effects, which confer advantages from compatibility with other agents, are
the source of lock-in, often advantages are transferable [11]. For example, users
of a particular technological standard may agree that an alternative would be
superior, provided that everybody switched. If the current standard is not em-
bodied in specialized equipment and its advantage is mainly that of commonality
of convention, then a changeover to a superior collective choice can provide an
escape into the new equilibrium at negligible costs. It has been shown[3] that,
n the presence of network externalities, i.e., when the benefits from adoption of
a given technological standard Increase with the number of other utilizers pur-
chasing the same standard or compatible items (size of the network), and so long
as agents know other agents’ preferences, a co-ordinated changeover can occur
(the band-wagon effect). However, if there is uncertainty of others’ preferences
and intentions, there can be ezcess inertia, resulting in firms remaining with the
status quo even if they all favour switching, because they are unwilling to risk
switching without being followed. In this case permanent lock-in to an inferior
local equilibrium may occur.

The question about technological switching in the presence of benefits arising
from network externalities seems to be particularly relevant, since the issues of
compatibility and standardization have become more mmportant than ever. This

1s especially true within the computer and telecommunications industries, which



are characterized by urgent demands for compatibility and rapid innovation of
new products and services. In sonie cases there can be a direct externality; the
more subscribers to a given network, the greater the services provided by that net-
work. Other examples entail indirect externalities associated with the provision
of a durable good (hardware) and a complementary good or service (software).
In these cases the externality arises when the amount and variety of software
available increases with the number of hardware units sold. The cost that firms
incur to achieve compatibility can be small, almost negligible compared with the
benefits to be gained from compatibility [4]. This is especially true when it is pos-
sible to use standardized interfaces, by which we mean that each firm produces
according to its own specifications, but that the products of different firms may
use the same software or be capable of communicating with one another.

In the following pages we consider the problem of technological switching in the
presence of network externalities by taking advantage of certain approximation
results in the theory of population processes. Following a common approach in
stochastic modeling, we will represent the actions of a firm by a random process in
order to draw inferences about the ‘macroscopic’ behaviour of the system, which
will be almost deterministic. Hence we will let transitions between technologies
occur as a Markov process, with transition intensities depending on the market
shares of each technology, i.e., on their networt. This allows for self-reinforcement.

The remainder of this paper is organised as follows: In section 2 we construct a
stochastic model for the decision rule of the firms, and derive tractable approx-

imation. Our main result is contained in section 3 where we define the stochastic



attractiveness of eacl standard, and show how these determine the number and
position of market equilibria. We find that permanent lock-in to one of multi-
ple equilibria does not occur when the source of lock-in advantages is network
externalities. Instead the system lingers at prevalence of one standard, with in-
termittent transitions to prevalence of the other. We conclude with section 4,
where large deviations methods are used to calculate the sojourn time at one of

a number of possible system equilibria.

2 A Stochastic Model

We will consider the case of two technological standards, denoted ‘0’ and ‘v,
which are substitutable. There are N firms in the industry which have to decide
whether to stay with their present standard, or switch to an alternative, given
that there are benefits to be obtained from compatibility. We assume that this is
a market-mediated effect, i.e., a complementary good becomes cheaper and more
readily available the greater the extent of the compatible market. Benefits from
compatibility then arise if firms are able to exploit economies of scale N using a
common supplier of a complementary good.

Our hypothesis is that the firms move between technologies according to iden-
tical (or at least very similar) rules. If n(t) € {0,. .., N} is the number of firms
with standard ‘1’| then since the remaining N — » firms must have standard ‘0,
n suffices as a description of the industry as a whole. In what follows it will be

more convenient to deal in proportions and so set zn = 1, /N as the proportion of
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the N firms which have standard ‘1.

If the standard employed a firm is denoted j then, assuming benefits from
compatibility, the firm has an action rule A(J,2n) € {S, M} where S is ‘stay with
the current standard’ and M is ‘move to the other standard’ respectively, of the

form

S if (j:O,zNSCO) or (jzl,zNZCl) 4
A(j,zn) = (1)
M otherwise

where the thresholds ¢o and ¢; may differ due to cost differentials incurred in
switching standards. As an example, if we suppose that firms seek to maximise
their one-period profit, where p;i(zn) is the price charged by the common supplier
for one period consumption of standard j, and 7Y; 1s the cost to switch from

standard 1 — j to standard J (which must be sufficiently small), then

S if pilzn) < P1-j(zn) + Y1~
A(J,2n) = (2)
M otherwise.

While definitive, the rule (1) (1) supposes that all firms have perfect infor-
mation as to the state of the industry, and (i1) if all firms are interchangeable,
results in lock-in to a local equilibrium. Farrell and Saloner (3] dealt with the
second problem by allowing firms to have a preference, which was known to all
the remaining firms. This allowed for a coordinated changeover to a superior
collective choice (the band-wagon effect). We will show that supposing that firms
have imprecise information about the market position is equivalent to a stochas-

tic formulation, and that this allows for ‘escape’ when multiple equilibria are

possible.



For a single firm we now want to represent the decision process (or more
accurately the actions resulting from it) by a stochastic process, specifically a two-
state (indexed by standard) Markov chain in continuous time. Let the transition

intensities (see e.g., [14, page 41]) for the transitions ‘0’—‘1’ and ‘1’—=‘0’ be

90, 1) = AM=v)  ¢(1,0) = p(zn). (3)

We will now show that this stochastic formulation is equivalent to operating
the decision rule (1) on the basis of imprecise knowledge of zy. Suppose that a
firm is in state ‘0, then formally, in a small time interval At (identical for all

firms), in which a firm makes exactly one decision,

Prob(S) =1 — A(zn)At + o(At), Prob(M) = A(zy)At + o(At).  (4)

Observe that this defines a dimensioning relationship between the decision interval
and the transition intensities.

If we define a correct action by the rule (1) the stochastic firm can make two
types of error, namely {M | A = S} and {S | A = M}. Let us denote the

probability of an error by eg, then from (4) we obtain

/\(ZN)At N ‘S Co
Eo(ZN) =
L= AMen)At 2y > e

This is equivalent to operating the decision rule (1) with the ‘perfect information’

zn replaced by “imperfect information’ in the form of a random variable X with
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distribution given by

golco — zn + ) 0<2<zy
PrOb(XS-T): l—eo(co—zN—f—a:) N <z <1

1 T =1.

A similar random variable ¥ can be defined for a firm in state ‘1, with analogous
dependence on p(z).

We will now note some properties of the transition intensities (3).

(A1) For technical reasons we will require that \ and p be Lipschitz contin-
uous.  Formally, A(-) and ©(-) are only defined on the points {zy} =
{O, N""’%’ 1}, so we will take A(z) and p(z) to be Lipschitz contin-

uous functions through the points {A(zn)} and {u(zn)} .

(A2) Since firms benefit from Increasing compatibility we have
0 0

(A3) We will assume that

A(0) > 0, (1) >0,

Le., that there exists a positive probability of switching from a universally
operated standard. This can be identified as error and/or a willingness on

the part of firms to experiment with new technology.

Obviously n(t) is a birth-death process, hence ig reversible, with an casily ob-
tained (static) equilibrium distribution [8, pages 10-14]. However, this result js

not amenable to interpretation and worse, tells us nothing about the dynamies
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of the process, which are the object of interest. Further, the birth-death pro-
cess solution is impossible to implement in the case of more than two standards,
while the method we will propose can be extended, although some numerical
computation may be required.

The process zn(t) is a Markov process with generator [2],

Lnf(z) = N(1 — 2)A(2) {f (z—{- 71;) —f(Z)] + Nzp(z) {f (z— %;) —f(z)] ,

which is very nearly first order for large N. F. ormally, Taylor’s expansion yields

62
Enf = a5 S + 5 s +0 (), Q

where
U2) =(1=2)A=) = 2u(z),  b(z) = (1 - 2)A(2) + zp(z).
Now observe that the operator a(z)d/0z is also the generator of a Markov pro-

cess, specifically the (unique) deterministic process z(t) which solves the ordinary

differential equation

(—%z =(1- 2)A(z) — 2 z), 2(0) = zn(0). (6)

We then have the result that the continuous flow approximation z(t) is asymp-

totically close to the stochastjc process zy(t).

Theorem 1 (Kurtz[10]) If the transition mtensities A(2), u(z) are bounded and
Lipschitz continuous then, for any t > 0,€ > 0 there exist posttive numbers Y

such that

Prob (Sllp f2n(s) — z(s) |> e) < Cye=Ne2
0

<s<t



Corollary For all t > 0

]\}glgo Elzn(1)] = 2(t).

Notwithstanding theorem 1, there exists the possibility of zy(t) making ex-
cursions far from z(t), which will be examined in section 4. This is of particular
interest if z(¢) has multiple stable fixed points, since the system may be able to
‘tunnel’ between them. In the main, convergence of the z(t) will imply similar
convergence of zxy(t), and hence our problem is reduced to solving the ordinary
differential equation (6).

The fixed points of (6) are the solution(s) z of the equation

A(z)
SEyo) v

7=
If we denote the right side of this equation by F'(z), (A1) and (A2) imply that F(.)
s a continuous monotonically increasing function. Thus solutions of (7) occur due
to F(z2) alternately crossing the diagonal from above and below, and (A3) then
yields that (7) has an odd number of solutions (we adopt the convention that
tangential (grazing) contact is a double root where no crossing is made). These

observations yield the following result concerning the stability character of the

fixed points of z(t).

Theorem 2 Let the solutions of the fized point equation (7) be 0 < zy < 2, <
- < Zam < 1. Then the points Z25,0 = 0,....m are asymptotically stable in

the regions Dy = [0,2]),‘..,DJ~ = (22j-1,%2j41),.... D, = (Zom-1,1]. The points

Z2j-1, ) =1, . m are unstable
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Proof. First note that in a one-dimensional system the only possible fixed points
are asymptotically stable or unstable. If we take g fixed point  of (6) and perturb

it we obtain the linear perturbation equation
0 N -0 _
~ (1 -22ae -2 - i) - €
Appealing to (7) we can rewrite this as

d 0
7=~ (1= 2F) 06 + e
Hence z is stable (unstable) if 9F(z)/0z < 1 (> 1). Observing that F(-) crossing

from above (below) implies OF(2)/0z < 1 (> 1) completes the proof.

We will conclude this section by examining the shape of the equilibrium prob-
ability distribution. Consider (5), taking Ln to O(N~1) terms, thus obtaining a
diffusion approximation. Then [14, page 51] the probability density r(z, t) of z(t)

obeys the Kolmogorov forward equation

82
2N 527 (b7,

ST () +

ot

an equation of Fokker-Planck type, which has the stationary solution

m(z) o b(z) ! exp [QN A b((;//)) ] (8)

Since

a(2) = (M) + w(2)) (F(z) — 2),
1t is easy to see that the integral is maximised at the stable solutions of the fixed
point equation (7) and minimized at the unstable solutions. Hence 7(z) is peaked
(with mcreasing sharpness as N becomes large) around the stable fixed points of
(G).

11



3 Pseudo Network Externality

We will now seek to quantify the effect of compatibility. In our formulation there
are two components to the attractiveness of each standard. These are network
externalities, and the possibility of error which is intrinsic to a stochastic formu-
lation. The following definition provides a measure, via the transition intensities,

of the ‘stochastic attractiveness’ of each standard in terms of these components.

Definition The pseudo network erternality (henceforth PNE) of standard ; is g;

where

o = log [%J 6 = log [:_%J

Taking 6, for example, 1(0) is the maximum intensity for a transition to
standard 0, while A(0) is the minimum intensity for a transition to standard 1,
le., the probability intensity of making a mistake for a firm with standard 0.
Thus 6; is the difference of the logarithms of a network externalities term and an
error term. For the remainder of the paper we will need the following assumption,

in addition to those in section 2.

(A4) There exist constants ky > 0, &y > 0 such that
5, 13, ;
3, 4(2) = —kop(z), 5.M=) = kiA(z).

The assumption (A4) implies the identity 6, = &, + ky — 8y, which together



with (7) and (A4) enables us to write

1 ,
Fz)= ——42—— = 9
(=) 1+ exp[6y — z(6o + 6,)] )
This has the following immediate consequence.
Theorem 3 F(z) is conves (concave) for z < w (z > w), where
w :90/(90+91), (10)

and hence the system has at most two stable equilibriq.

Proof. The first assertion follows immediately from (9), thus (7) has at most three

solutions by a simple convexity argument and theorem 2 does the rest.
Corollary If 6, + 6, < 4 then there is exactly one stable equiltbrium,.

Proof. First note that if w < 0,orw > 1then (7) has only one solution. Otherwise,

by (9), (10) and the definition of w,

(B0 + 6)Nw)pu(2) _ 8+ 6,
@) +uw@) ~ T a

5} 5}
max EZF(Z) = EZF(w) =

Hence if 6, + 6, < 4, OF(z)/0z < 1 for all z and (7) can only have one solution.

Finally, by theorem 2, a solitary fixed point is stable. [

The next result is a complement to the corollary to theorem 3. These two
results together with theorem 5 demonstrate that the PNEsg completely determine

the number of stable equilibria.
Theorem 4 If 6y = 0, then:

a) 2=1/214s a solution of the fized point cquation (7).

13



b) If 6, + 6, > 4 the system has two stable equilibriq.

Proof. Part a) is immediate from (9). By (10), w = 1/2, and so (sce the preced-
ing proof), dF(1/2)/8z = (6o +61)/4. An appeal to theorem 2 and theorem 3

completes the proof of part b). O

The interpretation of theorem 4 and the corollary to theorem 3 1s straight-
forward. If the two standards are equally attractive then z — 1/2 (equal market
shares) is the unique stable equilibrium provided that the network externalities
are sufliciently weak relative to the probability of error. If the network external-
ities are strong then there are two stable equilibria, corresponding to prevalence
of each of the standards. If the two standards are not equally attractive we have

the following similar, but necessarily more complex, result.
Theorem 5 If 6y +# 6, then:

a) If 6, > 6, (B0 < 61), the system has q stable equilibrium at z < 1/2 (z > 1/2).
b) Let
Bo = min [(8+60)(1 + )]

0<B<;

— (1-B)o,
B, = 0121512*{1 [ﬁ&o(l +e )} .
Then the fized point equation (7) has the following propertics:

(i) If 6, < 0 or 6, < there is exactly one stable equilibrium.

(i1) If min{6y,8;} > 0 and min{fy, By — o} < 8 < max{6,, B, — Oy} then

there are two stable equilibria.

14



(iii) If 0 < 6; < min{fo, By — 6o} or 0 < max{6,, B, — bo} < 6, then there

s ezactly one stable equilibrium.

Proof. Parts a) and b)(i) are immediate from theorem 3. Next let us suppose that
0 < 61 < 6. Then, recalling (9) and (10), since F(w) = 1/2, (7) has a solution

2o < w. To consider the range w < z < 1, let

z:l—(l—-?—)(l—w), 0<p <.

Then it is easy to show that F(z)—2z > 0 for some f (and hence (7) has solutions
z1,%2 € (w, 1)) if and only if Oo+0, > (B+66)(1+e?), which vields the lower bound
involving By. Now suppose 6, < f1. Since F(w) = 1/2, (7) has a solution 7, > w.
Again it is easy to show that F(fw) — fw < 0 for some B € (0,1) (and hence (7)
has two solutions %0, 21 € (0,w)) if and only if bo + 6, < By(1 + e(1=F))  This
yields the upper bound involving By, and parts (it) and (iii) are then consequences

of theorem 2 and theorem 3. O

We will now consider the interpretation of theorem 5. Part a) simply tells us
that there will be a stable equilibrium corresponding to prevalence of the more
attractive standard. In part b)(i) the benefits of network externalities for the
given standard are small compared with the probability of mistakenly switching,
and hence the other standard wil] prevail. Parts b)(ii) and (iii) show that there
will be two stable equilibria (see the paragraph following lemma, 1) provided the
stochastic attractiveness of the standards do not differ too greatly.

Finally, let us formulate & lemma which we will need iy the following section.

We will state and prove the result only for 6, < 01 but the obvious complement



also holds.

Lemma 1 If 6, < 6; and 3, < 1/2 solves the fized point equation (7), then (7)

has another solution Zy such that zy > 1 — 3,.

Proof. By hypothesis z, = F(Z), so the lemma will be provedif 1-Zz, < F(1 —Zp)-

From (9) this is true if and only if exp[fy — 6,] < 1. [

Observe that lemma 1 and theorem 4 imply that if the system has two stable
fixed points then one is in the interval [0,1/2) and the other in the interval
(1/2,1]. Thus if there is more than one stable equilibrium then each represents

the prevalence of a different standard.

4 Large Deviations

In cases where more than one stable equilibria exists it is possible to obtain large
deviation type estimates for the expected time taken for the system to make a
transition between them. Following [13] the expected time taken to go from a
stable equilibria 7 to an unlikely point 5 is exp[NT + o(N)] where I solves the
variational problem

e d
I= uslf/tl 3 (z(t), —d—tz(t)> dt,

where

h(z,a) = sgp {az —(1- 2)A(2)[e” — 1] - ()™ — 1]}

16



and S = {t,,1,, 2(t) : 2(4;) = Z,2(t3) = n} is the set of all paths from z to 5. For

our model the solution takes the form

I / _zz)
) z)A(Z) >
which section 3 allows us to calculate explicitly as

7= 028 = (07 =) B L2 g (1 — yi=n)] g 571 209 (1)

From theorem 2 we know that any two stable equilibria are separated by an un-
stable equilibria, which we can take as an unlikely point (from which convergence
to a stable point is exponentially fast). If 3, Z1, 2, are stable, unstable and stable
respectively then the above theory enables us to express the system dynamics in

the form of the ‘transition intensities’

e o[- b [ ) )

and

N (22, 20) = exp [*N/zjl log [(T:%%(;)J dzJ

Treating this as two-state Markov process the relative likelihoods of the two sys-

tem equilibria are given by

R R

With obvious modifications the same procedure is applicable to any number of
stable equilibria.

We can now examine the effects of PNEs for large N. Again we will state and
prove our result only for 6, « 81, but again the obvious complement Lolds.

17



Theorem 6 Suppose the system has two stable equiltbria z, < 1/2 < 3z, If
6o < 6, then

lim TM(G2)
N—co WN(ZO)

Proof. Consider (12). The theorem will follow from positivity of

IN:/jlog [%’;(ﬁj dz:/zjz(ﬁo-{—ﬁl)z—ﬁo-{—log[l;zJ d-.

From lemma 1,1 -2y < 3 and it can be shown that the mtegrand is positive
over the interval (1 — z,, Z2). Hence

61 — 6,

1*20 z
Iv> [ (eo+91)z-eo+1og[ sz:
£

considered a model which allows recontracting within the market once it has
formed and where the transition probabilities between standards for each firm
depend on the market share of each standard, inducing self-reinforcement. Fop
the case of two alternative standards the relative asymptotic likelihoods of the
equilibria can he calculated. The main result (section 3) is that if the network
externalities are sufficiently strong, the switching costs sufficiently small, and

18



both effects relatively balanced over the two standards, then permanent lock-in
to one market position is not possible. Instead the market makes mtermittent
transitions, after a sojourn time whose mean increases exponentially with the
number of firms, between prevalence of each standard.

A few remarks are in order. In this baper we considered unsponsored tech-
nological standards, i.e., standards that cannot be priced and manipulated. If
competing standards are sponsored or proprietary, their Sponsors may compete

fiercely to have them adopted as the de facto standard, so that sellers may engage

periods competition may be very good for buyers. However, once one standard
has ‘won’, the proprietary de facto standard may become a2 source of monopoly
power [5]. In these circumstances, exit from lock-in to a market position becomes
more and more difficult.

Moreover, when network externalities are embodied in ay installed base (see
[6,7]), an early start or a protected market could in principle lead to g lasting
competitive advantage. In this case substantial changeover costs of switching
from one standard to another are likely to be incurred [9], and can prevent escape

from a lock-in position.
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