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WITH A JUMP-DIFFUSION

PROCESS
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Abstract

Traditional tools based on DCF methods fail to capture the value of
R&D projects because of their dependence on future events that are un-
certain at the time of the initial decision. We consider a continuous-time
framework where information arrives both continuously and discontinu-
ously. This is modelled by a jump-di¤usion process. This assumption
better decribes the evolution of asset value due to the risky nature of
many real investments. The main contribution of this paper is to derive
a closed-form solution for the multicompound option to value sequential
investment opportunities when the underlying asset may reasonably un-
dergo the possibility of jumps in value.

key words: multicompound options; sequential investments; jump-
di¤usion process.

JEL Classi�cation: G 12; G 13; G 30; C 69

�Department of Economics, University of Bologna, Strada Maggiore, 45, 40125 , Bologna,
Italy. e-mail: sereno@economia.unibo.it

1



1 Introduction

As several researchers have noted R&D ventures are essentially real growth op-
tions. The value of these early projects derives not so much from their expected
cash �ows as from the follow-on opportunities they may create. Although tra-
ditional tools fail to capture the value of these investments, because of their
dependence on future events that are uncertain at the time of the initial de-
cision, �rms engage the pilot to get started a multi-stage process that may
eventually reach a commercial phase of launching the new product. Take the
example of developing a new drug. Investing in R&D in the pharmaceutical
industry, begins with research that leads with some probability to a new com-
pound; such a project continues with testing and concludes with the construction
of a production facility and the marketing of the product. Because many early
investments can be seen as chains of interrelated projects, the earlier of which is
prerequisite for those to follow, they can be evaluated as multicompound options
which involve sequential decisions to exercise the options to invest only when the
R&D outcomes are successful. Compound options have been extensively used
in corporate �nance to evaluate investment opportunities. For example, Geske
(1979) suggested that when a company has common stock and coupon bonds
outstanding, the �rm�s stock can be viewed as a call option on a call option.
Carr (1988) analyzed sequential compound options, which involve options to ac-
quire subsequent options to exchange an underlying risky asset for another risky
asset. Gukhal (2003) derives analytical valuation formulas for compound op-
tions when the underlying asset follows a jump-di¤usion process. Agliardi and
Agliardi (2006) study multicompound options in the case of time-dependent
volatility and interest rate. This assumption seems more suitable due to the
sequential nature of many early projects. Multicompound options are merely
N-fold options of options. Basically the procedure consists of solving N-nested
Black-Scholes partial di¤erential equations: at the �rst step the underlying op-
tion is priced according to the Black-Scholes method; then, compound options
are priced as options on the securities whose values have already been found in
the earlier steps. Roll (1977), Whaley (1981), Geske and Johnson (1894) and
Selby and Hodges (1987) also study compound options.
The objective of this paper is to study the multicompound options approach

to value sequential investment opportunities when the underlying asset follows a
jump-di¤usion process. Many authors have suggested that incorporating jumps
in option valuation models may explain some of the large empirical biases ex-
hibited by the Black-Scholes model. This is true because the assumption of
jump-di¤usion process better decribe the evolution of asset value due to the
risky nature of many early investments. For istance, many new business ven-
tures are subject to several, qualitatively di¤erent sources of risk. There is the
uncertainty associated with the market factors outside the control of the �rm,
such as demand for the product and production costs. There is the exogenous
risk associated with the actions of a competitor. Finally, there is the technical
uncertainty which is idiosyncratic to the �rm. Traditional option methodology
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assumes a continuous cash-�ow generation process which is inadequate when
these types of risk jointly determine the value of a new venture. However,
in many cases, closed-form solutions for valuing options with jump-di¤usion
process are not available. The main contribution of this paper is to derive a
pricing formula for multicompound options when the jump distribution is log-
normal; in doing so, we integrate work on multicompound options1 by Agliardi
and Agliardi [3] with that on compound options2 by Gukhal [13].
The paper is organized as follows. Section 2 reviews the literature on real

options and its application to the valuation of R&D ventures and start-up com-
panies. This is followed by a description of the economic model in Section 3.
Section 4 derives a closed-form solution for multicompound options in which
the equation for the underlying process is replaced by a more general mixed
di¤usion-jump process. An extension to pricing sequential expansion options is
presented in section 5. Section 6 concludes the paper.

2 Literature review

A number of existing research contribution has previously analyzed various as-
pects of optimal sequential investment behaviour for �rm facing multi-stage
projects. Staging investment involves �rms either with some degree of �exibil-
ity in proceeding with investment or when there is a maximum rate at which
outlays or construction can proceed, that is, it takes time-to-build. The real
option literature have studied the R&D process as a contingent claim on the
value of the underlying cash �ows on completion of the R&D project. Majd
and Pindyck (1987) develop a continuous investment model with time-to-build.

1 In this paper the multicompound option cN is expressed in the form:

cN (S; t) = SNN (hN (t) +
qR TN

t �2(�)d�:::; h1(t) +
qR T1

t �2(�)d� ; �
(N)
N (t)) �

NP
j=1

Xje
�
R Tj
t r(�)d�NN+1�j(hN (t); :::; hj(t); �

(N)
N+1�j(t)); where hk(t) = 

ln S
S�
k
+

TkR
t
(r(�)� �2(�)

2
)d�

!
=

 
TkR
t
�2(�)d�

! 1
2

and �
(N)
k (t) denotes a k-dimension

correlation matrix with typical element �ij(t) =

 
TjR
t
�2(�)d�=

TiR
t
�2(�)d�

! 1
2

for

1 � i � j � k; t � Tk:
2 If Y has a log-normal distribution the value of the com-

pound call option is given by:
1P

n1=0

e��T1(�T1)
n1

n1!
K1e�rT1N [a2] +

1P
n1=0

1P
n2=0

e��T1(�T1)
n1

n1!
e���(��)

n2

n2!

�
S0N2 [a1; b1; �1T ]�Ke�rTN2 [a2; b2; �1T ]

	
, where

a1 =
ln(S0=S�1 )+(�JD1+�

2
JD1=2)T1

�JD1
p
T1

; a2 = a1 � �JD1
p
T1; b1 =

ln(S0=K)+(�JD1+�
2
JD=2)T

�JD
p
T

;

b2 = b1 � �JD
p
T and �1T =

cov(xT1 ;xT )q
var(xT1 )var(xT )

:
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They solve an investment problem in which the project requires a �xed to-
tal investment to complete, with a maximum instantaneous rate of investment.
Pindyck (1993) also takes into account market and technical uncertainty. My-
ers and Howe (1997) present a life cycle model of investments in pharmaceutical
R&D programs; the problem is solved using Monte Carlo simulation. Childs
and Triantis (1999) develop and numerically implement a model of dynamic
R&D investment that highlights the interactions across projects. Schwartz and
Moon (2000) have also studied R&D investment projects in the pharmaceuti-
cal industry using a real options framework. In this articles, they numerically
solve a continuous-time model to value R&D projects allowing for three types
of uncertainty: technical uncertainty associated with the success of the R&D
process itself, an exogenous chance for obsolescence and uncertainty about the
value of the project on completion of the R&D stages. Schwartz (2003) develops
and implements a simulation approach to value patents-protected R&D projects
based on the real option approach. It takes into account uncertainty in the cost
to completion of the project, uncertainty in the cash �ows to be generated from
the project, and the possibility of catastrophic events that could put an end
to the e¤ort before it is completed. Errais and Sadowsky (2005) introduce a
general discrete time dynamic framework to value pilot investments that reduce
idiosyncratic uncertainty with respect to the �nal cost of a project. In this
model, the pilot phase requires N stages of investment for completion that they
value as a compound perpetual Bermudan option. Although the preceding ar-
ticles suggested the use of more suitable technique when we attempt to value
intangible project that are linked to the future opportunities they create, such
investments are hard to value, even with the real options approach. The main
reason for this is that there are multiple sources of uncertainty in R&D invest-
ment projects and that they interact in complicated way. In practice, the bulk of
the literature on the R&D valuation have dealt with the development of numer-
ical simulation methods based on optimal stopping time problems. Berk, Green
and Naik (2004) develop a dynamic model of multi-stage investment project
that captures many features of R&D ventures and start-up companies. Their
model assumes di¤erent sources of risk and allow to study their interaction in
determining the value and risk premium of the venture. Closed-form solutions
for important cases are obtained. More recently, a number of articles consider
strategic interaction features in R&D. Miltersen and Schwartz (2004) develop
a model to analyze patent-protected R&D investment projects when there is
multiple sources of uncertainty in R&D stages and imperfect competition in the
development and marketing of the resulting product. Grenadier (2002) adds a
time-to-build features in a model of option exercise games.
Our study di¤ers from those mentioned above in several crucial respects.

We provide a model which relies on simple mathematatics to price options with
jump-di¤usion process. We emphasize that sequential investments opportuni-
ties, as for example R&D projects, can be valued in a continuous-time framework
based on the Black-Scholes model.
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3 Model and assumptions

Let us consider the investment decision by a venture capital fund that is evaluat-
ing a single R&D project. We assume that the commercial phase of the project
cannot be launched before a pilot phase consisting on N -stages of investment
is completed. The risk free rate in our setting will be denoted by r. Let I be
the amount of investment required for completion of any R&D stage. When the
R&D is successfully completed, the project will generate a stream of stochastic
cash �ows, which we model as a mixed di¤usion-jump process:

dVt = (�� �k)Vtdt+ �Vtdzt + (Y � 1)Vtdqt; (1)

where � is the instantaneous expected return on the underlying asset; � is the
instantaneous standard deviation of the return, conditional on no arrivals of
important new information3 ; dz is the standard Brownian motion; dq is the
independent Poisson process with rate �t; (Y � 1) is the proportional change in
the asset value due to a jump and k � E [Y � 1]; dq and dz are assumed to be
independent.
The total uncertainty in the underlying project is posited to be the compo-

sition of two type of risk: the systematic risk and the technical risk. The former
is generally related to economic fundamentals that causes marginal changes in
the asset value. This is associated with demand for the product and production
costs and is modelled by a standard geometric Brownian motion. The techni-
cal risk which represents the discontinuous arrival of new information has more
than a marginal e¤ect on the asset value. This component is modelled by a
jump process re�ecting the non-marginal impact of information. Usually, such
information is speci�c to the �rm: for example, a new drug may be rendered
unnecessary by a superior treatment option, the entry by a new competitor
who take out a patent for a drug that is targeted to cure the same disease, the
possibility of political and technical unpredictable information that will cause
V to jump. Assume that the logarithmic jump amplitude, ln (Y ), is normally
distributed with mean (�J) and variance

�
�2J
�
; then, the version of Ito�s lemma

for a di¤usion-jump stochastic process is:

dxt =

�
�� �k � 1

2
�2
�
dt+ �dzt + ln (Y ) dqt:

As in Merton (1976) we assume that technical uncertainty is completely diversi-
�able, that is, the �rm will not demand any additional return over the risk free
rate for being exposed to this source of risk. This fact will allow us to specify

3Further, it is possible to include both a time-varying variance and time-varying interest
rate; see Agliardi and Agliardi (2003) and Amin (1993) for a discussion of this point.
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a unique equivalent risk-neutral measure by setting the market price of risk of
q to zero. Although, it may be too strong an assumption for industries where
�rms may place an important premium on idiosyncratic risk, this assumption
seems unlikely to change results signi�cantly (see Errais and Sadowsky, (2005)
for further details). In the particular case when the expected change in the as-
set price is zero, given that the Poisson event occurs (i:e:; k = 0) 4 , by following
standard arguments in the �nancial mathematics literature we can construct
the risk-neutral pricing measure under which we will work for the remaining of
the paper5 . The process for the underlying asset value under Q is given by:

dVt = rVtdt+ �Vtd~zt + (Y � 1)Vtdqt: (2)

In the real options setting, investment opportunities may be viewed as options;
thus, the pricing formula for multicompound option can be applied to evaluate
the N-stages pilot we described earlier. In more speci�c terms, let F (V; t) denote
the value of a European call option with exercise price I1 and expiration date
T1. Let us now de�ne inductively a sequence of call options, with value Fk, on
the call option whose value is Fk�1, with exercise price Ik and expiration date
Tk, k = 1; ::; N , where we assume T1 � T2 � ::: � TN . Because all the calls
are function of the value of the �rm V and the time t, the following partial
di¤erential equation holds for Fk:

@Fk
@t

= rFk � rV
@Fk
@V

� 1
2
�2V 2

@2Fk
@V 2

� �E fFk (V Y; t)� Fk (V; t)g ;

t � Tk; k = 1; ::; N; T1 � T2 � :: � TN . The boundary condition is:

Fk (Fk�1 (V; Tk) ; Tk) = max (Fk�1 (V; Tk)� Ik; 0) ;

where Fk�1 (V; Tk) stands for the price of the underlying compound option.
Naturally, if k = 1 the well-known pricing formula for simple option is obtained:

1X
n=0

e��T1 (�T1)
n

n!

�
V N1 (a1)� I1e�rT1N1 (b1)

�
;

with:

a1 =
ln
�
V
I1

�
+
�
r + �2

2

�
T1

�
p
T1

; b1 = a1 � �
p
T1;

where t = 0 and �2 = �2 + n�2J
T1
, conditional on the number of jumps n.

4See Merton (1976, pp. 135-136) for a discussion of this point.
5We refer the reader to Musiela and Rutkowsky (1998) for additional details.

6



4 Derivation of the valuation formula

We want to determine the value of the investment opportunity Fk (V; t) in each
stage Tk, k = 1; ::; N , of the pilot conditioning on the discontinuous arrival of
new information. To simplify notation, we assume that t equals zero. Let V �k
denote the value of V such that Fk�1 (V; Tk) � Ik = 0 if k > 1 and V �1 = I1.

Moreover, let us set sk =
NP
i=k

ni the total number of jumps in the interval [0; Tk] ;

k = 1; ::; N; T1 � T2 � :: � TN .
Let us de�ne now:

bk =
ln
�
V
V �
k

�
+
�
r � �2

2

�
Tk

�
p
Tk

; (3)

and:
ak = bk + �

p
Tk; (4)

where �2Tk = �2Tk + sk�2J ; k = 1; ::; N . Moreover, let:

�ij =

r
Tj
Ti
; for 1 � i < j � N; (5)

the correlation between the logarithmic returns xTj and xTi conditioning on

the number of jumps sj and Si = si � sj : For any k; 1 � k � N , let �(N)k

denote a k-dimension symmetric correlation matrix with typical element �ij =
�N�k+i;N�k+j . Let Nk(bk; :::; b1; �k) denote the k-dimension multinormal cu-
mulative distribution function, with upper limits of integration b1; :::; bk and cor-
relation matrix �k. Finally, let

P1
nk=0

e���nk
nk!

::
P1

n1=0
e���n1

n1!
denote the joint

probability function of k independent Poisson processes with rate �. We mean
the discontinuous arrivals of new information are assumed to be independent of
each other6 . Our aim is to derive a valuation formula for the N -fold multicom-
pound option. Let V �N denote the value of V such that FN�1 (V; TN )� IN = 0.
Then, for V greater than V �N the N th- compound call option will be exercised,
while for values less than V �N it will remain unexercised.
The value of the multicompound option is the expected present value of the

resulting cash �ows on the completed project :

EQ0
�
e�rT1 (V � I1) 1"1 ::1"N

�
+

NX
j=2

EQ0
�
e�rTj (�Ij) 1"j ::1"N

�
; (6)

6See Kocherlakota and Kocherlakota (1992) for a more detailed development of the bivari-
ate Poisson distribution.
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where "k = fVk � V �k g ; k = 1; ::; N: The �rst term in (6) can be written in the
form:

EQ0

n
e�rTNEQTN

�
::
�
e�r�1 (V � I1) 1"1

	
::
�
1"N

o
; (7)

�k = Tk � Tk+1. To examine option pricing when the asset price dynamics
include the possibility of non-local changes, we condition the expectation to the
number of jumps between any points in time:

EQ0

( 1X
nN=0

"
::

( 1X
n1=0

�
e�r�1 (V � I1) 1"1 j n1

�
prob (n1)

)
::1"N j nN

#
prob (nN )

)
:

(8)

The evaluation of the expectation requires the calculation of the joint probability
function of N independent Poisson processes with rate �t :

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

EQ0

n
e�rTNEQTN

�
::
�
e�r�1 (V � I1) 1"1

	
::
�
1"N j n1; ::; nN

o
: (9)

To evaluate the �rst expectation we will work with the logarithmic return xTk ,
rather than V . Conditioning on the number of jumps, sk, lnxTk � N

�
�; �2Tk

�
where �Tk =

�
r � �2

2

�
Tk and �2Tk = �2Tk + sk�2J . The price of the multicom-

pound option at time 0 equals:

1X
nn=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

e�rTN

8<:
bNZ

�1

N�(y)
�
g (y)NN�1

�
âN�1; ::; â1; �̂

(N�1)
N�1

�
dy+

�

�
bNZ

�1

N�(y)
�
I1e

�r(T1�TN )NN�1

�
b̂N�1; ::; b̂1; �̂

(N�1)
N�1

��
dy

9=; ; (10)

where âk = ak (g (y) ; V �k ; Tk; TN ), b̂k = bk (g (y) ; V
�
k ; Tk; TN ) for k = 1; ::; N �1;

and the entries of �̂(N�1)k are �N�1�k+i;N�1�k+j ; where we de�ne �ij =
��ijp
1��2ij

;
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for i < j: Note that the critical values V �k above which the k
th-multicompound

option will be exercised, are determined recursively and their existence and
uniqueness are guaranteed in view of the expression of Fk�1 (see Remark 3):
The function g : R! R is given by the formula:

g (y) = V0 exp

��
r � �

2

2

�
TN + �

p
TN � y

�
; (11)

where y has a standard Gaussian probability law under Q: Straighforward cal-
culations yield:

âk =
ln
�
V0
V �
k

�
+
�
r + �2

2

�
(Tk � TN ) +

�
r � �2

2

�
TN

�
p
Tk � TN

+ y

r
TN

Tk � TN
; (12)

b̂k =
ln
�
V
V �
k

�
+
�
r � �2

2

�
Tk

�
p
Tk � TN

+ y

r
TN

Tk � TN
; for k = 1; ::; N � 1: (13)

The second integral in (10) can be expressed in terms of the N -dimension multi-
normal cumulative distribution function by applying the following

Lemma 1 Let 1 � k < N , and let �̂(N�1)k be the matrix obtained from �
(N�1)
k

replacing any element �ij with
��ijp
1��2ij

, by setting

�k =
ln
�
V
V �
k

�
+
�
r � �2

2

�
Tk

�
p
Tk � TN

;

where � and � are real numbers, the following identity holds:

bNZ
�1

N�(y)Nk

�
�N�1 + y�N�1;N ; ::; �N�k;N + y�N�k;N ; �̂

(N�1)
k

�
dy =

Nk+1(bN ; :::; bN�k; �
(N)
k+1):

Proof. by induction after solving the following equation bkp
1��2k;N

= �k and
��k;Np
1��2k;N

= �k;N ; k = 1; ::; N � 1, for bk and �k;N .
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Finally, we succeed in writing the �rst integral in (10) in terms of the cu-
mulative function of the multivariate normal distribution using Lemma 1, after
making the following substitution x = y � �

p
TN ; thus we get:

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

h
V0NN

�
aN ; ::; a1; �

(N)
N

�
� I1e�rT1NN

�
bN ; ::; b1; �

(N)
N

�i
:

The second expectation in (6) can be evaluate to give:

�
1X

nN=0

e��TN (�TN )
nN

nN !
::

1X
nj=0

e���j (�� j)
nj

nj !
�

8<:
NX
j=2

Ije
�rTjNN+1�j

�
bN ; ::; bj ; �

(N)
N+1�j

�9=; ; j = 2; ::; N:
Hence, we have the following result for the value of a multicompound call option:

Proposition 2 The value of the multicompound call option FN with maturity
TN and strike price IN written on a compound call option FN�1 with maturity
TN�1 and strike price IN�1 is given by:

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!

h
V0NN

�
aN ; ::; a1; �

(N)
N

�i
+

�
1X

nN=0

e��TN (�TN )
nN

nN !
::

1X
nj=0

e���j (�� j)
nj

nj !
�

24 NX
j=1

Ije
�rTjNN+1�j

�
bN ; ::; bj ; �

(N)
N+1�j

�35 ; j = 1; ::; N ;

where the ais, the bis and the �ijs are as de�ned previously.

Remark 3 It can be proved that @V Fk = Nk(bk; :::; b1; �
(k)
k ): Thus uniqueness

of V �k is guaranteed for every k; 1 � k � N:

In the particular case when � = 0, the formula reduces to [3] : This propo-
sition is the main result of the paper and forms the basis for the valuation of
sequential investment opportunities, as for example R&D ventures, including
the possibility of jumps in the underlying asset value.
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5 An extension

In Carr [7] sequential exchange opportunities are valued using the techniques of
modern option-pricing theory. The vehicle for analysis is the concept of com-
pound exchange option. Accordingly, the real option literature has suggested
that sequential expansion opportunities can be viewed as compound exchange
options. Trigeorgis (1996) highlighted that many new business ventures, as
R&D and start-up projects, can be seen as the base-scale projects plus an op-
tion to make additional investments. For example, the opportunities for a �rm
to continuously expand its technology represents a critical component of the
sofware providing industry�s investment decisions. The �rms�ability to later
expand capacity is clearly more valuable for more volatile business with higher
returns on project, such as computer software or biotechnology, than it is for
traditional business, as real estate or automobile production. Neverthless, the
value of these early investments is generally subject to considerable uncertainty,
because of their dependence on future events that are uncertain at the time the
base-scale takes place. Market factors outside the control of the �rm change
continuously and have considerable e¤ect on the value of these investment op-
portunities. Moreover, when the new software product comes together with
technological innovations, there is also considerable uncertainty with respect to
the actions of a competitor or changes in environment before or soon after tech-
nological improvements. For example, a software product may fail because of
technological advances in hardware.
In this section we attempt to evaluate sequential technology adoptions as

in Carr (1988). As before, we could relax the assumption of a pure di¤usion
process for the underlying asset value, to illustrate the case where new technol-
ogy competitors arrive randomly according to an exogenous Poisson distribu-
tion. A pricing-formula for multicompound exchange option with jump-di¤usion
process is obtained.

5.1 The mathematical problem and solution

Since this problem and its solution are extensions of the multicompound call
option formula, i will use the same notation and assumptions as much as pos-
sible. We consider the valuation of a European sequential exchange option
Fk (V1; V2; t) which can be exercised at Tk, where T1 � T2 � ::: � TN . Assume
that the prices of both assets follow the same stochastic di¤erential equation
(1). Let '12 denote the correlation coe¢ cient between the Wiener processes
dz1 and dz2; dqi and dzi are assumed to be independent as well dqi and dqj ;
i; j = 1; 2. As suggested by Margrabe (1978), the valuation problem can be
reduced to that of a one-asset option if we treat V1 as numeraire. Accordingly,
we de�ne a new random variable V = V2

V1
, which is again lognormal. The op-

tion sells for Fk (V1; V2; t) =V1 = Wk (V; t) : The risk-free rate in this market
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is zero. The functional governing the multicompoud exchange option�s value
Wk (Wk�1 (V; Tk) ; Tk) is known at expiration to be max (Wk�1 (V; Tk)� qk; 0)
where qk is the exchange ratio. This problem is analogous to that of section 4 if
we treat qk as the exercise price of the option. Our aim is to derive a valuation
formula for the N -fold multicompound exchange option, that is for WN (V; t),
0 � t � TN : Let V �N denote the value of V such that WN�1 (V; TN ) � qN = 0
and V �1 = q1. To simplify notation we will assume again t = 0. Let us de�ne
now:

b�k =
ln
�
V
V �
k

�
� �2

2 Tk

�
p
Tk

; (14)

and:
a�k = b�k + �

p
Tk; (15)

where �2 = �21 � 2'12�1�2 + �22; Finally, we set �ij as in (5).
The current value of the multicompound exchange option WN follows by:

EQ0 [(V � q1) 1"1 ::1"N ] +
NX
j=2

EQ0
�
(�qj) 1"j ::1"N

�
: (16)

The derivation of the pricing formula is standard. We assume that the random
variable Y has the same log-normal distribution as we described before. In this
case the logarithmic return xTk will have a normal distribution with mean equals

�Tk =
�
r � �2

2

�
Tk and variance equals �2Tk = �2Tk + sk�

2
J . The evaluation

of the �rst expectation in (16) requires the calculation of the joint probability
function of N independent Poisson processes with rate �t: Solving as in (7)�(9) ;
we obtain:

1X
nn=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!
�

8<:
bNZ

�1

N�(y)
�
~g (y)NN�1

�
~aN�1; ::; ~a1; �̂

(N�1)
N�1

��
dy+

�
bNZ

�1

N�(y)
�
q1NN�1

�
~bN�1; ::;~b1; �̂

(N�1)
N�1

��
dy

9=; ; (17)

where ~g (y) equals (11), ~ak equals (12) and ~bk equals (13) if r = 0: The calcula-
tion of the second integral in (16) is straighforward. Finally, in light of Lemma
1, we obtain the following:
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Proposition 4 The value of the sequential exchange option FN with maturity
TN and strike price qN written on a exchange option FN�1 with maturity TN�1
and strike price qN�1 is given by:

1X
nN=0

e��TN (�TN )
nN

nN !
::

1X
n1=0

e���1 (��1)
n1

n1!

h
V02NN

�
a�N ; ::; a�1; �

(N)
N

�i
+

�
1X

nN=0

e��TN (�TN )
nN

nN !
::

1X
nj=0

e���j (�� j)
nj

nj !
�

24V01 NX
j=1

qjNN+1�j

�
b�N ; ::; b�j ; �

(N)
N+1�j

�35 ; j = 1; ::; N ;

where the a�is, the b�is and the �ijs are as de�ned previously.

Of course, when � = 0, the formula reduces [7] :

6 Summary

We have proposed a multicompound option approach to value sequential in-
vestment opportunity where the underlying asset is subject to two types of
uncertainty: market and technical uncertainty. The former is generally related
to economic fundamentals and always driving the value of a project, while tech-
nical uncertainty is idiosyncratic to the �rm and associated with the success of
the venture itself. These features are modelled by assuming that the underly-
ing asset follows a jump-di¤usion process. Finally, by assuming that technical
uncertainty is completely diversi�able and that the jump distribution is log-
normal, close-form solutions for simple multicompound and for multicompound
exchange options are obtained.
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