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INTEGER PROGRAMMING, MARGINAL REVENUE ,
PRODUCTIVITY, AND PRICING OF RESOURCES

Let B be an n-dimensional, square, integer matrix and N an
integer matrix of order nxm. The matrices B and N are assumed to
contain n unit vecto;s among their columns. Let CB and N be n
and m-dimensional inﬁeger row vectors, respectively, t and b be
n~dimensional integer:column vectors, atid x be an m~dimensional .

integer column.vector. Then consider the following linear

programming problem:
(1) Max (z= cB-t + cN-x)'

subject to

(2) Bt +N.x=0bY

t, X

v
Q

The dual problem is:

(3) Min (vebsp)

subject to
(4) B':p
N'ep

P

B
N

fivialia

c
c
0
where ' and N' are the transposes of B and N.

Assume that the optimal solution to the primal problem ((1) and

(2)) is given by.

* .

This paper is an elaboration of part of my Ph.D. dissertation done
for Princeton University in 1963. I would like to thank Professors
Harold Kuhn and William Baumol for their help.

**Although all the vector and matrix constants are assumed to be
integer, this entails only a slight loss of generality since any linear
program with non-integer but rational constants is equivalent to a linear
program obtained by multiplying all the constants by a common denominator.
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The optimal solution to the dual is

©) p =yt
The matrix B is called the basis of the optimal solution. Variablés
t are basic variables and x are non-basic variables in the optimal
solution, |

Many properties of such a linear programming problem and its dual
are well knowm. For-example, the solution to the dual problem provides
a set of prices (p*) on the resources (b) which if applied to the amounts
OE resources used up by'each activity‘resulf in zero profitability for
activities (t) which enter the optimal solution at a positive level

% o .
- p B =Cp - CB-B 1-B = 0) and non-positive profitability

(i.ef, cp

for activities (x) which do not enter the optimal solution

1-N < 0). Furthermore, if the resources

(i.e., ¢y - p*-N = ¢y = cp'B
are changed (i.e., b' = b 4+ Ab), the change in'the objective function
(bz(b) = z(b + Ab) ~ 2(b)) is 1es§ than or equalto the increased cost
of fgsources when valued at the dual prices (i.e., Az(b) < p*iAb).

(1If the basis of the optimal solution remains the,éame under the trans-
formation of b, then Az(b) = p*'Ab.). This property'of the dual prices
ensures that it is never profitable to hire more or less resources if

*
they are available at the dual prices (p ). Finally, if only one re-

source is changed (say bi is increased) then the marginal revenue



productivity of that resource (the increase in the objective func-

tion » per unmit increase in b for very small increases in b ) is
equal to the dual price of that resource (pj ) except in the case of

degeneracy (i.e., if the basis of the optimal solution changes for

any increase in b, no matter how small). 1In the degenerate case,

i :
the marginal revenue productivity is less than or equal to the

dual price (pi*) of the resource.

Some of the above properties do not apply to the case in
which the variables t and x are required to be integer, i.e., to
integer programming problems. There does exist, however, a set
of prices for the resources and for the activities in an integer
program ﬁhich makeé every activity profitless and results in zero
profit for every activity which enters the optimal solution at a
positive level. This in itself is a trivial conclusion. More
importantly, Gomory and Baumol [4] sh;w how these prices may be
computed by allocating to the resources and activities in a natural
way the dual prices assigned to the Gomory cutting planes (generated
in the process of computing an optimal solution to the integer pro-
gramming problem). In cases of non-degeneracy, where non-degeneracy
is defined ixlaspecial way (to be discussed later), the Gomory-Baumol

prices on_the resources are identical to the regular linear program-

ming duai prices. : - ' .
The Gomory;Baumol prices do not, however, give the marginal

revenue productivity of resources. The marginal fevenue productivity

6f resource}iu an integer program can be defined as the increase

in the objective. function for a unit increase of resource i rather

than the per unit increase in tﬁe objective function for small increases

in resource i since only unit. changes can give any positive increment



in the objective function. With integer programs, the marginal
revenue productivity of a resource as a function of the amount of the
resource available is not continuous, monotonic, nor constant in the

range of non-degeneracy as is the case with linear programs. Fur-

thermore, with integer programs, unlike with linear programs, the mar-
ginal revenue productivity of resource i is dependent on the émoun;
available of resourcé j in non-degenerate cases. Finally, for an
integer program in the range of non-degeneracy, the total increase
. in the objective function due fo increases in resources i and j is
greater than or equal to (rather than eéual to as with linear pro-
‘grams) the sum of the marginal revenue productivities of increases
in resources i and j individually.

The purpose of this péper is to determine functional form,
applicable for certain cases of non-degeneracy, relating increases
in the objective function £o changes in the resource endowment in
the integer ptogramming case and to determine a simple pricing system

which not only makes it profitless to change any level of activity

but makes it profitless to hire any different combination of resources.
A by-product of our anélysis is a method of parametric programming
which computes all optimal‘programs in a very quick and straight- .
forward manner for a certain range of values of the resource endow-

ment vector b.~

I.
Let us rewrite the optimal solution (5) to the linear program—

ming problem as follows:



where'ni (i =1,...,m) are the columns of N and ni are non—negative
scalars. If any of the coustants in (7 are non-integer, a Gomory

constraint (cutting plane) s, can be derived as follows:

- ! D e H b s e hH
(8) s; = - (@ B ) }D + §=1 (Xx(E ) ni}D X,
D D

nm
=1 +535 Ni1 x.
D i=1D

where

(a) A (1) = (kl(l), Az(l),..., An(l))is a row vector
with arbitrary non-negative integer elements (see Gomory [2]),

(b) D= |det B|,

R -
(c) B ~ is the inverse of B and (B 1)c = B l'D, and

(d) {a}D stands for the operation which transforms the ele-
ments of the matrix a into the corresponding numbers

modulo D. For example,

-5, = 3
-2 63 10
103)), 1o
3,12,, = 7,2 ) o
(G075, TG0 W

A Gausdan elimination can be performed on s, in such a way

that we pivot on that X, for which . is a minimum.®* Let us assume

S
M1 mi Moyl M
without loss of generality that . mn ((i)= "1 ., After
i=1, s Ly
()

*®

That is, we perform a pivoting operation using the dual
simplex method. See Dantzig, Ford, and Fulkerson [1].



performing the Gausian elimination on the equations in (7) and (8)

by pivoting on s, and x,, we obtain

1 v
(9) t = B—l'b - B-l'n1 "olv_ B_lonl‘D Sy~ §=2(B~l‘n - B 'nl'nil)xi
"1 M1 M1
m
z =My = Tyeng, nl-D Sl - f=2(n - nl-?il)xi
M1 "™ ' "

The effect of the Gaussian elimination is to transform the constants
in (7) which are expressible in terms of integers divided by D to

the constants in (9) which are integers divided by n The comion .
denominator My is less than D.

If N1 is not unity, a second Gomory constraint s

11°
o may be derived and
a second Gaugian elimination performed. The process is continued as
long as the common denominator of all coefficients is not unity,
Since the common denominator is monotonically decreasing, however,
the process need only be continued a finite number K (< D) of steps.
Without loss of generality, we may assume that successive pivots

' *
gre e Xy - Each

pPivot occurs in such a manner that the coefficients of the si and the

on the Gomory constraints occur on variables X7 X

xi in the z equation remain non-negative. The final result is the .
<

following:

*This, of course, rules out the possibility of pivoting on
one of the previously introduced variables s,. One may show, how-
ever, that a pivot on A 7ariable can be avoided by the proper choice
of the arbitrary vector A(i). This will be illustrated in an example.
Thus there is no real loss of generality.



K 7 m

(%O) Xy = Xy (RK) - ¢ L (X) 5y~ ? LI (K) Xy for K=K,K-l,.f.,l
‘ =1 i=K+1
, , .
K . m
t=¢t(K) -~z B, (K)s, ~2L B. (X) x
i=1 T i 1
z=2z (K) - v, (K)s, -L Y, (X)) x,
j=1 1 ek 3

, { \= o y i =
where the Gy (I)’-Bi(K‘ (Bil(K)’f"’Bin(K)>’“nd yi(Kxor i=1,...,m are

the coefficients of the mon-basic variables after the pivot on the Kth

Gomory constraint s The Xy (X), t (K) and z (K) are determined re-

K

cursively as follows:

'(11? x, (€ = Tor

KR
K R
x, (K) = "0k - 1 Nik-x, (K) for K = K-1, K-2,...,1
k 1=k+1 *
"kk Mk
c K
£ ) =B 1b -1 B—lnkoxk (K)
k=1
K
z K)=x,-L @ x (K)
07 pq k Kk

where the M for i =1,...,m are derived from the kth Gomory constraint.

- k-1 m
12) s, = - Jok + © ik s, + ik Xy
| Mg-1,k=1 . =1 Mg k-1 =k Mg k-1
..The n_ are deternined recursively from (8) and

ik



- . _1 . - k—l -
(13) ng = G B Tbomy 3 9 T Mg kel 3 (k) B 1-hj-5j(k)]

j=1
k-1
(fo1 - & Mdix DI} for k=2,...,K
. d=jH 1 ke
N3 3 nJJ Me-1, k-1
k
(16) %, (k) =0j - = M4 x, (k) for j=l,...,k k=2,...,K
' . n,. di=j+l q_ I
- Ji i3
@s) n, = {r A, (DB, (k-1) + T &, (k) o,, (k-1)}

for i=l,...,m, k=2,...,K

The A(k) = (Al (k),...,'An (k)) and Gj (k) for j = i,..., k-1
are arbitrary nén-negative integer vectors,

Now (11) gives an optimél.soiution to.the integer programming
problem if t{K) 20 and xk(K);p for k=1,...,K. The t(K) and xk(K),are

integer since n the common denominator, is integer. Because of -

KK?
the dual simplex algorithm pivoting rule, Gi(K) 20 for i=1,...,m.

While the basic variables of the linear programming problem are those
of the t vector, the integer programming problem has as its basic variables

the t variables and the xk for k=1,...,K variables. The new basic

variables arise as the result of the introduction of the Gomory cutting

planes 4 for i=1,...,K. The equations in (11) give the optimal solu-

tion to the integer programmlng problem for any resource endowment b for

*
which the integer b351s remains the same, i.e,, non-negative.

* ' '
As Gomory [ ] has shown the basic t variables remain the same

as long as . The x
variables may or may not remain the same for changes in b whichkkeep

the same ba51c t varlables



II.V
The analysis to this point'suggeéts/éomputationél technique for
parametric integer programming in cases where the integer basis con-
sists of the variables t and x

k

ger programming problem for any resource endowment b, From (12)-(15),

for k=1,...,K. First, solve the inte-

we note that the n
(and iz %k
for 1 # O Are independent of b. Thus, if the Nk for 1 # 0 are (and iz k)

for k.= 1,..,n are dependent on b while the Nk

are recorded as the solution for any b is obtained, only the'nOk need be
determined for each b, using equations (13) and (14). Then (11) may

be used to compute recursively, the values of the variables x, , for k=

k’
K, K-1,...,1, t, and z in that order.

If for any particular value of b, any of the t, z, and X, variables
as computed by (11) are negative, then, of course, the proposed method
does not work. In such a case, we suggest the following procedure:

(a) If some of the x, are negative, pivot on the negative x, until they
are all non-negative. Then add additional Gomory constraints until
all variables are integer.

(b) If none of the %, are negative, but some of the t variables are
negative, pivot on the t variables until all are non-negative.
Add additional Gomory constraints until all variables are integer,

(¢) If after performing step (a) or step (b), all variables are non-
negative, a solution has been reached. Otherwise, repeat step (a)
or step (b), whichever is appropriate.

Since this is a variation of the technique proposed by Gomory (2],

it is easy to show that it converges to the optimal solution.
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I ' - IIT.

The variables Xyseees¥p can be eliminated from equation (11) by

K

solving the first K equations. The solution can be written in terms of the

cofactors of the following triangular matrix.

B 1 0 .. .0
R K-1 1
Mg-1,K-1
5 "WK=2 . "R-1.K-2 . . .0
E = | "k-2,8-2  "k-2,K-2
"K,1 R-1,1. . . 1
n n
11 . 11

This matrix is independent of b. Now

NA.
Eg#1-1, Kbl-k ;Ql
i1

(16) X, =

e R

=1

where E,, is the cofactor of the ith row and the jth column of E, If the

ij
solution in (16) is substituted into (11), one obtains for t and z

1. k4 K n
A7) ¢ (K =B "b-1 BTm (B gy 0D
k=1 i=1 n,.
ii
K "K n
Zz (K):-n' - % I (Z E -1 __._.gj'.)
0 K=l k i=1 K+1-3 ,K+1~-k ii

Since the Mgy 2re dependent on b as indicated by (13) and (14), we may

write for (16) and (17):
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18) -xk(b) = ¢, (b) for k=1,...,K
1

t(b) = B

z{b)

b - ¢ (b)

-1 *
cpB T b - ¢ (b) = p b - ¢ (b)

The ¢ functions may be interpreted as the difference between the
linear progiamming and the-integer programﬁing solutions.

The functions ¢k(b), ¢t(b); énd ¢Z(b) have several interesting pro-
perties, all of which are easily proved.

Property 1. Iif B—lb is an integer vector, then ¢k(b) = ¢t(b)=¢z(b) = 0.

Property 2. 1If 6is an integer column vector, then

¢k(b+5D) = ¢k(b)
9, (b+D) = ¢, (b)
. ¢z(b+6D) = ¢,(b)

Property 3. If %is an integer scalar and Bs is a column of B, then

¢t(b+5isi)

¢t(b)

¢, (b+8,8.) = ¢_(b)

Property 4. If b' = b (mod B), then

b () = ¢, (b
4, (") = ¢, (b)
6, () = ¢ (b)

Property 5. The functiomns ¢k(b), ¢t(b) and¢z(b) assume at most D

different values each.
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Property 1 is merely a statement thap if the optimal linear bro-
_gramming solution is integer then the linear'programming solution is the
integer programming solution. Property 5 is a statement of the perilodicity
of the ¢functions while properties 2 through 4 indicate the varioué ways
in which this periodicity may be expressed. First (Property 2), if one
adds D units to any one of the resources, the difference between the inte-
ger programming solution and the linear programming solution remains the
same. Secondly, (Property 3), if one adds amounts of all fesources suffi-
cient to increase one of the basic t éctivities exactly by one unit (or
any integer number of units), the difference between the integer program-
ming and iinear.péogramming ;olution remains the same. Finally, Property 4
.Says that the difference between theilinear programming and iﬁteger pro-
giaﬁming solutién remains the same if b' = b (mod B). This means that

there exist vectors [b'] and [b] such that (a) fb' = b' - [b'}] =b - [b]=fb

(b) [b'] and [b] are integer combinations of vectors in the basis B, and

() f, = £y = B'A for some vector ‘A such that 0 .gA< 1. It is well knowm

bl
that b(modB) = b - [b] may assume at most D different values which give rise
to Property 5.

We may rewrite Property 4 in the following way

6, (D) = ¢, (£,)
¢, (b) = ¢ (£,) - .
¢,(b) = ¢, (f)

where, as above, f, = b - [b]. Let us assume that (cB, cN) 2 0.

b
Then z(0) = 0 and
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or

v
o

(19)  2(£) =p £y - o (5) 2

i}

(200 4,(0) = 4,(£) 5 P f

Since fb can only assume a finite number of values, the difference between
the linear programming and the integer programming optimum value of the ob-
jective function is limited to some finite number. Furthermore, one can

B. so that

easily show that fb £ i

i=1

& P
(21) ¢z(b) £p §=161

where Bi is a column of the basis B.. We may interpret ¢z(b) as the loss which
would accrue to the infeger progfamming optimal solution if resources were
given their linear programming dual prices p*. The inequality (21) says that
this loss never exceeds the cost of oﬁerating each and every activity in »

the linear programming basis at a unit level of activity.

v
.Given the above five properties of ¢z(b), we may also state several
interesting properties of the marginal revenue productivity (MRP) of resources.

The MRP, of a resource i is

i
/
/b1\ bl\ 0 [y by
(22) MRP, =z ; bi+;{ =2t by = e BT 1 |- (0,f b4a] =g [ b [)
\ . I : : :
b/ b b b

n. " n nt



iF the basis t and x ,...,xk remain the same when bi ié increased one
unit. Note that the first term on the right hand side of (22) is nothing
more than the linear programming dual price from which is subtracted

a periodic function of b, i.e.,
(23) MRP .— * (b)
1Py TV

where wi(b) may be either positive or negative and is a periodic function
satisfying all of Properties 1 through 5. Since the increase in the objec-
tive function resulting from a unit increase in resource i is obviously non-

negative, the following property must also hold

IN
o

(26) g, (b) s

Let us define the marginal revenue productivity of a group of resources

.y Abn) as follows:

b which is incremented by Ab = (8bg,.

(25) MRP,. (b) = z(b+ab) - z(b)

Ab .

,cB-B"l-Ab -'(¢z (b+Ab) - ¢z(b))

p*ab - (¢, (b+ab) ~ ¢_(b))

*, -
p"*Ab wAb (b)

if the integer basis t and x . 3%, remain the same. Furthermore, one can

127 %

show:

.
M -

(26) if Ab >0, then p*-ab >y.. (b)
=¥ab

and _

(27)° if Ab <0, then p*-Ab Uy (0

The periodic function wAb(b) also satisfies Properties 1 through 5.

14
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Finally; the following relationship between the MRP of single re-

sources and the MRP of an increment in a group of resources holds if Ab2 0:

n
(28) MRPAb (b) 2z MRP1° Ab1 and
i=1
n
wAb(b) 2 ? wi(b)
i=1l

V.
It‘is not always possible to find a set of prices for the resources

(b) such that it both never pays to change the optimal acfivity levels nor to
purchase any different combination of resources (See Gomory and Baumol {41).
There is an alternative method of pricing, however, which will achieve this
result. Let us suppose that there is a dual pricing system applied to each
.resource. The first bi* units of resourcé i cost_pi' per unit and any pur-
chases in excess of bi* cést pi" per unit, Then the profit acecruing to

any feasible integer program (t,x,-b) is

(29)  m(t,x,-b) = Gt + gex-p'-b*- p"+d" (b-b")-p'+d"' (b-b*)

where d' and d" are diagonal matrices with elements d,' and di", re-

i

spectively, along the diagomnals such that

. oLk
(30) di'={1 1f bi - bi" £ 0y
0 if bj; - bj* > 0
cli.._{0 if b - b " 0,
lif bi -b >0
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(31) Maxz 7(t,x,~-b) = Max (é(b) - p'eb® - p"ed"(b~b*) ~ p'-d' (b-b¥))
. b -

= Max n(b)
b

Next, let us define efficiency as follows:

DEFINITION: A feasible point (t,x,-b) is efficient if
and only if there exists no other feasible
point (t', x',-b') such that (t', x', -b')2
(t,x,-b) with t', > ¢, x'i > %y, or -b', >
-b'i for at least one'1i. , .

Let us call semi-optimal points, all boints (t,x,-b) in which, given b,
t and x are an optimal integer program. The following lemma is easily

proved: LEMMA: A semi-optimal point (t,x,-b) is efficient if and only
if there exists no other semi-optimal point (t',x',-b')
such that (z(b'), -b') > (z(b), -b) and either z(b') >
z(b) or -b', > -b, for some i.
i i
show that
Now we will/for each efficient semi-optimal point there exists a set

of dual prices p' >0 and p" >0 such that the efficient semi-optimal point

is also optimal, i.e.,

THEOREM: If (t*,x*,-b*) is semi-optimal and efficient
and if the linear programming dual prices p*
exist and are all positive, then there exist
price vectors p' >0 and p" >0 such that

Max  w(t,x,~b) = Max w(b) = n(b¥)
t,x,b b

PROOF: Let us define the price vectors p' and p" in
. terms of the basis B to the linear programming
problem resource vector b. Now p* =c¢_+B-1 is
the vector'of dual prices corresponding to the
basis B. Let

(32) p' = p* -v

" P

o
]
<
+
<



We then need to demonstrate the existence of a vt >0 and av >0
= s~

C ) : .
such that v_ <vp, . It is sufficient to show that for all b = b*+aAb*
for which an optimal solution to the integer programming problem exists

An(b*) = n(b) - 7(d¥) 0 or

A

2(b™+b¥) = (p*-v ) D™ - (pMv) d"ab* - (p¥-v )d' 8b¥ - 2(6%) + (p*-v ) b¥g 0.
Collecting terms, we get:

(33)  An(d®) = 2(db™+ ab*)-p* ¥ - 2(b¥) - v, d"ab* + v d'sb* < 0

A

" Now

and
(38) 20 = p* b¥* = ¢ (6%) = 6(b¥)/2(b*H Ab¥) = p*(brrab*)~o, (bX+aDF)=" 6 (b)

where 6(b*) and &(b) are-nonfnegative correction factors indicating the differ-
ence between the value of z if (11) provides an optimal solution to the inte-
- respectively,
ger programmlng problem for b*.and b +Ab‘/and the value of z if (11) does not

give an optimalsnlution and further dual pivoting steps must be performed to

obtain the optimal solution. Substituting (34) into (33), we obtain
. (35) Am(b*) = —¢z(b*+ Ab¥) + ¢z(b*)‘— §(b) + s(b*) - v, d" ab* + vsd'Ab*é 0.

Now all terms o0 the left hand side of the 1nequallty in (35) except
and 8(b*) + 6(b*) .
for ¢z (b*)/are non-positive. Thus, ¢, (b *)/is an upper bound on An(b¥). If
Ab* contains any positive elements, however, since Ab¥ is integer, Am(b*).
can be made non-positive by setting v = (¢z(b*) + G(b*),..., ¢z(b*) + 8(b%)).
1f Ab* = 0, then obviously (35) is satisfied. Thus, we need only consider

those Ab* < 0 for which Ab* # 0. With this information we may rewrite the

inequality (33) as follows:

(36)  ~z(db* + 8b%) + 2(b¥) >- (p*-v ) Ab*
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We need not consider any Ab* such that,b* + ab*=b” (mod B) for then

-z(b* + Ab*) + 2(b*) = - p*.Ab™ and the ineqﬁality in (36) must hold for

Ab* < 0. Furthermore, if the inequality (36) holds for Ab* = a, then it

.holds for Ab* = a'< a where a' = a (mod B). To show this to be true, let
us write z(b*+a) = z(b*+a') + p*(a'-a) which follows from the fact that
b# +as b* + a' (mod B) and ¢Z(b* + a) = ¢Z(b* + a') (SeeProperty 4 in sec-

tionIV). Since (36) holds for Ab* = a, we have

- * oy * o _ ® % *
z(b™ + a’) +.z(b )2 -(p vs) a or —z(b™a') + p*(a'-a) + z(b )%-(p*—vs)a or
~-z(b*+a') + z(b*)2 -p*a' + v.a

Since a ;.é' and v_ 20, it follows that

s
-z (b*+a) + z(b%) > -(p* - vS) a'

Thus, (36) holds for a'< a and since a (mod B) can only take on a finite
member D of values, there is a lower bound on the Ab*é 0 which must be con-
sidered. In fact one can easily show that we need only consider Ab*; -fb* >-

(b-1,D-1,...,D-1) where fb* is defined as above. The lower bound on the

ab¥ implies an upper bound on the right hand side of (36) where p*—vs > 0.

The left-hand side of (36) has a lower bound of unity for otherwise b* would
not be efficient according to the above lemma. Thus, vs can assuﬁe some finite

non-negative value such that (p*-vs) >0 and (36) hoids for all possible Ab*,

In particular if

vis =P i nf

fori=1,...,n

whe % th
re fb{ and v, are the i~ components of fb* and Ve then the

inequality (36) is always satisfied. q.e.d. ¥
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The quantities v, and v, may be regarded as subsidies (vs) and taxes
! .
; *

(Vt) on the resources. If up to and including bi units of resource i

are purchased a subsidy of Vi PET unit is paid. More than bi* units are

taxed at a rate Vi Per unit,

VI

To illustrate some of the above ideas, let us consider the following

‘example:
(37) Max 4;1 + §t2 + t,
Subject to
t ) =

(38) 3t + 2t 3y 28

tl + 4t2 +x2 v =27

3t1 + 3t2 + t3 +x3 =36

tl,tz,tB,xl,xz,x3_; 0 and integer. The revised simplex method yields

the following matrix with the optimal program to the linear programming problem

in the first column and the last row containing the first Gomory constraint

él which is introduced.

TABLE 1
1 -xl —x2 . -x3
z .52 4/10 2/10 4/10 1 .
ty 5 8/10 4/10 -2/10 0
to 5 3/10 -1/10 . 3/10 0
ty 2 7/10 -9/10 -3/10 1
s -4/10 -2/10% -4/10 0
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The determinant D‘of the basis is 10. Tﬂus, the constraint si given
in the matrix above is only one of 10 possible Gomory constraints. (See Gomory

[2)). The coefficients of the 10 possible Gomory constraints s. are generated

1

by letting A(1l) an arbitrary non—negative integer vector assume various values’

in the following vector of coefficients:

{(Al(l),.;),2 (1),2,(1),1,(1))-10 A}lo
10

where A represents the above simplex matrix in Table 1. 1In particular,
the 10 possible constraints may be generated by letting Al(1)=A2(l)=A4(l)?0

and ),(1)=1,2,...,10. The result is

>
w
~
‘—I
~

(39)  ( 7/10, 1/10, 7/10, 0)
( 4/10, 2/10, 4/10, 0)
( 1/10, 3/10, 1/10, 0)
( 8/10, 4/10, 8/10, 0)
( 5/10, 5/10, 5/10, 0)
( 2/10, 6/10, 2/10, 0) .
( 9/10, 7/10, 9/10, 0)
( 6/10, 8/10, 6/10, 0)
( 3/10, 9/10, 3/10, 0)
(o, 0 o0, 0

O 0 NN Ly W NN

[y
o

If we perform a pivot on the element of the simplex matrix in Table 1

marked with an asterisk we obtain the following matrix:

TABLE 2
1 ! *) 3
z 52 1 0
- 0
ty 5 | 2 1
t, 5 1/2 -1/2 - 1/2 0
ty 4 1/2 _ -9/2 3/2 1
Xy 2 -5 2 0
s -1/2 -1/2 -1/2% 0
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Here the common denominator of all elements in the matrix is ﬂll=2 and
there are two possible Gomory constraints. The particular constraint chosen

can be generated by setting

M2) = (@), 2y(2), A3(2), 2, (2)) = (0,1,0,0). and

61(2) = 0.
Pivoting again, one obtains
| TABLE 3

1l —sl -52 -x3
z 52 1 0 1
tl 6 3 -2 0
t2 5 -1 1 0
t3 3 —3 | 1
xl 0 ~7 4 0
x2 1 1 -2 0

The first column gives the optimal solution to the integer programming
" problem. From equation (1l1) we can derive an expression for the optimal

values of the variables ¢t t

t3, X, and X

1 72 1 2°

(40) X, (2)= Mo 2

X (2)F nNo1 -~ 4 x2(2)

2.2 .
4b.~ 2b, + Ob

t. (2) =(C1 "2 3)- _4

1 10 o ¥, (2) + 2/10 x,(2)
t, (2) =(-1b1+3b2+0b3) + 1/10 xl(Z) - 3/10 xz(z)
10
e, (27300 g0k @) +3/10 %, ()
> 10 1 : 2 |

z (2) = (2b +4b,+10b,, - 2/10 =) (2) - 4/10 x, (2)

10




where

(41) nbl= {2(-—9b1 - 3b2 + lOb3)}lO = {2bl + 4b2}10

=‘ =11 b » 1.
nga™ (H(-=1by + 3b, + 0b,)2 e . e
— 10 "1
10 ,
(18b) + 6b, T
10 10 01 2

Solving (40)for Xy (2) and %, (2), we obtain

(42) x2(2)7= Ngo
Cx2).=Tor - _& o2
2 2
€3(2) = (4% - 2byy | 5 o1 4 o2
10 10
£,(2) = 1y * 3% 4 1 M1 -1 M2

10 200 2

t3(2) = (—9bl— 3b2 + lOb3) + 91 - 3 Moo

10 20 2

z(2) =(2bl + 4b2 + 10b3) _ 1 n01
10 : 10
where
(43) ¢l(b) = nOZ’

) Ny _ -
9 (b) 01 - 2y,,,

22



"o1 - Ng2

o1+ 1/2 "o2 :
and

~

=2

~
It

o1 + 372 o2

¢, ) =_1 gy,

From (42) and (41), we may determine the marginal revenue productivity of

resources 1 and 2 as follows:

(44) MRPl (b) = 2 - 1 [ {zbl + 4b2 + 2}1O - {2bl + 4b2}10]
10 10
MRP, (b) = 4 - 1 _
, 2 1 {2bl + 4b2 + 6}10 {2bl + Abz}lo]

10 10
Note that the first terms in both of these expressions are the respective

linear programming dual prices;

Let us calculate the optimal values of the variables‘xl, X5 tl, t2,

t, and z for b

36, respectively. In this particular case we may rewrite equations (41).

ranging from 22 to 31 with b, and b, hold constant at 27 and

1 2 3

(45)
= {2b1 + 8}lo
"02 = {—lel +.b'27 + nOl}2 - {18bl + 2 +n01} .
10 10 2

To further make computation less difficult we can calculate “01 and “02

on the basis of bl varying from 2 to 1b the result will be the same.

the computations : L
Performing/ in (45% and substituting back into (42}, the following re-

sults are obtained:
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TABLE 4
By Toa Moz 1 %2 1 £ t5 2 MRPy

22 2 0 1 0 3 6 9 51 0.
23 4 0 2 0 3 6 9 51 0
24 6 0 3 0 3 6 9 51 0
25 8 0 4 0 3 6 9 51 1
26 0 1 -2 1 6 5 3 52 0
| 27 2 1 -1 1 6 5 3 52 'O
28 4 1 0 1 6 5 3 52 0
29 6 1 1 1 6 5 3 52 0
30 3 1 2 1 6 5 3 52 1
31 0 0 0 0 7 5 0 53 0
Note that for bl = 26 and bl = 27, the proposed method of calculating

1 is negative. Since there is

a great deal of disgression in choosing the Gomory constraint at each stage

the optimal solution does not work because x

in the process, a natural question is: would a different choice of the cut-

ting planes 81 and S,y have resulted in a method which is valid for all

changes in b, over the range from 22tc 31?7 The answer is yes. In fact

1
if
(46) 517~ _mn01+ N T L. d
3 10 1% 35 32 .k3 an
= " 1N * .
32 02 + 1 x, + 4 x2 + Ox3 ) .

% Y 7

where the asterisk indicates the pivot variable, the following results

are obtained:
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TAELE 5

Z

192

nol

51
51

22

23

51

24
25
26
27
28
29

51
51
51

52

52
52

30
31

53

Another choice of Gomory constraints’ leading to non-negative values for

xl and x2 is

x2 + Q x3 and

A
0

x2 + 0x3.

1
3

The results are:

TABLE 6

4

o2

01

51

22

51

23
24
25
26
27

51

51

51

51
52

28
29
30

52

52

53

31
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Thus, for this particular problem, the optimal solution to the integer
programming problem is not always unique.

A different choice of Gomory constraints leads to another problem.

For examplé, if

- _ n * a
I A

(48) s 1
10 10 10 2 3

1

- then the pivoting rule leads to a re-introduction of S1 later on as a

basic variable. The analysis in this paper breaks down in such a

case. This can be avoided, however, if one uses the following criterion:

Criterion for Choosing s, . Choose the non-zero Sk which gives the smallest
n

value of X for a variable X; with the smallest entry in the first row

il

of the simplex matrix. If more than one sk satisfies this criterion,

k ik

the next smallest entry in the first row of the simplex matrix, and so on.

choose among them the s, with the smallest n, for a variable X, with

When pivoting, always pivot on a variable with the smallest entry in
the first row of the simplex matrix if there is a choice of pivots.

Since our results are so sensitivg to the choice of the Gomory con-
straint introduced at each step, it would be desirable to formulate a de-
cision rule which would insure non-negative integer programming basic
vgriables xl,...,xk ho matter what the value.of b. Good results have been

obtained using the above criterion but one can construct examples for which



27

this criterion does not work.* If this c;iterion or some other always
results in non-negative XpsenesXys then (11) gives the optimal integer
program so long as the t variables are non-negative,

The above criterion may be illustrated with reference to the first
simplex matrix (Table 1) for our example, (37) and (38). All possible
Gomoryiconstraints are represented in (39). Since Xy has the smallest
number in the fifst row of the simplex matrix (Table 1), according to
the above criterion the constraint represented by the first vector in
(39) is the one to use.

' which make prof-

Next let us specify the price vectors p' and p'
it m(t, x, -b) a maximum at (t¥, t;, t§’ xi, xg, xg, —bi, -b;, —bg)
= (6,5,3,0,1,0,-28,-27,-36), where (t¥, x*) is the optimal program in
(37) and (38). Now from (31), we have

(49) m(b) = 2(d) = (¥ - v b = (p* + vd' (b-b%) - (p* - vd' (b-b¥)

where
Ve kL, = (2 &4
(50) P P VS 10? 10° l) - (VlS’ sts VBS)
Vo K - ._2_ _li V
P =P + vt = ( 0’ 10° 1) + (vlt, vzts V3t)

1 . , * .
10 "o1 and in particular when b (28,27,36)

we have ¢z(b*) = i% (See equations (41)). From the proof to the theorem

From (43), we know that ¢z(b) =

*I can prove that this criterion always works for m <2 or for K =1
with m arbitrary if an integer programming solution exists, Briefly, if.
K = 1 the proof is trivial. If K = 2, we have x. = ﬂg; _ 21 n

1 ny; 1y 02
X, = Na, 20. If m = 2, one can show that either n,, = 0 in which case
tﬁe proof_is trivial or n = ], Since n <Nq 4, %% follows that
Nyq 21 02 11

— n <l. Since x 'must be integer, it must be non-negative,
N1 02 1

and
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in section V, we know that we can set

Vv

- . &
1t 2t~ V3t 10

(49) v 3t 1

and

(50) v, for i = 1, 2, 3 if (50) gives non-negative

: 1
* o
is = Pi T 3%

%
bi

Vg fori=1, 2, 3.

The way in which fb* may be calculated is to take the fractional

parts of the optimal linear programming values given in the first column

8 3

of Table 1 and substitute these fractional parts (10, 10° T%) into

(37) and (38). The result is

_ 8 3 _
(51) fb; 3o t2 1 =3
- 8 L3
fbg = Tot4 10 <2
_ - _8 .3, .7
fbg =3 ptd ot

Substituting (51) in (50), we obtain

<. 2_1

(52) vi =36 7%
v, =-2_1

6

2s 10

v = 1 -

1
3s 12 ¢

From (48) we may write

IS S S |
n_ 06 _8 4
P = G 10 Y

This system of dual prices ensures that Hax N(b) = N(b¥).
b
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The properties of integer programs are not nearly as easy to deter-
mine as those of linear progréms, Aé Gomory has shown [ 5 ], however,
integer programs are intimately related to linear programming solutions
for a large élass of cases via a set of pefiodic functions of b, the
resource vector, This paper shows how in certain cases these periodic
‘functions may be derived ekplicitly which results in a method of paraﬁetric
programming and enables one to express the marginal revenue productivity
of any resource as a function of the linear programming dual price plus
a periodic function., The method proposed dn this paper does not always
work, however, when K =-1 or when m, the number of non-basic linear pro-
gramming variables is greater than 2, although the criterion which is
proposed in this paper seems to give good results for m72. More e#peri~.
ments need to be éerformed to determine how often thé criterion fails,
Further research also-needs to be done to determine whether there exists

a criterion for choosing sk which ensures non-negative X( for any b,

1
or failing that, for any particular b.

It is impossible to specify a single set of prices for the resources
such that the integer programming optimal solution gives maximum profits.
Qur proposal is a two part pricing system to make an efficient point a
profit maximizing point. This proposal bears a stroﬁg resemblancé to the
pricing proposals in much of the literature on pricing in public utilifies

where individisibilities are present and such things as taxes and subsidies,

two part tariffs, discriminatory pricing, etc., are the order of the day,

"Charles R. Frank, Jr.
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