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Abstract

In this paper we study marriage formation through a two-sided secretary prob-

lem approach. We consider individuals with nontransferable utility and two di¤erent

dimensions of heterogeneity, a characteristic evaluated according to the idiosyncratic

preferences of potential partners, and an universally-rankable characteristic. There are

two possible states of the world, one in which people meet their partner randomly,

and one in which the meeting occurs between individuals with similar characteristics.

We show that individuals with higher universal characteristic tend to be more picky

in their marriage hunting. This does not necessarily mean that they marry later than

other individuals, since the higher expected quality of their potential partners in the

assortative meeting state can make them marry earlier than individuals with a lower

universal characteristic.
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1 Introduction

In economic theory, marriage formation has been studied according to di¤erent approaches.

A �rst way is the theory, pioneered by Gale and Shapley (1962) and surveyed and extended

by Roth and Sotomayor (1990), who proved the existence of stable matchings. A di¤erent

perspective is based on the assignment problem (Shapley and Shubik, 1972 and Becker,

1973). In the developments of the assignment problem, the literature borrowed the stan-

dard Diamond-Mortensen-Pissarides search framework (see Shimer and Smith, 2000, and

Atakan, 2006, inter alia).

The underlying assumption of these approaches is that all preferences are known. How-

ever, there are many situations in which individuals do not know their own preferences from

the beginning. For example, an individual may base his preferences on the potential part-

ner whom he or she meets only. Also, an individual would not be able to meet all the

potential partners if they live in another city or country, and even assuming that this may

be possible with the new technologies (such as social networks, or dating online services),

time is a scarce resource and some individuals will never have the chance of meeting each

other, even though they are a perfect match. In these types of situations where only a

small portion of preferences will ever be revealed, investigating the best overall matching

may not be the most relevant analysis.

In this paper we study marriage formation by assuming that individuals learn their

preferences during the search of potential partners. The framework considered is a re�ned

version of the �secretary problem�(Chow et al., 1964), which can be explained as follows.

Imagine an administrator who wants to hire the best secretary out of rankable applicants

for a position. Applicants are interviewed one-by-one in random order. A decision about

each particular applicant is to be taken immediately after the interview. Once rejected,

an applicant cannot be recalled. During the interview, the administrator can rank the

applicant among all applicants interviewed so far, but is unaware of the quality of yet

unseen applicants. The question is about the optimal strategy (stopping rule) to maximize

the probability of selecting the best applicant.

Our model di¤ers from the traditional secretary problem for two main elements. First,

in order to represent marriage formation, the secretary problem needs to be considered

�two-sided�, i.e., each partner needs to determine his or her stopping rule (Eriksson et al.,

2007).1 Second, like in the literature of economics of marriage, we consider the possibility

1 In addition, in the classical secretary problem a player ranks a potential partner by a natural number
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that individuals are assortatively matched.

Unlike the stable matching theory, in which each player knows all his/her preferences

in advance, in the secretary problem preferences are only revealed slowly as the player

meets new potential partners. On the other hand, in the secretary problem we have no

guarantees that the marriages will be stable. Compared to the search models, in which

potential partners are met with a Poisson arrival (Diamond, 1982, Mortensen, 1982 and

Pissarides, 1990), in our approach a meeting with a potential partner takes place in each

period.

We consider heterogeneous agents with nontransferable utility,2 and we try to generalise

marriage formation by taking into account two di¤erent dimensions of heterogeneity in the

characteristics of an individual. Each individual has a characteristic whose evaluation by

potential partners depends on the speci�c idiosyncratic preference of the partner (�speci�c�

characteristic) and another characteristic (�universal� characteristic) that can be ranked

in the same way by all individuals, such as income, beauty, social status, and so on.3

Another important di¤erence between the present analysis and the standard literature

of marriage formation is the way we deal with the relationship between the partners�

characteristics. A common element in the marriage formation analysis is the presence

of �assortative matching� (Becker, 1973), which alludes to a relationship between the

characteristics of partners.4 In the matching literature, assortative matching is assumed

to occur in equilibrium (Becker, 1973 in the seminal paper and Shimer and Smith, 2000,

in the search paper, inter alia) according to the characteristics of the utility function. In

particular, a positive (negative) assortative matching is optimal in equilibrium whenever

the utility function is �supermodular�(submodular) in the partners�characteristics, which

in words means that the transferable utility function is higher if partners have similar

(di¤erent) characteristics.5 In our model, we assume that individuals with similar universal

from [0; N ], and two potential partners cannot have the same ranks, while we suppose that the partner�s
rank is a real number from [0; 1], and a player can meet partners with the same ranks during the game.

2The literature of marriage formation consider a family output, which is endogenously shared through
a Nash bargaining process. This assumption is called �transferable utility� (see Sattinger, 1995, Lu and
McAfee, 1996, Bloch and Ryder, 2000, Shimer and Smith, 2000 and Atakan, 2006). The alternative �non-
trasferable utility� indicates that the family output is exogenously shared (see Morgan, 1995, Burdett and
Coles, 1997, Chade 2001).

3Caldarelli and Capocci (2001) consider a stable matching problem à la Gale and Shapley (1962) where
partners can be ranked according to a universally classi�able characteristic of an individual.

4 In particular according to the Becker�s model, in equilibrium matching is positively assortative if part-
ners are complements.

5From a technical perspective, supermodularity (submodularity) means that, denoting as x and y the
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characteristics have a speci�c probability of meeting due to facts of life (i.e., attending

similar social environments, obtaining the same level of education, etc...), even though this

does not necessarily lead to marriage formation. In order to distinguish our approach,

we will refer to this type of meeting as �assortative meeting�. More speci�cally, in our

framework a meeting can be random (the partner is randomly drawn by the population) or

assortative (the potential partner belongs to the same universal rank of the individual) in

each period, according to an exogenous and constant probability. From this perspective, the

paper o¤ers a comparison of di¤erent types of meeting and how these a¤ect the individuals�

behaviour.

The results depend on the state of the world in which an individual stands. In assor-

tative meeting, individuals with a high universal characteristic are less demanding if the

probability of having assortative meetings in the future is low, and vice versa. This result

is due to the fact that, given a low probability of being in another assortative meeting

state, the quality of the expected future partners is low for individuals with high universal

characteristic. Therefore they are less fussy with the choice of a potential partner met

today of the same universal rank. In random meeting, an individual with high universal

characteristic is harder to please compared to other individuals, and they are more demand-

ing the higher the weight of the universal characteristic. The reason is that an individual

with a high universal rank knows that the chance of being in assortative meeting state

in the future ensures a high expectation about future meetings, at least for the universal

characteristic perspective. This does not necessarily mean that individuals with a high

universal characteristic marry later than other individuals. Indeed, individuals with a high

universal characteristic expect better-quality partners, which increases the chance of an

early marriage.

The remainder of the paper is structured as follows. Section 2 presents the model.

Section 3 shows the baseline results. Section 4 illustrates the expected time necessary

to marry. Section 5 investigates the case with state-independent strategies. Section 6

concludes. All formal conclusions are derived in the appendix.

partners� characteristics, and utility being a function of them, f (x; y) ; then f (x; y) has the following

feature: @2f(x;y)
@x@y

/ @2f(x;y)
@y@x

> (<) 0:
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2 The model

We study a large universe of U men and U 0 women, where U � N and U 0 � N: Time is

discrete, the game starts at period t = 1 and lasts for N periods. In each period a meeting

takes place. During the meeting, players rank the person of the opposite sex using two

characteristics. The �rst characteristic, denoted by �; re�ects the speci�c, idiosyncratic and

universally unrankable traits of an individual. Some individuals like caring and attentive

partners, some others prefer independent persons. This is totally subjective and cannot be

compared between di¤erent individuals. The second characteristic, denoted by I; represents

a universally rankable aspect of the individual, such as income, education, social class and

so forth.

We assume that the rank of a person is the linear combination of these characteristics:

R = (1� �)� + �I; (1)

where � 2 (0; 1) weights the importance of the universal rank compared to the individual
rank. We assume � to be public information and identical for all players. The level of

� re�ects the role played in the romantic choice by universally estimable characteristics

(social class, income, education) compared to personal preferences for speci�c aspects of

a partner. For instance, it can be imagined that in a conservative society individuals put

more weight on aspects such as the social status or income when they evaluate a partner.

The meeting can be of two types. We denote the set of types as S = fr; �rg, where type
s = r is called �random�meeting while s = �r is called �assortative�meeting. A random

meeting occurs when an individual meets the partner by chance. This happens anytime

the rankable characteristic of an individual (social status, income, education, etc) plays

no role in the occurring meeting. For example, two individuals running into each other

at the grocery store, both going to the football stadium or to a public party. Therefore,

with random meeting any two people from the universe can meet. Assortative meeting

occurs when an individual meets the partner in a contest in which his or her rankable

characteristic is relevant in determining the meeting. All the encounters at school, at the

university, in a family or a private party are examples of assortative meeting. For the sake

of simplicity, we assume that, with assortative meeting, the universal rank of the potential

partner will be the same as the individual.

In each period t, the meeting is assortative with exogenous probability � 2 (0; 1) and
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random with probability 1 � �; � being constant, equal to all the players and known for
them. The value of � depends on the customs of the society we have in mind. For instance

in a traditional society, it is more likely that individual with common background are

matched together (� high).

After each meeting, a man m and a woman w decide whether to propose a marriage to

each other. If both propose, the process ends. If at least one of them does not propose, then

the game transits to the next period. For simplicity, we assume that being not married

is always worse than being married. This assumption implies that, at period N; all the

remaining unmatched players are willing to marry.

Since the characteristics of potential partners are not known at the beginning of the

game assume that an individual i; i 2 fm;wg in each period t = 1; : : : ; N meets a partner

j; j 2 fm;wg and j 6= i in state s with the following rank:

Rt;si (Ii) =

8<:(1� �) �tj + �Itj ; if s = r ( with prob. 1� � )

(1� �) �tj + �Ii; if s = �r ( with prob. � )

where

� �tj is a random variable with continuous uniform distribution in [0; 1] for all t =

1; : : : ; N; re�ecting the idiosyncratic preference of an individual i for a potential

partner j. Let �tj be independent variables for t = 1; : : : ; N .

� Itj is a random variable with continuous uniform distribution in [0; 1] for all t =

1; : : : ; N , representing the universal rank of a potential partner j: Let Itj be indepen-

dent variables for t = 1; : : : ; N .

� Ii = I 2 [0; 1] is the universal rank of the partner with assortative meeting, which
is the same as individual i who evaluates the partner j: The personal rank is known

to the individual and does not change throughout the game. This of course is a

simpli�cation, as characteristics may change over time, altering Ii. For instance,

income generally increases over time, whereas beauty decreases over time.

We assume that men and women rank potential partners symmetrically. This assump-

tion is for the sake of simplicity and does not correspond exactly to what happens in the

real world. For instance, in many societies beauty is more evaluated by men, whereas

income is more evaluated by women (See Coles and Francesconi, 2011). The assumption
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that men and women rank potential partners symmetrically implies that the universal rank

in assortative meeting state I is equal for man m and woman w.

Consider the following noncooperative game. Each player wants to maximize the ex-

pected absolute rank of the chosen mate. The strategy of player i is the rule a = a(t; s; Ii)

that says whether the marriage must be proposed to a potential partner with absolute rank

Rt;sj and universal rank Ii in period t and in state s for every t = 1; : : : ; N . A player�s

strategy is a set of thresholds such that the player must propose a marriage in period

t and in state s if and only if the observed rank is greater than the strategy in t, i.e.,

Rt;si > a(t; s; Ii). Therefore a high a implies that a player is more likely to delay marriage,

since he or she needs to meet a potential partner with a high rank R in order to agree to

marry.

Assume that all players in the game use this type of strategies.

De�nition 1 The N -period process is a N -period meeting game where all players use the
same type of threshold strategies, i.e. player i�s strategy in period t = 1; : : : ; N and in state

s is a = a(t; s; Ii).

We formulate the problem as a dynamic game and can use the concept of subgame

perfect equilibrium (Selten, 1975).

3 Baseline results

3.1 Bellman equation

The following Bellman equation represents the expected partner�s rank, for every s using

strategy a = a(t; s; Ii), either if a player i marries at t or if he/she waits for the next

periods:

Et;s(a) =Pr(marryjs; a)E[Rt;si jmarry; a]

+�(1� Pr(marryjs; a))
�
�Et+1;�r + (1� �)Et+1;r

�
(2)
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with boundary conditions for t = N and states s = �r and s = r:

EN;�r =E[(1� �)�Nj + �I] =
1� �
2

+ �I; (3)

EN;r =E[(1� �)�Nj + �INj ] =
1

2
: (4)

Pr(marryjs; a) is the probability of marriage in period t when the state is s and player
i�s strategy is a, E[Rt;si jmarry; a] is the expected rank of a potential partner j met in
period t in state s if player i marries using strategy a, and � 2 (0; 1] is the discount factor.
Expression �Et+1;�r + (1 � �)Et+1;r is the expected payo¤ of an individual i (or absolute
rank of j) if they chose to not marry in period t and game transmits to the next period.

Notice that player i�s strategy a(t; s; Ii) is within interval [0; 1] if s = r; but from the

interval [�Ii; �Ii+1��] if s = �r. The latter is the interval of possible values of the random
variable Rt;ri .

In order to solve the Bellman equation, we begin by deriving the conditional probability

of marrying according to the occurring state at time t: The result is summarised in the

following proposition.

Proposition 1 The conditional probability to marry in the assortative meeting state for
any period t = 1; : : : ; N � 1 is given by

Prfmarryjs = �r; ag =
�
1� a� �I

1� �

�2
; (5)

while the conditional probability to marry in the random meeting state is given by

1. For � � 1
2 :

Prfmarryjs = r; ag =

8>>>>>>><>>>>>>>:

�
1� a2

2�(1� �)

�2
; if a 2 [0; 1� �)�

1� 2a� (1� �)
2�

�2
; if a 2 [1� �; �)�

(1� a)2
2�(1� �)

�2
; if a 2 [�; 1]

(6)
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2. For � < 1
2 :

Prfmarryjs = r; ag =

8>>>>>>><>>>>>>>:

�
1� a2

2�(1� �)

�2
; if a 2 [0; �)�

1� 2a� �
2(1� �)

�2
; if a 2 [�; 1� �)�

(1� a)2
2�(1� �)

�2
; if a 2 [1� �; 1]

(7)

The last step in order to derive the Bellman equation is to determine the conditional

expectation of the expected rank of a person if player marries. This is summarised in the

following proposition.

Proposition 2 The conditional expectation in the assortative meeting state for any period
t = 1; : : : ; N � 1 is given by

E[Rt;�ri jmarry; a] =
�I + 1� �+ a

2
; (8)

whereas the conditional expectation in the random meeting state is given by

1. For � � 1
2 :

E[Rt;ri jmarry; a] =

8>>>>><>>>>>:

2a3 � 3�(1� �)
3a2 � 6�(1� �) ; if a 2 [0; 1� �)

3a2 � (1 + �+ �2)
6a� 3(1 + �) ; if a 2 [1� �; �)

2a+ 1

3
; if a 2 [�; 1]

(9)

2. For � < 1
2 :

E[Rt;ri jmarry; a] =

8>>>>><>>>>>:

2a3 � 3�(1� �)
3a2 � 6�(1� �) ; if a 2 [0; �)

3a2 � (3� 3�+ �2)
6a� 3(2� �) ; if a 2 [�; 1� �)

2a+ 1

3
; if a 2 [1� �; 1]

: (10)
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3.2 Players�optimal strategies

We are now in a position to determine a player�s optimal strategy through the analysis of

the Bellman equation (2). First, we examine separately the two states of the world �r and

r for each period t = 1; :::; N � 1: Then, we will show the optimal strategy at t = 1 for

the entire N�game process through numerical examples, and examine the expected time
of marrying. From now on, we will omit the label i for brevity.

3.2.1 Assortative meeting

First, consider the assortative meeting state s = �r. The Bellman equation (2) is:

Et;�r(a) =

�
1� a� �I

1� �

�2 �I + 1� �+ a
2

+

 
1�

�
1� a� �I

1� �

�2!
�Et+1; (11)

where Et+1 = �Et+1;�r + (1 � �)Et+1;r and with boundary conditions (3) and (4). All
multipliers in the right hand side part of (11) are nonnegative, so, for each period t from 1

to N � 1 we investigate a(t; �r; I) that maximizes Et;�r(a). The following proposition shows
the optimal strategy with assortative meeting.

Proposition 3 For each t = 1; : : : ; N�1; the optimal strategy a�(t; �r; I) in the assortative
meeting state s = �r is:

a� (t; �r; I) =

8>>>><>>>>:
�I; if Et+1 <

4�I + 1� �
4�

;

4�Et+1 � (�I + 1� �)
3

; if
4�I + 1� �

4�
� Et+1 < �I + 1� �

�
;

�I + 1� �; if Et+1 � �I + 1� �
�

:

(12)

In Proposition 3, the optimal strategy is higher the higher an individual�s universal

rank I in cases when Et+1 < �I
� +

1��
4� and Et+1 � �I+1��

� . In other words, it is less likely

that an individual would accept to marry if he/she is from a high universal rank.

Corollary 1 follows from Proposition 3.

Corollary 1 In assortative meetings, an individual does not marry anyone before period
N if and only if the expected rank Et+1 at t+ 1 satis�es:

Et+1 � �I + 1� �
�

(13)
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for every t = 1; : : : ; N � 1.

Condition (13) can be satis�ed when the universal rank is very high and the intensity

of assortative meeting is also very high. Accordingly, players wait for potential partners

with a higher rank in the following meetings. And if inequality (13) is satis�ed for every

t = 1; : : : ; N � 1, the player does not marry until the period N participating in assortative

meetings.

3.2.2 Random meeting

We turn now to the case with random meeting. In the case in which � � 1
2 , the Bellman

equation (2) is:

Et;r(a) =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

�
1� a2

2�(1� �)

�2
2a3 � 3�(1� �)
3a2 � 6�(1� �)

+

 
1�

�
1� a2

2�(1� �)

�2!
�Et+1; if a 2 [0; 1� �);�

1� 2a� 1 + �
2�

�2 3a2 � (1 + �+ �2)
6a� 3(1 + �)

+

 
1�

�
1� 2a� (1� �)

2�

�2!
�Et+1; if a 2 [1� �; �);�

(1� a)2
2�(1� �)

�2
2a+ 1

3

+

 
1�

�
(1� a)2
2�(1� �)

�2!
�Et+1; if a 2 [�; 1]

(14)

Conversely if � < 1
2 ; then the Bellman equation (2) becomes:
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Et;r(a) =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

�
1� a2

2�(1� �)

�2
2a3 � 3�(1� �)
3a2 � 6�(1� �)

+

 
1�

�
1� a2

2�(1� �)

�2!
�Et+1; if a 2 [0; �);�

1� 2a� �
2(1� �)

�2 3a2 � (3� 3�+ �2)
6a� 3(2� �)

+

 
1�

�
1� 2a� �

2(1� �)

�2!
�Et+1; if a 2 [�; 1� �);�

(1� a)2
2�(1� �)

�2
2a+ 1

3

+

 
1�

�
(1� a)2
2�(1� �)

�2!
�Et+1; if a 2 [1� �; 1]:

(15)

with boundary conditions (3) and (4). Proposition 4 describes the optimal strategy with

random meeting for each period t = 1; :::; N � 1.

Proposition 4 For each t = 1; : : : ; N � 1; the optimal strategy a� (t; s; I) in the random
meeting state s = r is:

Case � � 1
2 .

a� (t; r; I) =

8>>>>>>>>><>>>>>>>>>:

0; if Et+1 <
1

4�

1� �; if
1

4�
� Et+1 < 5� 19�+ 11�2

6(1� 3�)�
1 + �

6
+
2�

3
Et+1 � 
1; if

5� 19�+ 11�2
6(1� 3�)� � Et+1 < 5�+ 1

6�
6�Et+1 � 1

5
; if Et+1 � 5�+ 1

6�
;

(16)

where 
1 =
p
16�2(Et+1)2�16�Et+1(1��)+5�2+6�+5

6 .

Case � < 1
2 .
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a� (t; r; I) =

8>>>>>>>>><>>>>>>>>>:

0; if Et+1 <
1

4�

�; if
1

4�
� Et+1 < 11�2 � 3�� 3

6(3�� 2)�
2� �
6

+
2

3
�Et+1 � 
2; if

11�2 � 3�� 3
6(3�� 2)� � Et+1 < 6� 5�

6�
6�Et+1 � 1

5
; if Et+1 � 6� 5�

6�
;

(17)

where 
2 =
p
16�2(Et+1)2�16�Et+1(2��)+5�2�16�+16

6 .

3.3 Existence and uniqueness of the equilibrium

Given the assumptions on the Bellman equation considered, the following result holds.

Proposition 5 In a N -period meeting game there exists a unique subgame perfect equilib-
rium.

Proposition 5 can be explained as follows. The N -period meeting game is a �nite ex-

tensive game. In the model we assume that players participating in the game want to

maximize the rank (1) that player will marry. So, the optimal strategy derived by maxi-

mizing the expected rank for N -period meeting game is optimal for all players participating

the game. The existence of equilibrium in N -period meeting game is straightforward and

follows from Selten (1975).

The uniqueness of the subgame perfect equilibrium when all players use optimal strate-

gies a� = a�(t; s; Ii), t = 1; : : : ; N , s = r; �r maximizing Bellman function (2) follows from

the form of functions used in the right part of (2). In the case of assortative meeting

s = �r, then (2) is a continuous function of a with a unique maximum on interval of possible

strategy values [�I; �I + 1 � �] for every t = 1; : : : ; N . Therefore, each player i has a

unique optimal strategy in every period in which assortative meeting takes place. Random

meetings can be considered in a similar manner. The function Et;r(a) is continuous in a for

both � � 1
2 and � <

1
2 and has a unique maximum within the interval of possible strategies

[0; 1] for every t = 1; : : : ; N . Hence, a player has a unique optimal strategy in every period

in which random meeting occurs.
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3.4 Analysis of equilibrium

In this section we consider properties of optimal strategies in both random and assortative

meetings.

Proposition 6 The equilibrium payo¤ in the assortative (random) meeting state is an

increasing (non decreasing) function of a player�s individual rank I.

Proposition 7 If the following condition holds:

� >
1

4�t
; (18)

for any t = 1; : : : ; N , then in the assortative meeting state, s = �r, the optimal strategy

a�(t; �r; I) is a non-decreasing function of a player�s universal rank I for any t.

Condition (18) is su¢ cient but not necessary. Indeed the necessary condition for non-

decreasing function a�(t; �r; I) of I is very di¢ cult to be obtained in explicitly, this due to

the recurrent form of optimal strategies. For example, for t = N � 1 the condition � > 1
4�

is also necessary. For t = N � 2 the necessary condition is:

� >
1� �+ �I � 1��

4

q
3(1��)
�

��
;

and so on.

Proposition 7 shows that, in the assortative meeting state, the optimal strategy changes

with a player�s universal rank according to the intensity of assortative meeting. If � is high,

players with high universal rank are more �demanding�, because the future chance of being

in the assortative meeting state (and thus to meet high ranked partners) will be higher.

Therefore they can wait for a better idiosyncratic match. Conversely, if � is low, then

players are more picky if they have a low I, since a low � implies a relatively higher future

expectations for low-I types. Indeed low universal rank players obtain a higher payo¤ from

a random meeting.

The next propostion shows how the optimal strategy changes according to the universal

rank of a player in the random meeting state. In the random meeting state, the high-I

types generally are more patient, as their future potential partners generally have a higher

expected rank, due to the chance of being in the assortative meeting state.

14



Proposition 8 For the random meeting state s = r, the optimal strategy a�(t; r; I) is a

non-decreasing function of a player�s individual rank I.

Finally, we examine the e¤ects of a variation of the intensity of assortative meeting �:

Notice that Et+1 is a function of �; in particular

@

@�
Et+1 (�) Q 0 as Et+1;�r Q Et+1;r (19)

Therefore the e¤ect of � on the optimal strategy in both assortative and random meeting

state depends on which future conditional expectation is higher. Since the value of Et+1;�r

strictly depends on the individual�s universal rank, then in turn it is more likely that

Et+1;�r > Et+1;r (and in turn @
@�E

t+1 > 0) for higher levels of I:

4 Expected number of periods needed to marry

In this section we examine how long a player remains unmarried. We denote T as a

discrete random variable representing the number of the periods in which a player expects

to marry, where T = 1; 2; :::; N . For calculating the mathematical expectation of the

number of periods needed to marry we need to �nd the probabilities that a player marries

in each particular period t. Denote this probability as Pt, 8 t = 1; : : : ; N . For period 1,

this probability can be de�ned by the following expression:

P1 = (1� �) Prfmarryjs = r; a(1; r; I)g+ � Prfmarryjs = �r; a(1; �r; I)g �M1: (20)

For period 2; the probability to marriage is as follows:

P2 =(1�M1) ((1� �) Prfmarryjs = r; a(2; r; I)g

+ � Prfmarryjs = �r; a(2; �r; I)g) = (1�M1)M2: (21)

For period k; the probability can be obtained by the expression:

Pk =(1�M1) : : : (1�Mk�1) ((1� �) Prfmarryjs = r; a(k; r; I)g

+ � Prfmarryjs = �r; a(k; �r; I)g) = (1�M1) : : : (1�Mk�1)Mk: (22)
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If a player does not marry in the �rst N � 1 periods of the game and participates in the
last Nth period he marries in this period with probability 1 because of the assumption

that player always prefers to get married than to be single, i.e.

PN = (1�M1) : : : (1�MN�1):

We can determine the expectation of T as follows.

Proposition 9 The expected number of periods it takes an individual to become married
is given by:

ET = P1 + 2P2 + : : :+NPN =

NX
i=1

i

(
i�1Y
k=1

(1�Mk)

)
Mi:

The expected number of periods needed to marry is a function of the player�s strategy

a and all parameters of the game �, �, I.

Using a numerical simulation we examine the number of periods needed to marry.

First we consider it for di¤erent universal ranks. We appoint the following parameters

values: � = 0:7, N = 100, � = 1, I = 0:01; 0:33; 0:66; and 0:99: Consider �rst � = 0:25

(Table 1). In this case, the higher the rank of a player, the less the expected time of

marrying. This result can be explained as follows. A player with high universal rank tends

to have higher expectations about future matches. This is due to the chance of being in

the assortative meeting state. Indeed, this increases the likelihood that the player meets

a potential partner with the same universal rank. Therefore a player with high rank is

generally more �demanding� about a partner type. Nonetheless, the chance of being in

the assortative meeting state for a high-universal rank individual also has the e¤ect of

increasing the quality of each meeting. As a consequence, a player with high universal

rank may in fact marry sooner than other individuals as the second e¤ect can o¤set the

�rst one.

For � = 0:80, the relationship between universal rank and time to marry is non-

monotone: the time to marry is low for individuals with low universal rank, it increases

for medium levels of universal rank and it decreases again for high universal rank. Two

factors contribute to obtain this. First, the higher importance of � makes individuals with

a high universal characteristic to be more picky in their partner choice, thus delaying the

marriage. The �rst e¤ect prevails on the second e¤ect when the universal characteristic is

not so high, but for very high universal characteristic the second e¤ect more than o¤sets

16



the �rst e¤ect, so that the time expected of marrying is lower. Thus individuals with a very

high universal characteristic tend to marry sooner than other individuals. Alternatively,

an individual with medium-high rank tend to marry later because they are choosy and the

quality of individuals they meet is more likely to be lower.

I � = 0:25 � = 0:80

0.01 46.38 42.36
0.33 44.60 42.82
0.66 42.48 50.53
0.99 42.27 41.55

Table 1: Expected number of periods needed to marry for di¤erent I

Finally, we consider the change in the expected number of periods before marrying

for di¤erent �. We appoint the following parameters values: I = 0:9, N = 100, � = 1,

� = 0:01; 0:33; 0:66; and 0:99: As in the previous example, we assume either � = 0:25 or

� = 0:80 As shown by Table 2, the e¤ect of a variation of � is qualitatively similar to the

e¤ect of a variation of I. This seems intuitive, considering that an increase of � relatively

increases the importance of I in an individual�s payo¤.

� � = 0:25 � = 0:80

0.01 44.70 43.24
0.33 43.66 41.90
0.66 42.42 42.01
0.99 41.81 41.80

Table 2: Expected number of periods needed to marry for di¤erent �

5 State-independent strategies

In this section we modify the N -period meeting game as follows. Suppose that, for every

t = 1; : : : ; N , a player i uses the same strategy a(t) in assortative and random meetings,

so that a(t) = a(t; �r; I) = a(t; r; I). This situation re�ects the situations in which an

individual does not know exactly which type of meeting (state) that takes place in every

period.
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In this modi�ed meeting game we consider the payo¤ of the player in N -period game,

as the linear combination of the player�s expected payo¤s in the games beginning with

particular meetings (assortative and random):

E1(a(1)) = �E1;�r(a(1)) + (1� �)E1;r(a(1)):

The Bellman equation for the payo¤ Et(a(t)) takes the form of:

Et(a(t)) =� Pr(marryj�r; a(t))E[Rt;�rjmarry; a(t)] (23)

+(1� �) Pr(marryjr; a(t))E[Rt;rjmarry; a(t)]

+� f�(1� Pr(marryj�r; a(t))) + (1� �)(1� Pr(marryjr; a(t)))gEt+1(a(t+ 1));

with boundary condition:

EN = �

�
1� �
2

+ �I

�
+
1� �
2

: (24)

With state-independent strategies, a player uses the same strategies for random and assor-

tative meetings in the same period. Then, the set of possible strategies are in the set [0; 1]

for all states. The probability to marry is given by:

Prfmarryjs = �r; ag =

8>>>><>>>>:
1; if a 2 [0; �I);�
1� a� �I

1� �

�2
; if a 2 [�I; �I + 1� �);

0; if a 2 [�I + 1� �; 1]:

(25)

Moreover in the assortative meeting state, the conditional expectation of the absolute rank

of the chosen j under the condition that the marriage takes place in period t is:

E[Rt;�ri jmarry; a] =

8>>>><>>>>:
�I +

1� �
2

; if a 2 [0; �I);
�I + 1� �+ a

2
; if a 2 [�I; �I + 1� �);

0; if a 2 [�I + 1� �; 1]:

(26)

With state-independent strategies, the player�s optimal strategy is implicitly de�ned. No-

tice that the player�s payo¤ in the N -period meeting game with state-independent strate-

18



gies, i.e. the expected rank of the potential partner, is not larger than the payo¤ in the

game with state-dependent strategies.

6 Concluding remarks

We have studied marriage formation through a two-sided secretary problem approach,

where individuals have two di¤erent dimensions of heterogeneity, and two possible types of

meetings, a random and an assortative one, may occur over time. We show that individuals

with higher universal characteristic tend to be more picky in their marriage hunting. This

does not necessarily mean that they marry later than other individuals, since the higher

expected quality of their potential partners in the assortative meeting state can make them

marry earlier than individuals with lower universal characteristic.

The analysis carried out did not consider divorce explicitly, but this indeed can be

easily implemented. Once assumed that divorce occurs with exogenous probability, then

there is no reason to expect that this probability may change according to whether two

individuals decide to marry or not in a certain period, apart from the fact that of course

the probability of divorcing increases with the length of a relationship.

A further development may take into account di¤erent universal characteristics for

men and women. According to the customs considered, these may change according to

gender. For example in western societies, men appoint a higher value to beauty compared

to women, whereas women appoint a higher value to �nancial security (See Coles and

Francesconi, 2011). Finally, it would be interesting to consider the presence of gays in the

two populations, and see how this changes the results. These developments of the current

model are left for future works.
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Appendix

Proof of Proposition 1

In order to determine the conditional probability to marry, it is necessary �rst to obtain

the probability distribution of the potential partner�s rank.

Probability density and cumulative distribution functions

Assortative meeting: s = �r We �nd the probability density distribution function

fRt;�ri
(x) of Rt;�ri = (1� �) �tj+�I by using the consolidation formula of independent random

variables:

fRt;�ri
(x) =

1

1� �f�tj

�
x� �I
1� �

�
=

8<:
1

1� �; if x 2 [�I; �I + 1� �]

0; if x =2 [�I; �I + 1� �];
(27)

where f�tj (x) is a probability density function of the variable �
t
j . Thus the cumulative

distribution function FRt;�ri
(x) = PrfRt;�ri � xg =

R x
�1 fRt;�ri

(u)du of the random variable

Rt;�ri is as follows:

FRt;�ri
(x) =

8>>><>>>:
0; if x 2 (�1; �I)
x� �I
1� � ; if x 2 [�I; �I + 1� �)

1; if x 2 [�I + 1� �;1)

(28)

Therefore, the linear transformation of �tj keeps the same distribution type but changes

the interval of possible values, i.e. the distribution of rank Rt;�ri is continuous uniform in

interval [�I; �I + 1� �].

Random meeting: s = r A player i ranks a potential partner j as follows: Rt;ri =

(1 � �)�tj + �Itj . Here the random variables �tj and I
t
j , t = 1; : : : ; N are independent and

have the same uniform continuous distribution on the interval [0; 1]. The expression for the

probability density distribution function fRt;ri
(x) of a random variable Rt;ri can be found

using the formula of consolidation of two continuous independent variables:
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� Case � � 1
2 :

fRt;ri
(x) =

1Z
�1

f(1��)�t(u)f�Itj (x� u)du = (29)

=

8>>>>>>>><>>>>>>>>:

x

�(1� �) ; if x 2 [0; 1� �)
1

�
; if x 2 [1� �; �)
1� x
�(1� �) ; if x 2 [�; 1]

0; if x =2 [0; 1]

� Case � < 1
2 :

fRt;ri
(x) =

8>>>>>>>><>>>>>>>>:

x

�(1� �) ; if x 2 [0; �)
1

1� �; if x 2 [�; 1� �)
1� x
�(1� �) ; if x 2 [1� �; 1]

0; if x =2 [0; 1]

(30)

For s = r; we �nd the expression of cumulative distribution function FRt;ri
(x) of random

variable Rt;ri according to the value of parameter �:

� Case � � 1
2 :

FRt;ri
(x) =

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x 2 (�1; 0)
x2

2�(1� �) ; if x 2 [0; 1� �)
2x� (1� �)

2�
; if x 2 [1� �; �)

1� (1� x)2
2�(1� �) ; if x 2 [�; 1)

1; if x 2 [1;1)

(31)
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� Case � < 1
2 :

FRt;ri
(x) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0; if x 2 (�1; 0)
x2

2�(1� �) ; if x 2 [0; �)
2x� �
2(1� �) ; if x 2 [�; 1� �)

1� (1� x)2
2�(1� �) ; if x 2 [1� �; 1)

1; if x 2 [1;1)

(32)

Notice that in the case of random meeting s = r the distribution of rank Rt;ri is not

uniform.

Conditional probability

Given the probability density and the cumulative distribution functions, we are now able

to determine the conditional probabilities to marry. We consider the two cases according

to � � 1
2 ; � <

1
2 , and we �nd the expressions of probability to marry Prfmarryjs; ag under

the condition that the state is s and a player i uses strategy a. This is the probability that

both players i and j who met in period t choose each other under the condition that their

choices are independent and they both use the same type of strategies.

If the meeting is assortative (s = �r), the conditional probability to marry is as follows:

Prfmarryjs = �r; ag = Pr
n�
Rt;�ri > a(t; �r; I)

�
\
�
Rt;�rj > a(t; �r; I)

�o
; (33)

where the events Rt;�ri > a(t; �r; I) and Rt;�rj > a(t; �r; I) are independent, so that:

Prfmarryjs = �r; ag = Pr2
n
Rt;ri > a(t; r; Ii)

o
=

�
1� a� �I

1� �

�2
; (34)

where a = a(t; �r; I) 2 [�I; �I + 1 � �]. In the case of random meeting (s = r), this

probability is given by:

Prfmarryjs = r; ag = Pr2
n
Rt;ri > a(t; r; Ii)

o
=
�
1� FRt;ri (a(t; r; Ii))

�2
(35)
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� For � � 1
2 :

Prfmarryjs = r; ag =

8>>>>>>><>>>>>>>:

�
1� a2

2�(1� �)

�2
; if a 2 [0; 1� �)�

1� 2a� (1� �)
2�

�2
; if a 2 [1� �; �)�

(1� a)2
2�(1� �)

�2
; if a 2 [�; 1]

(36)

� For � < 1
2 :

Prfmarryjs = r; ag =

8>>>>>>><>>>>>>>:

�
1� a2

2�(1� �)

�2
; if a 2 [0; �)�

1� 2a� �
2(1� �)

�2
; if a 2 [�; 1� �)�

(1� a)2
2�(1� �)

�2
; if a 2 [1� �; 1]

(37)

Proof of Proposition 2

We denote as E[Rt;si jmarry; a] the expectation of absolute rank of the potential partner
j chosen by a player� i; under the condition that the marriage takes place in period t

and E[Rt;si jmarry; a] is a function of a player i�s strategy a. For s = �r, the conditional

expectation is given by:

E[Rt;�ri jmarry; a] =
E[Rt;�ri jR

t;�r
i > a] PrfRt;�rj > ag

Prfmarryjs = �r; ag =
E[Rt;�ri jR

t;�r
i > a] PrfRt;�rj > ag

PrfRt;�ri > agPrfRt;�rj > ag

=
E[Rt;�ri jR

t;�r
i > a]

PrfRt;�ri > ag
=

1R
a
ufRt;�ri

(u)du

1R
a
fRt;�ri

(u)du

=
�I + 1� �+ a

2
; (38)

where a = a(t; �r; I) 2 [�I; �I + 1� �].
For s = r, we make use of the analysis carried out for determining the conditional
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expectation for s = �r using equations (29), (30), (36), (37):

E[Rt;ri jmarry; a] =
E[Rt;ri jR

t;r
i > a] PrfRt;rj > ag

Prfmarryjs = r; ag

=
E[Rt;ri jR

t;r
i > a]

PrfRt;ri > ag
=

1R
a
ufRt;ri

(u)du

1R
a
fRt;ri

(u)du

: (39)

For � � 1
2 , equation (39) becomes:

E[Rt;ri jmarry; a] =

8>>>>><>>>>>:

2a3 � 3�(1� �)
3a2 � 6�(1� �) ; if a 2 [0; 1� �)

3a2 � (1 + �+ �2)
6a� 3(1 + �) ; if a 2 [1� �; �)

2a+ 1

3
; if a 2 [�; 1]

(40)

whereas for � < 1
2 , equation (39) becomes:

E[Rt;ri jmarry; a] =

8>>>>><>>>>>:

2a3 � 3�(1� �)
3a2 � 6�(1� �) ; if a 2 [0; �)

3a2 � (3� 3�+ �2)
6a� 3(2� �) ; if a 2 [�; 1� �)

2a+ 1

3
; if a 2 [1� �; 1]

: (41)

Proof of Proposition 3

To �nd the optimal strategy for period t and state s = �r we �rst di¤erentiate the expression

in the right part of (11) with respect to a, then we equate the di¤erential with zero and

solve it for a. We denote the solution as bt;�r: There are two solutions:

bt;�r1 =
4

3
�Et+1 � 1

3
[�I + 1� �] ;

bt;�r2 =�I + 1� �:

Consider two possible cases for the value of expected rank Et+1: Et+1 < �I+1��
� and

Et+1 � �I+1��
� .

1. Let Et+1 < �I+1��
� , so that bt;�r1 < bt;�r2 . In this case the second derivative of E

t;�r(a)
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with respect to a calculated in bt;�r1 (bt;�r2 ) equals to �2(�I+1����Et+1)
(1��)2�

2(�I+1����Et+1)
(1��)2

�
. Thus the strategy a = bt;�r1 maximizes Et;�r(a) whereas a = bt;�r2

minimizes Et;�r(a). Thus function (11) decreases in the interval [bt;�r1 ; b
t;�r
2 ]. If addi-

tionally bt;�r1 < �I, then the optimal strategy is the minimum possible value for the

strategy, i.e. a�(N; �r; I) = �I. For bt;�r1 � �I, then the strategy a�(N; �r; I) = bt;�r2
maximizes (11).

2. Let Et+1 � �I+1��
� . In this case bt;�r2 < bt;�r1 and a = bt;�r1 minimizes Et;�r(a) while

a = bt;�r2 maximizes Et;�r(a). Function (11) increases from a = �I to a = bt;�r2 where

obtains the maximum value.

6.1 Proof of Proposition 4

For brevity, we will consider the case � � 1
2 and omit the case � <

1
2 as it is very similar.

6

The problem is to �nd maximum of piece-wise function Et;r(a) with respect to strategy

a = a(t; r). This function is continuous with respect to a. When a 2 [0; 1��); then Et;r(a)
has a unique maximum at a = 0. The second derivative of Et;r(a) calculated in a = 0 equals
4�Et+1�1
2�(1��) . If E

t+1 < 1
4� ; then the strategy a

�(N; r; I) = 0 maximizes Et;r(a). And at the

same time Et;r(a) is a decreasing function with respect to parameter a in the interval of

possible strategy values [0; 1]. This means that the optimal strategy is a�(N; r; I) = 0.

For Et+1 � 1
4� ; then E

t;r(a) increases in the interval a 2 [0; 1 � �). Consider the case
in which a 2 [1� �; �). Di¤erentiation of Et;r(a) yields:

bt;r1 =
1

6
(1 + �) +

2

3
�Et+1 � 1

6

q
16�2(Et+1)2 � 16�Et+1(1 + �) + 5�2 + 6�+ 5;

bt;r2 =
1

6
(1 + �) +

2

3
�Et+1 +

1

6

q
16�2(Et+1)2 � 16�Et+1(1 + �) + 5�2 + 6�+ 5;

where bt;r1 < bt;r2 . The second derivative of E
t;r(a) in bt;r1 is negative, while the second

derivative of Et;r(a) in bt;r2 is positive. Hence bt;r1 maximizes function Et;r(a) and bt;r2
minimizes it, and function Et;r(a) decreases from bt;r1 to bt;r2 . Here we should consider three

cases:

1. When bt;r1 < 1 � � which takes place if and only if 1
4� � Et+1 < 5�19�+11�2

6(1�3�)� , then

Et;r(a) decreases on the interval [1��; 1]. Thus, the optimal strategy is a�(N; r; I) =
6The complete proof can be provided upon request.
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1� �.

2. When 1� � � bt;r1 < � (which takes place if and only if 5�19�+11�
2

6(1�3�)� � Et+1 < 5�+1
6� ),

then Et;r(a) increases on [0; bt;r1 ) and decreases on (b
t;r
1 ; 1], so that the optimal strategy

is a = bt;r1 .

3. When bt;r1 � �, then Et;r(a) increases on [0; �). For [�; 1), Et;r(a) has one extreme
point a = bt;r3 , where

bt;r3 = �1
5
+
6

5
�Et+1;

and the second derivative shows that it maximizes Et;r(a). Hence Et;r(a) increases

on [0; bt;r3 ) and decreases on [b
t;r
3 ; 1], so that the optimal strategy is a

�(N; r; I) = bt;r3
if and only if bt;r3 2 [�; 1), i.e. Et+1 � 5�+1

6� .

6.2 Proof of Proposition 6

First consider the case with assortative meeting, s = �r. For a� (t; �r; I) = �I, the payo¤ in

equilibrium Et;�r(a� (t; �r; I)) is an increasing function of the universal rank I as

@Et;�r(a�)

@I
= �: (42)

For a� (t; �r; I) = �I + 1� �, di¤erentiation of @Et;�r(a�) w.r.t. I yields:

@Et;�r(a�)

@I
=
@Et+1

@I
: (43)

Given @EN

@I = �� > 0, we can easily prove the positiveness of @E
N

@I for any t = 1; : : : ; N �1.
Consider next the case a� (t; �r; I) = 4�Et+1�(�I+1��)

3 when �I
� +

1��
4� � Et+1 < �I+1��

� ,

in which:

@Et;�r(a�)

@I
=

16�

9(1� �)2
�
�Et+1 � (1� �+ �I)

�2
�
16�

�
�Et+1 � (1� �+ �I)

�2 � 9�(1� �)2
9(1� �)2

@Et+1

@I
:

The right hand side is positive for any t = 1; : : : ; N because �I
� +

1��
4� � Et+1 < �I+1��

�

and the fact that @EN

@I = �� > 0. Therefore, in the assortative meeting case, a player�s

payo¤ in equilibrium is an increasing function of the universal rank I.
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Consider then the case with random meeting, s = r, and suppose � � 1=2 (the case

where � < 1=2 can be considered in the same way and leads to the same results). We

show the proof when a� 2 [0; 1 � �), and omit the cases in which a� 2 [1 � �; �) and
a� 2 [�; 1]; as the algebra is very similar and leads to the same results. We obtain the
following expression of derivative:

@Et;r(a�)

@I
=2

�
1� (a�)2

2�(1� �)

� 
�

a� @a
�

@I

�(1� �)

!�
2(a�)3 � 3�(1� �)
3(a�)2 � 6�(1� �) � �E

t+1

�
(44)

+

�
1� (a�)2

2�(1� �)

�2 18a� @a�@I �(1� �)(1� 2a�)
(3(a�)2 � 6�(1� �))2 � � @E

t+1

@I

!
+ �

@Et+1

@I
:

For a� = 0 and Et+1 < 1
4� , we obtain E

t;r(a�) = 1=2, so that Et;r(a�) is a non-decreasing

function of parameter I. The similar result can be obtained for the case a� = 1 � � and
Et+1 2 [ 14� ;

5�19�+11�2
6(1�3�)� ). For 5�19�+11�2

6(1�3�)� � Et+1 < 5�+1
6� and Et+1 � 5�+1

6� we obtain
@Et;r(a�)

@I ? 0 if @Et+1@I ? 0. Given @EN

@I = �� > 0, we prove that for any t = 1; : : : ; N; the

player�s payo¤ in random meeting is an increasing function of I. Therefore, for any cases

player�s optimal payo¤ in random meetings is a non-decreasing function of the universal

rank.

6.3 Proof of Proposition 7

It is straightforward that for Et+1 < �I
� +

1��
4� and Et+1 � �I+1��

� the optimal strategy is

a constant, so that @a
�

dI = � is a non-decreasing function of the universal rank I.

Consider next �I� +
1��
4� � Et+1 < �I+1��

� , for which the optimal strategy is a� (t; �r; I) =
4�Et+1�(�I+1��)

3 . Here we obtain @a�

dI = 4�
3
@Et+1

@I � �
3 , where

@Et+1

@I = � @E
t+1;�r

@I + (1 �
�)@E

t+1;r

@I . Thus @a
�

dI is non-negative during the whole game if and only if
@Et+1

@I > �
4� .

For t = N � 1, the player�s payo¤ @EN

@I = ��, hence the condition of non-negativity is

� > 1
4� . Now consider t = N � 2. Substituting the optimal strategy a� (N � 2; �r; I) into

expression (44) and writing down the condition @EN�1

@I > �
4� yields:

�
�Et+1 � (1� �+ �I)

�2 16

9(1� �)2 (1� ��) � +
�
�2� � 1

4

�
> 0:

Given � > 1
4�2

we can easily prove that @EN�1

@I > �
4� . Therefore a

� (N � 2; �r; I) is a non-
decreasing function of universal rank I. By repeating the procedure recurrently for all t
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we prove the result of the proposition.

6.4 Proof of Proposition 8

Consider � � 1=2 (for brevity we omit the calculations for � < 1=2 as they are the

same). The non-negativity of @a�(t; r; I)=@I is straightforward for Et+1 < 5�19�+11�2
6(1�3�)� .

The optimal strategy a�(t; r; I) is a non-decreasing function for Et+1 � 5�+1
6� i¤ @Et+1=@I

is non-negative, which is proved by Proposition 6.

Now consider 5�19�+11�
2

6(1�3�)� � Et+1 < 5�+1
6� :

@a�(t; r; I)

@I
=
2�

3

@Et+1

@I

0@1� 4�Et+1 � 2(1� �)q
16�2 (Et+1)2 � 16�Et+1 (1� �) + 5�2 + 6�+ 5

1A :
And we can easily obtain @a�(t;r;I)

@I ? 0 when @Et+1

@I ? 0 since the right hand side is

always positive when 5�19�+11�2
6(1�3�)� � Et+1 < 5�+1

6� . Therefore, given Proposition 6 we prove

Proposition 8.
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