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LECTURE NOTES ON ECONOMIC GROWTH: 

INTRODUCTION TO THE LITERATURE AND NEOCLASSICAL MODELS 

VOLUME I 

Abstract 

· This is a survey· of· the literature on Economic ·.Growth. ·.In. the .... · 

introduction we analyze the main differences between exogenous and 

endogenous growth models using fixed savings rate analysis. We argue that 

in order to have endogenous growth there must be constant returns to the 

factors that can be accumulated. A graphical tool is then developed to 

show that changes in the savings rate have different effects on long run 

·growth in the .two kinds of models; we show that only endogenous growth 

models are affected by shifts in the savings rate. We then explore two 

versions of the Ramsey-Cass-Koopmans neoclassical model where savings are 

determined optimally; one with exogenous productivity growth and one 

without. 

KEY WORDS: Economic Growth, Increasing Returns, Externalities, 
Endogenous Growth 
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"The consequences for human welfare involved in questions . .Like 

these are simply staggering: once one starts to ·think.about them, it.is ihard 

to think about anything else". Lucas (1988), p. 5. 

(1) INTRODUCTION TO GROWTH MODELS. 

(a) Exogenous versus Endogenous Growth models: An Introduction 

Most of the recent economic growth literature deals with 

"optimizing growth models" where consumers choose a consumption path by 

maximizing some kind of utility function subject to some intertemporal 

budget constraint1 The ·:complicated mechanics of dynamic optimization, 

however, obscures.· ·some of the importantc. points and issues. Hence, before. 

studying such models it will be convenient to start with the assumption that 

the savings rate is an exogenous constant: people save a constant fraction 

"s" of their income. This is what Solow (1957) and others, following the 

Keynesian •multiplier hypothesis, do. Within an intertemporally optimizing 

framework, there is a configuration of parameters that will yield a constant 
2 savings rate . Hence, economists that do not believe in Keynesian 

1 

Early economists used to confine the intertemporal optimization 
analysis to normative issues. The celebrated Ramsey 1928 paper (which deals 
with intertemporal optimizing economies) starts with the sentence "The first 
problem I propose to tackle is this: how much of its income should a nation 
save?" (p.543). ·· Contemporaneous economists use intertemporal optimizing 
models for descriptive or positive analysis as 'Well. Following Barro 
(1974), the representative agent is assumed to be a family or group of 
individuals linked to each other through bequests. 
2 

Kurtz (1968) showed that 
Douglas, necessary and sufficient 
optimal savings rates are 

if the production function is Cobb 
conditions for· constant transitional 

(1) the utility fuIJ.c:_~on) be Constant Elasticity of Intertemporal 
Substitution of the form c ;s /(1-(1/s)), wheres is the savings rate, 
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multipliers may want to think of an economy described by such configuration. 

Suppose also that the only asset in this (closed) economy is something we 

r c'all Kt.· ·You··· may want to think' of K as being physical··· CAPITAL· but .it may 

also .include other inputs .that can be accumulated,,; such as knowledge". or" 

skills. Now imagine .that the .. production function is .Cobb-Douglas and. that 

there are two aggregate inputs. One ·of them, Kt, can be purposely 

accumulated and the other·Lt, cannot be accumulated, or it grows at ar-ate 

which is independent -of individual choices ~(think of 'L as 'labor but···ut·"may -·· 

·also include other unreproducible resources such as land or energy). 

(1.1) y 

The increase in K over time, which we will call 3 K=dK/dt is 

aggregate net INVESTMENT In a'closed economy net investment must equal to 

SAVINGS minus·. DEPRECIATION. 'Using (1.1) and the fixed savings Tate 

assumption: 

Where o is the (constant) depreciation rate. Population is 

assumed "to be equal to .employment (so we abstract .from unemployment and. 

labor force participation issues) and is assumed to grow at an exogenous 

constant rate, L/L=n. Let us define lower case k as the capital-labor ratio 

(or capital per worker) K/L. By taking derivatives of kt with respect to 

.(2) ·the discount rate be related to ::the .. parameters ·· of.Jthe model ;through· 
p=f3-s, where p is the discount rate, and f3 is the share of capital in the 
production function. 

See also Barro and Sala-i-Martin (1990) chapter 1 for an extension 
of this result. 
3 

Throughout these notes we will denote time derivatives by "dots" 
on top of variables. 
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4 time we can rewrite (1.2) in per capita terms as 

(1.2)' kt 

Let us divide both sides of (1.2)' by kt and define the growth rate of 

capital per worker kt/kts-yk. We will call STEADY. STATE .the state where all. 

variables grow, at a,, constant· (possibly ·zero),; rate. Thus; in ·steady·"stlate ''.'fk:' ,., -
is constant. Take logarithms and derivatives of both sides and get 

(1.3) 0=(/3-1)-yk+n(a+/3-l) 

This KEY equality deserves further attention. In the original 

Neoclassical ·growth model (Solow (1956) and Swan (1956)) the production 

function is assumed to exhibit Constant •Returns .to Scale in capital and 

labor (ie, · a+/3=1) but Decreasing Returns to Capital alone (/3<1). Notice 

that by virtue of the CRS assumption (a+/3=1), the second term in the right 

hand.side ,of (1.3). is zero.so:we are left with 

(1.3), 0=(/3-1)-yk 

but due to the Decreasing Retur:ns to Capital assumption (/3<1), equality 

(1. 3)' says that the only sustainable steady state growth rate is -yk=O. 

That is, in the CRS neoclassical model, the only possible steady state 

growth rate is zero. If the only possible growth rate is zero, how did the 

neoclassical theorists of the 50's and 60's explain long run growth?. They 

basically assumed that the economy gets (exogenously) more productive over 

time. ., In other words, they extended . the .. technology in _ ( 1.1) to ,a more. ~, 

4 Notice that the difference between expressing the accumulation 
equation' in levels or 'in per capita terms, is the ·term nk added to ok. We · 
can in fact think of nk as some extra depreciation since it represents the 
loss of capital per person due to the fact that, when population grows, we 

-- have to share capital with an increasing number of people. 
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general 

(1.1), yt 

where A(t) reflects the 'level of the technology which is asswned to .. be 

growing at the constant rate g, so A(t)=A(O)egt. The parameter "g" is often 
5 referred as the· "exogenous ·productivity ,growth.rate"; In section l.:·3-,we· 

will present· an optimizing version «Of this model. We will see that ·income 

· per capita, capital per capita, and investment per capita will end up 

growing at this exogenously given rate. We will also expand on the term 

A(t) and on different ways to model productivity growth. 

A second (and possibly more interesting) way to read equation 

(1. 3) is the following: "In a CONSTANTS RETURNS TO SCALE model (a+,8=1) in 

order to have positive steady state growth (1k>O), the production function 

must exhibit CONSTANT. RETURNS TO .THE INPUTS THAT CAN BE ACCUMULATED, ,8=1. 116 

This simple fact underlies the CONSTANT RETURNS ENDOGENOUS GROWTH models 

developed in the late 80' s. 

following: 

(1.1)'' Y = AK t t 

The implied production function is the 

The simplest growth model using this type of production function 

(Rebelo (1990)) is outlined in section 1. 4. Notice that this t}'Tpe of 

production function does not give any role to exhaustible or non 

reproducible resources such as raw labor or land. One could argue, however, 

that what matters for production is not raw labor but, rather, quality 

5 

It is called exogenous because it is unaffected by any of the 
parameters of the model such as the capital share or the savings rate. 
6 · Notice that we are saying CR to K and no~ C(t ~ Scale. The distinction 
is important: the production function Y=K L - with 0<,8<1, exhibits 
constant returns to scale (if we multiply all inputs by A>l we get A times 
as much output) but Decreasing Returns to Capital (since if we multiply 
capital by A we get less than A times as much as output). 
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adjusted labor. The quality of the labor force (often called Human Capital) 
is accumulated as, each generation is .more knowledgeable than the one- before. 

When one eombine·s "physical· -'and, 1.human - -capital• into _,·some, -broad measure -rn~f 
capital, the aggregate production function will look l·ike the linear AK 
function postulated above. This is ·the· approach taken' by ·Lucas (1988') and 
Uzawa (1956). A version of these models is presented in section 1.7. 

Barro (1990) and its extensions ' outlined in Barro "and 
Sala-i-Martiri (1990) -assume that' the two 'inputs of production are private 
physical capital and publicly provided inputs such as roads, infrastructure 
or law enforcement. Output exhibits constant returns to both inputs. In 
section 1.5 we will show that this setup ends U? being similar to 
postulating an AK production function where K must again be interpreted as a 
broad measure of capital. 

Notice that (as can be seen from equation (1.3)', the steady state 

growth rate -yk derived from these models is positive without assuming 
exogenous productivity growth. As we will see in the next subsection, the 
parameters"''of the modeJ. (in-particular the savings rate) will determine this 
growth. rate/ Because the growth' rate is determined within the model, (in 
other words, it depends on the other parameters of the model) these are 
often,cal-led "ENDOGENOUS' GROWTH MODELS". 

Finally, equation (1.3) allows for one more possibility. If the 
population growth rate is zero (n=O), we can have nonreproducible inputs 

(a>O) together with ENDOGENOUS GROWTH (-yk>O) if there are CONSTANT RETURNS 

TO THE INPUTS THAT CAN BE ACCUMUI.ATED (fi=l). But notice that this implies 

OVERALL INCREASING RETURNS TO SCALE (a+fi>l). This possibility gives rise to 
the so called "INCREASING RETURNS ENDOGENOUS GROWTH MODELS 117 • 

Of course, if we plainly postulate an Increasing Returns to Scale 
(IRS) production function we run into trouble since we cannot find a set of 

7 

rate is 
trouble 

As can be seen from equation ( 1. 3) , when the population growth 
positive, the inc,reasing returns -to scale models· (a+fi>l) run· into 
since there is no -yk that satisfies the key equality. What happens 

in this. circumstances'· is that' the ·growth rate is never constant but, rather, 
it increases over time. 

5 
t 



prices to support a general competitive equilibrium. There are at least two 

ways to get around this problem. 
(a) The first one (due to Alfred:Marshall) is to introduce IRS.at 

the aggregate level but CRS at ' the firm level. This can be formulated 

through production externalities or spillovers: each fir:m' s decisionc.:affects 
all other firms output, but none of the firms takes this into account. 

Hence, all the .. firms face a, "concave''. problem -which has a competitive 
solution. .The ··economy as. a whole, :however; ·.faces an IRS production.function 
.which, .·;under .. some .conditions .. that we will mention in·. a second, generates 
endogenous growth. The Cobb Douglas version of this production function is 

(1.1.)" yt 

where Kt is private capital ,and ~t is the aggregate capital in the economy. 
Individual firms do not think they can affect ~ so they take it as given. 
Notice that under these circumstances firms face a perfectly defined concave 

problem so the Kuhn-Tucker theorems .apply. In the aggregate, however, total 
capital will equal. the sum .. of. individual capitals. and therefore ~=K. . Thus 
the aggregate production function will be 

(1.1)'''' y = AKP+~Ll-P 
t t t 

Notice that if the size of the externality is "correct" (that is 

if p+~=l) we will have CONSTANT RETURNS TO CAPITAL in an INCREASING RETURNS 

TO SCALE world. Thus, by modeling IRS through externalities we get around 

the problem of inexistence of competitive equilibrium. As it is well known, 

however, these competitive equilibrium models with externalities will be NON 

OPTIMAL. In section 1. 6 we show how Romer-:: (1986), · following Arrow (1962) 

and Sheshinski (1967), postulates capital spillovers (externalities) in the 
aggregate production function and finds that the ··model generates· steady 
endogenous growth when p+~=l. 

(b) A second way to get around the existence of the competitive 
equilibrium problem is to drop the assumption of competitive behavior. This 

is sometimes called the Chamberlinian approach to increasing returns. This 
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approach is interesting for a variety of reasons, one of the main ones being 

that under imperfect competition the rewards to all inputs of production 

does not .·exhaust, total.o.utput,:>,.~rHe.nce; .. there .. are rEHlts ... that ,can be, ass:i,gned_ 

to activities not. di·rectly productive but ;that . may, contribute .to- the 

expansion of the··- frontiers of -knowledge• such as R&D. No~ surprisingly, 

therefore, this approach has been extensively- used by economists --that ,th-i,nk" 

that R&D is an important source of economic growth. .In sec.tion 8 we explore 

a model of R&D =and. ,growth ·taken from Barro-'and ,Sala-i-Martin (1990 ;a) 8 ·where 

firms invest in R&D in search.of new-varieties of capital goods. In that 

model, there are NO decreasing returns to the introduction of new varieties 

so the incentive to perform R&D never diminishes, which keeps the economy 
9 growing 

Of course one could have models with both imperfect competition 

and externalities. In fact •there - is an important line of research that 

combines R&D (with imperfect competition) with externalities. It emphasizes 

R&D as some activity exercised by firms in search for new varieties of 

products· or higher quality products; · As a side product, R&D . increases the 

general stock of .'knowledge. which -has. two effects. First, it decreases the 

cost of further research (so the incentive to perform R&D remains positive 

and Knowledge grows at a constant rate forever). And second it .increases 

the productivity of --other inputs (such as -labor) in ·-·the production of a 

manufacturing good. Therefore, given that the stock of knowledge grows at 

constant rate, so does the manufacturing good. Models of this type include 

Aghion and Howitt (1989), Grossman (1989) and Grossman and Helpman (1989 d 

and e). 

Before showing the mechanics of all these models, let us introduce 

8 

This model, in turn, -is •an extension of Romer (1987) and Grossman 
and Helpman (1989, a). 
9 

perfectly 
markets. 
(1990). 

There is a third way to model increasing returns in a model of 
competitive firms and that is to introduce imperfect financial 
This approach has been taken by Greenwald, Salinger and Stiglitz 

7 



a graphical device that will further clarify the basic difference between 

exogenous and endogenous growth models. It will also help,us understand why 

, the ,,, savings , (or, investment),, rate-·,does not ''"af,£ec t',~long,,"run growthw-in "the '''''·1 

first one•· and does so in the latter. 

(b) The Role of Saving and Investment: a Graphical Exposition. 

We ·-can O'ften he'ar economic advisors to third world countries •say · 

that one"of the necessary conditions for economic growth and development is 

the increase in national savings rate. Higher savings will lead to higher 

investment (since in a ,closed economy the two must be equal) and higher 

investment will lead to more rapid economic growth. In this section we will 

analyze•under what conditions this policy recommendation is valid. 

Let us keep assuming that people save a constant fraction of their 

income and .that the, government can influence it (for instance through 

distortionary income taxes). Suppose that, for whatever reason, the 

government manages to increase the economy's savings rate. 

, long run effects of such policy be?'.-

What will the 

, In order to answer this question, let us start, by assuming that 

the production -function c,is constant returns to scale< (a+,8=1) and dividing 

bo.th sides _of the (per c·ap·ita) .capital accumulation equation (1.2)' to, get 

(1.4) k /k = sAk-(l-,8) - (o+n) 
t t t 

The left hand side of this equation is the instantaneous growth 

rate. Equation (1.4) says that the growth rate is the difference between 

sAk~ (l-,8) and (o+n). We depict these two functions in Figure 1. The 

function o+n is independent of k S,O it is a flat line. In the neoclassical 

model ,8<1 applies. , This implies that the function sAk- (l-,8) is downward 
t 

sloping in k, and approaching zero asymptotically. 

* 
Notice that the two 

curves cross at a point k , the steady state capital labor ratio. Let us 

* now consider an economy with an initial level of capital k0 lower than k . 

The initial growth rate of capital will be very large (notice that, 

accor:ding to (1.4), the growth rate is the vertical difference between the 

two curves) and it will be decreasing over time. Imagine for a second that 

8 



we are in the steady state and, suddenly, the savings rate s, increases. 

Figure 1 suggests that the curve sAk~ (l-{3) will shift to the right and 

.: nothing will:,.happen to the (o+n) .line. We can see .that."the following things 

are true: 

(a) the growth rate·. will immediately increase. 

(b) the growth• rate will be falling over time until, eventually, it 

goes back to zero. 

(c) the steady state capital. labor ratio is higher. 

Hence, an increase in the savings rate generates a short term 

increase in the growth rate and an increase in the steady state LEVEL of 

capital per worker. It does not affect, however, the long run or steady 

state growth rate, which is still zero. Under normal parameterizations, the 

speed of convergence towards t;he new steady state is quite fast. For 

instance, Barro and Sala-i-Martin (1990) suggest that the model predicts 

* that half the distance between k 0 and k disappears in less than 6 years!. 

As it was mentioned above, Figure 1 suggests that the growth rate 

for an economy'·which ·starts below ·the steady state is high and decreasing. 

This, of course, implies that if economies differ ONLY on the initial 

capital labor ratic:>' we·· should •'observe poor economies grow faster than rich 

ones (in Figure 1, ·. different economies would be represented by• different 

* stocks of k 0 but all of them would have the same steady state k ) . 

Economists call this the. "convergence hypothesis". This hypothesis is 

certainly true, but notice that .there is a big ONLY on it. That is, 

economies may differ NOT ONLY in the capital labor ratio but also in the 

level of technology (A), the savings rate (s), the depreciation rate (S), or 

the population growth rate (n). If countries differ in one or more of these 

parameters, they will end up in different steady states. 

In Figure 2 we show the behavior.• of ·two economies, one called P 

(poor) and one called R (rich). The poor economy has a lower initial 

capital stock k 0 p<kOR' (that is why it is called poor). We assume that the 

poor economy also has a smaller savings rate so it converges to a smaller 

* * steady state capital labor ratio, kp<~. Notice that in this particular 

example, it happens that the poor economy grows less than the rich one so 

9 



there is no convergence in the absolute sense. Yet there is CONDITIONAL 

convergence in the sense that each country converges to its own steady state 

at· dimini'Shing growth rates. : :c Empirically,· this means that if w~ hold 

··constant the steady state, poor -;·countries will ... grow faster ;than rich, one.s .. 

<[f we don't, however, we will not. see poor ec.onomies growing faster unless 

they are very similar (in the sense that they converge to similar steady 

states). 

Barro and Sala-i-Martin (1990) find that this feature of the 

neoclassical model can be found in.the data. They find that the States of 

the U.S. display absolute convergence while countries in the world do not. 

Holding constant the steady state, however, there is convergence across 

countries also. This makes sense if we think that the states of the U.S. 

are similar .in the sense. of having. the same tastes and technology so they 

converge to the same steady state. This is certainly not true for the large 

cross section of countries, so they display conditional convergence only. 

For related studies on convergence see Baumol (1986), Delong (1988), Dowrick 

and NGuyen (1989), Manki~, Romer andWeil (1990), and Sala-i-Martin (1990). 

Let us now expand the· neoclassical production function by 

introducing exogenous productivity growth. 

function now looks like 

Recall that the production 

(1.1)' yt = A(t)k~ 

where A(t)=A(O)egt. Notice that, in terms of Figure 1, this specification 

implies that the curve sA k-(l-,B) keeps shifting over time at a rate g. 
t * This implies that the steady state capital labor ratio k keeps shifting at 

the same rate. This is how the neoclassical model explains long run growth. 

In Figure 3 we show that the implications from changing the 

savings rate are very different when we consider a simple endoge·nous growth 

model .. If the capital share is 1 (,B=l), the sAk-(l-,B) curve is a flat line 

at sA. If· we assume that the economy is productive enough so as to have 

sA>S+n, then the growth rate (difference between the two lines) is constant. 

In other words, the economy grows at a constant rate equal to sA- (S+n). 

Notice also that in this case, . an. exogenous increase in the savings rate 

10 



increases both the short run and the steady state growth rates. Hence, 

contrary to the neoclassical predictions, policies directed to increases in 

the savings (and. investment).·• -rates ·will have ·long ru,n .. growth effects. 

Further, notice that· if economies differ in the•initial capital stock ONLY, 

it is not true anymore·' that poor ·ones will· grow faster·· than rich. ones. 

Finally,· this model predicts .that a, temporary· recession will have-permanent 

effects. That is, if the capit'al stock temporarily falls for some exo.genous 

reason (an earthquake, a•natural tragedy or .. a .. war that destroys part.of the. 

capital stock), the economy will not grow temporarily faster so as to go 

back to the prior path of capital accumulation. The endogenous model 

described here predicts that after such a temporary reduction in the capital 

stock, the growth rate will still be the same so the loss will tend to be 
10 permanent 

Figure 4 depicts the case where fi>l (IRS in the inputs that can be 
accumulated11). The curve sAk-(l-fi) is upward sloping (and if fi>2 its slope 

is increasing!). Notice that this implies growth rates that increase over 

time. We will refer to this case again in section 6 (Romer (1986)). 

(c) The Harrod-Damar Model. 

Long before the neoclassical theory came to life in the mid 50's, 

the most popular model of economic growth was the so called the Harrod-Damar 

mode·l (developed by >Harrod (1939). and Damar (1946)). We can use the 

graphical tool developed in the last subsection to learn about this older 

10 

There are unbelievable amounts .of papers on the existence of a 
unit root in macroeconomic aggregates such ·as GNP. There seems . to some 
evidence that, for the United States, GNP is non stationary, which is what 
this simple model would predict. See Blanchard and Fischer (1989) Ch. 1 for 
discussion of these issues. 

11 In this case the assumption of GRS o:+fi=l must be dropped since a 
negative labor share has little economic sense. Think of this case as one 
where ·a=O {so •all. inputs· can be accumulated) and fi>l (so there are both IRS 
and IR to capital. 

11 



growth model. 

Harrod and Domar tried to put together two of the key features of the 

·<, ·Keynesian··· economics . -·the··_><: multiplier. and the .accelerator-. in a model~ .that_.·· ·,_v 

explained 1ong•i run economic gr.owth. We have been. using the multiplier 

assumption (savings is >a ·fixed proportion of income) .alL along. so let .us 

describe the differential feature of the Harrod-Domar model: the 

accelerator. The increase in capital required to produce a given increase 

in output is .assumed to be a constant number. 

independent of the capital labor ratio. That is 

In .particular,· .. it .. is 

where A is constant. Notice that one production function that satisfies 

this relationship is ·'the line~r AK production function used by the CRS 

Endogenous Growth models. Thus one could be tempted to identify the 

Harrod-Domar model with the new Endogenous Growth Models. Yet that would be 

a mistake. The reason is· that Harrod and Domar were very concerned about 

the effects.of growth on.long run employment and unemployment12 (their study 

could be though to be '-an explanation for the then existing long run 

unemployment of the Great Depression). Although they never introduced a 

specific production function, the fact that they worried so much about 

employment seems to indicate that they were not talking about a function 

such as "AK", where there is no role for inputs such as labor. 

Another production function which satisfies the accelerator 

principle and which is closer to the spirit of what Harrod and Domar had in 

mind is the Leontief Fixed Coefficients function. Output is assumed to be 

produced by a fixed proportion of capital and labor. Given this proportion, 

an increase in the level of one of the inputs without a corresponding 

increase in the other leaves output unchanged. Thus, we should replace the 

12 

In fact, Domar's paper is called "Capital Expansion, Rate of 
Growth, and Employment". 
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production function (1.1) by 

where A and B are• exogenous production parameters. After rewriting this 
function in per capita terms -y=min(Ak,B)- we plotted it in Figure 5. We 

* see that there is a capital labor ratio k =B/A that has the following 
* property: for capital labor ratios smaller·than k, Ak is smaller than·B so 

* output is· determined by Ak. For. capitaL labor ratios.,larger than k , .Ak .is 

larger than B so output is determined by B. In other words, this production 

function can be rewritten as 

(1.1) 
* for all kt<k =B/A 

* for all kt>k =B/A 

Notice that this technology is similar to the Ak model ·but only for 
small capital labor ratios. For large ·ones, 'however, the production function 
is flat so the Marginal Product of Capital is equal to zero. We can now 

a.pply the basic .savings equal investment equality (1.5.) to this technology. 

to get. 

(1. 7) kt+l = 

JsAkt+(l-6-n)kt 

lsB +(1-6-n)kt 

* for kt<k =B/A 

* for kt>k =B/A 

As Harrod and Domar pointed out, there are three possible 

configurations of parameters each of which will yield different implications 

for growth and employment. 

CASE 1: sA<6+n 
When the savings rate and/or the marginal productivity of capital 

are very small compared to the aggregate depreciation rate (which includes 
population growth), there is no possible steady state. This is pictured in 
Figure 6. Notice that the economy converges to a point where the logarithm 
of the capital labor ratio is minus infinity· (so the capital labor ratio 
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converges to zero) . In this case not only there will be unemployment 

(because AK<BL) but it will grow over time. Harrod and Domar thought that 

~.·t • this was 'a "good de·scr:i:ption of .. ;the observed large .and1 growing unemployment _, 

rates of the 30's. 

CASE 2: sA=o+n 

When, by chance, the exogenously given savings rate and marginal 

product of capital are such that sA=o+n, the economy will reach a steady 

state where all the per capita variables grow at a zero rate. In Figure- 7 
we show· that,, in this case, the initial. capital labor .. ratio .will .b,e .,the 

steady state one. 

CASE 3: sA>o+n 

The third case, depicted in Figure 8, is one where the marginal 

product of capital or/and the savings rate are very large relative to the 

depreciation rate. We see incFigure 8 that, for small capital labor ratios, 

this case looks very ·much like the Rebelo model. But as the capital labor 

ratio grows, the labor requirement gets binding (that is we hit kt =B/A at 

" ·•s01ne. 'finite point .ini,vtime). :-; .. After this. point,.,~the- marginal product. of.,. 

capital is zer·o and .the ·per. capita« growth process stops. The steady state 

* capital labor ratio, k will. be one where there will be. unemployed 

machinery. 

Two out of the three configurations of parameters yield long run 

equilibria were there are idle •resources and the only that does not, would 

be achieved-•only by chance: remember ,that all the relevant parameters -A, s, 

o and n- were given by mother nature. The question is why in the world 

would mother nature be so kind as to give us exactly that configuration of 

parameters?. In other words, the chance of them being such that the 

equality above is satisfied are quite small. 

At the time, the Neoclassical approach was seen as a way of 

solving this knife edge property of the Harrod-Domar model. That is, the 

neoclassical production function achieves the equality between sA and o+n by 

allowing for A (the marginal product of capital) to be variable in k 13 . We 

13 And we know that there will be a level of capital k such that the 
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should just mention that there are other non neoclassical ways of achieving 

this equality. One of them, proposed by, the old Cambridge School in England 

'was to argue that '.the savings ,,rate was .endogenous. .. ·They- thought that. 

workers had a different marginal propensity to save from capitalists. 

Hence, so they argued, ; ;in the process. of., economic growth there will be 

changes in the distribution of income that will lead to changes in the 

aggregate savings rate in such a way that the equality between sA and S+n 
14 will be guaranteed We will not talk about the Cambridge school of thought 

anymore. 

(d) The "Sobelow" Production Function. 

Finally, with this graphical approach we can see that the growth 

paths are not limited·to the cases seen up to now. ·We could find functions 

that behave in some other ways, . .we may discover new growth models and new 

transitional dynamics .. towards steady states.·. ·Consider Figure 9: The steady 

· ~- -state:. is: sim:ilar .. ·.~~to,. ~the ... ,one::· .. de.s.crib~d ;~.,by ·.-the Rebelo ·. mo.del b.ut "···the·, 

transitional dynamics •are different. · One production function that exhibits. 

such dynamics is the following: 

(1.9) Yt = AKt +BK~ 

This production function was first. proposed by Kurtz (1968) and 

Gale and Sutherland (1968) and later reintroduced in the endogenous growth 

marginal product of capital 
is assumed to range from 
continuous fashion. 

is equal to (S+n)/s 
zero (f'(~)=O) to 

since the marginal product 
infinity (f'(O)=~) in a 

14 This was one of the main differences between the Cambridge (U.S.) and 
the Cambridge (U.K.) school of thought. The other main difference was that 
the british rejected the Neoclassical production function and, in 
particular, they rejected the notion of aggregate capital stock. They 
thought of capital as a number of different machines which, combined with 
different types of workers yielded different types of output. Such a 
heterogeneous set of objects, they argued, is impossible to aggregate into a 
single variable called Aggregate Capital stock. See Robinson (1954). 
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literature by Jones and Manuelli (1990). Notice that this function is half 
fi ' 15 way between Solow (BK ) and Rebelo (AK) . It has all the nice properties 

·required by the Kuhn Tucker theorem so we can apply straightforward · 

optimization techniques to find solutions. 

In per capita terms the Solow production function is concave and, 

as k tends to infinite, the marginal product of capital approaches zero. 

The Rebelo production function in per capita terms is linear with. slope 

equal to A for all values- of k. The Sobelow production function is also 

concave for all ·capital-labor ratios .. As k goes to infinity, however, the 

slope of the production function does not go to zero but to A. For large 

levels of k, therefore, it gets arbitrarily close to the Rebelo production 

function. Hence, the only difference between the Solow and the Sobe low 

functions is the latter does not satisfy the Inada condition. 

We observe in fig~re 9 that sf(k)/k now is not going to zero 

asymptotically but to A. As Kurtz (1968) noted, if A is sufficiently large 

(in this case this means if sA>o+n), then the steady state growth rate is 

positive, even though-, there' is a transition, period" where growth rates -are 

decreasing monotonically. , It .is worth noticing that -if the economy has 

been· going on for a while, the decreasing returns part of the production 

function will· be almost ··'-irrelevant so we might as well ·deal with the 

(simpler) -linear technology described above. 

(e) Poverty Traps. 

Another possibility could be the one in Figure 10. Here we see 

the function sf(k)/k crossing the horizontal line (o+n) twice so there are 

two steady states. The lower crossing represents a "stable poverty trap". 

That is, countries whose initial "capital" (here we define capital in a 

broad sense that includes all inputs that can be accumulated) is very low 

will tend to this zero growth-low income trap. In fact all countries whose 

15 
That we.call it the Sobelow production function. 
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* initial capital lies to the left of k2 will fall into this trap. Countries 

that start to the right of this trap will tend to a constant growth steady 

state a la Rebelo. 

In the next two •sections we .will present the optimizing versioTl.s 

of the Neoclassical models we have been, talking about in this introduction. 

In sections 4 through 7 we present the "new" growth models of the 80's. It 

is useful to think about them in terms of·being optimal saving versions of 

the /3=1 model we just presented in this section. 

(2) The Ramsey-Cass-Koopmans model 

(a) The Model. 

All optimizing growth models we will assume that consumers choose 

a path of consumption so as to maximize a utility function of the form: 

(2.0) U(O) 

0 

Where p is the discount rate, ct is consumption per capita at time 
t and Lt is population. We can think about horizons being infinite (despite 

the fact that, obviously, lifetimes are not) if, following Barro (1974) we 

think that individuals care about their utility AND about their children 1 s 

utility. In this sense, we must think of the agent as being a dynasty or 

family the number of individuals of which grows 'over time. Under this 

interpretation, the discount rate (which was described by Ramsey (1928) as 

"ethically indefensible and arises only from the weakness of the 

imagination1116 , (p. 543) at the individual level) represents the fact that 

individuals care more for their own utility than the one of their children. 

16 Ramsey was considering the optimal choice from a government's 
point of view. He thought that introducing a discount rate was ethically 
indefensible because that meant that the government was giving a larger 
weight to current than to future generations. 
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Since ct is consumption per capita, u(ct) is the instantaneous per capita 

felicity. Hence, the instantaneous felicity for the whole family is equal to 

.the individual times the number of people in the family. 

We assume that there is only one good (cookies). We will assume 

that households OWN the firms (or that there is only household production17 ) 

so they can consume this good or they can nail it to the floor. The reason 

why anyone would .·do such a horrendous thing· is that cookies nailed to. :the 

floor can be used to , produce. more cookies in the .. future ... For lack .. of a 

better name, all cookies nailed to the floor will be called "capital" and 

will be represented by Kt. We assume that there is nobody else in the 

universe, so all the cookies produced will have be consumed or nailed. Hence 

the increase in existing capital (called investment) must be equal to 

saving. If we let kt be per capita capital (Kt/Lt), the following resource 

constraint must be satisfied: 

(2.0)' k f(k) - c -nk -6k 

Notice that n is like a· "depreciation rate" because it represents 

the fraction of resources that we need to give to new generations. The key_ 

Neoclassical assumption is a production function that expresses NET output 

in per capita terms as a function of capital per capita with the following 

properties: .twice differentiable, with f(O)=O, f' (k)>O, f' '(k)<O, f' (O)=oo 

and f' (oo)=018.. A simple Neoclassical production function that we will be 

using throughout is the Cobb Douglas: f(k)=k.B with 0<,B<l. Population is 

17 

As we will show in the next section, the results will be the same 
we would get if we assume that households own capital and labor and sell 
their services to competitive firms in exchange for wages and rents. 
18 

The last two conditions (the Inada conditions) are often swept 
under the rug. They are of crucial importance because, as Kurtz (1968) 
showed, the mathematical difference between an endogenous and exogenous 
growth model is the condition lim f' (k)=O. This point has been emphasized 

k->oo 
also by Jones and Manuelli (1990). 
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assumed to grow at the (exogenously given) rate n so we can rewrite the 
program as: 

(2.1) MAX U(O) Joo -(p-n)t[ 1-a ] = e c -1 dt 
t ---

0 1-a 
s.t. k f(k) - c -nk - ok 

k(O) >0 given 

For U(O) to be bounded (U(O)<oo, and the program to be meaningful 
at all) we need the term inside the integral to go to zero as t goes to 
infinity. This implies 

Lim e c -1 . -(p-n)t[ 1-a ·] 11·m -(p-n)t 1-a -(p-n)t 
~ c - lim e 1/(1-a) 

t t 
t~OO - --1- a 1-a 

In steady·state ct will be constant (we will show later). Hence, 
if this' limit has to be zero, ·it must be the case that 

(2.2) p>n. 

To solve the model, we set up the corresponding Hamiltonian 

(2.3) H() 

where v is the dynamic Lagrange multiplier (or shadow price of 

investment). The first order conditions are the following: 

(2 .. 4) H c 
-(p-n)t -a 0 ~ e c - v = 0 

(2.5) Hk -v ~ v = -v(f'(k)-n-o) 

(2.6) TVC lim (ktvt) = 0 
t~OO 

Equation (2.4) says that at the margin, the value we will give to 
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consume one more unit will be equal to the value we will give to invest one 

more unit (that is, we, will ,,be" indifferent between consuming and investing 

the unique good) . Take logs of (2.4) to get -(p-n)t-alog(ct)=log(v). Now 
take the derivative with respect to time to get: 

(2.7) -(p-n)-a(c/c) v/v 

so 

(2.7)' c/c 
-1 . 

a (-p+n-v/v) 

We can now plug this in (2.5) to get,the traditional condition for 

consumption growth: 

-1 (2.8) 1=c/c =a (f'(k)-p-o) 

This"',equation' can be ,r,ewrittem'as p+a(c/c)=f' (k)-o and interpreted 
as follows: The left hand side represents .,the return to consumption. The 

discount rate represents the gain .in utility from consuming today since we 
prefer consumption for ourselves rather than for our children. The return 

to conswnption also includes ac/c. If we want to smooth consumption over 

time (a>O), then we want to increase consumption today, whenever we expect 

consumption to be higher in 

saving (and investment) is 

the future (ie, when c/c>O). The return to 

the marginal product of capital minus the 
depreciation rate, o. Optimizing individuals should, at the margin, be 

indifferent between consuming and investing. This indifference is the one 

represented by equality (2.8). 
Using the Cobb-Douglas technology, (y=kP), equation (2.8) can be 

written as 

(2.8)' -1 -(1-P) 
1 =a (pk -p-o) 

t 
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If we define steady state as the state where all the variables grow at a 

constant {and possibly zero) rate,- equations (2.8) together with the capital 

* accumulation equation (2. 0)' say that there is a unique steady state k 

h . h h . 1 d . . d 19 H w ic ensures t at capita an consumption per capita o not grow ence 

this model says that, in the steady state, all variables in per capita terms 

do not grow at all. Alternatively, all "level" variables grow at the same 

rate as population, which is assumed to be exogenous. 

{b) Competitive Solution. 

Since this model is concave (concave preferences and technology) 

and there are no externalities of any kind, the OPTIMAL PROGRAM (command 

economy ·solution) will yield .. the same solution as the COMPETITIVE 

EQUILIBRIUM PROGRAM,· provided· that consumers and firms have RATIONAL 

EXPECTATIONS (since ..• these models do not. have uncertainty, rational 

expectations implies PERFECT FORESIGHT). We can show that the competitive 

solution is the same as the' one we solved. On the· consumption side, 

individuals maximize (2.0) subject to 

(2.9) kt = w + r k - c t t t t 

19 

We can show that the only sustainable growth rate is zero: 

take the constraint k=k,B-c-nk-ok and divide it by k. Define k/k=1k which in 

steady state will be a constant (by definition of steady state!!). Realize 

that k(,8-l)=ba+p)/,B. Rearrange to get c/k=ba+p)/,B-1k-n-o=constant. Take 

logs and derivatives to conclude that c/c=k/k=1k=1. Now consider again the 

equality k(,8-l)=(1a+p)/,B. The RHS is a constant. Take logs and derivatives 
of both sides to conclude that (,8-l)1k=O. This is another way to show what 

we saw in section 1: if there are DR to k (,B<l), then the steady state 
growth must be zero. The only way to achieve nonzero growth rates is to have 
CR to k (,8=1). 
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where wt is the return to labor (wage) and rkt is the return to 

capital (we are abstracting again from depreciation and population growth). 

In the other side, competitive firms will price factors at marginal costs 

so: 

f' (kt)-&k 

f(kt)-ktf' (kt) 

Notice that w+rk= f(k)-kf' (k)+kf' (k)-&k=f(k)-&k so substituting 

(2.10) into the individual budget constraint will give the original resource 

constraint (2.0)'. 

(c) Transitional Dynamics, Golden Rule, and Dynamic Efficiency 

The neoclassical model just outlined is NOT a very interesting 

model of steady state growth (because steady state growth ··is zero). It is 

nevertheless an interesting ,·-model of the transition towards the steady 

state. This transition is·shown in Figure 11. The vertical line is the c=O 

locus·. The upward sloping line is the k=O locus representing the· resource 

constraint (2.0)'. Notice that the economy can converge to the steady state 

from below or from above. The interesting case is the one where we converge 

from· below so we '.actually grow. Along this• path k/k>O. Per capita capital 

grows, but it does so at a decreasing rate (which ends up being zero in 

steady state). As the capital labor ratio increases, the marginal product 

of capital falls and, therefore so does the interest rate. 

It is worth noticing that, in Figure 11, there is a level of 

capital called kgold (for Golden Rule). This is the capital level that 

maximizes steady state consumption. Froni the budget constraint we see that 

* when k,,,;O, steady state consumption is equal to c =f(k)-(&+n)k. The capital 

* labor ratio that maximizes c is the one that satisfies f' (kgold)=(n+o). 

This level capital divides the set of capital labor ratios in two. Capital 

levels above the Golden Rule have the property that in order to achieve 

higher steady state consumption, the economy needs to get rid of some 
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capital. In other words, in order to achieve higher consumption in the 

future the economy would need to dissave (which of course means higher 

consumption today). Therefore, if the economy were to find itself in one of 

such capital levels, everybody could increase consumption at all points in 

time. The points above kgold are called the DYNAMIC INEFFICIENT REGION 

because some generations could be made better off without making any 

generation worse off. Notice that for capital levels below the Golden 

Rule, if the economy ·wants to increase the steady state consumption, , it 

needs to· accumulate· or save: higher consumption tomorrow would have to be 

traded for lower consumption today. This region is called DYNAMIC EFFICIENT 

REGION. 

(2.5)' 

We can integrate (2.5) forward between 0 and t and get 

lit =110 

t 

e-I(f'(ks)-o-n)ds 

which, after substituting in the TVC yields 

(2.6)' lim 
t->oo 

t 

_ r(f' (ks)-o-n)ds 
110e ~ kt 0 

Since 110 is positive, it must be the case that the second term in 

(2. 6)' is equal to zero. Notice also that this implies that in the steady 

state, the marginal product of capital must be larger than o+n. This 

condition is always satisfied in steady state if we assume that utility is 

bounded. Recall that this condition required p>n and the steady state 

implies f'(k)=p+o so this ensures that f'(k)>n+o. Notice how this 

inequality implies that the capital per capita in the steady state will be 

dynamically efficient (to the left of the golden rule) 20 . 

20 
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(d) Ruling out explosive paths. 

It just remains to be shown that, given the saddle-path stability 

property of the model, the economy will find itself on the stable arm. To 

show this we must rule out all other possible paths. Suppose that we start 

with the capital stock k 0 in Figure 11. Let c 0 the consumption level that 

corresponds to the ,, saddle path. Let 1us· imagine; first that the <initial 

consumption level is c0>c0 . If this is the case, the economy will follow 

the path depicted in Figure 11: at first both c and k will be growing. At 

some point the economy will hit the k=O schedule and, after that, 

consumption will keep growing yet capital will be falling. Hence, the 

economy will hit the zero capital axes in.finite time. At this point, there 

will be a jump in c (because with zero capital there is zero output and 

therefore zero, 'consumption) which will violate the first order condition 

(2.8). In order to show that the economy will hit the k=O axes in finite 

time just realize that kt can be rewritten as 

(2.11) k ds 
s. 

Suppose that T . is the time at which we hit the k=O schedule. 

After that moment, kt evolves according to (2.11). If we show that dk/dt is 

negative, we will have that k is negative and falling so k is falling at 

increasing rates. This, of course implies that there is a time T' at which 

it will be zero. The derivative of k with respect to time is ((from 2.0)') 

Recall that k * is such that f' (k * )=p+6 and that the bounded 
utility condition (2. 2) implies that p>n. Therefore 
f' (k )=p+6>n+6=f' (k · ) .. Since the production function is concave (f' '<0) * gold 
it follows that k <kgold" 
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(2.12) dk/dt [f'(k). - (n+cn]k: - c <O 

* notice that since kt<k , we know that f'>n+o. We also know that k<O and c>O 
so overall, (2.12) is negative which implies that k is falling at increasing 

rates. '.Hence, if:we--are ·in. this region:•in·.finite- time: (ie·.if we .hit;:the-. .. k=<Oc, ... 

schedule in finite time), then kt will-hit zero in finite time.· Therefore, 

it ONLY remains to be shown that we will hit the k=O schedule in finite 

time). We can show that this is the case because around the k=O schedule, 

consumption increases at increasing rates so it will reach the k=O schedule 

in finite time. Notice that the derivative of c with respect to time is 

(2.14) d~/dt = (l/a)[f'(k)-(o+p)J~ + (c/a)[f''(k)Jk 

noti:ce::.·,.::that''' the ;first.·· terms.is' positive.· and, around the k=O schedule it.·. 

dominates-the second term so overall dc/dt>O. Hence, if initial consumption 

is larger than the one required by the stable arm we will first hit the k=O 

schedule in .finite-time and then hit the k=O axes in finite time. This will 
imply a finite time jump in consumption which will violate the first order 

condition (2.8). Hence, it is not optimal to start above the stable arm. 

Let us imagine next that we start below the stable arm. The 
dynamics in Figure 11 tell us that we will converge to k ** Notice that 

** this path will violate the transversality conditions since k >kgold' 

is 

lim 
t->oo 

** k e 

t 

I ** - (f'(k )-o-n)ds 
>0 

That 

which is positive since the term inside the integral is negative. 
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Hence, initial consumption levels below the stable arm are not optimal 

either. We are left, therefore, with the stable arm as the UNIQUE optimal 

path of this model. 

(e) Convergence and Convergence Regressions. 

The Neoclassical model just described has . the · .. additional 
implication that, if ·all >Countries share the , same. ,.production. and utiLity. 

parameters, then poor countries tend to grow; at a faster rate than· rich 

ones. In other words, income or output levels will converge over time. 
Following Sala-i-Martin (1990), we can show this important implication we 
can linearize the two key differential equations (2. 8) and the capital 

21 accumulation equation (2.0)' budget constraint around the steady state If 
we express all variables in log~rithms the system becomes 

-(1-a)ln(k ) (1/a)(ae t -(p+o)) 
(2.15) 

-(1-a)ln(kt) (ln(ct)-ln(k )) ( ~) e - e t - n+o 

In steady state the two equations are equal to zero so 

e 

(2.16) 

e 

* -(1-a)ln(k ) 

* * (ln(c )-ln(k )) 

(p+o)/a 

* e-(1-a)ln(k ) _ (n+o) h >0 

where c* and k* are the steady state values of ct and kt respectively and 

h=(p+o(l-a)-an)/a. We can now Taylor-expand the system (2.15) around (2.16) 

21 

See King and Rebelo (1990) and Barro and Sala-i-Martin (1990) for 
a discussion of convergence when the economy is far away from the steady 
state. 
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and get 

(2.17) 
* -µ[ln(kt)-ln(k )] 

* * -h[ln(ct)-ln(c )] + (p-n)[ln(kt)-ln(k )] 

where µ=.(1-a) (p+o)/a>O.. or 

. 
(2.18) 

[

ln(c )] 

ln(k:) 

notice'''that the·. determinant of the matrix is detA=-hµ<O which implies 
that the system is saddle path stable. The eigenvalues of the system are 

( 
2 )(1/2) 

-A1 = (l/2)(p-n - (p-n) +4µh ) <0 
.(2.19) 

2 (1/2) 
A2 = (l/2)(p-n + (<p-n) +4µh) ) >0 

The solution for ln(kt) has the usual form 

.~le-Alt .~ A2t 
'I' + '1'2e 

where .,µ1 and .,µ2 are two arbitrary constants. To determine them, we notice 

that since A2 is positive, the capital stock will violate the transversality 
condition unless .,P2=0. The initial conditions help us determine the other 
constant since at time 0 the solution implies 

(2.20)' ln(k0 ) - ln(k*) 
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Hence the final solution for the log of the capital stock has the form 

* (2.21) ln(kt) - ln(k ) * ->. t [ln(k0 ) - ln(k )]e 1 

If we realize that ln(kt)=ln(y t) /a: and we subtract ln(y 0) from both 

sides of equation (2. 21) we will get what is known as the "convergence 

equation" 

* ->. t . ->. t where a=ln(y )(1-e 1 )/t and ~=(1-e 1 )/t. This equation says that if a 

set of economies have the same deep parameters (discount rate, coefficient 

of intertemporal elasticity of substitution, capital share, depreciation and 

population growth rates,· etc} sd they converge to the same steady state, the 

cross section regres·sion of growth on the·· log of initial income should 

display a negative coefficient. In other words, poor countries should tend 

to grow faster. The· .reason for- that is that countries with low .initial 

capital would have high .initial. marginal product of capital. 

lead them to save, invest and therefore grow a lot. 

That would 

If countries converge to different steady states, however, there should 

be no relation between growth and initial income, unless we hold constant 

the determinants of the steady state. Sala-i-Martin (1990) and Barro and 

Sala-i-Martin (1990) use a slightly more complicated22 version of (2.22) to 

show that the states of the U.S. (which we may think are described by 

similar production and utility parameters) converge to each other exactly 

the way equation (2.22) predicts. They also show that, once they hold 

constant the determinants of the steady state, large sample of countries 

ALSO converge to each other the way equation (2 .. 22) predicts. 

22 

It is a slightly more complicated version because they include 
exogenous productivity growth. 
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(3) EXOGENOUS PRODUCTIVITY AND GROWTH 

(a) Classification of Technological Innovations. 

As we just mentioned, the simple neoclassical model predicts that 

the long run growth rate is zero. In order to explain observed long run 

· growth neoclassical economists amended the model and incorporated exogenous 

productivity growth. ·In section 1 we saw that, in •the fixed saving ·rate 

models, the introduction· of productivity growth lead to long run economic 

growth. The question ·is what kind of technological progress should be 

introduced. Some inventions "save" capital relative to labor (capital 

saving technological progress), some save labor relative to capital (labor 

saving technological progress) and some do not save either input relative to 

the other (Neutral or,unbiased technological progress). 

Notice cthat the 1definition of neutral .innovations depends on what we 

mean by "saving". The two most popular definitions of unbiased or Neutral 

>technological .progress~are. due i to ,Hicks and Harrod resp.ec.tive,ly. 

Hicks says that a technological innovation is Neutral (Hicks-Neutral) 

with respect to capital and labor if and only if the ratio of marginal 

products remains unchanged for a given capital labor ratio. Consequently, a 

technological innovation is labor (capital) saving if the marginal product 

of capital (labor) increases by·. more than the marginal product of labor 

(capital) at a given capital labor ratio. Notice that Hicks neutrality 

amounts to renumbering the .isoquants. Production functions with Hicks 

Neutral technological progress can be written as 

where A(t) is an index of the state of .. technology at moment t evolving 

according to At= A0egt (ie, A/A=g) and were F() is still homogeneous of 

degree one. The second definition of technological unbias is due to Harrod. 

He ·says that a technical innovation is neutral (Harrod Neutral) if the 

relative shares (KFk/LFL) remainunchanged for a given capital OUTPUT ratio. 

Robinson·· (1938) ;and .. Uzawa. (19.61) . showed that this implied a production 
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function of the form 

where, again, A(t) is an index of technology at time t, A/A=g and F is 

homogeneous of degree one. Notice that this production function says that, 

with the same amount of capital, we.need less:and less .labor to·.-produce .. ,the, 

same amount of output. - Therefore, this .function •is also , known as labor 

augmenting technological progress. By symmetry we could have thought .of 

technological change as being "capital augmenting", ie Y=F(BtKt, Lt). This 

would mean that, for a given number of hours of work (Lt), we need 

decreasing amounts of capital to achieve the same isoquant. 

The reason why we care about what kind of technological progress 

we should postulate is that,- as Phelps showed, a necessary and sufficient 

condition -.for.- the existence of a steady state in .an economy with exogenous 

technological progress -is for this technological progress to be Harrod 

Neutral -or Labor ··Augmenting;··Notice, - however;· that., when· we >work with· Gobbo--· -

Douglas utility functions the.two types of progress are identical since 

Y(K,AL) BY(K,L) 

(b) The Irrelevance of Embodiment. 

All types of technological change we have been talking up to now 

are "DISEMBODIED" in the sense that, when a technological innovation occurs, 

ALL existing machines get more productive. An example of this would be 

improvements in computer software: it makes-all existing computers better. 

There are a lot of inventions, however, that are not of this type. When one 

invention occurs, only the NEW-. machines are more productive (as it is the 

case with computer hardware). Economists call this, "EMBODIED TECHNOLOGICAL 

PROGRESS". 

In the 60's, when the neoclassical model of exogenous productivity 

growth was being developed, there was a debate on the importance of 

30 



,. 

embodiment in economic growth. Proponents of what at the time was called 

"New Investment Theory" (embodied technological progress) said that 

investment in new .machines had the usual effect. of increasing the capital 

stock and the additional effect of modernizing the average capital stock. 

Proponents of the "unimportance of the embodiment question" argued that this 

new effect was a level effect but that it did not affect the steady state 

rate of growth. In a couple of important papers Solow (1969) and Phelps 

(1962) showed the following: 

(1) The neoclassical model with· embodied technological progress and 

perfect competition (so the marginal product of labor is equal for all 

workers no matter what the vintage of the machine they are using is) can be 

rewritten in a way that is equivalent to the neoclassical model with 

disembodied progress (Solow (1969)). 

(2),The Steady State growth is independent of the fraction of progress 

that is embodied (it depends on the total rate of technical progress but not 

on its composition) (Phelps (1962)). 

(3) The convergence or speed of adjustment to the steady state growth 

rate is faster the larger the fraction of embodied progress (Phelps (1962)). 

Thus, the distinction between embodied and disembodied progress seems" 

unimportant when studying long run issues but might be crucial when studying 

short run dynamics 23 The modeling of embodied technological progress is 

quite complicated because one· ·has . to keep track of all old vintages of 

capital and ·associated labor. , Yet ·a simple way to think about it is to 

postulate a technology-free production function Y=F(K,L) and an accumulation 

function of the form K=A(t)(Yt-Ct) where A(t)/A(t)=g and K(t) is a measure 

of aggregate capital. This function reflects the fact that a unit of saving 

23 

The importance of embodiment in modeling business cycles can be 
seen from the fact that an embodied shock affects the marginal product of 
capital but does NOT affect the marginal product of labor or current output 
supply. This is a key difference with respect to a disembodied shock, 
especially as far as ·the implications for the procyclicality of real wages 
and real interest rates is concerned. 
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(Y-C) in a later period generates a larger increase in capital than a unit 
of saving in earlier time. 
capital are more productive. 

This is like saying that later vintages of 

(c) The Neoclassical Model with Technological progress. 

Let us go back .to . the labor. augmenting , foxm as depicted .. ,in . 

equation (3 .1)'. To solve this' model it is going to be useful -to define· .>the 

concept ·of "effective labor", L. 

(3.2) Lt L nt ---->LA =L e(n+g)t 
oe t 0 

In words, for a given size of physical population we get more 
effective labor as time passes by. Since, on the other hand, the number of 
physical ·bodies increases at the constant rate n, the effective labor force 
grows at rate g+n. Notice that using this definition we can rewrite the 

production function as follows. 

Let's divide both sides of (3.3) by Lt, define y=Y/(L) and 

k=K/(L). The CRS assumption implies: 

I\ A 

(3.4) y f(k) 

Again, the closed economy assumption implies that domestic savings 

equal gross domestic investment so Y=K+C-oK. Divide both sides by L and get 

I\ • /\ I\ I\ A • A 

y=(K/L)+c-ok. By the definition of k, we know that k=K/L - (n+g+o)k, which 

we can plug in savings equal investment equality to yield: 

(3.5) k f(k) - (n+g+o)k - c 

Consumers maximize a utility function of the form (2.0) subject to 
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(3.5). Notice that the utility function is defined in consumption per capita 
(per physical body) while the budget constraint is ·defined in terms of 

(3.6) U(O) J e - (p-n) t [ (~tegt) i-u -1] Lodt 
o 1-a 

, We have to choose ct so as to maximize (3.6) subject to (3.5) and 
subject to K0 , L0 and A0 . Set up the Hamiltonian: 

(3. 7) H() ~ - (n+g+6 )k] 

The F.O.C. are the following: 

(3.8) H" 
c 

0 - (p-n) t gt (" .gt)-a 
~ e e ce - v 0 

(3.9) H" -v ~ v -v(f'(k)-n-g-o) 
k " 

(3.10) TVC lim (ktvt) = 0 
t~OO 

By following the same steps as in the previous section, we will 

find that: 

" " (3.11) v/v -(p-n) + g -ac/c - ag f' (k) + n + g +o 

" " by setting c/c=O we will get the steady state condition: 

(3 .12) f' (k) p+ag+o 

Observe.that this result is exactly parallel to the one in section 

two ·(equation (2. 8)). ·The .difference here is that the growth rate relates 

to· consumption per unit of efficient labor. This means that, since 
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variables in efficiency units do not grow, variables in per capita terms 

grow at the constant rate g. 

(c) Bounded Utility Condition. 

For U(O) to be bounded, again, we need the expression inside the 
integral to tend to zero as t goes to infinity. 

(3.14) lim e-(p-n-g(l-a)c~-a/(1-a) - lim e-(p-n)t/(1-a) 

Note that if p > n+g(l-a) > n, the second term goes to zero. Since c 
will end up growing at rate g, the first term also goes to zero if the above 
condition holds. Notice, finally, .that this condition implies that the TVC 
is satisfied and that we will end up at a point to the left of the golden 
rule (dynamically efficient region). 

Finally, let's analyze the saving rate. 

(3.27) s/y=(k/y)+(nk/y)=(k/k)(k/y)+n(k/y)=(-y+n)(k/y)= 
(-y+n)/(k-(l-,8)eg(l-,8)t)=(-y+n)/[(p+a1)/,B]=(g+n),B/(p+ga). 

A patient society (low p) will save more and end up with a higher 
output LEVEL along the balanced ,path than an impatient one. She will not, 

however, grow at a faster rate. we have seen that the growth rate depends 

on g and n only. This is an important implication of the neoclassical model 

of economic growth. 
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Figure 1 : The Neoclassical Model 
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Figure 2: Conditional Convergence in the Neoclassical Model 
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Figure 4: Increasing Returns and Increasing Growth Rates 
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Figure 10: Stable Poverty Trap 
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Figure 11 : The Ramsey-Cass-Koopmans Phase Diagram 
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