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A�������. This paper develops a real option model in which the interaction between

debt, liquidation policy and risky investments is studied. We consider a manager who owns

the firm and faces the opportunity to invest in risky projects which boost current profits at

the cost of bankruptcy if they turn out to be unsuccessful. These investments are "last resort

gambles" in the sense that, if successful, they save the company from insolvency, while, if

unsuccessful, they make liquidation unavoidable. We show that last resort gamble strategies

boost the company’s value, delaying liquidation. We study how the liquidation and the last

resort gamble strategies are affected by the firm’s capital structure.
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1 Introduction

In a situation of financial distress, managers, acting as rational economic agents trying to resurrect

their company, may end up engaging in “last resort gambles”, that is, they employ an investment

strategy that, if successful, would save the company from insolvency, if unsuccessful, would make

liquidation unavoidable. On the verge of bankruptcy managers employ this strategy with the aim

to "weather out the storm", that is, they invest in risky projects trying to bridge bad and good

times.

In this context it is often difficult to ascertain whether real investment are incurred with the

objective to manipulate earnings or just for strategic considerations. Failures at Enron, WorldCom

and Tyco in the US together with some other prominent companies in Europe (Vivendi, Ahold,

Adecco, Parmalat, etc.) are iconic examples of corporate scandals combined with excessive risk

taking which is influenced by moral hazard in the hopes of extraordinary returns that could rescue

a company from bankruptcy (Lev, 2003; Jensen, 2005).

In this paper we consider a manager who owns the firm and faces the opportunity to invest

in a risky project yielding a given amount of cash flow at the expense of liquidation in case of

failure. This particular form of risk-taking may be interpreted as a sort of “last resort gamble”, in

that the firm delays the closure betting on a market upturn. We characterize the firm’s optimal

liquidation policy and optimal gambling strategy, showing reluctance of the manager to shut the

company down. In this paper we abstract from agency problems arising from a conflict between

managers and equity-holders and analyze a model where the management owns the firm and where

a principal/agent problem eventually arises between debt-holders and the firm. Conflicts between

debt-holders and equity-holders may arise because of the equity-holders incentive to invest in

risky but poor projects, affecting the value of the debt. In this framework we study the impact

of leverage on the optimal liquidation policy and how capital structure and bankruptcy decisions

are affected by the investment strategy.
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The problem we tackle in this paper is closely related to the literature on moral hazard and

excessive risk-taking, for which many colorful descriptions have been used, namely “gambling

for resurrection”, “heads I win, tails I break even”, “fourth-quarter football”, etc. (Hart, 2000;

Akerlof and Romer, 1994).

Our paper is closely aligned with the literature on excessive continuation induced by equity-

holders’ limited liability when a moral hazard problem arises between equity- and debt-holders.

Knot and Vychodil (2006) examine debt contracting in the case of gambling for resurrection under

different bankruptcy regimes. They show that under the absolute priority rule (such that nothing

can be paid to a class of claimholders unless the claims of all superior classes are satisfied) equity-

holders tend toward excessive risk-taking and delaying bankruptcy filing; in contrast, a softer law

or the possibility of creditors’ verification of the firm’s situation mitigate the problem of avoid-

ing bankruptcy and represent an alternative solution to the gambling for resurrection problem.

Decamps and Faure-Grimaud (2002), using a compound exchange option model, study a setting

where excessive continuation always occur and such excessive continuation is even exacerbated as

debt repayment increases. In our paper excessive continuation results from the last resort gamble

strategy employed by the manager. We find excessive continuation both in the all-equity firm and

in the case where an agency problem between equity- and debt-holders may arise.

The issue we address is linked to the asset substitution problem (see for example Leland, 1998),

where the equity-holders face the option to switch to a riskier portfolio. This action leads to a

delay in liquidation and excessive continuation. In particular, in Leland (1998) a firm can choose

between two exogenous levels of the volatility of its value. In the leveraged case, it is shown that

the choice which is optimal before issuing debt is not the same after debt has been issued. Our

problem is similar to asset substitution in the sense that the manager switches to a riskier project

with his last resort gamble strategy. In the case of asset substitution equity-holders benefit from

an increased upside volatility by engaging in riskier project. In our case the last resort gamble

strategy does not modify the upside volatility but equity-holders benefit from increased current
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cash flows at the cost of an increased downside volatility. In our paper analytical results are

obtained, while in Leland (1998) results are obtained through numerical simulations.

Excessive risk-taking and bankruptcy postponing tendency of managers are often inextricably

linked with a tendency of the management to misreporting. In some cases gambling for resurrec-

tion involves unlawful risk-taking, which means that it is a complementary strategy to earnings

manipulation and corporate fraud1 . When faced with the threat of firing, liquidation or in order

to increase the value of stock options, managers are encouraged to take substantial risk and to

boost short term profit through legal and sometimes fraudulent means. In some cases (see John-

son, Ryan and Tian, 2006) executives commit fraud to avoid under-performance resulting from

significant slowdowns in their earnings growth, so that frauds are committed more likely during

industry downturns.

Research on the determinants of fraud has indicated external financial needs (Povel et al.,

2004), proximity to debt covenant violations and executive compensation as the main causes for

violations of accounting principles and earnings manipulation. A few recent papers have exam-

ined the relation between executive equity-based compensation and corporate fraud (Goldman

and Slezak, 2006; Burns and Kedia, 2006; Bergstresser and Philippon, 2006; Gao and Shrieves,

2002; Bebchuk, and Fried, 2003; Johnson, Ryan and Tian, 2006; Erickson,Hanlon and Maydew,

2006), and have emphasized that executives at fraud firms have significantly large equity-based

compensation and greater financial incentives to commit fraud than executives at non-fraud firms.

Anecdotal evidence suggests that analysts, investors and financial markets commentators often

focus on firms’ abilities to consistently increase earnings per share. A few papers have highlighted

how earnings manipulation is not directly linked to an agency problem between managers and

equity-holders (Bolton, Scheinkman and Xiong, 2003, 2005; Friebel and Guriev, 2005), and have

found that top-management and initial shareholders have often aligned interests in over-reporting

1 Earnings manipulation has been discussed in several papers, among them we recall Stein (1989), Narayanan
(1985) and Von Thadden (1995).
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short-term earnings, because they can sell stocks at higher prices to uninformed outside investors

who base their evaluations on the accounting reports.

We study how last resort gambles influence liquidation policy and the interaction between the

firm’s financial structure, gambling and closure decisions. We use real option analysis to address

the problem of optimal liquidation and gambling decisions. In Section 2 we study the value of

the firm, if the firm faces the option of investing in a risky project which boosts current profits

at the cost of liquidation, if the project fails. We find that engaging in this gamble is optimal

in a market downturn: it increases the firm’s value and affects the firm’s closure policy, delaying

liquidation. Thus, in engaging in a last resort gamble, the firm bets on a market upturn, trying

to bridge good and bad times. In Section 3 we extend the basic setting to the case where the firm

is financed by issuing debt and equity and where it must pay interest to its creditors continuously

and bankruptcy is triggered by default on this payment. We derive the equity-holders and debt-

holders claims and study how the firm’s financial structure influences optimal liquidation and

gambling policies. Last resort gambling boosts the equity value, inducing a delay in liquidation.

Furthermore, we find that increasing the firm’s indebtedness speeds up liquidation. Debt financing

mitigates the conflict between share- and debt-holders because debt service reduces the amount

of free cash flows available to equity-holders. A larger indebtedness reduces the equity-holders’

gains from a last resort gamble, reducing the appeal of such a strategy. We find a threshold

level for the debt above which engaging in last resort gambling is never optimal. We compare

the debt value in the case of a last resort gamble and in the case where a last resort gamble is

not available. We show that the difference between the two debt values depends on the coupon

value; in particular, as the coupon value increases, the distortions induced by a last resort gamble

decrease, making such difference more likely to be positive. Section 4 generalizes the model to the

scenario where different degrees of gambling intensities are possible. While in Section 3 the firm

can choose between engaging in a last resort gamble or not, in Section 4 we introduce a choice

between different gambling intensities. We find that as the firm’s indebtedness increases, gambling
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intensity decreases. Section 5 contains the conclusion and final remarks.

2 The model

A firm generates total operating profits of Kxt − f , where f is a fixed cost, K is a constant

parameter, xt a geometric Brownian motion representing exogenous demand shocks

dxt = µxtdt+ σxtdBt

µ is a drift term and σ measures volatility. As x falls, the firm faces the opportunity to close the

activity irreversibly and is left with a constant liquidation value. LetH be the constant liquidation

value of the firm net of bankruptcy costs. It is assumed that at each time period the firm can

engage in a risky project which boosts current profits at the cost of liquidation in case of failure.

The firm acts to maximize the present value of the expected cash flows. In this Section we specify

the value of the firm in the absence of debt. Then, in Section 3, both the debt policy and the

closure policy are considered and the value of the firm and the debt-holders’ claims are specified.

At each time period, the firm may invest in a risky project inflating current operating profits

by a given amount at the cost of bankruptcy if the project fails. In particular, we assume that

there are i = 0, 1, 2, ... projects available, corresponding to different gambling strategies. At each

time, if operative, a project i yields, if successful, a profit Kγi, while, with probability pi the

project fails and the company goes bankrupt. We set γ0 = 0 and p0 = 0. Thus, project 0 may

be interpreted as the "business as usual" case. Projects i > 0 are risky, where we assume that

γi+1 > γi and pi+1 > pi, for each i ≥ 0. Note that as γi increases, that is the capability of

boosting current profits by investing in the project increases, the probability of failure (and thus

the riskiness of the project) has to increase in order to maintain the different gambling strategies

relevant. We refer to γi as a measure of the intensity of the gambling strategy.

In this section we consider only two projects 0 and 1, that is, the company may either employ

a gambling strategy (invest in project 1) or not (invest in project 0). In Section 4 we extend the

5



framework to the case where the company may choose between different gambling intensities.

Let V i (x), i = 0, 1, be the company’s value in the case the firm invests in a risky project

(i = 1) and in the case the firm does not (i = 0). The firm’s value V i (x) satisfies the following

equilibrium condition:

rV i = Kx+ γiK − f +
1

dt
E
(
dV i

)
+ pi

(
H − V i

)
(1)

for i = 0, 1. Applying Ito’s Lemma we obtain

rV i = Kx+ γiK − f + µVxx+
1

2
σ2Vxxx

2 + pi
(
H − V i

)
(2)

for i = 0, 1.

Note that the gain from the gamble, Kγ1, is constant and, by assumption, independent of the

value x, while the loss in case of failure,
(
V 1 −H

)
, depends on x. It will be shown that it is

increasing in x. Thus, the lower (larger) is x, the larger (lower) is the relative gain from the risky

investment. As a consequence, engaging in the gamble is optimal for sufficiently low values of x.

In what follows we shall use the notation:

x̂i = −
λi

1− λi

rH − γiK + f

K

r + pi − µ

r + pi
(3)

for i = 0, 1, where λi is the negative root of

µλi +
1

2
σ2λi (λi − 1) = r + pi (4)

for i = 0, 1.

In order to rule out the trivial cases throughout the paper we make the following assumption.

Assumption 1. p1 and γ1 are such that

0 < −
λ1

1− λ1

(
H +

f

r
− γ1

K

r

)
r − µ+ p1
r + p1

< −
λ0

1− λ0

(
H +

f

r

)
r − µ

r

Assumption 1 poses restrictions on the parameter values of p1 and γ1. In particular, for each

value of p1, Assumption 1 defines an upper and a lower bound for the parameter value γ1 such
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that both the closure problem and the gambling option remain relevant, respectively. To see

this, we observe that a too large value of γ1 leads to a violation of the first inequality, posing

an upper bound on the value of γ1. A too large gambling intensity makes the optimal closure

problem irrelevant. On the other hand, a too low value of γ1 leads to an infringement of the

second inequality 2 , setting a lower bound on the value of γ1. A too low gambling intensity makes

the option to engage in a last resort gambling strategy unattractive.

Proposition 1 characterizes the optimal firm value:

Proposition 1 The firm value is

V (x) =





V 0 (x) for x ≥ x0
V 1 (x) for x̂1 ≤ x < x0

H for x < x̂1

where

V 0 (x) = Kx
r−µ

− f
r
+
(
f
r
− Kx0

r−µ
+ Kx0

r+p1−µ
+ p1H+γ1K−f

r+p1

)(
x
x0

)λ0
+

(
H − Kx̂1

r+p1−µ
− p1H+γ1K−f

r+p1

)(
x0
x̂1

)λ1−λ0 (
x
x̂1

)λ0 (5)

V 1 (x) = Kx
r+p1−µ

+ p1H+γ1K−f
r+p1

+
(
H − Kx̂1

r+p1−µ
− p1H+γ1K−f

r+p1

)(
x
x̂1

)λ1 (6)

where x̂1 is defined in (3) and x0 is the solution of F (x) = 0, where

F (x) = Kx (1− λ0)
(

1
r−µ

− 1
r−µ+p1

)
+ λ0−λ1

1−λ1

(
rH−γ

1
K+f

r+p1

)(
x
x̂1

)λ1
+

λ0

(
f
r
+ p1H+γ1K−f

r+p1

) (7)

and where Assumption 1 guarantees that x0 > x̂1.

Proof. In the Appendix.

Proposition 1 identifies two thresholds, the first (x̂1) being the closure cut-off level and the

second (x0) being a gamble cut-off level. If demand is sufficiently large (i.e. x > x0), the company

chooses not to engage in the risky investment. If demand decreases to intermediate values (i.e. for

x̂1 < x ≤ x0), then gambling becomes optimal. The company boosts current profits, betting on a

2 For γ1 = 0 the second inequality is always violated since inequality −λ0 < −λ1
1−λ0
1−λ1

r
r+p1

r−µ+p1
r−µ

holds for

each value of p1 > 0.
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recovery of demand and thus trying to bridge good and bad times. If demand decreases further

(i.e., x ≤ x̂1), closure becomes optimal (see Figure 1).

The firm’s values as described in (5) - (6) have a straightforward interpretation. The first and

the second term in (5) represent the present value of the firm’s cash flow, the third expression

in round brackets represents the option value of engaging in a last resort gamble, and the forth

expression in round brackets represents the option value of shutting the firm down. The first and

the second term in (6) represent the present value of the inflated cash flow. Note that in this case

the values are discounted at a larger rate since the risky project fails with probability p1, in which

case the company goes bankrupt. The third expression in round brackets in (6) represents the

option value of closure.

Observe that V (x) is increasing in x and therefore the loss if the risky project fails, is increasing

in x as well.

It is straightforward to show that x̂1 is decreasing in γ1 and increasing in p1. Thus, the heavier

the gamble, the more inflated the firm’s value and the later closure occurs.

We compare the result with the case where a last resort gamble is not available. We denote

by V NG0 (x) the firm’s value satisfying (2) in the case where γ0 = p0 = 0, then 3

V NG (x) =
Kx

r − µ
−
f

r
+

(
H −

Kx̂0

r − µ
+
f

r

)(
x

x̂0

)λ0

where x̂0 is defined in (3).

Proposition 2 . If a last resort gamble is not available, then closure occurs at x̂0, where x̂0 > x̂1.

Proof. It follows from Assumption 1.

Thus, the firm closes later, if it can engage in a last resort gamble. The company invests in a

risky project, inflating current profits and thus delaying the firm’s liquidation (see Figure 1).

3 See also Proposition 1 in Lambrecht and Myers (2005).
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Figure 1: V 1 (x) (black dashed line), V 0 (x) (black dotted line) and V NG (x) (grey line) as a
function of x. Parameter values: σ = .25, r = .05, µ = .001, p1 = .001, γ1 = .005, f = 1,
K = H = 100.

Note that a violation of the second inequality in Assumption 1 implies that x̂1 > x̂0. In this

case, it follows from Proposition 1 that investing in the risky project is never optimal. In other

words, the company’s value is larger if it does not engage in a last resort gamble even if it is

available and, consequently, liquidation is optimal once exogenous demand decreases below the

liquidation threshold x̂0.

A final remark concerns the effect of volatility on closure.

Remark 1 An increase in the volatility parameter σ2 decreases the closure thresholds x̂1 and

x̂0.

The intuition is that as volatility increases, so does the value of the firm for a given closure

threshold. With the terminology of real option theory, the premium to keep the closure option

alive is weaker. This lowers the thresholds x̂1 and x̂0. Notice that the effect of σ2 on x̂1 has the

same sign of the effect of γ1.
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3 Debt and Equity

In this section we suppose that the firm is financed by issuing debt and equity and examine

the effect of debt on the closure and gambling decisions. We assume that debt guarantees the

payment of a constant perpetual coupon, C, unless the firm defaults on the coupon payment and

declares bankruptcy, in which case liquidation occurs. The liquidation value, net of bankruptcy

costs, is denoted by H. Two cases can be distinguished: (i) risk-free debt, where the company’s

liquidation value covers the value of the debt (H ≥ C
r
), so that debt is fully collateralized, and

(ii) risky debt, where the company’s liquidation value is insufficient (H < C
r
). Let E (x) denote

the equity-holders’ claim and D (x) the debt-holders’ claim.

In this section we use the following notation, which takes debt into account:

x∗i = −
λi

1− λi

r∆− γiK +C + f

K

r + pi − µ

r + pi
(8)

where ∆ = max
{
H − C

r
, 0
}

and i ∈ {0, 1}. Observe that as long as debt is risk-free x∗i = x̂i,

while if debt is risky then x∗i > x̂i.

Consider first the case of risk-free debt. We denote by e (x) the payout policy to equity-

holders, being e (x) = Kx− f −C as long as the company remains operative and rH −C in case

of liquidation. We denote by d(x) the payout policy to debt-holders, where d(x) = C. It is easy

to see that

E (x) = V (x)−D (x)

D (x) =
C

r

where V (x) is defined in Proposition 1. Thus, as long as debt is risk-free, the company’s closure

and gambling strategies are not affected by its capital structure.

Consider next the case of risky debt. Now, the payout policy to equity-holders is e (x) =

Kx − f − C, as long as the company remains operative, and 0 in case of liquidation, while the
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payout policy to debt-holders is d(x) = C as long as the company remains operative, and rH in

the case of liquidation. The following Proposition can be proved:

Proposition 3 (i) For coupon values lower than Ĉ, equity and debt values are

E (x) =





E0 (x) , for x > x0R
E1 (x) , for x∗1 < x ≤ x0R

0, for x ≤ x∗1

D (x) =





D0 (x) , for x > x0R
D1 (x) , for x∗1 < x ≤ x0R

H, for x ≤ x∗1

where

E0 (x) = Kx
r−µ

− f
r
− C

r
+
(
f
r
+ C

r
− Kx0R

r−µ
+ Kx0R

r+p1−µ
−

C−γ
1
K+f

r+p1

)(
x
x0R

)λ0
+

(
C−γ

1
K+f

r+p1
−

Kx∗
1

r+p1−µ

)(
x0R
x∗
1

)λ1−λ0 (
x
x∗
1

)λ0

E1 (x) = Kx
r+p1−µ

− C−γ
1
K+f

r+p1
+

(
C−γ

1
K+f

r+p1
− Kx∗

1

r+p1−µ

)(
x
x∗
1

)λ1

where x∗1 is defined in (8) and x0R is the solution of FR (x) = 0, where

FR (x) = Kx (1− λ0)
(

1
r−µ

− 1
r−µ+p1

)
+ λ0−λ1

1−λ1

C−γ
1
K+f

r+p1

(
x
x∗
1

)λ1
+

λ0

(
f
r
+ C

r
− C−γ

1
K+f

r+p1

)

and where

D0 (x) = C
r

[
1−

(
x
x0R

)λ0]
+ C+p1H

r+p1

(
x
x0R

)λ0
+
(
H − C+p1H

r+p1

)(
x0R
x∗
1

)λ1−λ0 (
x
x∗
1

)λ0

D1 (x) =
C + p1H

r + p1

[
1−

(
x

x∗1

)λ1]
+H

(
x

x∗1

)λ1

(ii) For coupon values C ≥ Ĉ engaging in a last resort gamble is never optimal and closure occurs
for x ≤ x∗0, where x

∗

0 is defined in (8).

Proof. In the Appendix.

The coupon value is critical for the company’s decision to engage or not to engage in a last

resort gamble. For sufficiently low coupon values, engaging in a last resort gamble is optimal in

the case of a market downturn (i.e. for low values of x). Thus, the company inflates current profits

betting on a market upturn. For sufficiently large coupon values engaging in a last resort gamble
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is never optimal. In this case, equity-holders are not able to gain from the gambling strategy

which may benefit debt-holders, and thus it becomes an unattractive option.

The expressions of equity and debt values have a straightforward interpretation. The first two

terms of E1 (x) represent the present value of cash flow, given that the company engages in a

last resort gamble; the other terms of E1 (x) represent the closure option. Analogously, the first

three terms of E0 (x) represent the present value of profits, given that the firm does not invest

in the risky project; the second expression in brackets represents the last resort gambling option

value while the third part represents the closure option. The debt value can be interpreted in

a similar way. Note that, while
(
x
x∗
1

)λ0
can be interpreted as the probability that the manager

shuts the company down because demand is too low4 , (1 −
(
x
x∗
1

)λ0
) can be interpreted as the

probability that this event does not occur. Consider first D1 (x) where the company employs the

last resort gamble strategy. C
r+p1

represents the present value of the constant perpetual coupon C,

given that the company is not liquidated, where the discount factor takes into account the default

probability p1 of the risky project; p1H
r+p1

represents the present value of the liquidation value if

the risky project fails, given that the company is not liquidated. Thus, the first part of D1 (x)

represents the debt value if the company is not liquidated, while the second part consists of the

expected debt value in the case of liquidation. The debt value D0 (x), corresponding to the case

where the company does not employ the last resort gamble strategy, consists of three parts. The

first represents the present value of debt, given that the company does not engage in a last resort

gamble, the second expression represents the debt value due to the company’s gambling option

and the final term represents the debt value due the company’s liquidation option. Note that in

the case of risky debt (C
r
> H) the third expression is always negative.

A further remark concerns the optimality of the liquidation threshold x∗1 from a "social" point

of view. Notice that ∂E1(x)
∂x∗

1

= 0 and ∂2E1(x)

∂(x∗1)
2 < 0, that is, the choice of the closure threshold x∗1

is optimal for equity-holders. On the contrary, ∂V (x)
∂x∗

1

< 0, where V (x) is the overall value of the

4 This probability is different from the case where bankruptcy is induced by the failure of the risky project.
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Figure 2: Equity value E (x) (gray line) and the firm’s value V (x) (black line) as a function of
the liquidation threshold x∗1. Parameter values: σ = .25, r = .05, µ = .001, p1 = .001, γ1 = .005,
f = 1, K = H = 100, C = 10.

firm, that is, V (x) = E(x) + D(x). Since in this framework the socially optimal bankruptcy

trigger is the one that maximizes the overall value of the firm V (x), we get that, when equity-

holders choose the timing of bankruptcy and the firm has issued debt, then the socially optimal

bankruptcy strategy cannot be achieved, that is, x∗1 is not socially optimal. The cause is equity-

holders’ limited liability. In particular, since by the envelope theorem ∂V (x∗
1
)

∂x∗
1

= ∂D(x∗
1
)

∂x∗
1

< 0 the

"socially optimal" liquidation threshold is lower than x∗1. (See Figure 2 for an example.)

The following Remark can be proved straightforwardly.

Remark 2. Since under risky debt C > rH, liquidation occurs earlier than with risk-free debt,

or an unleveraged firm, i.e. x∗1 > x̂1.

Observe that the closure threshold x∗1 is increasing in the coupon value C. Thus, debt speeds

up closure: the leveraged firm closes earlier than the unleveraged one. Remark 2 is in keeping

with what is established in the "debt overhang problem" literature (Myers, 1977).

13



Proposition 4 Increasing the coupon value C reduces the range of values where employing a last
resort gamble strategy is optimal (i.e. x∗1−x0R is decreasing in C) and the distortion in liquidation
induced by last resort gambles (i.e. x∗0 − x

∗

1 is decreasing in C).

Proof. In the Appendix.
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Figure 3: Equity values E1 (x), dashed line, and E0 (x), dotted line, for coupon values C0 (black
line) and C1 (gray line) with C1 > C0. Parameter values: σ = .25, r = .05, µ = .001, p1 = .001,
γ1 = .005, f = 1, K = H = 100, C0 = 10, C1 = 20.

Increasing C reduces the equity-holders’ gains from a last resort gamble. In Figure 3 we depict

an example with two different coupon values C1 > C0. For coupon value C0 (C1), investing in a

risky project is optimal for values of x ∈ (x1 (C0) , x0R (C0)) (x ∈ (x1 (C1) , x0R (C1))), while for

values of x ≥ x0R (C0) (x ≥ x0R (C1)) it is not. Note that x0R (C0)−x
∗

1 (C0) > x0R (C1)−x
∗

1 (C1)

and thus a larger coupon value reduces the range of values for x where engaging in a last resort

gamble is optimal. Closure is optimal for values of x ≤ x∗1 (C0) (x ≤ x∗1 (C1)). Thus, an increase

in the coupon value speeds up liquidation (x∗1 (C0) < x
∗

1 (C1)).

In Figure 4 we depict the liquidation (black line) and the gambling (gray line) threshold as

a function of the coupon value C. For each C < Ĉ the gambling threshold is larger than the
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Figure 4: Liquidation (black line) and fraud (gray line) thresholds as a function of the coupon
value C. Parameter values: σ = .25, r = .05, µ = .001, p1 = .001, γ1 = .005, f = 1, K = H = 100.

liquidation threshold (i.e. x∗1 < x0R) and thus the last resort gamble strategy is optimal for values

of x between these two thresholds. As C increase both the gamble and the liquidation threshold

increase while the difference between the two decreases, reducing the values of x where last resort

gambling is optimal. For the coupon value C ≥ Ĉ investing in the risky project is never optimal.

Remark 3. An increase in the volatility parameter σ2 decreases the closure thresholds x∗1 and

x∗0. An increase in γ1decreases x
∗

1.

As asset risk rises, so does the value of equity for a given closure threshold. Hence, equity-

holders’ incentive to default on the interest payment, i.e. on the premium to keep the option alive

is weaker. Notice that ∂E(x)
∂σ2

> 0, as long as bankruptcy has not been declared, that is, equity

value is enhanced by greater risk in case of debt. This lowers the triggers x∗1 and x∗0. Notice that

the effect of σ2 on x∗1 has the same sign of the effect of γ1.

We investigate how a last resort gamble strategy affects the debt value. An issue concerns the

15
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Figure 5: Debt capacity. In the Figure we depict the debt value as a function of C, holding the
value of x fixed. For small values of C the debt is risk free (black continuous line). Increasing the
value of C the debt becomes risky but the company does not engage in a last resort gamble (gray
dashed line); increasing further C engaging in the last resort gamble becomes optimal (gray dotted
line). Parameter values: σ = .25, r = .05, µ = .001, p1 = .001, γ1 = .005, f = 1, K = H = 100.

debt capacity of the firm. For a given value of x, we study how the debt value D (x) changes as

a function of the coupon value C. For C ≤ rH the debt is risk-free and thus for C = rH the

debt value is H. For C > rH the debt is risky and for a sufficiently large coupon value C′′ the

company defaults on its debt. Thus, since the debt value is a continuous function of C, there

exists a C ∈ (rH,C ′′) where the debt value is maximized. In Figure 5 we just depict an example

based on the numerical example of Figure 4, where we fix x = 0.18.

We now compare the debt value in the case of last resort gamble strategies to the case where

these are not available. If last resort gambles are not available then the debt value is

DNG (x) =





C
r

[
1−

(
x
x∗
0

)λ0]
+H

(
x
x∗
0

)λ0
, for x > x∗0

H, for x ≤ x∗0

That is, the value of risky debt equals the value of the risk-free debt C
r

times the probability that

bankruptcy does not occur plus the value of the proceeds from asset liquidation in the event of

bankruptcy H times the probability of bankruptcy. To see how risky investments affect the debt

16



value we compute ∆D (x) ≡ D (x)−DNG (x), where D (x) is defined in Proposition 3

∆D (x) =

(
C

r
−H

)





(
x
x0R

)λ0 [(
x0R
x∗
0

)λ0
− p1

r+p1
− r

r+p1

(
x0R
x∗
1

)λ1]
, for x > x0R

[(
x
x∗
0

)λ0
− p1

r+p1
− r

r+p1

(
x
x∗
1

)λ1]
, for x∗0 < x ≤ x0R

r
r+p1

[
1−

(
x
x∗
1

)λ1]
, for x∗1 < x ≤ x

∗

0

0, for x ≤ x∗1

Note that, for x∗1 < x ≤ x
∗

0, ∆D (x) is always positive. For other values of x it may happen

that ∆D (x) is negative. For a sufficiently large difference x0R − x
∗

0, we get
(
x0R
x∗
0

)λ0
< p1

r+p1
+

r
r+p1

(
x0R
x∗
1

)λ1
, so that ∆D (x) < 0 for x > x0R and also for some values of x∗0 < x ≤ x0R. The

coupon value has an important role on the difference ∆D (x). A larger coupon value, reducing the

incentives to engage in a last resort gamble and reducing the distortion induced by this strategy

(see Proposition 4), increases the probability that ∆D (x) is positive. In Figure 6 we plot a

numerical example. Consider, for example, the case of x taking the value 0.5. For a low coupon

value (C = 10) the debt value in case where a last resort gamble is available is lower than if none is

available (∆D (.5) is negative); increasing the coupon value to, for example, C = 30 or to C = 60

makes the differences between the two debt values (∆D (.5)) become positive.

4 Gambling intensity

In this Section we generalize the results obtained in Section 3 introducing different gambling

intensities. While in the previous section the choice was either to invest in a risky project or not,

here we introduce the choice among different risky projects with different gambling intensities.

As an example we restrict our analysis to the case of two risky projects. The available projects

are i = 0, 1, 2 where γ2 > γ1 > γ0 = 0 and p2 > p1 > p0 = 0. The model can be extended

straightforwardly to the case of n degrees of gambling intensities.

For the remaining part of the paper we make use of Assumption 2 which generalizes Assumption

1.
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Figure 6: ∆D (x) as a function of x; x∗1 < x ≤ x
∗

0 continuous line, x∗0 < x ≤ x0R dashed line and
x > x0R dotted line; increased brightness corresponds to an increased coupon value C. Parameter
values: σ = .15, r = .05, µ = .001, p1 = .001, γ1 = .005, f = 1, K = H = 100., C = 10 (black
line), C = 30 (gray line), C = 60 (light gray line).

Assumption 2 pi and γi, for i = 0, 1, 2 are such that

0 < −
λi+1

1− λi+1

(
H +

f

r
− γi+1

K

r

)
r − µ+ pi+1
r + pi+1

< −
λi

1− λi

(
H +

f

r
− γi

K

r

)
r − µ+ pi
r + pi

for each i = 0, 1 and γ1 is sufficiently large.

For given values of p1 and p2, Assumption 2 poses restrictions on gambling intensities γ1 and

γ2. To maintain the closure problem relevant, the capability to inflate current profits must be

limited, posing an upper bound on γ2 (first part of the inequality in Assumption 2 for i = 1).

To maintain the gambling problem relevant at different gambling levels, the second part of the

inequality in Assumption 2, for i = 0, 1, establishes a relationship between γ1 and γ2, defining a

lower bound on γ2 as well as an upper and a lower bound on γ1.

Assumption 3 is required in order to have the choice of different gambling levels meaningful

for the relevant parameter configurations.
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Assumption 3 pi and γi, i = 0, 1, 2 are such that

−
λ2

1− λ2

r − µ+ p2
r + p2

+
λ1

1− λ1

r − µ+ p1
r + p1

> −
λ1

1− λ1

r − µ+ p1
r + p1

+
λ0

1− λ0

r − µ

r

The following Proposition characterizes the equity-holders and debt-holders claims in the case

of risky debt and shows that a gradual increase in gambling intensity is optimal as demand

decreases for low values of the coupon, while for large values of the coupon high gambling intensity

is never optimal.

Proposition 5 There exists a coupon value C such that for C ≤ C the equity and debt values are

E (x) =





E0 (x) for x0L < x
E1 (x) for x1L < x ≤ x0L
E2 (x) for x∗2 < x ≤ x1L

0 for x ≤ x∗2

D (x) =





D0 (x) for x0L < x
D1 (x) for x1L < x ≤ x0L
D2 (x) for x∗2 < x ≤ x1L

0 for x ≤ x∗2

where the closure threshold x∗2 is defined in (8), for i = 2, x1L is the solution of F 1 (x) = 0, and
x0L is the solution of F 0 (x) = 0, where F 1 (x), F 0 (x) and Ei (x) , for i = 0, 1, 2, are defined
in the Appendix, and where Assumptions 2 and 3 guarantee that x0L > x1L > x∗2. For C > C

Proposition 3 applies, where Assumption 3 guarantees that C < Ĉ.

Proof. In the Appendix.

For coupon values lower than C the company increases the gambling intensity as x decreases.

For large values of x the company does not engage in a last resort gamble strategy (x > x0L). As x

decreases, the company starts to invest in the risky project 1 which corresponds to a low gambling

intensity γ1 (for x ∈ (x1L, x0L)). As x decreases further, the company increases its gambling

intensity, investing in the risky project 2 (for x ∈ (x∗2, x1L)), delaying further liquidation. For

coupon values larger than C investing in the risky project 2 is never optimal, while it remains

optimal to invest in the risky project 1 for some values of x. Thus, as C increases the intensity of

the last resort gambles decreases.
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Figure 7: Equity values E2 (x), continuous line, E1 (x), dotted line, and E0 (x), dashed line, for
coupon values C0 (black line) and C1 (grey line) with C1 > C0. Parameter values: σ = .25,
r = .05, µ = .001, p1 = .001, p2 = .005, γ1 = .005, γ2 = .0125, f = 1, K = H = 100, C0 = 10,
C1 = 20.

Remark 4 For values of C > rH, increasing the coupon value C reduces the last resort

gambling intensity.

Note that while in the previous section the gambling intensity was given, in this section here

the firm chooses between different gambling intensities. A change in the firm’s financial structure

leads the firm to choose a different last resort gambling intensities. A higher coupon value leads

a firms to engage a less intense gambling strategy. In Figure 7 we depict a typical situation with

two different coupon values C1 > C0. Observe that a larger coupon value reduces the range of

values of x where investing in project 1 is optimal (x0L (C1) − x1L (C1) > x0L (C0) − x1L (C0))

and where investing in project 2 is optimal (x1L (C1)− x
∗

2 (C1) > x1L (C0)− x
∗

2 (C0)). Moreover,

observe that the reduction in the latter range is larger than the reduction in the former one. For

a sufficiently large coupon value, investing in project 2 will never be optimal, while investing in

project 1 remains optimal for some values of x.
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Figure 8: For C < C we depict the gambling threshold for project 1 (black dotted line), for project
2 (black dashed line) and the liquidation threshold (black continuous line) as a function of C. For

C ≤ C < Ĉ we depict the gambling threshold for project 1 (gray dotted line) and the liquidation
threshold (gray continuous line) as a function of C. Parameter values: σ = .25, r = .05, µ = .001,
p1 = .001, p2 = .005, γ1 = .005, γ2 = .0125, f = 1, K = H = 100.

In Figure 8 we depict an example of gamble and liquidation thresholds as a function of C.

5 Conclusion

The problem of the relation between last resort gambles, debt and liquidation policies is set out

in this paper within a real option model.

Of course, a few extensions and generalizations of the model can be explored. In the present

model, for given coupon value, we make some comparative statics analyses to show how optimal

last resort gambling and liquidation policies are affected by the company’s indebtedness. One can

determine the optimal coupon value and study an endogenous capital structure.

The model also abstracts from conflicts of interests between managers and shareholders. By

introducing asymmetric information it would be interesting to study the fraudulent aspect of

last resort gambles. Interests between managers and equity-holders in generally are not aligned
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because, for example, managers and equity-holders face different time horizons. Within such

a model one could explore how endogenous capital structure may act as an incentive device,

and under which circumstances the optimal debt policy can be used to affect last resort gamble

strategies. In this context, alternative management compensation schemes may have a role as

well.

References

Akerlof, G.A. and P.M. Romer (1993). Looting: The Economic Underworld of Bankruptcy
for Profit, Brookings Papers on Economic Activity, 1993, 1-73.

Bebchuk, L and J. Fried (2003). Executive Compensation as an Agency Problem, Journal
of Economic Perspectives, 71-92.

Bebchuk, L and J. Fried (2004). Pay without Performance: the Unfulfilled Promise of Ex-
ecutive Compensation, Harvard University Press.

Bergstresser, D. and T. Philippon (2006). CEO incentives and earnings management, Journal
of Financial Economics, 80, 511-529.

Bolton, P. Scheinkman, J. and W. Xiong (2006). Executive Compensation and Short-termist
Behaviour in Speculative Martkets. Review of Economic Studies, 73, 577-610.

Bolton, P. Scheinkman, J. and W. Xiong (2005). Pay for Short-term Performance: Executive
Compensation in Speculative Markets. Forthcoming Journal of Corporation Law.

Burns, N., and S. Kedia (2006). The Impact of Performance-Based Compensation on Mis-
reporting. Journal of Financial Economics, 79, 35-67.

Decamps, J.-P. and A. Faure-Grimaud (2002). Excessive continuation and dynamic agency
costs of debt, European Economic Review, 46, 1623-1644.

Erickson, M, Hanlon, M. and E. Maydew (2006). Is there a Link between Executive Com-
pensation and Accounting Fraud? Journal of Accounting Research, 44, 113-143.

Friebel and Guriev (2005). Earnings Manipulation and Incentives in Firms, CEPR W.P.
4850

Goldman, E. and S.L. Slezak (2006). An equilibrium model of incentive contracts in the
presence of information manipulation, Journal of Financial Economics, 80, 603-626.

Hart, O. (2000). Different Approaches to Bankruptcy. NBER Working Paper No. 7921.

Jensen, M.C. (2004). The Agency Costs of Overvalued Equity and the Current State of
Corporate Finance. European Financial Management, 10, 549-565.

Johnson, S.A., Ryan, H.E. and Y.S. Tian (2006). Managerial Incentives and Corporate
Fraud: The Sources of Incentives Matter, mimeo.

Knot, O. and O. Vychodil (2006). Bankruptcy Regimes and Gambling on Resurrection,
CERGE-EI W.P..

22



Lambrecht, B.M. and S.C. Myers (2005), Debt and Agency in a Real-Options Model of the
Firm, mimeo.

Leland, H.E. (1998). Agency Costs, Risk Management, and Capital Structure, Journal of
Finance, 53, 1213-1243

Moeller, Schlingemann and Stulz (2003). Wealth Destruction on a Massive Scale?
A Study of Acquiring-Firm returns in the recent Merger Wave, available from
http://papers.ssrn.com/Abstract=476421.

Myers, S.C. (1977). Determinants of Corporate Borrowing, Journal of Financial Economics,
5, 147-176.

Narayanan, M.P.(1985). Managerial Incentives for Short-Term Results, Journal of Finance,
40, 1469-1484.

Povel, P., R. Singh and A. Winton (2006). Booms, Busts, and Fraud. Forthcoming Review
of Financial Studies.

Stein, J.C. (1989). Efficient Capital Markets, Inefficient Firms: A Model of Myopic Corporate
Behavior, Quarterly Journal of Economics, 104, 655-669.

Von Thadden E.-L. (1995). Long-Term Contracts, Short-Term Investment and Monitoring,
Review of Economics Studies, 62, 557-575.

6 Appendix

Proof of Proposition 1. The solution to the differential equation (2) is

V 0 (x) =
Kx

r − µ
−
f

r
+A1x

λ0 +A2x
β

where λ0 and β are the negative and positive roots of (4), respectively. A no bubble condition

requires limx→∞(V
0 (x)− Kx

r−µ
+ f
r
) = 0 and thus A2 = 0. The solution to the differential equation

(2) is

V 1 (x) =
Kx

r + p1 − µ
+
p1H + γ1K − f

p1 + r
+B1x

λ1 +B2x
ε

where λ1 and ε are the negative and positive roots of (4), respectively. Since for large values of x

the option value of closure becomes negligible, B2 = 0. The value matching condition V 1 (x̂1) = H

together with the smooth pasting condition V 1x (x̂1) = 0 define the closure threshold x̂1 and B1,

while the value matching condition V 1 (x0) = V
0 (x0) together with the smooth pasting condition

V 1x (x0) = V
0
x (x0) define the gamble threshold x0 and the constant A1.
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Substituting x̂i for i = 0, 1, as defined in (3), into F (x) we obtain

F (x) = (1− λ0)
K
r−µ

(x− x̂0)− (1− λ0)
K

r+p1−µ
(x− x̂1)+

−λ0−λ1
λ1

Kx̂1
r+p1−µ

[(
x
x̂1

)λ1
− 1

]

Assumption 1 guarantees that F (x̂1) < 0 and since F (x) is a convex function where limx→∞ F (x) =

∞, a unique solution to F (x0) = 0 exists and moreover x0 > x̂1. Moreover, F (x̂0) < 0 and thus,

following the same argument, we obtain x0 > x̂0 > x̂1.

Proof of Proposition 3. We divide the proof into two parts. In part (a) we show the

content of Proposition 3 (i). In part (b) we show that Ĉ exists.

Part (a). To compute Di(x), let us solve the following differential equation:

rDi = C + µDixx+
1

2
σ2Dixxx

2 + pi
(
H −Di

)
(9)

for i = 0 for x > x0R and i = 1 for x∗1 < x ≤ x0R. The general solution of (9) is C+piH
r+pi

+ Lix
λi

for some Li, if we take the no-bubble condition into account. We determine L1 employing the

boundary condition D1(x∗1) = H and L0 employing the value matching condition D0 (x0R) =

D1 (x0R).

The value of the equity-holders’ claim E(x) is obtained solving the differential equations:

rE0 = Kx− f −C + µE0xx+
1

2
σ2E0xxx

2, for x > x0R

rE1 = Kx+ γ1K − f −C + µE
1
xx+

1

2
σ2E1xxx

2 + p1
(
−E1

)
, for x∗1 < x ≤ x0R

whose solutions are E0 (x) = Kx
r−µ

− f
r
− C

r
+Axλ0 and E1 (x) = Kx

r+p1−µ
− C−γ

1
K+f

p1+r
+Bxλ1 , for

some A,B, if we take the no-bubble conditions into account. Then, we determine A,B, x∗1, x0R

employing the value-matching and the smooth-pasting conditions E1(x∗1) = 0, E1x(x
∗

1) = 0,

E0(x0R) = E1(x0R) and E0x(x0R) = E
1
x(x0R).

Part (b). Using the definition of x∗i (8) we can rewrite FR (x)

FR (x) = (1− λ0)
K
r−µ

(x− x∗0)− (1− λ0)
K

r+p1−µ
(x− x∗1)+

−λ0−λ1
λ1

Kx∗
1

r+p1−µ

[(
x
x∗
1

)λ1
− 1

]
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and hence FR (x∗1) < 0 if and only if x∗1 < x
∗

0. Thus, engaging in a last resort gamble strategy

is optimal (i.e.x0R > x
∗

1) if and only if x∗0 > x
∗

1. Note that FR (x∗0) < 0 and consequently

x0R > x
∗

0 > x
∗

1.

Increasing C reduces the gap between x∗0 and x∗1 since

∂ (x∗0 − x
∗

1)

∂C
= −

λ0

1− λ0

1

K

r − µ

r
+

λ1

1− λ1

1

K

r + p1 − µ

r + p1
< 0 (10)

Since for C = rH, Assumption 1 implies that x∗1 < x
∗

0, and since, for C → ∞, x∗1 > x
∗

0, by

continuity there exists a unique value of C such that x∗0 = x
∗

1. For each C < Ĉ, x∗1 < x
∗

0 and thus

FR (x∗1) < 0 and as a consequence x0R > x∗1, while for each C ≥ Ĉ, x∗1 ≥ x
∗

0 and thus FR (x∗1) > 0

and as a consequence x0R ≥ x∗1.

Proof of Proposition 4. The sign of the derivative of ∂(x∗
0
−x∗

1
)

∂C
has already been proved in

the proof of Proposition 3.

In this proof we calculate the sign of the derivative ∂(x0R−x
∗

1
)

∂C
. We rewrite FR (x0R) = 0 as

(1− λ0)

(
1

r − µ
−

1

r + p1 − µ

)
(x0R − x

∗

1) = (1− λ0)
1

r − µ
(x∗0 − x

∗

1) + g (x0R, x
∗

1) (11)

where

g (x0R, x
∗

1) =
x∗1

r + p1 − µ

λ0 − λ1
λ1

[(
x0R

x∗1

)λ1
− 1

]

and where, since x0R > x
∗

1 and λ1 < 1, g (x0R, x
∗

1) > 0.

Let us define L (x0R, x
∗

1) ≡
∂g(x0R,x

∗

1
)

∂x0R
+

∂g(x0R,x
∗

1
)

∂x∗
1

. The following Lemma summarizes the

properties of L (x0R, x∗1).

Lemma A1.

(i) L (x∗1, x
∗

1) = 0;(ii) L (x0R, x
∗

1) is strictly increasing in x0R;

(iii) limx0R→∞L (x0R, x
∗

1) = −
1

r+p1−µ
(λ0 − λ1)

1
λ1

.
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Proof. The derivatives of L (x0R, x∗1) are

∂g (x0R, x
∗

1)

∂x0R
=

1

r + p1 − µ
(λ0 − λ1)

(
x0R

x∗1

)λ1−1
(12)

∂g (x0R, x
∗

1)

∂x∗1
=

1

r + p1 − µ

λ0 − λ1
λ1

[
(1− λ1)

(
x0R

x∗1

)λ1
− 1

]
(13)

and thus

L (x0R, x
∗

1) =
1

r + p1 − µ
(λ0 − λ1)

[
1− λ1
λ1

(
x0R

x∗1

)λ1
−
1

λ1
+

(
x0R

x∗1

)λ1−1]
(14)

(i) From (14) it is easy to see that L (x∗1, x
∗

1) = 0.

(ii) Taking the derivative of (14) with respect to x0R we obtain

∂L (x0R, x
∗

1)

∂x0R
≈ (1− λ1)

(
x0R

x∗1

)λ1
+ (λ1 − 1)

(
x0R

x∗1

)λ1−1
> 0

(iii) Since λ1 < 0, it follows that limx0R→∞ L (x0R, x
∗

1) = −
1

r+p1−µ
(λ0 − λ1)

1
λ1

.

From (11) we obtain ∂(x0R−x
∗

1
)

∂C

(1− λ0)
(

1
r−µ

− 1
r+p1−µ

)
∂(x0R−x

∗

1
)

∂C
= (1− λ0)

1
r−µ

∂(x∗
0
−x∗

1
)

∂C
+

+∂g(x0R,x
∗

1
)

∂x0R

∂x0R
∂C

+ ∂g(x0R,x
∗

1
)

∂x∗
1

∂x∗
1

∂C

(15)

Adding and subtracting ∂g(x0R,x
∗

1
)

∂x0R

∂x∗
1

∂C
on the left-hand-side of (15) and rearranging terms we

obtain

∂ (x0R − x
∗

1)

∂C
=
(1− λ0)

1
r−µ

∂(x∗
0
−x∗

1
)

∂C
+ L (x0R, x

∗

1)
∂x∗

1

∂C

(1− λ0)
(

1
r−µ

− 1
r+p1−µ

)
−

∂g(x0R,x∗1)
∂x0R

(16)

In the following we show that the numerator as well as the denominator of the right-hand-side of

(16) are positive.

We now proceed to prove that the numerator of (16) is negative. The first term of the numerator

is negative (see the first part of this proof) while the second term, since L (x0R, x
∗

1) ≥ 0 and

∂x∗
1

∂C
> 0, is positive. Since L (x0R, x∗1) is strictly increasing in x0R, a sufficient condition for the

numerator to be negative is

− (1− λ0)
1

r − µ

∂ (x∗0 − x
∗

1)

∂C
>

1

r + p1 − µ
(λ0 − λ1)

1

λ1

∂x∗1
∂C
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which, after substituting the derivatives and simplifying terms, is equivalent to

(1− λ0)
1

r − µ

(
λ0

1− λ0

r − µ

r
−

λ1

1− λ1

r + p1 − µ

r + p1

)
>
λ0 − λ1
1− λ1

1

r + p1
(17)

Rearranging further terms yields

λ0 (λ1 − 1)µp1 + (λ0 − λ1) rp1 > 0

which is always true.

Next we show that the denominator of (16) is positive. Using (12) the numerator reads

M (x0R, x
∗

1) ≡ (1− λ0)

(
1

r − µ
−

1

r + p1 − µ

)
−

1

r + p1 − µ
(λ0 − λ1)

(
x0R

x∗1

)λ1−1

Note that M (x0R, x
∗

1) is strictly increasing in x0R and

lim
x0R→∞

(1− λ0)

(
1

r − µ
−

1

r + p1 − µ

)
> 0

Thus, since x0R > x
∗

1 it is sufficient to prove that M (x∗1, x
∗

1) > 0, whereM (x∗1, x
∗

1) > 0 can be

rewritten as

r + p1 − µ

r − µ
>
1− λ1
1− λ0

(18)

Subtracting µ from both sides of (4) we have

(
λi
1

2
σ2 + µ

)
(λi − 1) = r + pi − µ

Note that the right-hand-side of this expression is positive valued by Assumption 1 (which implies

that λi
1
2σ

2 + µ < 0). Substituting this last result into (18) we obtain

(1− λ1)
(
λ1

1
2σ

2 + µ
)

(1− λ0)
(
λ0

1
2σ

2 + µ
) > 1− λ1

1− λ0

Simplifying and rearranging terms we obtain −λ1 > −λ0, which is true.

Proof of Proposition 5. Under the risky debt assumption the value of the equity-holders’

claim satisfies the following differential equation:

rEi = Kx+ γiK − f −C + µEix +
1

2
σ2Exxx

2 + pi
(
−Ei

)
(19)
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for i = 0, 1, 2 .

We assume that both gambling intensities are active and calculate the equity value and gamble

and closure thresholds, and afterwards we show that this is true for sufficiently low coupon values

(i.e. C < C).

From (19), imposing value matching conditions E2 (x0L) = E1 (x0L), E1 (x1L) = E0 (x1L) and

E0 (x2) = 0 we obtain

E2 (x) = Kx
r+p2−µ

+ γ
2
K−C−f

r+p2
+

+
(
− Kx∗

2

r+p2−µ
− γ

2
K−C−f

r+p2

)(
x
x∗
2

)λ2

E1 (x) = Kx
r+p1−µ

+
γ
1
K−C−f

r+p1
+
(

Kx1L
r+p2−µ

+
γ
2
K−C−f

r+p2
− Kx1L

r+p1−µ
−

γ
1
K−C−f

r+p1

)(
x
x1L

)λ1
+

(
−

Kx∗
2

r+p2−µ
− γ

2
K−C−f

r+p2

)(
x1L
x∗
2

)λ2−λ1 (
x
x∗
2

)λ1

E0 (x) = Kx
r−µ

− C+f
r
+
(

Kx0L
r+p1−µ

+ γ
1
K−C−f

r+p1
+ C+f

r
− Kx0L

r−µ

)(
x
x0L

)λ0
+

(
Kx1L
r+p2−µ

+ γ
2
K−C−f

r+p2
− Kx1L

r+p1−µ
− γ

1
K−C−f

r+p1

)(
x0L
x1L

)λ1−λ0 (
x
x1L

)λ0
+

(
− Kx∗

2

r+p2−µ
− γ

2
K−C−f

r+p2

)(
x1L
x∗
2

)λ2−λ1 (
x0L
x∗
2

)λ1−λ0 (
x
x∗
2

)λ0

where gambling thresholds x1L and x0L are obtained imposing smooth pasting conditions E2x (x) =

E1x (x) and E1x (x) = E
0
x (x), F

1 (x) and F 0 (x) are defined as follows:

F 1 (x) = Kx (1− λ1)
(

1
r+p1−µ

− 1
r+p2−µ

)
+ λ1−λ2

1−λ2

(
−γ

2
K−C−f

r+p2

)(
x
x∗
2

)λ2
+

+λ1
(
γ
2
K−C−f

r+p2
− γ

1
K−C−f

r+p1

)

and

F 0 (x) = Kx (1− λ0)
(

1
r−µ

− 1
r+p1−µ

)
+ λ0−λ1

1−λ1

(
−γ

2
K−C−f

r+p2

)(
x1L
x∗
2

)λ2 (
x
x1L

)λ1
+

+λ0
(
C+f
r
+ γ

1
K−C−f

r+p1

)
+ λ0−λ1

1−λ1

(
γ
2
K−C−f

r+p2
− γ

1
K−C−f

r+p1

)

and closure threshold x∗2 solve the smooth pasting condition E2x (x) = 0.

In the following we show that C exists. In particular, we first show that Assumption 2 guar-

antees that as long as debt is risk-free the inequality x0L > x1L > x
∗

2 holds and then we show that

increasing riskiness of the debt value there exists a critical coupon value below which engaging in

last resort gambling behavior with intensity 2 is optimal for some values of x, while above this

threshold last resort gambling with intensity 2 is never optimal.

28



Note first that Assumption 2 implies that, as long as debt is risk-free, x∗0 > x
∗

1 > x
∗

2. We divide

the proof into two parts: (a) x1L > x
∗

2 and (b) x0L > x1L.

Part (a). F 1 (x) is a convex function of x. Thus, to prove that x1L > x
∗

2 we show that

F 1 (x∗2) < 0. Using (8) we can rewrite F 1 (x) as

F 1 (x) = (1− λ1)
K

r+p1−µ
(x− x∗1)− (1− λ1)

K
r+p2−µ

(x− x∗2)−
λ1−λ2
λ2

Kx∗
2

r+p2−µ

[(
x
x∗
2

)λ2
− 1

]

(20)

and hence F 1 (x∗2) ≤ 0 if and only if x∗1 > x
∗

2, which is satisfied by Assumption 2. Moreover, since

x∗1 > x
∗

2 and λ2 < 0, from (20) it follows that F 1 (x∗1) < 0. Hence, x1L > x∗1 > x
∗

2. Thus, investing

in the risky project 2 is optimal (i.e. x1L > x∗2) if and only if x∗1 > x
∗

2.

Part (b). To prove that x0L > x1L holds for sufficiently large values of γ1 we rewrite, using

(8), F 0 (x) as

F 0 (x) = (1− λ0)
K
r−µ

(x− x∗0)− (1− λ0)
K

r+p1−µ
(x− x∗1)+

−λ0−λ1
1−λ1

1−λ2
λ2

Kx∗
2

r+p2−µ

[(
x1L
x∗
2

)λ2 (
x
x1L

)λ1
− 1

]

Since by Assumption 2 x∗0 > x
∗

1 and
(
x1L
x∗
2

)λ2 ( x∗
0

x1L

)λ1
< 1, F 0 (x∗0) < 0 and consequently x0L > x∗0.

Observe that there always exists a value of γ1 such that x∗1 = x
∗

2. In this case condition F 1 (x) = 0

yields x1L = x
∗

1, while condition F 0 (x) = 0 yields x0L > x
∗

0 and thus we obtain, x0L > x
∗

0 > x
∗

1 =

x1L. By continuity inequality x0L > x1L holds for sufficiently large values of γ1.

Note that Assumption 3 implies that ∂
∂C
(x∗2 − x

∗

1) >
∂
∂C
(x∗1 − x

∗

0) and as a consequence there

exists a C such that x∗2 = x
∗

1 while x∗0 > x
∗

1 and thus for C > C gambling intensity 2 is no longer

optimal, while gambling intensity 1 remains optimal for some values of x as stated in Proposition

3.

To computeD(x), let us solve the following differential equation (9) for i = 0 for x > x0L, i = 1

for x1L < x ≤ x0L and i = 2 for x∗2 < x ≤ x1L.The general solution of (9) is C+piH
r+pi

+Lixλi for some

Li, if we take the no-bubble condition into account. We determine L2 employing the boundary

condition D2(x∗2) = H and L1 and L0 employing the value matching conditions D2 (x1L) =
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D1 (x1L) and D1 (x0L) = D0 (x0L), respectively, yielding

D2 (x) =
C + p2H

r + p2
(1−

(
x

x∗2

)λ2
) +H

(
x

x∗2

)λ2

D1 (x) = C+p1H
r+p1

+
(
C+p2H
r+p2

− C+p1H
r+p1

)(
x
x1L

)λ1
+
(
H − C+p2H

r+p2

)(
x1L
x∗
2

)λ2−λ1 (
x
x∗
2

)λ1

D0 (x) = C
r
+
(
C+p1H
r+p1

− C
r

)(
x
x0L

)λ0

+
(
C+p2H
r+p2

− C+p1H
r+p1

)(
x0L
x1L

)λ1−λ0 (
x
x1L

)λ0
+
(
H − C+p2H

r+p2

)(
x1L
x∗
2

)λ2−λ1 (
x0L
x∗
2

)λ1−λ0 (
x
x∗
2

)λ0
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