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Multivariate Estimation of Exponential Affine
Models of the Term Structure of Interest Rates*

Sergio Pastorellof
February 29, 1996

Abstract

In this paper I consider the estimation of multi-factor exponential
affine models of the term structure of interest rates. I start with a
survey of the empirical work on the term structure in continuous time,
showing that in most cases the implementation of the models has not
fully exploited the theoretical restrictions. Ialso show that these works
have almost always focused on ”generalizations” of the theoretical
model, based on the inclusion of measurement errors in bills and bonds
prices. I then suggest two approaches to statistical inference: the first
is based on the Kalman filter, while the second follows the indirect
inference approach. I also briefly discuss the relative properties of the
two estimators, and I conclude with a small Monte Carlo experiment
for a one-factor Cox-Ingersoll-Ross model, whose results are rather
encouraging.
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1 Introduction

The term structure of interest rates has traditionally been a fundamental area
of research for economists. A theory of the term structure is an explanation
of the difference between the prices of risk free bonds with different maturity
dates. The modern theories are based on two different sets of assumptions:
no arbitrage or general equilibrium. It should be noted that apart from these
differences both kinds of explanations are developed in the same framework:
continuous time, diffusion processes for the state variables, frictionless and
complete markets. In the no arbitrage approach, the price of a derivative
asset based on interest rates is given by a replication argument: any two as-
sets (or, more generally, any two investment strategies) which are equivalent
in terms of future cash flows in every possible state of nature must have the
same price at the current date. Harrison and Kreps [17] have shown that
the assumptions of absence of arbitrage opportunities and of complete mar-
kets together imply the existence and the unicity of an equivalent probability
measure (the so called "martingale probability”, or "risk neutral probabil-
ity”) under which the price of every asset is equal to the expectation of
the discounted future uncertain cash flows. This risk neutral probability is
completely characterized by an adapted measurable process {;} called "risk
premium process”. The main drawback of the first generation of arbitrage
pricing models is that the risk premium process has to be assumed, instead
of being endogeneously derived from more fundamental assumptions about
the structure of the economy. Examples of arbitrage pricing models of this
kind are Vasicek [25] and Brennan and Schwartz [3]. In a second genera-
tion of arbitrage free models, which has been developed recently, the term
structure is modelled using diffusion processes with time varying parameters,
which both allow to avoid the specification of a risk premium process and to
fit exactly the current term structure. Examples of recent arbitrage pricing
models are Heath, Jarrow and Morton [19] and Hull and White [20].

The equilibrium approach requires instead a complete description of the
underlying economy: the utility function of the representative agent, the
technology of the production processes, the investment opportunities. Given
these assumptions, it is possible to endogeneously derive the relation be-
tween the riskless instantaneous interest rate and the forcing variables (the



factors), together with the exact form of the risk premium. The most famous
equilibrium model, which has also been intensively studied in a number of
countries, is the one of Cox, Ingersoll and Ross [9] (henceforth CIR).

A common result of the great majority of these models is an exponential-
affine formula for the price of zero coupon bonds. Let Y7,Ys,....Yx be the K
factors driving the dynamic evolution of the term structure over time. These
models frequently provide a valuation formula for zero coupon bonds of the
following type:

K
P(t,T;Y,,[3) =exp {A(t, T,8)+ > Bau(t,T, ﬁ)YM} (1)
h=1

where ¢ is the current date, T is the bond maturity date, the functions
A(t,T, ) and By(¢,T,3) depend on the parameters of the model (those ap-
pearing in the stochastic processes of the forcing variables and of the market
prices of risk, one for each factor, collected in the vector 3), and Y, is the
current realization of the factors. Duffie and Kan [11] have shown that valu-
ation formulae like (1) are immediately obtained as soon as affine drifts and
volatilities are assumed for the diffusion processes of the state variables, and
the instantaneous interest rate is an affine function of these variables.

A notable property of formula (1) (but which is also shared by any val-
uation formula derived in a complete market framework) is that the price
of the derivative asset is given ezactly. In this sense, (1) can be interpreted
as an accounting relationship between the price of the asset and the cur-
rent realization of the state variables. When the number of assets is greater
than the number of state variables, and given some value for 3, a number
of deterministic relationships arise between the prices of zero coupons at the
same date but with different maturity dates. Strictly speaking, these mod-
els exclude the possibility of a discrepancy between observed and theoretical
prices. Most empirical analysis of these models are however (explicitly or
implicitly) based on the inclusion in the RHS of (1) of a random error.

In some cases the factors are identified with some known economic vari-
ables such as the instantaneous interest rate, an yield-to-maturity, or other
macroeconomic variables. Nevertheless, the observation of these variables
often presents some difficulties: macroeconomic aggregates are usually ob-
served every month (if not every quarter), whereas financial variables are
available at much higher frequency. Moreover, measurement errors and is-
sues of definition of the same aggregates cannot be excluded. In some cases



1t is necessary to recover to a proxy of the otherwise unobservable state vari-
able, e.g. using a short yield to maturity or an overnight rate instead of the
instantaneous interest rate. In any case, the use of a noisy observation, or
of a proxy of the variable of interest, is likely to generate some effect in the
inference stage whose properties are largely ignored. In this paper I suggest
to interpret the forcing variables as latent, and to make inference on the pa-
rameters of the model using observations on bond prices and yields, which
form an almost ideal dataset. The estimation and test of these continuous
time, multivariate, dynamic latent variable model is greatly simplified by
using some recently developed econometric techniques and by exploiting the
particular structure of formulae like (1).

Exponential-affine formulae for the prices (or equivalently affine formulae
for the yields to maturity) of zero coupon bonds are a maintained assumption
in this paper, independently from the model originating them. In the follow-
ing I concentrate for ease of exposition on the CIR [9] equilibrium model, but
the estimation and testing approach that I suggest can be easily adapted to
other frameworks. The rest of the paper is organized as follows. In section 2
I present a survey of the main approaches which have been adopted to esti-
mate and test continuous time models of the term structure of interest rates.
Section 3 presents the CIR multifactor model of the nominal term structure
and discusses its "extension” based on the inclusion of random measurement
errors. In section 4 I shall introduce a multivariate approach to statistical
inference in these models under the assumption that it is possible to observe
the prices of zero coupon bonds for a large number of maturity dates. This
assumption is clearly not always acceptable, but it does nonetheless allow
a simple exposition of the general principle of the multivariate approach.
Section 5 concludes.

2 A survey of empirical work on the term
structure in continuous time

It is not surprising that modern theories of the term structure have attracted
a lot of attention. These models have been applied to a variety of different
context, and a number of statistical procedures have been suggested to esti-
mate and test them. In this section I focus on the approaches which explicitly
deal with the problem of estimating the parameters of the model or of some



extension of it. I do not consider the empirical work whose objective is to
test some implication of the models without fully estimating the parameters.

It is commonly observed that there exists a discrepancy between the de-
gree of sophistication used in the derivation of theoretical models and the one
characterizing their empirical implementations. In some cases the discrep-
ancy simply refer to the difficulty to work with a model which provides ezact
valuation formulae, thus excluding the possibility to exploit the standard
econometric tool kit. In this respect, some of the approaches that I outline
in the following implicitly assume a particular structure of observation errors,
thus violating the implications of the model. Some other approaches respect
the feature of the formulae, but in this case different problems arise, related
either to the properties of the variables approximating the factors, or to the
quantity of information exploited to estimate the model.

Brown and Dybvig [4] first proposed a cross section procedure to simul-
taneously estimate the parameters and the state variables in the CIR [9] one
factor model’. Their idea is extremely simple: let P* (t,1;),i=1,2,.... M be
the observed bond prices at date t for M different maturity dates (bonds can
be with or without coupon), and let P(¢,T;;Y,, 3) be the theoretical prices
implied by a given model. At each date, it is possible to estimate Band
the realization of Y, (assumed unobservable) by minimizing the (weighted)
sum of squared differences between P*(t,T;) and its theoretical counterpart.
It should be noted that this approach implicitly assumes the existence of
normally distributed errors on the RHS of (1), independently distributed
over time. Moreover, as it is only based on bond prices, it does not allow a
separate identification of every parameter, but only of a limited number of
functions of elements of 3. It has been noticed that this procedure produces
a very good fit of the model to the data, and that this result is not surprising
since we estimate a different [ at each date. By ignoring the structural rela-
tionship between § and the dynamic evolution of Y;, we implicitly augment
(sometimes remarkably so) the number of factors.

A second approach assumes the observability of the state variables, and
exploits the properties of their distribution. Chan, Karoly, Longstaff and
Sanders [5], for example, assume the observability of the instantaneous risk-
less rate and estimate by GMM a variety of diffusion models for it. Prices
of derivatives assets could then be computed by numerical techniques (such

1Tt should however be noticed that this procedure can be applied with minor modifi-
cations to a multifactor model.



as Monte Carlo integration or finite difference methods), once a particular
form for the risk premium has been (separately) estimated or otherwise as-
sumed. Ait-Sahalia [1] estimates nonparametrically the diffusion coefficient
of a mean reverting process for the same rate, and compares the theoretical
bond prices from a CIR [9] model with those arising from his generalized
model. Longstaff and Schwartz [22] consider a two factor equilibrium model,
where the dynamics of the yield curve is driven by the instantaneous inter-
est rate and its volatility. They assume the observability of the first, and
use a GARCH model to get a filtered series of the second factor. From a
general viewpoint, this approach presents some problems, related to the use
of proxies of the true state variables and to the need of separately estimate
the risk premium parameter in order to empirically implement the model to
derivative prices. Pearson and Sun [23] and Bianchi, Cesari and Panattoni
[2] provide some interesting evidence about the consequences of the approxi-
mation error. A more subtle problem of this procedure, which has also been
studied by Bianchi, Cesari and Panattoni [2], has to do with the stochastic
properties of the time series of interest rates. Most of the models for this
variable present a mean reverting drift term, which basically implies a first
order autoregressive conditional expectation in discrete time. However, inter-
est rates appear to be highly autocorrelated, and this means that estimates
of the "mean reverting parameter” (which measures the speed of reversal to
the "natural” or "long period” level of the rate) can be dramatically biased
upwards even in fairly long samples®. Precise estimates of the parameters
can be obtained by increasing the span of time covered by the sample, but
this fact in turn introduces the possibility of including one or more structural
breaks.

This time series approach has been recently refined by Pearson and Sun
[23] in the context of the CIR [9] real two factor model. The general principle
is however outlined in Duan [10], and can be described as follows. Consider
a two factor model, which consists of (i) the conditional distribution of the
(supposed unobservable) state variables, which depends on some unknown
parameters, and (ii) some valuation formulae for particular (observed) deriva-
tive assets, depending on the same parameters and the risk premium. It is
possible to exploit the deterministic one-to-one feature of the valuation rela-

2The estimation of the autocorrelation coefficient in discrete time autoregressive models
presents the same difficulty. It is well known that the bias is a decreasing function of the
sample length and an increasing function of the true unknown value of the parameter.



tionship to ”invert” it and express the loglikelihood of the factors in terms
of the observable prices. The new pdf will in general allow separate identifi-
cation of all the parameters. Moreover, the inverted pricing formulae can be
used to build a series of filtered realizations of the state variables, once an
estimate of the parameters is obtained. Of course, this will only be possible
if we limit ourselves to the observation of a number of assets exactly equal
to the number of factors. Notice that this procedure does not violate the
deterministic nature of the pricing formulae implied by the model: on the
contrary, it is based on it. However, as witnessed by Pearson and Sun [23],
it 1s likely that the constraint "number of derivatives = number of factors”
limits the empirical identification of the parameters in some cases, since only
a limited amount of the actually available information is taken into account.
For example, the small sample bias discussed previously is likely to be a
characteristic of this approach also.

To deal with this problem a solution has been suggested, which is once
more based on the introduction of stochastic residuals in the RHS of formulae
like (1). Chen and Scott [6] estimate three specifications of the CIR [9]
nominal model, with one, two and three factors. The dataset consists of four
time series of derivatives: two bills and two bonds. In every case, they use the
inversion technique to transform some derivative prices in a realization of the
latent state variables; since the number of assets is greater than the number
of factors, they also introduce random residuals to reconcile theoretical and
observed prices. The identification problems appear to vanish, at least for
the one and two factors model, but their approach is limited, in the sense
that to avoid undesired analytical complications they constrain themselves
to the case "number of assets = number of state variables + number of
random residuals”. In other words, they suppose that some prespecified
prices are observed without error, whereas some others are observed with
error. The choice of the prices observed exactly is essentially arbitrary, apart
from some intuitive considerations based on liquidity argument. A further
problem with their procedure refers to the particular specification of the
measurement errors they adopt. They suppose that the residuals are AR(1),
and the parameters they estimate include both those of the term structure
model and those of the error processes. This fact has two implications. First,
it is hard not to see these autocorrelated residuals as a sort of ”added” factors
(of a very particular kind), since they contribute in the same way as the true
factors to the cross and autocorrelation properties of the multivariate time
series of yields. For example, a two (structural) factors model with two
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autocorrelated residuals is in fact a particular specification of a four factors
model. Since the total number of true and spurious factors is constant in
every model they analyse, it is hard to use their procedure to find out the
appropriate number of factors for a particular sample. Second, the particular
structure of the error terms implies that the one factor model is not nested
in the two factors one, and the latter is not nested in the three factors model.
This complicates a formal statistical comparison between the models, even
if the theoretical model naturally lends itself to the purpose.

Apart from the unusual specification of the error terms, the procedure
supposes that some yields are observed exactly, whereas some others are
not. It seems much more logical to suppose that every yield is subject to
measurement errors of some kind, and to let the data decide the quality of
the pricing model at every maturity. This means that the factors are now
completely latent, and can not be filtered out of the yields by exploiting the
deterministic feature of formulae like (1).

In a recent work, Chen and Scott [7] suggest to exploit the exponential
affine structure of the zero coupon bond prices to estimate the model by
applying the Kalman filter on the yields-to-maturity. This procedure, which
is the first considered in this paper, is particularly well suited when prices
on zero coupon bonds are available at many maturities. A more flexible
one, based on the indirect inference approach, will also be introduced in the
following.

3 The extension of the general CIR multifac-
tor model

Although the framework I consider in this paper is suited to any continuous
time model of the term structure which provides exponential affine formulae
for zero coupon prices, in the following I shall focus for ease of exposition
of the classical CIR [9] nominal multifactor equilibrium model of the term
structure of interest rates (equations (57) - (60) in their paper). Given its
general equilibrium foundations, this model allows the endogenous derivation
of the risk premium which guarantees the absence of arbitrage opportunities.
The assumed distribution of the state variables also implies the non negativity
of the nominal yields at any maturity. The major drawbacks of the model are
that it doesn’t let to fit exactly the initial term structure, and it does provide



only quasi-explicit formulae of derivative assets involving option features,
such as options of coupon bonds or on futures on coupon bonds, or futures
involving a quality option. As this framework is well known, I shall give
only a brief outline of it. CIR [9] assumptions include: log utility of the
representative agent, square root processes for the state variables, and means
and variances of the underlying production processes determined by linear
functions of the sum of K state variables. The instantaneous nominal interest
rate is assumed to be the sum of the state variables:

K
i= Z Yi
i=1
and the square root processes for the state variables are:

for ¢ = 1,2,..., K, where k;, §; and o; are positive parameters, and {Z;}
is a standard brownian motion defined on a probability space (Q,3, P).

The derivation of the equilibrium of this economy provides the exact
form of the risk premium, which is shown to be proportional to Vi for each
state variable in (2). This result is determined by the covariability of the
state variable with the marginal utility of nominal wealth. I shall define
Ai, = 1,2,..., K, the K parameters characterizing the risk premium. It
can be shown through the Girsanov Theorem that the dynamics of the state
variables under the risk neutral probability @ (which is equivalent to the
assumption of absence of arbitrage opportunities) is given by:

The solution for the nominal price at time ¢ of a nominally risk free zero
coupon bond which pays 1§ at time 7' is given by:

N(LT: Y, f) = {HA }exp{ > (T —tﬁylt} )

which is, as expected, of the exponential affine form.
The yields to maturity are affine functions of the unobservable state vari-
ables:



R(,T:Y,0) = —TlftmN(t,T;Yt,ﬁ) (4)

K

where:

AT —tp) = 9ysed (it At (T-0) s
i ) o 2’)’2‘ + (k‘z + X+ ’Yi) [e”Yi(T~t) — 1] ,
2 [@'Yi(T~t) . 1]

( f) 2v; + (ki + Xi 4+ ) [en(T=0) — 1]

Vi = \/(kz +M)® + 202,

and ﬁ = (k‘l,k‘g, ...,kK,Ql,QQ, ...,(91(,0’1,0’2, ...,O’K,)\l,)\g, ceey )\K)/

In this formulation, the econometric implications of the model are rather
poor. Notice that the bond prices are deterministic functions of the realiza-
tions of the state variables Y, and of the unknown parameters. The model
Just provides the conditional pdf for each state variable, which is known to
be a noncentral x? distribution with ¢; degrees of freedom and parameters of
noncentrality c¢; :

T Wne | Yni-acs ki, 0;,05) = (5)

1o
2 1
iy — e ki Ynt
. cye 1 - Iy~
c;e iYh,t—Ci Yh,t— At __~__L_— I(b: 2cz_ yh,te klAtyh,,t~At
e kilby, o At
St

where:




At is the length of the interval between two consecutive discrete time
observations, and I,(.) is the modified Bessel function of the first kind of
order q.

There are two ways of exploiting (5). The first is to assume that the
state variables (or some one-to-one function of them) are observable, and
to develop a standard maximum likelihood estimator of the parameters. As
already stated in the introduction, this approach does not allow the esti-
mation of the risk premium parameter, which can only be identified using
bond prices. Moreover, the assumption of observable state variables is hardly
acceptable for the reasons I stated in the introduction.

The second approach consists in assuming that at each date K bond
prices are observed, and to exploit the deterministic relationships between
these prices and the state variables to apply the MLE on the K observable
prices instead of the K unobservable state variables. Notice that in this
approach the K factor model can be estimated using only K bond prices.
If more than K prices were observed, we could deduce some deterministic
relations between them, and their joint distribution would have to be degen-
erate. If less than K prices were observed, we would not dispose of enough
observations to solve the nonlinear system (4) with respect to Y,, and MLE
would be unfeasible.

The second approach allows the estimation of the risk premium parame-
ters A;, but it can nonetheless be criticized on the ground of the extremely
limited information it is based on. Indeed, a one factor model must be es-
timated using a single point on the yield curve at each date. If the purpose
of the analysis is just to recover the parameters, then this constraint is not
troubling. However, if the objective is to evaluate comprehensively the qual-
ity of the fit of the model to the data, the constraint is much more puzzling.
Moreover, if we stick to the assumption of observing at every date the same
point on the yield curve, it is clear that the conclusions to be drawn could be
considerably different using different points (see e.g. Pearson and Sun [23]).
Some results could be discarded in favour of some others because they don’t
look enough "reasonable”, but still room is left to the possibility of having
different, and equally plausible, set of estimates.

The main reason of this apparent paradox is the deterministic feature
of equations (4). Indeed, the approach just mentioned makes the implicit
assumption that K prices are observed without error, while a random residual
term is added on the RHS of (4) to allow an assessment of the fit of the
theoretical yield curve to the observed one.
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Strictly speaking, the inclusion of these random ”"measurement” errors
totally invalidates the model. Indeed, it is clear that any (however small)
difference between the observed and the theoretical price of an asset gives
rise to an arbitrage opportunity, which means that the model is false and use-
less. However, under such a strict interpretation, any standard continuous
time pricing model is false, because the immediate consequence of friction-
less and complete markets is some deterministic relation like (4), which is
immediately rejected by the data®. Notice that random residual terms are
allowed in models based on an incomplete market hypothesis, as in Clement,
Gourieroux and Monfort [8]. In this paper, however, I stick to a complete
market framework.

It is hard to see how to get an empirical assessment of these models with-
out the inclusion of measurement errors in (4). The strict interpretation
stated above would be justified if the observations we dispose of would ex-
actly meet the definitions of the model. Real data are however flawed by
a number of actual measurement errors and of market imperfections, such
as transaction costs, bid-ask spreads, nonsyncronous quotations, quotation
errors, and so on. Under this point of view, the inclusion of error terms, even
if by no means innocuous, looks much more reasonable.

Allowing random errors on the RHS of (4) leads us to two important
remarks. First, it is hard to see why some bond prices should be observed
exactly, while some others should not. Notice that this is exactly the case of
the approach outlined earlier, where K prices are observed without errors,
and every other point on the yield curve is subject to measurement error. A
much more reasonable assumption would be to let each yields be observed
with error, and to let the scale of the errors (their variance) to be estimated
jointly with the other parameters of the model.

Second, if errors have to be included, their statistical properties must be
completely specified. While it is hard to get a precise idea of their distribu-
tion, a zero mean assumption seems reasonable. Further properties can be
derived from the definition of "factors” we adopt. If we define the factors
as some variables governing the dynamics of bond prices, then measurement
errors should not be autocorrelated, since otherwise they would appear as a
kind of factors themselves. If we further define the factors as some variables
which can also completely explain the contemporaneous correlation between

3The only model which could be compatible with the observation of M point on the
yield curve is a M factor model.
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any two bond yields, then measurement errors should also be uncorrelated
one with each other. While the first point seems hardly questionable, in
this paper I shall consider serially and contemporaneously uncorrelated er-
ror terms.

Finally, I assume a normal distribution for the residual terms. The ”ex-
tended” CIR model is then formed by the following set of equations:

dyzzkz (Qz—yz)dt—{-O'z\/EdZZ, 7= 1,2,,K, Zz J_ZJ (6)

R(t7T‘nﬂ Yt7 ﬂ) =

1 K
Z Bh (Tm - t) Ynt + Em,t
=

1 K
ZlnAh (Tm - t?ﬂ) +
h=1

T —t = Tm

where €, ~ NID(0,wpm), m =1,2,..., M denotes the maturities of the
bonds whose price is observed, and A; and B; are as previously defined?.

Finally, it is apparent how this approach can cope with the purposes
of this paper. As stated in the introduction, the information in the whole
term structure at different dates should be used to estimate the model, in
order to avoid to work with samples covering long intervals of time, during
which the occurrence of structural breaks is highly probable. In other words,
instead of estimating the parameters by supposing the observability of the
state variables, and working with a long sample of the factors, I wish to
use short samples of a large number of yields to maturity, which are known
functions of the (assumed unobserved) factors.

4 Statistical inference using zero coupon bond
prices

In this section I shall assume that it is possible to observe the price of zero
coupon bonds at every maturity. Even if in practice this is not true, the

4The normality assumption is essentially made for ease of presentation. It is somewhat
problematic, since it does not exclude the possibility of negative nominal yields, but the
procedure described in the following can easily handle different distributions of the mea-
surement error, such as a lognormal, provided that the first two conditional moments are
correctly specified.
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approaches that I outlined below are very simple, and could be fruitfully
employed if one trusts some fitted day-by-day yield curves (e.g. through
polynomial splines, nonparametric regression, or some other method - see
Gourieroux and Scaillet [16]). It would be interesting to analyse and measure
the estimation bias introduced by working on fitted term structures instead
of observed ones.

4.1 Pseudo maximum likelihood estimation

Let me recall that the model to be estimated is given by (6). The conditional
pdf of each y; is a noncentral x* with degrees of freedom and noncentrality
parameters which are known functions of unknown structural parameters.
For ease of exposition, let me focus on the case K = 1:

Yt = ao + boYr-at + Co— ANy (7)

Rm,t:am—i—bmyt—;—em,t m:1,2,...,M

where:
E (y¢ | Ye-a¢) = ao + boys— s
ag = 6 <1 - e—kAt)
bO — e—kAt
and:

2 2
Var (y¢ | yi-at) = Cg,t—At = yt—At% <6_Mt - 6_2kAt) + Hg_k <1 - fkat) ;
where 7, is (conditionally on ;) a standardized noncentral y2, with
zero mean and unit variance. Notice that this implies that 7, is uncorrelated
with ¥, (and else with 7;_a¢), but it will not in general be independent
from y¢_a¢, since its moments of order higher than two do depend on 7;_ a;.
Finally:
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L 20, 2yez(FEAHN(Tn—1)
Tt 02 T2yt (k+ A+ ) [0 1]

Ay =

1 2 [e%Tm‘t) ~ 1]

b =
T T =12y + (b + A +7) [Tt — 1]

€0 = (€1,t, €00, oo, €ar1) ~ NID(O0, Q)

Q = diag (w11, wss, o W) -

Apart from the non gaussian distribution of ;, model (7) looks very much
like a standard state space model, with a transition equation for the unob-
served state variable y;, and a system of M measurement equations for the
observed variables (yields to maturity). There are three features of model
(7), all of them collected in the transition equation, which prevent us from
considering the system a standard state space model: (a) the heteroskedas-
ticity of the noise term, which depends on the unknown variable Yi—at; ()
7t 1s uncorrelated but not independent from 7;_a;; and (¢) 7 is not normal,
but rather a standardized non central x?. Nevertheless, the quasi-state space
formulation can be exploited by making use of the standard Kalman filter to
recover a filtered series of the latent variable for a given value of the param-
eters, and to plug the filter into a pseudo maximum likelihood estimation
of the parameters of the structural model. If we correctly specify the first
two conditional moments of y; given 1;_a., the estimator thus defined is con-
sistent and asymptotically normal (see Gourieroux and Monfort [13]). The
asymptotic covariance matrix is not however given by the standard Fisher
information matrix, but instead by the following product:

-1

) () ()7 (8)

where:

Oln L(3%) A1n L(ﬁo)}

](ﬁo) =E [ (9/6 36’
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and:

6 :E[GQInL(ﬂO)]

opop

If n; were normal (as it would be the case in a multivariate Vasicek type
model), the Kalman filter would yield minimum square estimates (MMSEs)
of the state®. Since 7 is not gaussian, I suggest to proceed as if the model
were conditionally gaussian. Following Harvey, Ruiz and Sentana [18], the
Kalman filter can be defined as quasi optimal.

The generalized model can easily be tested. The goodness of fit of mod-
els with a different number of factors can de directly compared through a
likelihood ratio test, because the smaller model is nested in the larger one.
If the state space model is not gaussian, the asymptotic distribution of the
test statistic is not the standard x? one, but it is rather a weighted sum of
x*, as described in Vuong [26]°.

Several remarks are in order here. First, following Kim and Shephard [21],
it would be possible to construct a modified algorithm (based on a mixture
of normals to approximate the pdf of 7, and simulation filtering techniques)
to deal exactly with the non gaussianity of ;. However the resulting filter
would be numerically cumbersome, and I prefer to follow another approach,
based on indirect inference, to cope with the small sample bias arising from
the quasi optimality of the standard algorithm in this non gaussian context.

Second, apart from the task of estimating the parameters, any practical
implementation of models of the term structure is likely to filter out of the
observed sample a time series of observed factors. The Kalman filter is very
well suited to this task, as it naturally provides smoothed estimates of the
within sample realizations of the state variables, as well as forecasts of their
future values. It thus becomes possible to use the filter in order to predict
what the term structure will look like at any future date.

Third, for ease of exposition the presentation has focused on the one factor
case. It is however clear that no new problems would arise in a multifactor
model. Notice that in this last case the noises in the transition equations are

5Also, if the generalized model was gaussian (as it would be the case in the Vasicek
[25] model), the in the state space approach would provide maximum likelihood estimates
of the parameters. In this case, the asymptotic covariance matrix of the parameters given
in (8) simplifies to I(3°)~!, since I(8%) = J(5°).

6 Again, if the state space model is gaussian, the asymptotic distribution of the test
statistic is the standard one.
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mutually independent, as they are originated by K independent brownian
motions.

4.2 Indirect inference estimation

The estimator based on the Kalman filter seems appealing for a number of
reasons, but it still leaves room to some criticism. Its ”quasi optimality”
refers to the non gaussian feature of the transition equation. A failure to
take into account the exact distribution of the state variables implies the loss
of the asymptotic efficiency, as demonstrated by the asymptotic covariance
matrix (8). However, notice that the small sample properties look more
important in the context of samples covering small intervals of time and a
large number of bonds that I consider in this paper. It is well known that even
MLE can be biased (and sometimes very much s0) in estimating parameters
in conditional models on short samples of autocorrelated observations. As
an example, it is well known that MLE of the autoregressive parameter in
a standard AR(1) gaussian model is biased downwards, and that the bias is
an increasing function of the true value of the parameter, and a decreasing
function of the sample size.

In the context of continuous time model with mean reverting drift (such
as the square root ones assumed for the state variables), it is well known that
the small sample bias mainly shows up in the parameter k. As Bianchi, Cesari
and Panattoni [2] have noticed, it seems hard to obtain unbiased estimates
of k in small samples using direct procedures.

This is the reason which underlies the interest that "indirect” procedures
have met in this context; see Smith [24], Gourieroux, Monfort and Renault
[14] (GMR in the following) and Gallant and Tauchen [12] for a general
presentation. It should be noticed that the issue of the estimation of the
autocorrelation parameter is one of the themes of Gourieroux, Renault and
Touzi [15], which provides encouraging results of the relative performance
of the indirect estimator with respect to the traditional OLS one. They
also prove that when the ratio of the length of the simulated series with
respect to the observed one diverges (H — oo in the notation of GMR), the
indirect estimator automatically operates a second order bias correction in
small samples, which is a known property of Bootstrap estimation procedures.

The auxiliary model that I consider is based on the Kalman filter. The
procedure thus provides a ”corrected” estimator, which should act as a re-
duction of the bias which characterizes the small sample behaviour of the

17



otherwise consistent Kalman approach. Let denote with 3 the whole vector
of parameters (those appearing in the structural term structure model and
those characterizing the dispersion of the measurement errors). The whole
procedure can be outlined as follows:

1. Estimate the model using the quasi optimal Kalman filter on real data,
thus obtaining ﬂT, notice that a distinction should be made between
the structural parameters and the parameters of the auxiliary model
only in the case of differences between the two. In the approach out-
lined here, however, the two models coincide, and the only disparity
is between estimation methods. Therefore I shall denote with G5 the
estimates based on the Kalman filter, and with ﬁT those based on the
indirect procedure.

2. Calibrate model (7) (or a K-factor generalization of it) by picking up
the values of the parameters that, when used in a simulation of (7),
can best account of 3X.

Mathematically, the second step is equivalent to solving either one of the
three following optimization problems:

f«l = arg max Qr [_J_J%ﬂ, BgT (ﬁ)} (see Smith [24])

gl = argmgn “Bff — pE. (ﬁ)“Q (see GMR [14])

(see Gallant and Tauchen [12))

where: z}. is the observed sample, of length T Zhr (B) is a simulated
sample drawn from (7) for a given value of the parameters and of length
HT; Qr (z, B) is the objective function of the auxiliary estimation criterion
(the Kalman filter plocedure) BE (B) is the estimate of B obtained by
maximizing ) on Zpr (8). The relations between the three estimators are
the following: when the number of parameters is the same in the auxiliary
and the structural model ("exact identification”, as it is the case here), the
three coincide exactly. When the auxiliary model has more parameters than
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the structural one (“over identification”), 3% and f% are asymptotlcally
equivalent, and they have a smaller covariance matrix than ﬂT It is also
possible to state that the former two are not as efficient as MLE, unless
the auxiliary model "smoothly embeds” (in Gallant and Tauchen [12] terms;
basically, it is a reparameterization of) the structural model, and H — oco.

Some remarks can be made at this point. First, as the structural and
the auxiliary model coincide, so do the two vectors of parameters. Therefore
the auxiliary parameters can be most easily interpreted under the structural
model. This fact provides the intuition for a very efficient iterative algo-
rithm for the solution of the second kind of optimization problem of indirect
estimation, first advanced by Gourieroux, Monfort and Renault [15]. The
algorithm is based on the fact that the function:

T(ﬂ):ﬂ+B¥—B§T(ﬂ)

is a strong contraction, with the indirect estimator ﬂT as its unique
fixed point. Thus, for a given ﬂT, 1t is possible to construct the sequence

{ﬂ }n>0 such that:

B (0)=8F  and  BP(n+1)=gr B2 (n)],

which converges towards its unique fixed point 3}2 Monte Carlo exper-
iments in the AR(2) gaussian model reported in Gourieroux, Renault and
Touzi [15] confirm the above intuition, as the algorithm regularly converges
in a very low number of iterations. In the Monte Carlo analysis on the one
factor CIR model reported below, convergence was always achieved in no
more than 11 iterations.

A second remark is about the exact identification implicit in the previous
approach. It is clear that by choosing a larger auxiliary model one could in-
troduce some overidentifying restrictions which are potentially helpful if more
precise estimates are desired. In this paper I do not pursue this idea for two
reasons. First, there exists a trade off between precision of the estimates
and numerical simplicity, if nor feasibility, of the procedure. The introduc-
tion of overidentifying restrictions has some undesirable consequences, such
as for example the difficulties in understanding when a global minimum of
the objective function is attained (in the exact identification case the global
minimum corresponds to a zero value of the objective function), or the im-
possibility to apply the previous algorithm. Moreover, to efficiently exploit
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the overidentifying restrictions it is necessary to estimate the optimal weight-
ing matrix ), and it has been shown by Smith [24] that the noise implicit in
such an estimate significantly worsens the small sample performance of the
"asymptotically efficient” estimators B};’? and 51{3

4.3 A Monte Carlo Experiment

To investigate the feasibility and the properties of the two procedures outlined
before, I designed a Monte Carlo experiment for a one factor CIR model.
The values of the parameters used are those estimated in Chen and Scott
[6] on a sample of nine years of weekly observations of prices of US bills
and bonds: £ = 0.6248, §° = 0.09304, 0° = 0.1054 and \° = —0.09235.
The factor process has been simulated using the exact discretization, i.e. by
generating psendo random non central x? variates with appropriately chosen
number of degrees of freedom and parameter of non centrality. On the basis
of this simulated time series of the state variable I constructed the prices
of the two zero coupon bonds with three months and one year to maturity,
ad I added to the yields to maturity independent zero mean homoschedastic
normal measurement errors with a standard error of 0.15%. I created 500
replications of samples made up of 200 daily observations, and on each one
of them I estimated the vector of parameters using both the Kalman filter
and the indirect approach.

Table 1 reports some summary statistics of the results of the experiment.
ML stands for the ML approach as implemented by Chen and Scott [6]; recall
that thi sprocedure is based on the assumption that one price (in our case,
the 13 weeks bill) is observed exactly, whereas the others are not. KALMAN
stands for the Kalman filter based estimation, and II for the indirect inference
estimator.

Figures 1, 2 and 3 depict the nonparametric kernel estimate of the den-
sities of the three estimators for each parameter. The continuous line is the
density of the indirect estimator; the dashed line is the density of the Kalman
filter estimator, and the dotted - dashed line is the density of Chen and Scott
[6] estimator. The main problem with the ML procedure are apparent: the
volatility parameter and the variance of the measurement error on the one
year bond are significantly overestimated, and the other parameters (apart
from @) are not precisely estimated. The interesting comparison to be made
is between the quasi-optimal Kalman filter procedure and the indirect infer-
ence one. Both of them seem to perform rather well, since the small sample
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average and median of the estimates are close to the true values for every
parameter. It is not surprising that the Kalman estimators are less dispersed
that the indirect inference ones; the latter inevitably show up some simu-
lation noise, whose consequencies are most evident when H is low (in this
experiment /1 was set equal to 2). By choosing a higher value of H the gap
between the small sample dispersions would be reduced, and probably the
same result could be obtained by picking innovation realizations using some
variance reduction techniques. Even if the experiment is very simple and
perhaps somewhat irrealistic, the overall evidence seems promising.

5 Conclusions

This paper has dealt with the problem of estimating a large class of contin-
uous time models of the term structure of interest rates, characterized by
the exponential affine structure of the zero coupon bond prices. Most no
arbitrage and equilibrium models belong to these class.

I have started with a survey of the empirical work on the term structure
in continuous time. A common property of this kind of models is that ezact
bond prices are provided. Otherwise stated, the assumption of absence of
arbitrage possibilities rules out the existence of observation errors. Strictly
speaking, this means that the model implies exact relationships between the
prices at the same date and at different dates. If the observed prices do
not satisfy these constraints, the model is useless and false. However, in the
real world there are many sources of measurement errors, and researchers on
the subject have usually adopted a more pragmatic point of view. In most
cases, the theoretical model is tested by checking the distance between the
theoretical (given some parameters’ estimates) and the observed prices. Such
a procedure implicitly assumes the existence of measurement and observation
errors.

In this paper I suggest to explicitly take into account these errors, by
constructing a ”generalized” theoretical model, which provides the expected
value of bonds and other derivative assets prices. In such a framework it is
no more necessary to assume that the factors are observable, nor that they
must be proxied. If zero coupon prices are exponential affine in the unobserv-
able state variables, yields to maturity are affine in the factors. The model
then has a usual state space structure, and the Kalman filter can easily be
applied. Thus, if zero coupon bond prices are observed at a sufliciently wide
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range of maturities, the generalized model can be estimated by maximizing
the gaussian likelihood. If both the transition equations and the measure-
ment equations are gaussian, maximum likelihood estimates are obtained; if
some departures from gaussianity are observed, pseudo maximum likelihood
estimates are obtained.

This procedure is straightforward, but it is based on the availability of
zero coupon prices at a wide range of maturities. Usually, zero coupon bonds
exist only at the short end of the term structure. Moreover, as it is the case
for most estimation procedures of dynamic time series models, the estimates
can be severely biased in short samples. A second approach suggested in
this paper, based on the indirect inference principle, avoids both problems
by exploiting simulation methods. I suggest to use the state space model as
the auxiliary criterion. This allows to give an immediate interpretation of
the auxiliary parameters, and to estimate the structural parameters using a
simplified iterative algorithm.

As an application, I consider a Monte Carlo experiment for the one factor
nominal CIR model. The results are encouraging: even if the sample covers
a short interval of time (only one year of daily observations), the parameters’
estimates seem rather precise, and in any case superior to those generated
by an alternative approach. The comparison between the state space and
the indirect inference estimators suggest that the latter may be superior on
average, but that it also show up a larger dispersion around the true value. It
is suggested that the latter drawback could be (at least partially) eliminated
by using longer simulated series or variance reduction techniques.

References

[1] Y. Ait-Sahalia. Nonparametric pricing of interest rate derivative secu-
rities. mimeo, 1994,

[2] C. Bianchi, R. Cesari, and L. Panattoni. Alternative estimators of the
Cox, Ingersoll and Ross model of the term structure of interest rates: A

monte carlo comparison. Technical Report 236, Banca d'Italia, Temi di
Discussione, 1994.

[3] M.J. Brennan and E.S. Schwartz. A contimious time approach to the
pricing of bonds. Journal of Banking and Finance, 3(2):133-55, 1979.

22



[4]

[5]

S.J. Brown and P.H. Dybvig. The empirical implication of the Cox,
Ingersoll, Ross theory of the term structure of interest rates. Journal of

Finance, 41:617-30, 1986.
K.C. Chan, G.A. Karoly, F.A. Longstaff, and A.S. Sanders. An empirical

comparison of alternative models of the short term interest rate. Journal

of Finance, 47:1209-27, 1992.

R.-R. Chen and L. Scott. Maximum likelihood estimation for a mul-
tifactor equilibrium model of the term structure of interest rates. The
Journal of Fized Income, pages 14-31, december 1993.

R.-R. Chen and L. Scott. Multi-factor cox-ingersoll-ross models of the
term structure: Estimates and tests from a kalman filter model. mimeo,
University of Georgia, January 1995.

E. Clement, C. Gourieroux, and A. Monfort. Prediction of contingent
price measures. Technical Report 9332, CREST-ENSAE, Paris, 1993.

J.C. Cox, J.E. Ingersoll, and S.A. Ross. A theory of the term structure
of interest rates. Econometrica, 53(2):385-407, 1985.

J.-C. Duan. Maximum likelihood estimation using price data of the
derivative contract. Mathematical Finance, 4(2):155-167, 1994.

D. Duffie and R. Kan. A yield - factor model of interest rates. Technical
report, Graduate School of Business, Stanford University, 1993. mimeo.

R.A. Gallant and G. Tauchen. Which moments to match? Econometric
Theory, 1994. Forthcoming.

C. Gourieroux and A. Monfort. Statistique et Modeles Econometriques.
Economica, Paris, 1989.

C. Gourieroux, A. Monfort, and E. Renault. Indirect inference. Journal
of Applied Econometrics, (8):585-S118, 1993.

C. Gourieroux, E. Renault, and N. Touzi. Calibration by simulation and
small sample bias correction. Technical report, CREST-ENSAE, Paris,
1994. mimeo.

23



[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

24

C. Gourieroux and O. Scaillet. Estimation of the term structure from
bond data. Technical report, CREST-ENSAE, Paris, 1994. mimeo.

M.J. Harrison and D.M. Kreps. Martingale and arbitrage in multiperiod
securities markets. Journal of Economic Theory, 20(3):381-408, 1979.

A. Harvey, E. Ruiz, and E. Sentana. Unobserved component time series
models with arch disturbances. Journal of Econometrics, 52:129-157,
1992.

D. Heath, R. Jarrow, and A. Morton. Bond pricing and the term stric-

ture of interest rates: A new methodology for contingent claims valua-
tion. Econometrica, 60(1):77-105, 1992.

J. Hull and A. White. Pricing interest-rate derivative securities. Review
of Financial Studies, 3(4):573-592, 1990.

S. Kim and N. Shephard. Stochastic volatility: Likelihood inference
and comparison with arch models. Technical report, Nuffield College,
Oxford, 1994. mimeo.

F.A. Longstaff and E.S. Schwartz. Interest rate volatility and the term
structure: A two factor general equilibrium model. Journal of Finance,
47:1259-82, 1992.

N.D. Pearson and T.-S. Sun. Exploiting the conditional density in es-
timating the term structure: An application to the Cox, Ingersoll and
Ross model. Journal of Finance, 49(4):1279-304, 1994.

A.A. Smith. Estimating nonlinear time-series models using simulated
vector autoregressions. Journal of Applied Econometrics, 8:563-584,
1993.

O. Vasicek. An equilibrium characterization of the term structure. Jour-
nal of Financial Economics, 5(2):177-88, 1977.

Q.H. Vuong. Likelihood ratio tests for model selection and non-nested
hypotheses. Econometrica, 57:307-33, march 1989.

24



A Appendix: The Results of the Monte Carlo
Experiment

TABLE 1
SUMMARY STATISTICS OF THE MONTE CARLO EXPERIMENT
ON THE 1 FacTor CIR MODEL

Summary Statistics on k (k° = 0.6248)
ML KALMAN 11

Mean 0.865 0.732 0.681
Median 0.820 0.702 0.618
Standard Error 0.323 0.236 0.318

Minimum 0.296 0.279 0.0438
Maximum 2.913 2.357 2.386
RMSE 0.402 0.259 0.323
Kurtosis 7.796 7.569 5.270

Summary Statistics on 6 (6° = 0.09304)
ML KALMAN 11
Mean 0.0927 0.0871 0.103
Median 0.0891 0.0838 0.0927
Standard Error 0.0273 0.0254 0.0481
Minimum 0.0244 0.0242 0.0232

Maximum 0.209 0.195 0.353
RMSE 0.0273 0.0261 0.0491
Kurtosis 4.012 4.103 6.979
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Summary Statistics on o (¢® = 0.1054)

Mean 0.185 0.104
Median 0.182 0.105
Standard Error 0.0228 0.00960
Minimum 0.132 0.0732
Maximum 0.313 0.136
RMSE 0.0825 0.00963
Kurtosis 6.116 3.254

ML KALMAN

11
0.105
0.105
0.0129
0.0646
0.157
0.0129
3.272

Summary Statistics on A (A° = —0.09235)
ML KALMAN 11

Mean
Median
Standard Error
Minimum
Maximum
RMSE
Kurtosis

-0.172 -0.193
-0.136 -0.164
0.240 0.222
-2.075 -1.840
0.262 0.236
0.253 0.244
11.765 9.320

-0.146
-0.0975
0.286
-1.909
0.366
0.291

6.746

Summary Statistics on wyy (W) = 0.15)

KALMAN 11

Mean 0.149 0.150
Median 0.150 0.150
Standard Error 0.0118 0.0163
Minimum 0.116 0.107
Maximum 0.192 0.209
RMSE 0.0118 0.0163
Kurtosis 3.090 3.236
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Summary Statistics on wyy (Wi = 0.15)
ML KALMAN 11

Mean 0.192 0.150 0.151
Median 0.192 0.150 0.150
Standard Error 0.0101 0.0103 0.0142
Minimum 0.158 0.119 0.105
Maximum 0.227 0.179 0.191
RMSE 0.0431 0.0103 0.0142
Kurtosis 3.093 2.965 2.899



FIGURE 1
KERNEL ESTIMATES OF THE DENSITIES OF 3 DIFFERENT EsSTIMATORS
PARAMETERS k AND 0
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FIGURE 2
KERNEL ESTIMATES OF THE DENSITIES OF 3 DIFFERENT ESTIMATORS
PARAMETERS ¢ AND \
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FIGURE 3
KERNEL ESTIMATES OF THE DENSITIES OF 3 DIFFERENT ESTIMATORS
PARAMETERS w;; AND wys
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