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ABSTRACT 
The geographical distribution and persistence of regional/local unemployment rates in heterogeneous economies 

(such as Germany) have been, in recent years, the subject of various theoretical and empirical studies. Several 

researchers have shown an interest in analysing the dynamic adjustment processes of unemployment and the 

average degree of dependence of the current unemployment rates or gross domestic product from the ones 

observed in the past. In this paper, we present a new econometric approach to the study of regional 

unemployment persistence, in order to account for spatial heterogeneity and/or spatial autocorrelation in both the 

levels and the dynamics of unemployment. First, we propose an econometric procedure suggesting the use of 

spatial filtering techniques as a substitute for fixed effects in a panel estimation framework. The spatial filter 

computed here is a proxy for spatially distributed region-specific information (e.g., the endowment of natural 

resources, or the size of the ‘home market’) that is usually incorporated in the fixed effects parameters. The 

advantages of our proposed procedure are that the spatial filter, by incorporating region-specific information that 

generates spatial autocorrelation, frees up degrees of freedom, simultaneously corrects for time-stable spatial 

autocorrelation in the residuals, and provides insights about the spatial patterns in regional adjustment processes. 

We present several experiments in order to investigate the spatial pattern of the heterogeneous autoregressive 

parameters estimated for unemployment data for German NUTS-3 regions. We find widely heterogeneous but 

generally high persistence in regional unemployment rates. 
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1. Introduction 

Regional labour market developments mirror the spatial socio-economic dynamics of the 

economy. Therefore, timely information on the functioning of these markets is of critical 

importance for regional policy. In particular, panel-type information on the social economic 

labour markets may be an important sign post for effective policy, as the spatial-temporal 

evolution of these markets is critical for understanding the emergency and persistence of 

spatial disparities among regions. Disparities in economic development and welfare within 

countries (at the regional level) are often bigger than between countries (Elhorst 1995, Taylor 

and Bradley 1997, Ertur and Le Gallo 2003, Patuelli 2007; see, for example, the cases of 

Germany and Italy), and they often show typical geographical/spatial structures. 

Consequently, spatial disparities have for decades been a source of policy concern and applied 

research (for a recent overview of this field, see Kochendörfer-Lucius and Pleskovic 2009). 

Spatial disparities occur in both developed and developing countries; their genesis may date 

back far in history, while their removal may take generations. 

For example, Germany faced, in the first semi-decade after reunification, an increase in 

unemployment, from 2.6 million people in 1991 to 4.3 million people in 1997 – or, including 

the hidden reserve, from 3 millions to 5.6 millions (Fuchs, et al. 2010). Unemployment 

remained, with only slight movements, at the same level for roughly 10 years, until the rapid 

decline after the 2005 reforms. In the period from 2006 to 2010 unemployment dropped again 

to the level of the early 1990s, despite the credit crunch. Throughout the high-unemployment 

period from 1995 to 2005, the unemployment rate in East Germany was 9 to 11 percentage 

points higher than the unemployment rate in West Germany; however, as we show later in the 

paper, there were large disparities within West German unemployment rates as well. In 

particular, in the two most recent years, the East-West disparities in the unemployment rates 

have diminished. 

Underperforming regions imply, for a (redistributive) state, the need to allocate a higher 

share of public spending to those regions, eventually creating distortions in the redistribution 

of tax revenues and increasing conflicts with local policy makers and the public. Additionally, 

high unemployment has historically been linked to a number of socioeconomic problems, 

such as single-parent households, underperformance of students in school, truancy rates, and 

more (Armstrong and Taylor 2000). Persistently high unemployment rates have been shown 

to be correlated with high shares of long-term unemployment and outmigration (for example, 

recent data for Southern Italy show an increase in the outmigration – toward the North – of 

the top university graduates; see SVIMEZ 2009). 
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With regard to regional unemployment disparities, policy makers need, in order to correctly 

target their actions and policies, to understand two aspects of such disparities: (a) the 

determinants of ‘equilibrium’ unemployment and its variation; and, (b) the region-specific 

and the cross-regional dynamics of unemployment. The determinants of unemployment have 

been studied extensively in the regional economic literature (Taylor and Bradley 1997, 

Badinger and Url 2002, Aragon, et al. 2003, Elhorst 2003, Niebuhr 2003, Basile and De 

Benedictis 2008, Nijkamp 2009, Zenou 2009, Moretti 2010, Oud, et al. 2010). Some attention 

has been as well devoted to the internal dynamics of regional unemployment, and to each 

region’s sensitivity to shocks, seasonal factors, and persistence of unemployment. The 

available literature is mostly focusing on a macroeconomic setting, such as in a ‘non-

accelerating inflation rate of unemployment (NAIRU)’ or in a (conditional/unconditional) 

‘convergence towards a natural rate of unemployment’ perspective (following the approach of 

Blanchard and Summers 1986; see, for example, Decressin and Fatás 1995, Song and Wu 

1997, Bayer and Juessen 2007, Garcia-del-Barrio and Gil-Alana 2009, Tyrowicz and Wójcik 

2010b, c, a). From a technical perspective, these studies generally test for unit roots in the 

unemployment series.1 However, they suffer from the major drawbacks of treating regions as 

homogeneous and/or cross-sectionally independent: they consider neither spatial correlation 

of shocks nor spatially structured heterogeneity in the adjustment process. 

Similarly, the correlation of unemployment rates in space – that is, between neighbouring 

regions – has been studied both in an exploratory/descriptive fashion (Molho 1995, López-

Bazo, del Barrio and Artis 2002, Cracolici, Cuffaro and Nijkamp 2007, Mayor and López 

2008, Patuelli, et al. 2010a), and with regard to the determinants of unemployment (Elhorst 

1995, Mitchell and Bill 2004, Kosfeld and Dreger 2006, Patacchini and Zenou 2007, 

Aldashev 2009), using spatial-econometric techniques. However, little effort has been made, 

aside from in a time series/forecasting context (Schanne, Wapler and Weyh 2009), to 

decompose the spatial dynamics of unemployment, so that region-specific autoregressive 

processes (responses to shocks), or region-specific seasonal characteristics can be traced. 

However, besides the old and general story that regions are not isolated islands, some specific 

arguments – such as commuting and internal migration, the spatial diffusion of information on 

vacancies, the (limited) search radius of unemployed persons, which affect the duration (and 

persistence) of individual unemployment – exist for spatially structured regional 
                                                 
1 Stationarity implies that a series has a distribution with finite variance and that it converges towards its long-

run expectation. Convergence between the regions arises only if the regional series have the same long-run 
expectation. In contrast, non-stationary regional series imply that shocks persist and that in the long-run the 
cross-regional distribution depends completely on accumulated (random) events. 
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interdependence in the development of aggregate unemployment. In other words, regions are 

expected to differ in their degree of persistence, and this heterogeneity is likely to show a 

spatial pattern.  

Policy makers who understand the specific characteristics of a region and of interregional 

dependencies are able to tackle problems more effectively and to anticipate more accurately 

necessary responses to aggregate and local shocks. Likewise, a group of (contiguous) regions 

that share common characteristics has the opportunity to develop common strategies (for 

example, within a single macro-region, such as a German Bundesland). We stress the need to 

investigate (break down) the components of region-specific dynamics, from an 

autoregressive/reaction-to-shocks viewpoint, so as to identify spatial patterns of common 

characteristics. A similar view was recently expressed by Partridge and Rickman (2010) in 

their review and discussion of (desirable) developments in CGE modelling. 

The empirical research in our study will address the development of regional labour markets 

over a longer period in Germany. This country offers a unique natural experiment for our 

purposes, as – in addition to the regular spatial dynamics of an advanced industrial economy –

the post-reunification effects appear to play a prominent role in the initial distribution of 

unemployment and the subsequent evolution of spatial disparities in the country, generating a 

certain amount of regional dynamics. Nevertheless, since unit-root tests are sensitive to 

structural breaks, it is important to deal properly with the direct impact of reunification. This 

paper aims to develop a number of autoregressive models for analysing regional 

unemployment between 1996 and 2004, that is, the period after the direct effect of 

reunification has fully realized, and before the major labour market reforms, in the 439 

German NUTS-3 regions (kreise). These administrative regions can be considered an ideal 

unit of analysis, because they directly relate to local policy-making choices, for example in 

public welfare, 2  in terms of attracting capital- or labour-intensive industries through the 

provision of a productive environment, infrastructure, enterprise zones, or by subsidizing 

desired economic activities. 3  We estimate autoregressive effects specific to both each 

administrative region and different urbanization and agglomeration degrees of regions. In 

addition to a standard fixed effects (FE)/individual slopes estimation, we propose an 

econometric procedure suggesting the use of spatial filtering (SF) techniques as a substitute 
                                                 
2 Until 2004, two parallel benefit systems for long-term unemployed coexisted. The ‘Arbeitslosenhilfe’ was 

administered by the local departments of the Federal Employment Agency, while the ‘Sozialhilfe’ was under 
the responsibility of the NUTS-3 authorities (kreise). 

3 Although the major part of subsidies is distributed by the federal states, the national government or the 
European Union, many programmes require co-funding from the local authorities, and availability depends on 
criteria often calculated at the NUTS-3 level. 
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for region-specific parameters in a panel estimation framework. The spatial filter is a proxy 

for spatially distributed region-specific information (e.g., the endowment of natural resources 

or the size of the ‘home market’) that is usually incorporated in the FE or in region-specific 

slope parameters. The approach presented here is beneficial, because it allows considerable 

savings in terms of degrees of freedom. Most importantly, the spatial filter provides a 

straightforward interpretation – as the linear combination of orthogonal spatial patterns – of 

the FE components surrogate. By incorporating region-specific information that generates 

spatial autocorrelation and dynamics, our procedure provides new insights about the spatial 

patterns that make it interesting to adopt the approach also for the analysis of other 

spatiotemporal processes, such as GDP growth/convergence, house price diffusion, and 

spread of diseases.  

In this paper, we present several experiments investigating the spatial patterns of 

autoregressive parameters estimated for the unemployment rates of German NUTS-3 regions. 

Our findings show that – on average – unemployment rates are rather persistent and that the 

levels of persistence have an identifiable spatial structure. The proposed methodological 

approach also shows to be a promising tool for the analysis of regional dynamics. 

Additionally, we propose a model based on spatial regimes, which allows to decompose the 

dynamic processes of regional unemployment rates according to agglomeration/urbanization 

criteria, rather than to the well-known – but oversimplifying – East-West Germany division. 

The remaining part of the paper is structured as follows. Section 2 describes the analytical 

design of the model used in our study. Sections 3 and 4 present the dataset used and the 

results obtained, respectively. Finally, Section 5 provides a rejoinder and conclusive remarks. 

 

2. Analytical Design of the Model 

 

2.1. The Traditional Approach 

 

The current standard approach to analyse the persistence of unemployment or, in a multi-

region context, its convergence speed (see, for a recent overview, Lee and Chang 2008) is to 

estimate a system of AR(1) processes, and to test each single equation as well as the entire 

system of equations for unit roots. Here, the basic equation for unemployment u in region i is 

given by Equation (1): 
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(1) , , 1 , ,i t i i t i i t i tu u s−= α + ,μ + + ε  

 

where μi denotes the average unemployment,4 si,t its seasonal component, and εi,t an i.i.d. 

mean-zero random disturbance. Stacked over all regions, this set can be written as the 

following system of equations: 

 

(2)  1 ,t n t n n t t−ι = + + + εU U A M S

 

where  is the n × n diagonal matrix of unemployment rates at time t, A1 ,( )n
t i idiag u==U ,t

,

                                                

n = 

(α1, …, αN)' and Mn = (μ1, …, μN)' are n ×  1 column vectors of parameters, St = (S1,t, …, SN,t)' 

is an n × 1 column vector (generated from the n × 3 matrix of parameters corresponding to the 

seasonal dummies, multiplied by the 3 × 1 matrix containing the seasonal dummies), ιn = 

(1, …, 1)' is a unit vector of length n, and εt = (ε1,t, …, εN,t)' is the n × 1 vector of residuals. 

The subscript n in An and Mn denotes the length of the parameter vectors. Vectors and 

matrices with subscript t always have length n. Mn is equivalent to FE in a panel framework.5

If the autoregressive parameter αi is smaller than 1 in absolute value, the impact of a 

“shock” εi,t will vanish over time, and the series will converge to its long-run expectiation. In 

contrast, if αi equals one, the process in region i has a unit root. A single equation is tested for 

stationarity by augmented Dickey-Fuller (ADF) tests, or by Phillips-Perron (PP) tests; 

likewise, various tests derived for panels or systems that rely as well on subtracting lagged 

unemployment from both sides of Equation (2) require the following form of Equation (2): 

 

(3)  1 1( ) ( )t t n t n n n t t− −− ι = − ι + + + εU U U A M S

 

Next, we may test if the elements of (An – ιn) are, individually or jointly, significantly less 

than zero.6 Some procedures test the entire set of parameters directly (for example, Sarno and 

Taylor 1998), whereas others combine the individual t-statistics to form a joint test statistic 

(see Maddala and Wu 1999 or Im, Pesaran and Shin 2003). As an alternative, restrictions may 
 

4 We assume that unemployment does not have a deterministic trend. 
5 For small time dimensions, the estimates of the autoregressive parameters are typically downward biased. 

With individual parameters, the Hurwicz bias is (1 3 ) .i i Tiα − α = − + α  The Nickell bias, 

(1 ) ( 1),Tα − α = − +α −  for a common parameter across the regions α1 = … = αn = α has a smaller size than the 
Hurwicz bias (Nickell 1981). However, it can be seen that both converge towards zero when T goes to infinity.  

6 The parameters αi – 1 follow, under the null hypothesis of a non-stationary process, a non-normal degenerate 
distribution, typically a Wiener process (also denoted as Brownian motion). 
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be imposed on the parameter, enabling a test only for stationarity of the average 

autoregressive process, as in Levin et al. (2002), or for the stationarity of a limited number of 

regime-specific processes (also referred to as the ‘convergence clubs’ hypothesis). 

Regarding the validity of panel unit-root tests, most of these procedures require the time 

dimension to be sufficiently large in order to converge and not to be plagued by the so-called 

Nickell bias arising in panels with a small time dimension (Nickell 1981) or by the Hurvicz 

bias in short times series. Moreover, Equations (2) and (3) are only estimable in a seemingly 

unrelated regression (SURE) form (that is, in a specification that allows for simultaneously 

correlated errors) when the number of regions is small. Else one has to assume independence 

of the regions, resulting in equation-wise unit-root tests with low efficiency/power. 

Nonetheless, cross-sectional correlation seems rather plausible, in particular when considering 

small spatial units, and therefore taking this structure into account in the error term εt is 

preferable. 

Cross-sectional (spatial) correlation arises not only in contemporaneous shocks, but also in 

levels and trends (as shown in TABLE 1), in seasonal patterns, or in the adjustment speed. On 

the one hand, these spatial patterns or correlations could likewise be utilized to get better – 

more efficient, more powerful, less demanding in terms of degrees of freedom, and large-N, 

small-T consistent – estimates of the average convergence speed. On the other hand, 

knowledge about spatial interdependence between the structures of a time-series – 

average/trend, seasonality, and autoregressive properties – may be of direct interest as well. 

 

TABLE 1: Descriptive statistics of regional unemployment, 1996–2004 

Region Mean St. dev. 1st quartile Median 3rd quartile MI 

Unemployment rates (levels, in %) 

Germany 11.8 5.5   7.6 10.1 15.4 0.903 

East 19.4 3.5 17.0 19.3 21.8  

North 11.1 2.8   9.0 10.7 13.0  

South   8.1 2.5   6.2   7.7   9.5  

First differences (in %) 

Germany   0.01 1.21 –0.43   0.11   0.59 0.623 

East   0.06 1.76 –0.88   0.30   1.22  

North –0.01 0.89 –0.34   0.06   0.40  

South –0.06 0.88 –0.72 –0.07   0.60  
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In the following subsection, we propose an alternative approach to estimating Equation (2), 

which decomposes the autoregressive processes according to exogenous spatial patterns that 

are representative of accessibility/contiguity relations between the regions studied. The 

benefit is twofold: (a) we obtain an explicit model of the spatial patterns in unemployment 

without being over-restrictive by imposing (probably erroneous) regime-specific constraints; 

and, (b) we are able to estimate more parsimoniously while covering the most relevant spatial 

structures.7

 

2.2. Spatial Filtering 

 

A wide array of methods, as well as several dedicated ‘spatial’ econometric procedures, for 

the statistical analysis of georeferenced data is available in the literature. Most commonly 

employed, spatial autoregressive techniques (see, for example, Anselin 1988) model 

interregional dependence explicitly by means of spatial weights matrices that provide 

measures of the spatial linkages between values of georeferenced variables, with a structure 

similar to serial correlation in time-series econometrics. 

An alternative approach to spatial autoregression, modelling spatial autocorrelation in the 

mean response rather than in the variance, is the use of spatial filtering (SF) techniques (Getis 

and Griffith 2002). Their advantage is that the studied variables (which are initially spatially 

correlated) are split into spatial and non-spatial components. Then these components can be 

employed in a linear regression framework. This conversion procedure requires the 

computation of a ‘spatial filter’. 

The SF technique introduced by Griffith (2003) is based on the computational formula of 

Moran’s I (MI) statistic.8 This eigenvector decomposition technique extracts n orthogonal, as 

well as uncorrelated, numerical components from the n × n modified spatial weights matrix: 

                                                 
7 This claim clearly needs to be further explored by simulation evidence showing that SF is a suitable 

substitute/approximation of the fixed effects. Preliminary simulation results by the authors suggest that the SF 
and SFGWR are fully competitive – unless N or T tend to infinite – with mainstream econometrics methods 
such as bias-corrected LSDV (Bun and Carree 2005) and Blundell and Bond (1998), in terms of parameter 
estimate bias.  

8 Moran’s I is calculated as follows: 

2

( )(
,

( ) ( )
ij i ji j

ij ii j i

N w x x x
I

w x x

− −
=

−
∑ ∑
∑ ∑ ∑

)x  

where, in the case of a set of n regions, xi is the value of the generic variable x in region i, and wij is the cell (i, 
j) of a spatial weights matrix W, indicating the proximity of each pair of regions i and j. 
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(4)  ( '/ ) ( '/n nn n= − ιι − ιιW I C I ),

                                                

 

where In is an identity matrix of dimension n, ι is an n × 1 unit vector, and C is a spatial 

weights matrix9 representing the spatial relation between each pair of regions; here we use a 

binary first-order contiguity (C-coding rook) matrix where element  equals 1 if regions i 

and j have a common border, and 0 otherwise. Matrix (  is the standard projection 

matrix found in the multivariate statistics and regression literature. Because matrix C is pre- 

and post-multiplied by the projection matrix [see Equation 

ijc

'/ )n n− ιιI

(4)], these eigenvectors are centred 

at zero. The eigenvectors extracted are in a decreasing order of spatial autocorrelation, and the 

first corresponds to the largest eigenvalue of W. Thus, the first two eigenvectors computed 

(E1 and E2) often identify map patterns along the cardinal points (that is, some rotated version 

of the major North-South and East-West patterns). Eigenvectors with intermediate values of 

MI display regional map patterns, whereas eigenvectors with smaller values of MI display 

local map patterns. The set of relevant eigenvectors – those explaining the spatial pattern in 

the variable of interest – can be found by regressing the dependent variable on the 

eigenvectors in a stepwise fashion, retaining the significant eigenvectors (or eliminating the 

insignificant ones). The linear combination of selected eigenvectors and their corresponding 

parameter estimates define the spatial filter for the variable of interest. In an autoregressive 

setting (where no covariates are employed), residuals obtained with stepwise regression 

constitute the spatially filtered component of the georeferenced variable examined (see 

Griffith 2000). The eigenvectors can be seen as independent map patterns that coincide with 

the latent spatial autocorrelation of a given georeferenced variable, according to a given 

spatial weights matrix. Moreover, they can work as proxies for omitted variables that show a 

certain coincidence or similarity regarding their spatial distribution. 

In this regard, Griffith’s SF approach works differently from Getis’ (1990, 1995), which 

decomposes each involved variable into a spatial and a nonspatial component, and requires 
 

)N
1

9 For a discussion of coding schemes and proximity definitions, see, with regard to the German NUTS-3 case, 
Patuelli et al. (2010b), and more generally Griffith and Peres-Neto (2006). However, across most definitions 
for spatial weights matrices, the weights corresponding to element (i,j) are highly positively correlated. The 
results in spatial filtering hardly depend on the matrix from which the eigenvectors are extracted, thus the 
choice of the weights matrix is of little importance (see Griffith 2000, Getis and Griffith 2002). This is due to 
the fact that eigenvectors extracted from one (geographical) matrix can almost surely be generated by a linear 
combination of eigenvectors extracted from any other (geographical) matrix. For example, the matrix 

 and its inverse  have the same eigenvectors, although the first may 
represent just a weighted average across the direct neighbours, whereas the latter represents an (infinite) 
distance-decay scheme. 

'(N N− ρ +I W W '[ ( )]N N N
−− ρ +I W W
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the use of non-negative variables. Moreover, differently from mainstream spatial econometric 

models, such as spatial lag or spatial error models, which are developed mostly in a linear 

estimation framework, the SF approach can be applied to any functional form. Additionally, 

the tools necessary for implementing the technique – eigenvector decomposition and stepwise 

regression – are available in all statistical software packages. 

Griffith (2008) shows that SF not only refers to the unobserved spatial correlation of a 

variable, but also contributes to the explanation of spatial heterogeneity in the parameters. An 

equivalent to the parameters of a geographically weighted regression (GWR, Brunsdon, 

Fotheringham and Charlton 1998) can be computed by introducing interaction terms between 

the exogenous variables of an equation and the eigenvectors extracted from a spatial weights 

matrix into a model specification. The possibility to combine the SF approach with a panel 

estimation framework and with geographically heterogeneous regression parameters (SFGWR) 

constitutes an additional advantage over existing methods. The next section details the 

functioning of the SFGWR approach. 

 

2.3. An Adjustment-Process Spatial Filter 

 

The parameters αi and μi in Equations (2) and (3) can be expected to show spatial 

heterogeneity,10 that is, a pattern in space that may be related to the structure of a spatial 

weights matrix, and for which they could be tested, for example, by computing these 

parameters’ MI. These spatial patterns can be and preferably should be considered explicitly 

instead of in the parameter-intensive formulation of heterogeneity given in Equations (2) and 

(3). We introduce spatial patterns by decomposing the terms An and/or Mn into a spatial and a 

non-spatial part, setting  and  where ω is an n × k matrix of 

eigenvectors E

n k= ω + ηA A n n ,n k= ω + νM M

k extracted from the normalized spatial weights matrix given in Equation (4) 

(Griffith 2003). ω collects the constant (that is, ιn) as well, because n nι  is also an 

eigenvector of matrix W. ηn and νn contain only non-spatial patterns within the individual 

parameters – hence they have zero mean and are orthogonal to the spatial process – and can 

                                                 
10 By the term spatial heterogeneity we refer to spatial structure in the parameters (i.e., the effects of variables), 

and by the term spatial correlation to spatial structure in variables. However, these terms are insofar related, as 
on the one hand, spatial correlation (e.g., in a spatial lag or spatial Durbin model) results in spatially 
heterogeneous marginal  impacts (e.g., see LeSage and Pace 2009, Chapter 2.7), and on the other hand, 
regression parameters can be considered as moments of (multivariate) distributions (in our case, the 
parameters μi represent the region-specific in-sample expectations of the unemployment rate) which may 
themselves be used as variables. 
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thus move to the residuals. As we can substitute both the level and the dynamic adjustment in 

a process by their spatial counterparts, three alternative specifications to Equation (2) yield: 

 

(5)  1 ;t n t n k n t t−ι = + ω + ν + + εU U A M S

(6)  and,  1 1( )t n t k t n n t tA− −ι = ω + η + + + εU U U M S ;

.

t

(7)  1 1( )t n t k t n k n t tA− −ι = ω + η + ω + ν + + εU U U M S

 

Equation (5) is the SF equivalent to the FE panel estimation [see Equation (2)]. In contrast, 

Equations (6) and (7) show similarities with the SF representation of GWR (Griffith 2008). 

 the first element of the parameters vector  and the one linked to the constant, 

estimates the average adjustment speed. The further autoregressive parameters specify 

regional patterns in the adjustment speed: for example, the parameters for the interaction 

terms between lagged unemployment and eigenvectors E

1,α ,kA

1 and E2 reflect regional deviations 

from the average adjustment speed along the cardinal coordinates, similarly to the patterns 

that the eigenvectors themselves represent for the levels. Similarly, the parameters for the 

subsequent eigenvector interactions reflect how the above deviations can be attributed to more 

composite spatial patterns: first global, then regional, and finally local. 

The new residuals vector – for example, defined as 1t t n n−ζ = η + ν + εU  in Equation (7) – 

may exhibit either a panel-specific mean-zero component (a random effect, when  or 

panel-specific serial correlation in the residuals (when  Nonetheless, the 

orthogonality between the spatial eigenvectors and the non-spatial time-constant component 

suffices to guarantee orthogonality between the regressors  and ζ

2 0),νσ >

2 0).ησ >

1( ,t− ω ωU ) t; that is, 

consistency of the estimation of Equations (5), (6) and (7). However, the overall variance of 

these equations is inflated by the variance of νn and/or Ut–1ηt with respect to Equation (2). 

 

2.4. Spatial Regimes 

 

An alternative approach to studying spatial heterogeneity in parameters is the introduction of 

explicit spatial regimes that, for example, distinguish between urban and rural economies, or 

to have one regime for each federal state (covering all districts within a single state). Because 

discrete schemes – in contrast to continuous parameter heterogeneity – allow results to be 

interpreted as a structural break (Anselin 1990), a common choice in applied work is to use 
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just two regimes: typically, North versus South for Europe (Ertur, Le Gallo and Baumont 

2006), or East versus West for Germany. In this paper, we apply a classification of regions by 

the German Federal Institute for Research on Building, Urban Affairs and Regional 

Development (Bundesinstitut für Bau-, Stadt- und Raumforschung, BBSR), which identifies 

nine different degrees of urbanization and agglomeration.11 The number of spatial regimes to 

use is rather heuristic, since the classification of districts is due to population density, and is 

not directly linked to labour market considerations. The intuition is that cities or 

agglomerations – which have a different industrial and firm structure, different information 

channels, and populations with different preferences than rural areas – adjust to shocks 

differently. 

In our analysis, we differentiate the (serial) autoregressive parameters (and seasonal effects) 

according to r = 9 discrete spatial regimes, and follow the previous estimation approaches for 

the region-specific levels (by FE or SF). Thus, let Dclass denote the n × r matrix that assigns a 

certain urbanization/agglomeration class to each region. In order to avoid perfect 

multicollinearity, there is no average autoregressive effect included in the equation system. ξn 

is the part of spatial heterogeneity in the autoregressive process that is not covered by the 

regimes, and that is considered unobservable. Then, the two spatial-regimes specifications are 

given by: 

 

(8) 1 class 1( )t n t r n t n t t− −ι = + + ;ξ + + εU U D A M U S  and 

(9) 1 class 1( )t n t r k t n n t t− −ι = + ω + .ξ + ν + + εU U D A M U S  

 

In summary, we present three different approaches to model spatially heterogeneous 

autoregressive processes: by individual, spatial-filtering, and spatial-regimes parameters. In 

addition, we can estimate a homogeneous parameter as well, as in a standard dynamic panel. 

The length of the parameter vector  in the SF autoregressive model is 1 < k ≤ n; that is, 

more parameters need to be estimated than in the homogeneous model (with 

kA

)iα = α  and, 

typically, much less than in the heterogeneous model of Equation (2). Likewise, the number 

                                                 
11 The nine classes are: (1) central cities in regions with urban agglomerations; (2) highly-urbanized districts in 

regions with urban agglomerations; (3) urbanized districts in regions with urban agglomerations; (4) rural 
districts in regions with urban agglomerations; (5) central cities in regions with tendencies towards 
agglomeration; (6) highly-urbanized districts in regions with tendencies towards agglomeration; (7) rural 
districts in regions with tendencies towards agglomeration; (8) urbanized districts in regions with rural 
features; and (9) rural districts in regions with rural features. 
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of spatial-regimes autoregressive parameters is 1 < r ≤ n. Thus, both the SF and the spatial-

regimes autoregressive models are more parsimonious than the individual model. 

Theoretically, all other model components are possible to modulate – deterministic mean 

and seasonal effects – according to the same four schemes. Instead of considering all 64 

possible models, in this paper we analyse only specifications where the deterministic mean is 

represented by FE or the spatial filter, and with homogeneous versus individual (region-

specific) autoregressive and seasonal effects. 

 

3. Data 

 

Germany has shown in the past two decades the emergence of interesting dynamics on its 

regional labour markets and is therefore, for our purposes, a good case study. Analyses in this 

paper employ data about German regional unemployment rates, at the NUTS-3 level of 

geographical aggregation (kreise, denominated ‘districts’ hereforth). The data are available 

for all 439 districts, on a quarterly basis, for the years 1996 to 2004.12

Summary statistics for the data at hand are presented in TABLE 1. The table results confirm 

that high and low (regional) unemployment rates are not randomly distributed across 

Germany. A first examination of the data suggests an asymmetric distribution, which is 

skewed toward high unemployment rates (the difference between the median and the third 

quartile is almost one standard deviation). When inspected spatially, the data show marked 

spatial autocorrelation (Moran’s I (MI) for the districts’ average unemployment is 0.878), 

which is further confirmed by descriptive statistics calculated for macro-regional subsets, and 

by the map in FIGURE 1a. While the former East Germany shows persistently high 

unemployment rates (averaging 19.4 per cent) with (apparently) little variation (the first 

quartile is 17 per cent), the former West Germany shows low-to-moderate rates in the North 

(Northrhine-Westfalia, Lower Saxony, Schleswig-Holstein, and the city-states of Bremen and 

Hamburg) and in the South (Bavaria, Baden-Wurttemberg, Hesse, Rhineland-Palatinate, and 

the Saarland). When differencing the data, one can note that a certain amount of spatial 

                                                 
12 The recently formed East German district of Eisenach (ID 16056) belonged to the Wartburgkreis district (ID 

16063) until the end of 1997. Thus, unemployment rates for Eisenach before 1998 are not available, and we 

set them equal to the ones of Wartburgkreis. Also, in the first quarter of 1996, labour force figures are not 

available for five East German regions. In order to compute unemployment rates, we set the labour force (the 

denominator of the rate) equal to the labour force reported in the subsequent four quarters (as it is determined 

only once per year by micro-census data). 
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autocorrelation remains (MI = 0.531), suggesting that not only the levels of unemployment, 

but also the dynamics, are spatially correlated. Again, this feature is evident in FIGURE 1b. 

This first finding implies that, when estimating a simple AR(1) panel model, one should 

expect spatial autocorrelation, as well as group-specific serial correlation, in the residuals. 

 

(a) (b)  

FIGURE 1: Quantile maps of average unemployment rates: in levels (a) and in one-year 

differences (b). 

 

A further visualization of the data, following Peng (2008), allows a plot of all data (15,804 

records) simultaneously, providing a bird’s eye view over regional disparities and trends. 

FIGURE 2a shows the unemployment rates of all German districts, by using a common 

colour scheme, where the different shadings are based on quantiles of the pooled data, and 

darker shades indicate higher unemployment. The graph (and the accompanying box plots) 

clearly shows that East German districts (in the bottom rows of each graph) have significantly 

higher unemployment. Seasonal effects are visible in the background, as the winter quarters 

show consistently higher unemployment (regularly occurring darker columns). It is also 

possible to identify some lightly coloured rows among the West German districts (in the left 

panel roughly at the top quarter, shortly below the first half of the rows for West Germany 

and little above the thick line separating East and West German districts; these rows indicate 

heterogeneity in the time-series characteristics within West German local unemployment rates, 

suggesting the inappropriateness of a homogeneous estimation approach.  
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(a) (b)  

FIGURE 2: Visual representation of German regional unemployment rates. 

Note: In the left graph, the colour scheme is common, in right graphs it is region-specific. The 

thick line separates West German (above) and East German (below) districts. The right 

margin shows box plots for each district’s time series. The bottom margin shows median 

features. 

 

Assigning to each district its own colour scheme (based on each time series’ quantiles), 

renders FIGURE 2b. Although most West German districts appear to have had their best 

performance (that is, lowest unemployment rates) between 2000 and 2002, this is not the case 

for the East German districts. Instead, they seem to have had lower unemployment in 1996.13

 

4. Empirical Application 

 

4.1. Fixed Effects and Spatial Filter Estimation 

 

In the preceding discussion, we presented a class of dynamic panel models, ranging from 

standard FE estimation [Equation (2)] to an alternative approach based on surrogating the FE 

by means of a spatial filter [Equation (5)], to GWR-type spatial filter and spatial regimes 

models. This subsection presents and compares results obtained for the first (FE and SF) 

approaches mentioned for a class of models with homogeneous and/or heterogeneous 

estimates of AR(1) parameters and seasonal effects. In particular, in TABLE 2, we compare 

                                                 
13 In this regard, it should be recalled that no NUTS-3-level unemployment data are available for East Germany 

before 1996. 
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summary results such as measures of fit (R2 and RMSE), (average) autoregressive parameters 

estimated by the two approaches, and spatial autocorrelation in regression residuals. 

 

TABLE 2: Selected results for the homogeneous and heterogeneous AR process models14

Level Homogeneous seasonality Heterogeneous seasonal effects 
 FE SF FE SF 

Homogeneous AR(1) process: α  
AR(1) coeff. 0.766 0.945 0.901 0.957 
Av. residuals MI 0.489 0.482 0.357 0.317 
Min. residuals MI 0.195 0.204 0.142 0.038 
Max residuals MI 0.775 0.734 0.754 0.767 
R2 0.977 0.975 0.992 0.991 
RMSE 0.827 0.872 0.504 0.530 
Res. Dfs 14,922 15,321 13,608 13,979 

Heterogeneous AR(1) process: 
ii nAα =  

Av. AR(1) coeff. 0.833 0.823 0.906 0.914 
Min. AR(1) coeff. 0.135 (3462) 0.113 (9271) 0.485 (14181) 0.594 (14188) 
Max. AR(1) coeff. 1.120 (5382) 1.275 (5162) 1.035 (5711) 1.137 (9677) 
No. of AR(1) ≥ 1   72/439   79/439   6/439 48/439 
No. of AR(1) < 1 
(ADF, 5% sign.) 

156/439 284/439 97/439 264/439 

Av. residuals MI 0.486 0.478 0.369 0.365 
Min. residuals MI 0.169 0.094 0.143 0.128 
Max residuals MI 0.787 0.804 0.782 0.805 
R2 0.981 0.980 0.992 0.992 
RMSE 0.753 0.777 0.493 0.500 
Res. Dfs 14,484 14,865 13,170 13,564 
 

 

The top left panel of TABLE 2 compares the most basic model specifications in terms of 

autoregressive parameters, in which just one (homogeneous) AR(1) parameter is estimated, 

assuming α1 = α2 = … = αN. The FE and SF approaches are then compared. We find that the 

computed AR(1) parameters differ between the two approaches. The FE estimation with 

common seasonal dummies yields a homogeneous AR(1) parameter of 0.766, and with 

region-specific seasonal dummies an AR(1) parameter of 0.901. The corresponding (not 

reported) bias-adjusted parameters – obtained applying a correction according to the formula 
                                                 
14 The (upward biased) autoregressive parameter estimated with a pooled OLS and homogeneous 

seasonaldummies is 0.993 (with a regionally clustered standard error of 0.0014), the asymptotically consistent 
Blundell-Bond estimator with homogeneous seasonaldummies is 0.902 (with a standard error of 0.0028).  
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for the Nickell bias (see Footnote 5) – would be approximately 0.815 (and 0.955 in case of 

heterogeneous seasonality). The SF estimations give slightly higher parameters of 0.945 and 

0.957, respectively. In anticipation of our further results, the two (corrected) parameter 

estimates from the FE specifications with homogeneous AR terms are insofar interesting, that 

they define (approximately) the range in which all other estimates for the average AR 

parameter fall, that is, the interval running from 0.81 to 0.96. The difference between the 

parameters does not seem to be high at first glance. However, the degree of persistence – 

measured as the half-life of a shock given by l  – varies from 3.25 quarters 

(corresponding to an AR parameter of 0.81) to approximately 17 quarters for an AR 

parameter of 0.96. 

n 0.5 / ln iα

In terms of model fit, the SF estimate provides a fit to the data – in terms of R2 – very 

similar to the one for the FE estimate (0.975 versus 0.977), while saving about 400 degrees of 

freedom. As stated in Section 2.3, the variance of the SF estimation is deemed to be (slightly) 

inflated with respect to the FE variance, which is also suggested by the computation of the 

RMSE (this is true for all estimations presented in TABLE 2). Meanwhile, in FIGURE 3 we 

can see how the SF computed (as the linear combination of the 39 eigenvectors selected) 

approximates the spatial patterns shown in the FE parameters. The spatial patterns shown in 

the two maps may be expected to include both region-specific variations from the average 

(homogeneous) AR(1) parameter and seasonal effects, as well as unobserved variables (such 

as, for example, other lags of the unemployment rate). Not surprisingly, the eigenvector 

contributing most to the SF is E2, which shows a clear NE-SW pattern, although it should be 

kept in mind that the amount of variance explained by this top eigenvector, in this dynamic 

panel framework, is less than 0.7 per cent of the one explained, for example, by the seasonal 

dummies. Subsequent eigenvectors are at least three times less informative than E2. 
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(a) (b)  

FIGURE 3: Quantile maps of the FE (a) and SF (b) computed for the homogeneous AR(1) 

process. 

 

Finally, the levels of residual spatial autocorrelation appear to be similar for the FE and SF 

approaches, with a tendency for the SF approach to obtain residuals slightly less correlated in 

space. The time-averaged residual per region is zero or very close to zero, and spatial 

autocorrelation is absent. Consequently, quarter-specific spatial autocorrelation can be related 

directly to each quarter’s specific shocks or unobserved characteristics (beyond direct 

seasonal effects, which are included in the model), and no recurring pattern exists over time. 

Subsequently, the bottom left panel of TABLE 2 provides summary results for estimation of 

the models presented in Equations (2) and (5), estimating heterogeneous AR(1) parameters 

according to the FE and SF approaches, respectively. In contrast with the homogeneous case, 

where the estimated AR(1) parameter differed markedly between the two models, the 

estimates obtained here are rather similar on average, although the number of estimated 

parameters greater than or equal to 1 is slightly different: 72 and 79 for the FE and SF 

approaches, respectively. However, tests on the Dickey-Fuller transformation of the system 

suggest that unit roots can be excluded (at the 95 per cent critical value of a student-t 

distribution) for 156 districts in the FE approach and for 284 districts in the SF approach.  

Once again, eigenvector E2 is the most informative one, but in this occasion also 

eigenvector E1 emerges amongst the main ones. The quantity of variance explained by the top 

eigenvector (E2) is now greater in relative terms, for example if compared to the one of the 

seasonal dummies (4 per cent rather than the previous 0.7 per cent). 
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A certain level of numerical differences may be expected between the two vectors of AR(1) 

parameters (given in FIGURE 4). Indeed, the number of eigenvectors selected is distinct 

between a direct extraction of the SF (the procedure followed in this paper) and an indirect 

procedure, where FE are computed first, and an SF is extracted from the FE parameters vector. 

In the former case, fewer eigenvectors are selected, most likely because of the error 

component εt [see Equation (2)] not being considered in the indirect procedure. In contrast, a 

number of eigenvectors are selected only in the direct procedure, suggesting a correlation 

between these eigenvectors and the covariates (for example,  is not assumed to be 

orthogonal to the eigenvectors). Consequently, possible differences exist between the AR(1) 

vectors of parameters for Equations 

1t−U

(2) and (5). The extent of these differences depends on 

each specific case, and their direction remains to be fully inspected with a simulation 

experiment. With regard to the present analysis, clear differences appear to be mostly in the 

extremes, as shown by the similar quantiles and geographical patterns appearing in FIGURE 4. 

Both maps indicate higher first-quarter autoregressive effects in the western urbanized areas 

going (South to North) from Munich to the Stuttgart and Mannheim areas, to the Ruhr and 

Rhine areas, to Bremen, patterns that generally resemble the spatial distribution of population 

density in Germany. 

(a) (b)  

FIGURE 4: Quantile maps of estimated heterogeneous AR(1) parameters: FE (a) and SF (b) 

approaches [parameters αi according to Equations (2) and (5)]. 

 

Conceivably, once we let the autoregressive parameter vary over the cross-section of 

districts, the measures of fit of the models (R2 and RMSE) improve, while 438 (that is, n – 1) 

additional degrees of freedom are consumed. Again, the SF estimation allows us to save about 
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420 degrees of freedom, while approximating closely the spatial patterns included in the FE 

parameters (FIGURE 5). Finally, residual spatial autocorrelation is the same – on average – in 

both the homogeneous and heterogeneous AR(1) parameter estimates, with the SF exhibiting 

lower minima in this regard. 

 

(a) (b)  

FIGURE 5: Quantile maps of the FE (a) and SF (b) computed for the heterogeneous AR(1) 

process [levels in Equations (2) and (5)]. 

 

Finally, the right-hand panels of TABLE 2 provide additional empirical results, as the above 

models are extended to include individual (heterogeneous) seasonal effects. This extension 

implies computing (439 * 3 =) 1,317 regression parameters rather than the three previously 

computed seasonal parameters (for spring, summer and fall, while winter is used as the 

reference category). In the case in which both the autoregressive and seasonal effects are 

computed for each district, which we use as our example in the following discussion, (439 * 4 

+ 1 =) 1,757 parameters are computed, which increase to (439 * 5 =) 2,195 in the FE case.15 

As a result, an improved fit (higher R2 and lower RMSE) as well as a diminished spatial 

autocorrelation in the residuals may be expected, which is confirmed by the summary 

statistics reported in TABLE 2. In addition, higher average AR(1) parameters are found, 

though with comparable results in terms of unit roots, as suggested by the ADF test results. 

Noteworthy are the changes in the spatial distribution of the AR(1) parameters and of the FE 

                                                 
15 Needless to say, the increase in computational load leads to a much slower stepwise selection of the SF, which 

on the other hand may be improved by the use of faster CPUs, by implementing stepwise solutions suitable for 
multi-core computers or clusters, or by resorting to different types of model selection procedures (see, for 
example, Miller 2002). 
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estimates, as shown in FIGURE 6. FIGURE 6a, referring to the AR(1) parameters, portrays 

patterns appearing in FIGURE 4 that are more sparse, as the result of individual seasonal 

effects having been filtered out. Meanwhile, FIGURE 6b, appears more similar to FIGURE 5, 

although it is slightly smoother. 

  

(a) (b)  

FIGURE 6: Quantile maps of the AR(1) (a) and FE (b) parameters computed for the 

heterogeneous AR(1) and seasonal process (FE estimation). 

 

The analyses presented above suggest that SF may be used to approximate the standard FE 

estimation for the study of unemployment persistence. Each of the two approaches appears to 

have specific advantages, allowing a researcher to choose freely between them on the basis of 

his/her needs. However, further approaches to decomposing region-specific autoregressive 

effects can be employed, as suggested in Sections 2.3 and 2.4. Results obtained for these 

additional classes of models are presented next. 

 

4.2. Spatial Filter/Fixed Effects in the Autoregressive Component 

 

The maps of the AR(1) parameters appearing in FIGURE 4 and the related MI scores 

highlight that autoregressive parameters are indeed strongly spatially correlated. As proposed 

in Section 2.3, the spatial patterns obtained according to Equation (5), by computing n 

autoregressive parameters, may be approximated by parameter expansion in a spatial-filter 

GWR-fashion. Equations (6) and (7) give the FE and SF specifications, respectively, implying 

that, for the latter, two spatial filters are computed (or, more generally, one for each SFGWR-
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type regressor, plus the SF substituting the FE). In our specific case, substituting An by its SF 

representation implies saving 392 degrees of freedom (47 versus 439 AR-related regressors), 

while extending the SFGWR-type approach to seasonal effects allows us to save 1,602 

degrees of freedom (154 versus 1,756 = 439 * 4), although at the (opportunity) cost of 

running extensive stepwise regression in order to select the relevant eigenvectors. 16  The 

relevance of such a huge saving in terms of degrees of freedom becomes evident when 

considering panels with large N and small T. In addition, the computational intensity of the 

spatial filter construction only applies to the first estimation of the model, while subsequent 

estimations – for example, for forecasting purposes – are faster than in the respective cases of 

Equations (2) and (5), because the relevant eigenvectors already have been selected. 

TABLE 3 reports summary statistics for the aforementioned model specifications. The 

mean, minimum and maximum AR(1) parameters reported for the SFGWR model (left panel) 

appear to provide a picture similar to the one found in TABLE 2 for the case of the 

heterogeneous AR(1) process, with the exception of a higher average parameter in the SF case. 

The inferential advantage with regard to unit root testing becomes evident: while above the 

SF model with heterogeneous AR(1) process allows to reject – at a 5 per cent  significance 

level – 264 to 284 unit roots and the FE model with heterogeneous seasonality and AR(1) 

process has a unit-root rejection rate of less than one quarter of the regions, the SFGWR 

model leads to a further increase of the rejection rate, reaching 337 unit root rejections for the 

SFGWR model with heterogeneous seasonality and fixed effects (third column of TABLE 

3).17 Additionally, we can observe that the GWR models using FEs have roughly the same 

rejection frequency as the models using SF for the levels (274 vs 270, 337 vs 317) although 

the estimated average adjustment parameters are smaller in value – that is, the models using 

SF for the levels seem to be more efficient. 

 

                                                 

).

k

16  Given our starting set of 98 candidate eigenvectors, a backward stepwise regression identifying a SFGWR 
representation of both the AR(1) parameters and the seasonal effects evaluates, in the first step, (98 * 4 =) 392 
models in the FE case, and (98 * 5 =) 490 models in the SF case. 

17  For the GWR-type models, the vector of AR(1) parameters is obtained as the linear combination of the related 
eigenvectors, using as weights the regression parameters computed for the interactions terms between the 
lagged unemployment rates and the eigenvectors themselves (  Seasonal parameters for each 
season, when included, are computed in a similar fashion. Because of this construction, unit root tests are 
computed as t-tests, where the variance of each region’s autoregressive parameter α

i i kα = ω ⋅ A

i is computed as 
 and  is the kth diagonal element of the variance-covariance (sub)matrix of the K 

eigenvectors selected. 

2 2var( ) ,i kik
α = ω σ∑ 2

kσ
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TABLE 3: Selected results for the spatial-filter-GWR (SFGWR) AR process models 

Level Heterogeneous AR(1) process Heterogeneous AR(1) process 
& seasonal effects 

 FE SF FE SF 

Spatial filter AR(1) process:  i iα = ω ⋅ Ak

Av. AR(1) coeff. 0.853 0.935 0.882 0.961 
Min. AR(1) coeff. 0.162 (9276) 0.276 (9271) 0.530 (14188) 0.697 (9271) 
Max. AR(1) coeff. 1.238 (7338) 1.211 (5374) 1.163 (9274) 1.140 (5374) 
No. of AR(1) > 1 94/439 136/439 44/439 94/439 
No. of AR(1) < 1 
(ADF, 5% sign.) 

274/439 270/439 337/439 317/439 

Av. residuals MI 0.481 0.440 0.333   0.176 
Min. residuals MI 0.139 0.129 0.012 –0.016 
Max residuals MI 0.817 0.730 0.803   0.704 
R2 0.980 0.978 0.985 0.986 
RMSE 0.776 0.824 0.666 0.650 
Res. Dfs 14,876 15,227 14,772 15,064 
Selected eigenvecs 
for SFGWR-AR(1)  

46 64 27 46 

 

 

Once again, the levels of spatial autocorrelation in the residuals vary greatly, depending on 

quarter-specific noise, and are comparable but slightly lower than the earlier ones. RMSE 

increases moderately, as expected, but is being balanced out by the aforementioned huge 

savings in terms of degrees of freedom. These results are confirmed by extending the SFGWR 

specification to seasonal effects (right panel). 

In terms of the spatial autocorrelation observed in the AR(1) parameters resulting from 

Equations (6) and (7), FIGURE 7 confirms the similarities with the spatial distribution of 

population density. The spatial distribution of the estimated FE and SF (plotted in FIGURE 8) 

again is consistent pairwise, showing higher unexplained variation in the levels for East 

German districts. Not surprisingly, the light-shaded areas of FIGURE 7 appear to match the 

dark-shaded areas of FIGURE 8, as greater relative stability in the East German 

unemployment rates due to time-constant unobserved regional characteristics (or just lower 

dependence from their one-quarter lag) is reflected in the FE or in the SF. Similar 

observations can be made by comparing FIGURE 4 and 6, or the two maps in FIGURE 6. 
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(a) (b)  

FIGURE 7: Quantile maps of estimated spatial-filter-GWR (SFGWR) AR(1) parameters: FE 

(a) and SF (b) approaches. 

 

(a) (b)  

FIGURE 8: Quantile maps of the FE (a) and SF (b) computed for the spatial filter AR(1) 

process. 

 

As we already noted, the spatial-filter GWR surrogate for the region-specific autoregressive 

parameters allows identification of the spatial structure underlying the heterogeneity of the 

dynamic labour market process. Amongst the selected eigenvectors in the SFGWR 

specification with a spatial filter for the level component and homogeneous seasonal figures 

(FIGURE 7b and FIGURE 8b), there are four (of the five) eigenvectors associated with global 
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patterns – that is, eigenvectors which, when the values are plotted into a map, show one or 

two large ‘peaks’ and one or two big ‘valleys’ spreading out over a large areas. 40 selected 

eigenvectors can be associated with regional, and 20 with local patterns. 18  Since all 

eigenvectors have the same scale (their values have an identical standard deviation), the 

partial contribution of each eigenvector to the overall autoregressive process is sized 

proportionately to the absolute value of the corresponding parameter. However, amongst the 

15 eigenvectors with the highest parameter in absolute value, only two are global and two are 

local (the first local is at position 13), but 11 eigenvectors reflect regional patterns. In the 

other specifications, we find a similar selection of eigenvectors (the same four global, and 

roughly twice as many regional as local). However, in the corresponding SFGWR estimation 

using fixed effects (i.e., when the levels are forced to show maximum heterogeneity), all four 

global eigenvectors are amongst the 15 most influential eigenvectors. 

More interestingly, there is a negative relation between the parameters associated with the 

(common) eigenvectors selected for modelling serial dependence and for the levels, as 

suggested by FIGURE 9. Additionally, eigenvectors which are selected only in one case (for 

which we include a value of zero in case of non-selection) have parameter values closer to 

zero even when significant, showing that the common eigenvectors are the ones with the 

greatest importance in both filters. On the other hand, the negative Pearson correlation of –

0.89 (–0.93 for the common subset) between the two sets of parameters suggests that the SF 

in the levels behaves in the opposite way than the SF for the AR(1) parameters.19  This 

indicates a trade-off between the level of persistence (i.e., serial dependence) and the 

influence of the (deterministic) level showing the spatial pattern modelled by the filter: 

unemployment is then represented as a weighted average of (more or less) persistent random 

elements (with a set of weight a) and deterministic elements [with weights (1 – a)] The more 

unemployment in a certain number of contingent regions (described by the mapping pattern of 

the eigenvectors) is driven by persistent shocks, the less important are the deterministic 

components in these regions – and vice versa, the lower the persistence, the faster regions 

adjust towards their initial (or natural) levels which become more important. This finding 

calls for further analytical investigation, which goes beyond this paper’s objective. 

                                                 
18 The classification of global, regional and local eigenvectors is according to the table for 98 candidate 

eigenvectors extracted from a rook C-coding matrix given by Patuelli et al. (2010b). Eigenvectors 1 to 5 are 
considered global, 6 to 66 regional and 67 to 98 local. 

19 A similar finding is obtained when both the AR(1) and the seasonal parameters are computed by means of the 
GWR-SF approximation. A Pearson correlation of –0.83 is obtained the two sets, and –0.91 is found for the 
common sets. 
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FIGURE 9: Correlation between the parameters of the eigenvectors selected for the SFGWR 

AR interpolation and for the levels (with homogeneous seasonal effects). 

 

Finally, the residual variance and the number of parameters of the models presented above 

can be combined to compute various information criteria (see TABLE 5, in the Annex). The 

Akaike information criterion (AIC) suggests that the SFGWR specification for the 

autoregressive process uses the information best, when compared to other model 

specifications, and that FE in the levels are superior to the SF. However, the AIC is often 

considered not adequate (or weak) for finite samples, and other criteria may be more reliable. 

The Schwartz Bayesian information criterion (BIC), which is often found to be over-selective, 

indicates superiority of the SF in the levels compared to the FE, and superiority of the SF AR 

process as well, because of the greater importance given to the degrees of freedom saved. The 

 25



advantage of spatial filters in modelling both levels and autoregressive processes is confirmed 

by the Hannan-Quinn information criterion (HQ). 

 

4.3 Adjustment to Shocks According to the Spatial Regimes  

 

In our final analysis, we present, in TABLE 4, summary statistics for the spatial regimes 

specification introduced in Equations (8) and (9). In these specifications, heterogeneity of the 

autoregressive parameters is introduced by distinguishing between districts with different 

levels of agglomeration and urbanization. Consequently, instead of n AR(1) parameters, only 

nine are computed, corresponding to the specific classes introduced in Section 2.4. This 

approach makes identification of (average) autoregressive (and seasonal) effects possible for 

classes such as city-districts in agglomerated areas, or rural districts belonging to rural areas. 

The results obtained by applying the spatial regimes decomposition to the AR(1) process 

alone are shown in the left panel of TABLE 4. We obtain nine AR(1) parameters ranging 

from 0.613 to 0.984 in the FE case, and from 0.927 to 0.949 in the SF case. These results are 

consistent with our previous findings (see TABLE 2). It turns out that the average AR 

parameters are higher for the SF approach, but when employing ADF tests only the FE case 

presents a unit root. This single unit root (which is not confirmed when decomposing seasonal 

effects as well) is found for districts of type 1 (that is, ‘central cities in regions with urban 

agglomerations’). Our findings confirm the tendency of the AR(1) parameters to resemble the 

spatial distribution of population density, and of the central business districts (CBDs) of dense 

regions to show the highest parameters. FIGURE 10 maps the values found for the spatial 

regimes AR(1) parameters (SF estimation with homogeneous seasonal effects), and clearly 

shows that this approach provides a rough approximation of the parameter estimates obtained 

above, while showing – within a general picture of high persistence – some core-periphery 

patterns between the ‘central cities’ (type 1 and 5 districts, with higher persistence) and their 

surroundings; equality of all nine AR parameters is rejected both in the FE estimations and in 

the SF estimations. However, the regimes approach associates also a high degree of 

persistence to agglomerated areas in Eastern Germany (e.g., Dresden, Berlin or Chemnitz) 

which has not been found when using individual parameters (see FIGURE 4), that is, this 

rough approximation may indeed be missing some pattern. There are pros and cons to using 

spatial regimes, and this preliminary finding may deserve further investigation in the future 

research. 

 

 26



TABLE 4: Selected results for the spatial-regimes AR(1) process models 

Level Heterogeneous AR(1) process Heterogeneous AR(1) process & 
seasonal effects 

 FE SF FE SF 

Spatial-regimes AR(1) process: i iα = ⋅D Ar  

Av. AR(1) coeff. 0.808 0.937 0.812 0.946 
Min. AR(1) coeff. 0.613 (type 9) 0.927 (type 9) 0.670 (type 3) 0.916 (type 2) 
Max. AR(1) coeff. 0.984 (type 1) 0.949 (type 5) 0.934 (type 1) 0.960 (type 9) 
No. of AR(1) ≥ 1 0/9 0/9 0/9 0/9 
No. of AR(1) < 1 
(ADF, 5% sign.) 

8/9 9/9 9/9 9/9 

Av. residuals MI 0.485 0.476 0.425 0.417 
Min. residuals MI 0.195 0.198 0.167 0.178 
Max residuals MI 0.769 0.746 0.747 0.729 
R2 0.978 0.975 0.981 0.979 
RMSE 0.810 0.869 0.754 0.798 
Res. Dfs 14,914 15,306 14,890 15,291 
 

 
FIGURE 10: Map of estimated spatial-regimes AR(1) parameters: SF approach [parameters αr 

according to Equation (9)]. 

 

4.4 Concluding Remarks: Persistence of Unemployment 

 

The empirical findings presented in this section give a clear picture of unemployment 

persistence in Germany. We find the adjustment speed of regional unemployment to shocks to 
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be extremely heterogeneous, which makes estimation of a single AR-parameter look 

unreasonable and supports our call for regionally disaggregated estimations. Modelling the 

heterogeneity by SF-GWR seems to capture most of this heterogeneity, but spatial regimes do 

surprisingly well too. The averages over the AR parameters – and the majority of them – 

throughout the various specifications lie between 0.76 and 0.96, that is, close to 1. Thus, 

shocks to unemployment may be expected to be persistent, or at least to have a long half-life 

in most regions. For example, an AR parameter of 0.8 is equivalent to a half-life of more than 

three quarters, or the effect of the shock vanishing after eight years (10 times the half-life); an 

AR parameter of 0.9 corresponds to a half-life of 6.6 quarters, and a parameter of 0.95 to a 

half-life of 13.5 quarters. When using Dickey-Fuller equivalent transformations of the models, 

we can reject the hypothesis that the difference of the average autoregressive parameter minus 

one – the average of this distance is between –0.24 and –0.04 – is greater than or equal to zero. 

At least on average, unemployment is stationary – a necessary condition for the existence of 

(conditional) convergence – although non-stationarity can hardly be rejected for a large 

fraction of regions. Thus, unemployment adjusts very slowly – if ever – toward a kind of 

natural rate; it behaves (in particular in the agglomerated districts along the river Rhine) more 

like a random walk. Saying that there is clear evidence of (cross-sectional) convergence 

among the rates would be an excessive statement. 

Our findings are particularly significant with regard to exogenous shocks: positive, in the 

case of active labour market policy interventions; negative, as in the case of the recent global 

economic crisis. Strong persistence of the regional unemployment rates suggests that a 

negative shock, due for example to a sudden increase in labour supply, to not-anticipated 

deflation, or to economic catastrophes, would take a rather long time to be absorbed. We can 

think, for example, of new labour regulations for foreign workers (the enlargement of the 

European Union from EU-15 to EU-25), of the collapse of the states/markets belonging to the 

socialist Council for Mutual Economic Aid (Comecon) in the late 1980s/early 1990s 

(affecting the former German Democratic Republic), or of political events as in Card (1990). 

In this regard, there is potential in expanding the above analyses to the analysis of relative 

unemployment, which appears to have different persistence dynamics than the absolute levels 

[see, e.g., Jimeno and Bentolila (1998), where the determinants of unemployment persistence 

are also discussed]. 
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5. Conclusions 

 

Studies about the convergence or persistence of unemployment typically employ univariate 

autoregressive equations and test them for stationarity. This procedure is straightforward and 

computationally simple, but can hardly account for cross-sectional heterogeneity and 

dependence – thus, in the best case, it is statistically inefficient (imprecise) or, in the worst 

case, mispecified. Derived conclusions may then be misleading. 

In this paper, we have focused on two questions. First, starting with a system of AR(1) 

equations, we aimed to show the substitutability of fixed effects (FE) and spatial filters and, 

analogously for autoregressive processes, the one between individual autoregressive 

parameters and SF GWR-type estimation. The SF surrogates [which allow to decompose the 

FE into a spatially structured and a spatially unstructured (random) part] are more 

parsimonious with regard to the number of parameters, and use, instead of region-specific 

parameters, a set of parameters defined and computed over all regions. 

Second, we applied SF methods when analysing the dynamics of quarterly regional 

unemployment rates for Germany from 1996 to 2004. Because the eigenvectors employed in 

an SF represent map patterns, one advantage of this approach is that the heterogeneous 

autoregressive adjustment parameters of the GWR-type models have a geographical 

interpretation. For comparison, we also provided estimates of a homogeneous autoregressive 

process, and of one approach differentiated according to nine urbanization/agglomeration 

regimes. 

Indeed, when comparing pairwise the individual and SF specifications for the process 

component (AR or level), keeping everything else equal, we found that the SF approach 

provides a gain in residual degrees of freedom, without losing much estimation accuracy, 

measured, for example, in terms of goodness-of-fit (R²) or root mean squared error (RMSE). 

We found, for the SF AR specification, some gain in precision when compared with the 

homogeneous and spatial regime specifications. Summary diagnostics for all models, based 

on information criteria, provided a confirmation of the potential of the proposed SF-based 

models. The residuals from individually-specified models and of their corresponding SF 

equivalents are highly correlated, and the error distributions are quite similar pairwise. The 

estimates for the average autoregressive parameter vary, in particular, between the FE 

estimation with homogeneous seasonal effects (0.76–0.85) and the remaining 

level/seasonality combinations (0.90–0.96). Consequently, a potential bias in the 

autoregressive parameter does not seem to depend on the way in which the autoregressive 
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process is specified. However, obtaining exact evidence about the consistency of the AR 

estimates is only possible by means of Monte Carlo simulation. This aspect will be the subject 

of future research, since here we limit ourselves to showcasing the practical relevance of the 

proposed approaches. A further aspect that may be expected to be investigated in future 

research is the extension of the proposed models to the estimation of nonlinear regression 

models (e.g., in the case of unemployment rates, the logistic regression), for which panel 

models are generally less popular in the econometric literature and competition with other 

applied statistics fields is stronger (e.g., generalized linear mixed models). 
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Annex 

 

TABLE 5: Information criteria results 

AR process Levels  Seasonality Av._AR     R²    RMSE      Res. Dfs.   K          AIC          BIC          HQ 

Homogenous     FE Homogenous    0.766 0.996 0.827 14922   443 –0.321 –0.095 –0.246 

Homogenous SF Homogenous    0.945 0.975 0.872 15321     44 –0.268 –0.246 –0.261 

Homogenous FE Heterogeneous 0.901 0.992 0.504 13608 1757 –1.112 –0.141 –0.789 

Homogenous SF Heterogeneous 0.957 0.991 0.530 13979 1386 –1.071 –0.323 –0.822 

Heterogeneous FE Homogenous    0.833 0.981 0.753 14484   881 –0.446   0.015 –0.292 

Heterogeneous SF Homogenous    0.823 0.980 0.777 14865   500 –0.437 –0.181 –0.352 

Heterogeneous FE Heterogeneous 0.906 0.992 0.493 13170 2195 –1.081   0.166 –0.665 

Heterogeneous SF Heterogeneous 0.914 0.992 0.500 13564 1801 –1.121 –0.123 –0.788 

SFGWR FE Homogenous    0.853 0.980 0.849 14876   489 –0.262 –0.012 –0.179 

SFGWR SF Homogenous    0.935 0.978 0.824 15227   138 –0.369 –0.300 –0.346 

SFGWR FE Heterogeneous 0.882 0.985 0.666 14772   593 –0.733 –0.428 –0.631 

SFGWR SF Heterogeneous 0.961 0.986 0.650 15064   301 –0.822 –0.669 –0.771 

Spatial regimes FE Homogenous    0.808 0.978 0.810 14914   451 –0.361 –0.131 –0.285 

Spatial regimes SF Homogenous    0.937 0.975 0.869 15306     59 –0.273 –0.244 –0.263 

Spatial regimes FE Heterogeneous 0.812 0.714 0.754 14890   475 –0.501 –0.258 –0.420 

Spatial regimes SF Heterogeneous 0.946 0.979 0.798 15291     74 –0.442 –0.405 –0.429 

 



 


	 Persistence of Regional Unemployment: Application of a Spatial Filtering Approach to Local Labour Markets in Germany
	Roberto Patuelli,1 Norbert Schanne,2
	Daniel A. Griffith,3 and Peter Nijkamp4
	ABSTRACT

