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Abstmct: This paper addresses methods for fonnulating and solving a general class of 

nonpreemptive resource-constrained project scheduling problems in which job durations 

are discrete functions of committed renewable, nonrenewable and doubly-constrained 

resources (multi-mode time resource tradeoff). We present a stochastic scheduling 

method with which these problems may be solved to suboptimality in an efficient way. 

Cumputational results demonstrate that this method is highly superior to other 

well-known existing deterministic scheduling rules. Extensions to problems in which 

job-specific (demand) resource profiles are varying with time, in addition to time-varying 

supply resource profiles, are discussed as well. 

0 Traditional multiple resource-constrained project scheduling problems of either the 

preemptive or the nonpreemptive type have been restricted to the case in which each job 

has to be performed in exactly one predefined way (single-mode case). Thereby each job 

may be characterized by a unique duration and a singular collection of resource 

requirements that have to be met each time period the job is being processed (Bartusch 

et al. [3], Christofides et al. [6], Davis and Patterson [7], Radermacher [16], Slowinski 

[17], Stinson et al. [19], Talbot and Patterson [21]). 

More recently efforts have been made to formulate and to solve the more general 

multi-mode preemptive project scheduling problem where job durations are functions of 

consumed resources (Blazewicz et al. [5], Slowinski [17, 18], Weglarz [22]). Regarding the 

formulation and Solution of nonpreemptive project scheduling problems where job 

durations are discrete functions of job Performance modes in the last decade serious 

efforts have been documented in literature (Domschke and Drexl [8], Elmaghraby [10], 

Patterson et al. [14], Talbot [20]). 

In this paper we consider the problem of nonpreemptively minimizing project makespan 

subject to job completion constraints, precedence relations as well as resource 

restrictions, where the resources are distinguished to be renewable, nonrenewable or 

doubly-constrained (Slowinski [18], Weglarz [22], Weiss [23]). If a resource is available in 

limited quantities each time period, this resource is called renewable (resource usage). If 

total availability of a resource over (part of) the life of the project is constrained, it is 

called nonrenewable (resource consumption). Finally, resources are defined as doubly -

constrained if both their per-period and their total availability are limited (resource 

usage and consumption). 
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The remainder of the paper is organized as follows: The next section presents the IP 

formulation of the scheduling problem. Then, we discuss existing Solution techniques and 

present our stochastic scheduling method. Later on we computationally compare all these 

Solution techniques. Finally we extend the IP formulation to the case where each job has 

a specific resource demand varying with time and discuss the computational implications. 

In the last section we offer extensions, conclusions and directions for further research. 

Scheduling Model 

Without loss of generality we assume a project with one unique source and one unique 

sink being depicted by an acyclic activity-on-node graph where jobs are numerically 

labeled such that successor jobs always have higher numbers (labels) than all their 

predecessors. Specifically, the following assumptions may hold: 

• The project consists out of jobs i = i = 1 (i = I) is the unique source (unique 

sink), y. is the set of all immediate predecessors of job i. 

• Job i may be performed in one of the modes j = . Each job, once initiated in a 

specific mode, must be finished without changing mode. 

• Scheduling job i in mode j takes d- time units (duration). 

• There are r = 1,...,R renewable resources, where resource r is available with ^ 

resource units in period t. Scheduling job i in mode j uses k^r resource units per period 

from resource r. 

• Nonrenewable resource r = 1 N is available with resource units during project 

life-cycle. Scheduling job i in mode j consumes k^. resource units per period from 

resource r. 

• Scheduling must take place regarding r = doubly-constrained resources, where 
c c 

there are «rt resource units available in period t and units in total. Processing job i 
c 

in mode j uses / consumes k-jr resource units per period from doubly-constrained 

resource r. 

Assuming an upper bound T for project makespan to be known in advance (heuristically 

determined), we may calculate earliest and latest Start times ES- and LS- as well as finish 

times EF| and LF- of job i by traditional forward and backward recursion using shortest 

durations dmin- : = min {d- | j = for all jobs i. Thus [EF-, LF-] represents the 

maximum time interval within which the project may be finished without violating 

resource constraints (see below). 



Defining variables 

1, job i is scheduled in mode j and finished in period t 

0, otherwise 

a binary program is formulated as follows using the general framework given in [15] 

ijt -

Subject to: 

Mj LFj 
min E Et- xT.+ 

j=l t=EFj W 

M. LF. 

E E x-v — 1 (i—1,...,I) 
j = l t=EF. ^ 

Mh LFh M; LFj 

E Et - x,.t < E E (t — d* •) x-'t (i-l,...,I; h 6 V;) 
j = l t=EFh ^ j = l t=EF. ^ ^ 1 

j M. t+djj-1 
E E kf. E x.. < K& (r—1,...,R; t—1,...,LST) 

i=l j = l ljr q=t ljq rt 1 

I Mi LF, 

j!l . 5 ! kijr dij tJF.xijt < "r fr"1 N> 

j Mj t+djj-1 

^ ^ ^fir ^ xiia - Ärt t-l,...,LSr) 
i=l i = l ljr q=t ljq n 1 

1 
LF; 

j!l j = lk'ird»i tJF.Xiit - Kr <r=1"-D> 

xijt e (O'l} j=l,...,Mi; t=l,...,LFj) 
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(1) forces the sink job and thus the project being finished as early as possible. (2) 

represent job completion constraints. (3) states precedence relations between related jobs. 

(4) and (5) correspond to resource constraints regarding renewable and nonrenewable 

resources. (6) and (7) secure feasibility with respect to usage and consumption of 

doubly-constrained resources. It should be noted that (6) and (7) could be incorporated 

into (4) and (5) appropriately. 

Solution Procedures 

(l)-(8) may be solved to optimality using the exact method of Patterson et al. [14]. This 

algorithm is an enumerative type of branch and bound method. It simultaneously decides 

about job-sequencing (which job should preceed others?) and job-mode-assignment 

(which mode should be assigned to which job ?). Beginning with all jobs being unassigned 

(xjjt = 0 for all i, j, t) the algorithm starts by selecting one job as a candidate for being 

scheduled as early as possible. The algorithm always builds precedence and resource 

feasible partial schedules (solutions). " Partial" indicates that not all jobs have currently 

been scheduled (corresponds to "<" instead of" =" in (2)). Scheduling jobs is equivalent 

to augmenting the partial feasible Solution. Enumeration is done in a LIFO-implicit way, 

i.e. partial feasible schedules are augmented as long as neither precedence nor resource 

infeasibilities occur; in both cases backtracking is done. Due to the unavailability of 

strong lower bounding procedures for truncating the search tree the computational 

behaviour of this algorithm is rather poor (see below). 

Heuristic scheduling rules adopt a general operating scheme which may be characterized 

in a simple way as follows (for more details see Kurtulus and Manila [12]): Each job is a 

member of one of the sets (states): "Finished", "active", "eligible", and "ineligible". A 

job is termed "finished" when its scheduling has been terminated. When a job is 

scheduled it becomes "active". A job will be called "eligible" when all its predecessors are 

scheduled; otherwise, it is considered "inelegible". 

There exist a multitude of different ways for constructing deterministic scheduling rules 

by using one or several of the various criteria characterizing model (l)-(8). Following 

Talbot [20] who presented and compared eight heuristic scheduling rules, the rule 

MIN LF. was shown to behave best regarding average quality of solutions: 

MIN LFj The eligible job i with minimnm latest finish time LF- is scheduled fürst. 
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The latest fmsish times LFj taken for determining MIN LF- are calculated by taking 

I 
T := 2 max {d- | j = 1,...,M-} 

i=l ' 

as an Upper bound for project makespan and performing a traditional critical path 

analysis as indicated above using shortest durations dmin^. 

Once an eligible job i has been selected according to MIN LF. for being scheduled next, a 

quite greedy way of assigning a job mode is to take the mode j with d- : = min {d-^ | 

k = l,...,Mj} and to schedule job i as early as possible. According to (preliminary) 

comoputaional results not reported here in greater detail this greedy rule performed 

rather poor especially in cases of scarce renewable resources, i.e. it could not find existing 

feasible solutions quite oftenly. (It should be emphasized that this poor behaviour is in 

principal intrinsic to all heuristic rules which try to construct schedules 

deterministically.) In order to overcome this disadvantage while keeping the 

deterministic behaviour we modified / augmented MIN LF. as follows: Modes j = 1,...,M-

are selected in increasing order for being assigned to job i until a mode is found which 

does not violate resource restrictions. If no such mode can be found the deterministic rule 

is unable to determine a feasible Solution for the problem. 

Now we are going to present a stochastic scheduling method which overcomes the 

deficiencies associated with deterministic methods up to a large extent. (The method has 

been successfully used in Drexl [9] to solve assignment type project scheduling 

problems.) The stochastic nature of these method emerges from using some criteria 

measuring the impacts of job selection and mode assignment in a probabilistic way. 

More precisely we calculate 

:= (max {d.%. | k = -d- + e)ü (9) 

for i e EJ where EJ corresponds to the set of eligible jobs and job modes j = 1,...,M- are 

taken appropriately. (9) measures the worst-case consequence of assigning mode j not to 

job i with respect to job durations. e > 0 secures w- to be positive and a > 0 transformes 

the term (.) in an exponential way thus diminishing or enforcing the differences between 

the mode dependent job durations for a < 1 or a > 1, respectively. It suggests itself to 

use w-j for stochastic job selection and (or) mode assignment with probabilities 

proportional to w- for all i € EJ and j = 1 M-. 
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Alternatively we may use 

7.: = (max {LFfc | ke EJ} - LF. + e)a (10) 

for selecting i e EJ randomly with probabilities proportional to 7. for all i 6 EJ in a first 

stage and then assign mode j to job i at random based on w-j in a second stage. 

For convenience we will denote both stochastic job selection and mode assignment 

procedures with JOSEMODA, whereas JOSEMODA1 and JOSEMODA2 specifically 

denote, whenever necessary, the one based on (9) and (10), respectively. 

Formally the stochastic scheduling method may be described as follows: 

1. Set EJ := {1} and determine LF. (i = !,...,!) by modified critical path analysis. 

2. Select job i e EJ and assign mode j to job i randomly using procedure JOSEMODA; 

schedule job i as early as possible regarding precedence relations only. 

3. Update EJ and LF. appropriately; if EJ = <f>, th en STOP eise goto 2. 

4. Check feasibility of the generated schedule with respect to resource restrictions (4)-(7) 

and STOP. 

The procedure does not check resource feasibility of partial schedules due to the following 

reasons: Scaling arrays representing renewable, nonrenewable and doubly-constrained 

resource availabilities dynamically whenever a specific resource is used and / or 

consumed takes substantial CPU-time. Preliminary computational results not reported 

here in detail showed that updating left-over capacities in a dynamic fashion needs three 

to four of CPU-time compared with the described version which checks resource 

feasibility only in the final step when all jobs have been scheduled. 

Disregarding the result of one pass through the above procedure (i.e. a feasible or an 

infeasible schedule / Solution) this algorithm should be applied to a specific data set 

several times in order to (hopefully) generale a lot of feasible schedules und thus a near 

optimal one, too. 
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Computational Results 

The algorithms have been coded in TURBO PASCAL and implemented on a Personal 

Computer (XT compatible). The test data generated for comparative purposes may be 

characterized as follows (project summary measures): 

• The problem size, in terms of the number of jobs, is the first project summary 

measure. 

• The network complexity C = number of arcs (precedence relations) / number of nodes 

(jobs) affects the Performance of scheduling procedures and thus must be part of the 

experimental design. 

• The number of modes of job i is generated randomly for all data sets according to 2 < 

M. < 4 with 3 as average number of job modes. 

• The total number of resource types R (<5), N (<3), and D (<3) is fixed (within each 

"problem dass") in advance. 

• The (integer) duration d- of job i being scheduled in mode j is generated at random 

according to 5 < d- < 10. 

• Job-mode dependent (integer) resource demands (requirements) are randomly 

generated such that 0 < k^.f , k^r, k^r < 5 for all resources. 

• The renewable resource availabilities are determined by multiplying the peak 

resource requirement 

«Peak .= max nmx max rj^ I V t} 
r iel jeJ. ^ 

with Kl thus getting 

:= KPKl 

with 1.5 < Kl < 3.3 (within this section capacities are constant over time for each 
C 

resource; the time-varying case see below). is treated analogously. 

• The nonrenewable resource capacities K" are calculated by multiplying S k^r (mode 
i=l 

C 
one) with K2 (0.7 < K2 < 1.1) for each resource r. is treated analogously. 

In order to evaluate the CPU-times required by the above exact method, we generated 

and solved to optimality 100 data sets with the following project summary measures: 
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I = 10, C = 1.5, R = 3, N = 1, D = 0, Kl = 2.0, and K2 = 0.9 (our Implementation of 

the exact method does not handle doubly-constrained resources explicitely; furthermore 

it is only able to deal with one nonrenewable resource (N < 1)). 

Table 1 presents average times (input / Output excluded). It can be seen, that CPU-

times are (within the same problem class) highly dependent on the structure of the data 

sets. In 22% of the test problems it took only upt to 2 sec to find and to verify the 

Optimum Solution; but in 21% it took more than 8 min (with 56 min as largest 

CPIMime) to determine the Optimum Solution. 

Table 1: Distribution of CPU-times for the exact method 

CPU-time percentage 

0-2 sec 22% 

>2-20 sec 21% 

>20-60 sec 17% 

>1-3 min 10% 

>3-8 min 9% 

>8-20 min 12% 

>20-60 min 9% 

In contrast to this the CPU-times required by the rule MIN LF. and by JOSEMODA1 

are rather low. Table 2 presents minimum, mean, and maximum CPU-times (input / 

Output times excluded) in sec (MIN, MEAN, and MAX) necessary to heuristically solve 

10 data sets within each problem class (characterized by the number of jobs I) where e = 

a = 1 and the other parameters are the same as in table 1. JOSEMODA1 has been 

executed 10 times for each data set. (It should be noted that the above choice of e which 

seems to be rather arbitrary is uncrucial for the behavior of the algorithm. The effect of a 

varying a will be shown below in tables 5 to 7.) 

Table 3 compares the quality of solutions obtained with JOSEMODA1 and 

JOSEMODA2 (for projects with I = 10, C = 1.5, R = 3, N = 1, D = 0). For each 

combination of Kl and K2 (problem class) 10 projects have been generated and solved 

iteratively 10 times (using e = a - 1.0). "Better", "equal", and "worse" denote the 

percentage of cases in which JOSEMODA1 produced better, equal, or worse results than 

JOSEMODA2, respectively. 
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Table 2: CPU-times of MIN LF. and JOSEMODA1 

problem MINLF. JOSEMODA1 

class (I) MIN MEAN MAX MIN MEAN MAX 

10 0.82 0.98 2.03 0.44 0.85 1.43 

20 1.78 1.93 2.13 1.70 2.83 4.67 

30 1.81 3.79 5.17 2.91 4.86 5.50 

40 5.02 5.33 8.73 5.54 7.54 10.99 

50 3.35 6.54 15.33 9.98 13.20 23.42 

60 2.37 8.91 12.85 12.25 17.43 31.91 

70 5.53 11.37 14.77 14.49 22.91 37.20 

80 4.32 16.62 23.43 16.77 26.41 39.09 

Table 3: Comparison 1 of JOSEMODA1 and JOSEMODA2 

problem class better equal worse E 

Kl=2.5/K2 = l.l 75% 15% 10% 100% 

Kl=2.0/K2=0.9 81% 13% 6% 100% 

Kl=1.5/K2=0.7 89% 5% 6% 100% 

Table 4 presents average percentage deviations of objective function values (from the 

Optimum) obtained by applying JOSEMODA1 and JOSEMODA2 10 times to 10 projects 

with I = 10, C = 1.5, R = 3, N = 1, D = 0, Kl = 2.0, K2 = 0.9 (once more for e = a = 

1.0). 

Table 4: Comparison 2 of JOSEMODA 1 and JOSEMODA2 

procedure 

percentage deviation from Optimum 

0% >0-2% >2% 2 

JOSEMODA1 

JOSEMODA2 

58% 28% 14% 

54% 19% 27% 

100% 

100% 



10 

Tables 3 and 4 show that JOSEMODA1 is superior to JOSEMODA2; thus only the first 

one will be investigated in more detail now. 

Tables 5 to 7 provide results which demonstrate the influenae of a varying a on the 

behavior of JOSEMODA1. In each case (row of tables 5 to 7) JOSEMODA1 has been 

iteratively executed until 100 feasible solutions could be found. The problem that has 

been treated in all cases is characterized by I = 10, C = 1.5, R = 3, N = 1 and D = 0. 

Each entry of the tables represents the number (percentage) of feasible solutions, whose 

objective function value had an appropriate percentage deviation from optimum. 

Table 5: Variation of a (Kl = 2.5 / K2 = 1.1) 

a 
0-2% >2-4% 

percentage deviation from optimum 

>4-6% >6-8% >8-10% >10-12% >12% 
#trials 

0.0 1 6 20 21 35 14 3 202 

0.5 6 24 28 24 15 3 224 

1.0 27 43 24 2 4 234 

1.5 58 22 17 - 3 - - 299 

2.0 84 15 1 - — — — 361 

Table 6: Variation of a (Kl = 2.0/K2 = 0.9) 

a 
0-2% >2-4% 

percentage deviation from optimum 

>4-6% >6-8% >8-10% >10-12% >12% 
#tria!s 

0.0 15 5 16 27 20 16 1 251 

0.5 14 13 22 27 11 8 5 279 

1.0 12 16 37 13 16 4 2 273 

1.5 52 26 19 2 1 - - 295 

2.0 77 11 9 1 1 1 296 
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Table 7: Variation of a (Kl = 1.5 / K2 = 0.7) 

a 
0-2% 

percentage deviation from Optimum 

>2-4% >4-6% >6-8% >8-10% >10-12% >12% 
# trials 

0.0 » 1 26 33 29 9 2 671 

0.5 8 11 39 26 13 3 789 

1.0 36 36 21 6 4 1 2156 

1.5 46 23 25 5 1 — — 2698 

2.0 55 30 12 3 - — — 3779 

Tables 5, 6, and 7 present results for Kl = 2.5 / K2 = 1.1, Kl = 2.0 / K2 = 0.9, Kl = 

1.5 / K2 = 0.7, respectively. The last column of each of the three tables gives the number 

of trials (executions of JOSEMODA1 with e = 1.0) which were necessary in order to find 

100 feasible solutions. The results may be Interpreted as follows: 

• With increasing a more trials are necessary in order to generale a prespecified number 

of feasible solutions. 

• The probability of fLnding a feasible Solution is decreasing with increasing a, whereas 

the quality of solutions is increasing as well. 

• The percentage deviations of the objective function value from the Optimum one are 

decreasing with increasing a. 

• With decreasing resource availabilities more difficulties arise to find feasible solutions 

thus needing more trials. 

Summarizing these observations a general advice for an appropriate choice of a may be 

given as follows: For a given data set one does not know in advance the scarcity of 

resources. Thus one should Start with a rather high a (say a = 2.0), perform some 

hundreds of trials (depending on the amount of available Computer resources), reduce a 

as indicated above and so on. 

Table 8 provides results of a comparison of MIN LFj with JOSEMODA1 for projects 

with I = 10, C = 1.5, R = 3, N = 3, and D = 2 as well as varying resource availabilities. 

For each combination of Kl and K2 five data sets have been generated and solved with 

both procedures, where the number of trials of JOSEMODA1 was set equal to 30 and a 

= e = 1.0. Each entry #1 / #2 corresponds to the number of data sets, for which MIN 

LF- (#1) and JOSEMODA2 (#2) were unable to find a feasible Solution, respectively. 
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These results demonstrate that the stochastic procedura JOSEMODA1 has a much 

greater capability of finding feasible solutions than the deterministic procedure 

MIN LF., even in the case of rather scarce renewable and nonrenewable resources. 

Table 8: Comparison 1 of MIN LF- and JOSEMODA1 

K2 

Kl 
1.0 0.9 0.8 0.7 

3.3 1/0 4/0 4/0 4/2 

3.0 4/0 4/2 5/1 5/2 

2.7 3/0 5/0 4/2 5/1 

2.4 5/0 4/0 5/4 4/3 

2.1 4/0 3/0 5/2 5/3 

1.8 3/0 5/2 4/3 5/4 

1.5 1 3/0 5/0 5/4 5/5 

Table 9 compares the quality of solutions for those cases of table 8, in which MIN LF-

could find a feasible Solution (23 from 4-7-5 = 140 in total). Percentage deviations of 

objective function values (OFV) are mesured according to 

[(°FVMIN LFj " OFVJOSEMODAp / OFVJOSEMODA J' 

where OFVjQgg^Qj-j^^ corresponds to the best objective function value found within 

30 trials. These results show that JOSEMODA1 produces results which are, except for 

rather few cases, much more better than those produced by MIN LF;. 

Table 9: Comparison 2 of MIN LF^ and JOSEMODA1 

percentage 
deviation 

-2>0% 0% >0-4% >4-8% >8-12% >12% 

quantity 2 1 6 8 4 2 
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Tables 8 and 9 demonstrate that JOSEMODA1 is superior to MIN LF. with respect to 

two important capabilities of heuristics, i.e. to find existing feasible solutions and to 

produce "good" solutions rather quickly. These results are rather typical with respect to 

the behavior of both methods. They remain unchanged especially for projects with a 

larger job number I and with other network complexities C. 

Resource Requirements Varying with Time 

Model (l)-(8) Covers project scheduling problems with time-varying supply resource 

profiles. Now we are going to model the Situation where the job resource requirements are 

time-varying, too. 

Specifically k^r7. , k?-rr and k^rr (r = l,...,d-j) denotes the requirements of renewable, 

nonrenewable and doubly-constrained resources which are necessary to schedule job i in 

mode j in period t+r, where t corresponds to the period (unknown in advance) in which 

scheduling of job i will Start. Regarding (l)-(8) we thus easily get the generalized model 

(11X18): 

Mj LF 

(11) 

Subject to: 

= 1 (i=l I) (12) 

Mh LFh M, LF j 

^ St* Xijt < E S ^"^ii)xiit (^~1»—»I» he V«) (13) 
j = l t=EFh ÜJt j = l t=EF- ^ 1Jt 1 

i=l j-, M —1 

L xiit - Kr (r"1'-'N) (15) 



14 

j Mj t +d • j-1 

E E E k: 
i=l j = 1 q=t fjr(q-t+l) xijq - "rt (r_1 D;t_1 (16> 

LF' * 
E xii't - KT (17) 

xijt ^ {0»1} (i=l»—>Ii j—l»«.»Mj; t — l,...,LFj) (18) 

It is simple to see that MIN LFj and JOSEMODA1 can easily be generalized in such a 

way that model (11)-(18) can be solved. In contrast to this it would be - though possible 

in principal - rather involved (and inefficient as well) to generalize the exact method 

accordingly. Thus we compare MIN LF- and JOSEMODA1 only. 

The experimental design described above is generalized as follows: At first job-specific 

resource requirements are generated at level A (0 < A < 3 ; constant over time). Then 

each resource level A is changed in a random fashion such that (max {0, A-2} < k^jrr, 

kjjrr, k^rr< A + 2) holds for all r = l,...,d.. . Once resource requirements are known 

resource availabilities ^ , and are determined appropriately. 

MIN LFj and JOSEMODA1 have been compared analogously to tables 8 and 9. The 

results are rather similar. They show (once again) that JOSEMODA1 has a much greater 

capability of finding "good" feasible solutions than MIN LF.. 

Computational times of both procedures are nearly identical with those presented in 

table 2 because there is only little additional effort necessary for updating arrays in the 

case of time-varying resource requirements. 

Summary and Conclusions 

The paper presents models for formulating nonpreemptive project scheduling problems 

with general resource availabilities and requirements as well as multi-mode time resource 

tradeoffs. For the Solution of this model, a stochastic scheduling method is presented 

which outperformes traditional deterministic scheduling rules drastically. 
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The method is general and flexible enough for being applied to project planning problems 

which incorporate some additional features such as multiple projects (Kurtulus and Davis 

[11], Mohanty and Siddiq [13]), time windows (Bartusch et al. [3]), and distributed 

Simulation concepts (Arora and Sachdewa [2]). Thus it is supposed to be well suited for 

DSS approaches to project scheduling (Anthonisse et al. [1]), Bartusch et al. [4]) and 

future work should show that it may be usefully embedded in DSS. 
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