
Drexl, Andreas; Grünewald, Jürgen

Working Paper — Digitized Version

Nonpreemptive multi-mode resource-constrained
project scheduling

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 236

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas; Grünewald, Jürgen (1989) : Nonpreemptive multi-mode resource-
constrained project scheduling, Manuskripte aus den Instituten für Betriebswirtschaftslehre der
Universität Kiel, No. 236, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/161984

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/161984
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 236

Nonpreemptive Multi-Mode

Resource-Constrained

Project Scheduling

AndreasjDrexl *
IX

Jürgen Grunewald **

Oktober 1989

* Andreas Drexl, Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität
zu Kiel, Olshausenstraße 40,2300 Kiel 1, F.R.G.

** Jürgen Grünewald, Institut für Betriebswirtschaftslehre, Technische Hochschule
Darmstadt, Hochschulstraße 1,6100 Darmstadt, F.R.G.

1

Abstmct: This paper addresses methods for fonnulating and solving a general class of

nonpreemptive resource-constrained project scheduling problems in which job durations

are discrete functions of committed renewable, nonrenewable and doubly-constrained

resources (multi-mode time resource tradeoff). We present a stochastic scheduling

method with which these problems may be solved to suboptimality in an efficient way.

Cumputational results demonstrate that this method is highly superior to other

well-known existing deterministic scheduling rules. Extensions to problems in which

job-specific (demand) resource profiles are varying with time, in addition to time-varying

supply resource profiles, are discussed as well.

0 Traditional multiple resource-constrained project scheduling problems of either the

preemptive or the nonpreemptive type have been restricted to the case in which each job

has to be performed in exactly one predefined way (single-mode case). Thereby each job

may be characterized by a unique duration and a singular collection of resource

requirements that have to be met each time period the job is being processed (Bartusch

et al. [3], Christofides et al. [6], Davis and Patterson [7], Radermacher [16], Slowinski

[17], Stinson et al. [19], Talbot and Patterson [21]).

More recently efforts have been made to formulate and to solve the more general

multi-mode preemptive project scheduling problem where job durations are functions of

consumed resources (Blazewicz et al. [5], Slowinski [17, 18], Weglarz [22]). Regarding the

formulation and Solution of nonpreemptive project scheduling problems where job

durations are discrete functions of job Performance modes in the last decade serious

efforts have been documented in literature (Domschke and Drexl [8], Elmaghraby [10],

Patterson et al. [14], Talbot [20]).

In this paper we consider the problem of nonpreemptively minimizing project makespan

subject to job completion constraints, precedence relations as well as resource

restrictions, where the resources are distinguished to be renewable, nonrenewable or

doubly-constrained (Slowinski [18], Weglarz [22], Weiss [23]). If a resource is available in

limited quantities each time period, this resource is called renewable (resource usage). If

total availability of a resource over (part of) the life of the project is constrained, it is

called nonrenewable (resource consumption). Finally, resources are defined as doubly -

constrained if both their per-period and their total availability are limited (resource

usage and consumption).

2

The remainder of the paper is organized as follows: The next section presents the IP

formulation of the scheduling problem. Then, we discuss existing Solution techniques and

present our stochastic scheduling method. Later on we computationally compare all these

Solution techniques. Finally we extend the IP formulation to the case where each job has

a specific resource demand varying with time and discuss the computational implications.

In the last section we offer extensions, conclusions and directions for further research.

Scheduling Model

Without loss of generality we assume a project with one unique source and one unique

sink being depicted by an acyclic activity-on-node graph where jobs are numerically

labeled such that successor jobs always have higher numbers (labels) than all their

predecessors. Specifically, the following assumptions may hold:

• The project consists out of jobs i = i = 1 (i = I) is the unique source (unique

sink), y. is the set of all immediate predecessors of job i.

• Job i may be performed in one of the modes j = . Each job, once initiated in a

specific mode, must be finished without changing mode.

• Scheduling job i in mode j takes d- time units (duration).

• There are r = 1,...,R renewable resources, where resource r is available with ^

resource units in period t. Scheduling job i in mode j uses k^r resource units per period

from resource r.

• Nonrenewable resource r = 1 N is available with resource units during project

life-cycle. Scheduling job i in mode j consumes k^. resource units per period from

resource r.

• Scheduling must take place regarding r = doubly-constrained resources, where
c c

there are «rt resource units available in period t and units in total. Processing job i
c

in mode j uses / consumes k-jr resource units per period from doubly-constrained

resource r.

Assuming an upper bound T for project makespan to be known in advance (heuristically

determined), we may calculate earliest and latest Start times ES- and LS- as well as finish

times EF| and LF- of job i by traditional forward and backward recursion using shortest

durations dmin- : = min {d- | j = for all jobs i. Thus [EF-, LF-] represents the

maximum time interval within which the project may be finished without violating

resource constraints (see below).

Defining variables

1, job i is scheduled in mode j and finished in period t

0, otherwise

a binary program is formulated as follows using the general framework given in [15]

ijt -

Subject to:

Mj LFj
min E Et- xT.+

j=l t=EFj W

M. LF.

E E x-v — 1 (i—1,...,I)
j = l t=EF. ^

Mh LFh M; LFj

E Et - x,.t < E E (t — d* •) x-'t (i-l,...,I; h 6 V;)
j = l t=EFh ^ j = l t=EF. ^ ^ 1

j M. t+djj-1
E E kf. E x.. < K& (r—1,...,R; t—1,...,LST)

i=l j = l ljr q=t ljq rt 1

I Mi LF,

j!l . 5 ! kijr dij tJF.xijt < "r fr"1 N>

j Mj t+djj-1

^ ^ ^fir ^ xiia - Ärt t-l,...,LSr)
i=l i = l ljr q=t ljq n 1

1
LF;

j!l j = lk'ird»i tJF.Xiit - Kr <r=1"-D>

xijt e (O'l} j=l,...,Mi; t=l,...,LFj)

4

(1) forces the sink job and thus the project being finished as early as possible. (2)

represent job completion constraints. (3) states precedence relations between related jobs.

(4) and (5) correspond to resource constraints regarding renewable and nonrenewable

resources. (6) and (7) secure feasibility with respect to usage and consumption of

doubly-constrained resources. It should be noted that (6) and (7) could be incorporated

into (4) and (5) appropriately.

Solution Procedures

(l)-(8) may be solved to optimality using the exact method of Patterson et al. [14]. This

algorithm is an enumerative type of branch and bound method. It simultaneously decides

about job-sequencing (which job should preceed others?) and job-mode-assignment

(which mode should be assigned to which job ?). Beginning with all jobs being unassigned

(xjjt = 0 for all i, j, t) the algorithm starts by selecting one job as a candidate for being

scheduled as early as possible. The algorithm always builds precedence and resource

feasible partial schedules (solutions). " Partial" indicates that not all jobs have currently

been scheduled (corresponds to "<" instead of" =" in (2)). Scheduling jobs is equivalent

to augmenting the partial feasible Solution. Enumeration is done in a LIFO-implicit way,

i.e. partial feasible schedules are augmented as long as neither precedence nor resource

infeasibilities occur; in both cases backtracking is done. Due to the unavailability of

strong lower bounding procedures for truncating the search tree the computational

behaviour of this algorithm is rather poor (see below).

Heuristic scheduling rules adopt a general operating scheme which may be characterized

in a simple way as follows (for more details see Kurtulus and Manila [12]): Each job is a

member of one of the sets (states): "Finished", "active", "eligible", and "ineligible". A

job is termed "finished" when its scheduling has been terminated. When a job is

scheduled it becomes "active". A job will be called "eligible" when all its predecessors are

scheduled; otherwise, it is considered "inelegible".

There exist a multitude of different ways for constructing deterministic scheduling rules

by using one or several of the various criteria characterizing model (l)-(8). Following

Talbot [20] who presented and compared eight heuristic scheduling rules, the rule

MIN LF. was shown to behave best regarding average quality of solutions:

MIN LFj The eligible job i with minimnm latest finish time LF- is scheduled fürst.

5

The latest fmsish times LFj taken for determining MIN LF- are calculated by taking

I
T := 2 max {d- | j = 1,...,M-}

i=l '

as an Upper bound for project makespan and performing a traditional critical path

analysis as indicated above using shortest durations dmin^.

Once an eligible job i has been selected according to MIN LF. for being scheduled next, a

quite greedy way of assigning a job mode is to take the mode j with d- : = min {d-^ |

k = l,...,Mj} and to schedule job i as early as possible. According to (preliminary)

comoputaional results not reported here in greater detail this greedy rule performed

rather poor especially in cases of scarce renewable resources, i.e. it could not find existing

feasible solutions quite oftenly. (It should be emphasized that this poor behaviour is in

principal intrinsic to all heuristic rules which try to construct schedules

deterministically.) In order to overcome this disadvantage while keeping the

deterministic behaviour we modified / augmented MIN LF. as follows: Modes j = 1,...,M-

are selected in increasing order for being assigned to job i until a mode is found which

does not violate resource restrictions. If no such mode can be found the deterministic rule

is unable to determine a feasible Solution for the problem.

Now we are going to present a stochastic scheduling method which overcomes the

deficiencies associated with deterministic methods up to a large extent. (The method has

been successfully used in Drexl [9] to solve assignment type project scheduling

problems.) The stochastic nature of these method emerges from using some criteria

measuring the impacts of job selection and mode assignment in a probabilistic way.

More precisely we calculate

:= (max {d.%. | k = -d- + e)ü (9)

for i e EJ where EJ corresponds to the set of eligible jobs and job modes j = 1,...,M- are

taken appropriately. (9) measures the worst-case consequence of assigning mode j not to

job i with respect to job durations. e > 0 secures w- to be positive and a > 0 transformes

the term (.) in an exponential way thus diminishing or enforcing the differences between

the mode dependent job durations for a < 1 or a > 1, respectively. It suggests itself to

use w-j for stochastic job selection and (or) mode assignment with probabilities

proportional to w- for all i € EJ and j = 1 M-.

6

Alternatively we may use

7.: = (max {LFfc | ke EJ} - LF. + e)a (10)

for selecting i e EJ randomly with probabilities proportional to 7. for all i 6 EJ in a first

stage and then assign mode j to job i at random based on w-j in a second stage.

For convenience we will denote both stochastic job selection and mode assignment

procedures with JOSEMODA, whereas JOSEMODA1 and JOSEMODA2 specifically

denote, whenever necessary, the one based on (9) and (10), respectively.

Formally the stochastic scheduling method may be described as follows:

1. Set EJ := {1} and determine LF. (i = !,...,!) by modified critical path analysis.

2. Select job i e EJ and assign mode j to job i randomly using procedure JOSEMODA;

schedule job i as early as possible regarding precedence relations only.

3. Update EJ and LF. appropriately; if EJ = <f>, th en STOP eise goto 2.

4. Check feasibility of the generated schedule with respect to resource restrictions (4)-(7)

and STOP.

The procedure does not check resource feasibility of partial schedules due to the following

reasons: Scaling arrays representing renewable, nonrenewable and doubly-constrained

resource availabilities dynamically whenever a specific resource is used and / or

consumed takes substantial CPU-time. Preliminary computational results not reported

here in detail showed that updating left-over capacities in a dynamic fashion needs three

to four of CPU-time compared with the described version which checks resource

feasibility only in the final step when all jobs have been scheduled.

Disregarding the result of one pass through the above procedure (i.e. a feasible or an

infeasible schedule / Solution) this algorithm should be applied to a specific data set

several times in order to (hopefully) generale a lot of feasible schedules und thus a near

optimal one, too.

7

Computational Results

The algorithms have been coded in TURBO PASCAL and implemented on a Personal

Computer (XT compatible). The test data generated for comparative purposes may be

characterized as follows (project summary measures):

• The problem size, in terms of the number of jobs, is the first project summary

measure.

• The network complexity C = number of arcs (precedence relations) / number of nodes

(jobs) affects the Performance of scheduling procedures and thus must be part of the

experimental design.

• The number of modes of job i is generated randomly for all data sets according to 2 <

M. < 4 with 3 as average number of job modes.

• The total number of resource types R (<5), N (<3), and D (<3) is fixed (within each

"problem dass") in advance.

• The (integer) duration d- of job i being scheduled in mode j is generated at random

according to 5 < d- < 10.

• Job-mode dependent (integer) resource demands (requirements) are randomly

generated such that 0 < k^.f , k^r, k^r < 5 for all resources.

• The renewable resource availabilities are determined by multiplying the peak

resource requirement

«Peak .= max nmx max rj^ I V t}
r iel jeJ. ^

with Kl thus getting

:= KPKl

with 1.5 < Kl < 3.3 (within this section capacities are constant over time for each
C

resource; the time-varying case see below). is treated analogously.

• The nonrenewable resource capacities K" are calculated by multiplying S k^r (mode
i=l

C
one) with K2 (0.7 < K2 < 1.1) for each resource r. is treated analogously.

In order to evaluate the CPU-times required by the above exact method, we generated

and solved to optimality 100 data sets with the following project summary measures:

8

I = 10, C = 1.5, R = 3, N = 1, D = 0, Kl = 2.0, and K2 = 0.9 (our Implementation of

the exact method does not handle doubly-constrained resources explicitely; furthermore

it is only able to deal with one nonrenewable resource (N < 1)).

Table 1 presents average times (input / Output excluded). It can be seen, that CPU-

times are (within the same problem class) highly dependent on the structure of the data

sets. In 22% of the test problems it took only upt to 2 sec to find and to verify the

Optimum Solution; but in 21% it took more than 8 min (with 56 min as largest

CPIMime) to determine the Optimum Solution.

Table 1: Distribution of CPU-times for the exact method

CPU-time percentage

0-2 sec 22%

>2-20 sec 21%

>20-60 sec 17%

>1-3 min 10%

>3-8 min 9%

>8-20 min 12%

>20-60 min 9%

In contrast to this the CPU-times required by the rule MIN LF. and by JOSEMODA1

are rather low. Table 2 presents minimum, mean, and maximum CPU-times (input /

Output times excluded) in sec (MIN, MEAN, and MAX) necessary to heuristically solve

10 data sets within each problem class (characterized by the number of jobs I) where e =

a = 1 and the other parameters are the same as in table 1. JOSEMODA1 has been

executed 10 times for each data set. (It should be noted that the above choice of e which

seems to be rather arbitrary is uncrucial for the behavior of the algorithm. The effect of a

varying a will be shown below in tables 5 to 7.)

Table 3 compares the quality of solutions obtained with JOSEMODA1 and

JOSEMODA2 (for projects with I = 10, C = 1.5, R = 3, N = 1, D = 0). For each

combination of Kl and K2 (problem class) 10 projects have been generated and solved

iteratively 10 times (using e = a - 1.0). "Better", "equal", and "worse" denote the

percentage of cases in which JOSEMODA1 produced better, equal, or worse results than

JOSEMODA2, respectively.

9

Table 2: CPU-times of MIN LF. and JOSEMODA1

problem MINLF. JOSEMODA1

class (I) MIN MEAN MAX MIN MEAN MAX

10 0.82 0.98 2.03 0.44 0.85 1.43

20 1.78 1.93 2.13 1.70 2.83 4.67

30 1.81 3.79 5.17 2.91 4.86 5.50

40 5.02 5.33 8.73 5.54 7.54 10.99

50 3.35 6.54 15.33 9.98 13.20 23.42

60 2.37 8.91 12.85 12.25 17.43 31.91

70 5.53 11.37 14.77 14.49 22.91 37.20

80 4.32 16.62 23.43 16.77 26.41 39.09

Table 3: Comparison 1 of JOSEMODA1 and JOSEMODA2

problem class better equal worse E

Kl=2.5/K2 = l.l 75% 15% 10% 100%

Kl=2.0/K2=0.9 81% 13% 6% 100%

Kl=1.5/K2=0.7 89% 5% 6% 100%

Table 4 presents average percentage deviations of objective function values (from the

Optimum) obtained by applying JOSEMODA1 and JOSEMODA2 10 times to 10 projects

with I = 10, C = 1.5, R = 3, N = 1, D = 0, Kl = 2.0, K2 = 0.9 (once more for e = a =

1.0).

Table 4: Comparison 2 of JOSEMODA 1 and JOSEMODA2

procedure

percentage deviation from Optimum

0% >0-2% >2% 2

JOSEMODA1

JOSEMODA2

58% 28% 14%

54% 19% 27%

100%

100%

10

Tables 3 and 4 show that JOSEMODA1 is superior to JOSEMODA2; thus only the first

one will be investigated in more detail now.

Tables 5 to 7 provide results which demonstrate the influenae of a varying a on the

behavior of JOSEMODA1. In each case (row of tables 5 to 7) JOSEMODA1 has been

iteratively executed until 100 feasible solutions could be found. The problem that has

been treated in all cases is characterized by I = 10, C = 1.5, R = 3, N = 1 and D = 0.

Each entry of the tables represents the number (percentage) of feasible solutions, whose

objective function value had an appropriate percentage deviation from optimum.

Table 5: Variation of a (Kl = 2.5 / K2 = 1.1)

a
0-2% >2-4%

percentage deviation from optimum

>4-6% >6-8% >8-10% >10-12% >12%
#trials

0.0 1 6 20 21 35 14 3 202

0.5 6 24 28 24 15 3 224

1.0 27 43 24 2 4 234

1.5 58 22 17 - 3 - - 299

2.0 84 15 1 - — — — 361

Table 6: Variation of a (Kl = 2.0/K2 = 0.9)

a
0-2% >2-4%

percentage deviation from optimum

>4-6% >6-8% >8-10% >10-12% >12%
#tria!s

0.0 15 5 16 27 20 16 1 251

0.5 14 13 22 27 11 8 5 279

1.0 12 16 37 13 16 4 2 273

1.5 52 26 19 2 1 - - 295

2.0 77 11 9 1 1 1 296

11

Table 7: Variation of a (Kl = 1.5 / K2 = 0.7)

a
0-2%

percentage deviation from Optimum

>2-4% >4-6% >6-8% >8-10% >10-12% >12%
trials

0.0 » 1 26 33 29 9 2 671

0.5 8 11 39 26 13 3 789

1.0 36 36 21 6 4 1 2156

1.5 46 23 25 5 1 — — 2698

2.0 55 30 12 3 - — — 3779

Tables 5, 6, and 7 present results for Kl = 2.5 / K2 = 1.1, Kl = 2.0 / K2 = 0.9, Kl =

1.5 / K2 = 0.7, respectively. The last column of each of the three tables gives the number

of trials (executions of JOSEMODA1 with e = 1.0) which were necessary in order to find

100 feasible solutions. The results may be Interpreted as follows:

• With increasing a more trials are necessary in order to generale a prespecified number

of feasible solutions.

• The probability of fLnding a feasible Solution is decreasing with increasing a, whereas

the quality of solutions is increasing as well.

• The percentage deviations of the objective function value from the Optimum one are

decreasing with increasing a.

• With decreasing resource availabilities more difficulties arise to find feasible solutions

thus needing more trials.

Summarizing these observations a general advice for an appropriate choice of a may be

given as follows: For a given data set one does not know in advance the scarcity of

resources. Thus one should Start with a rather high a (say a = 2.0), perform some

hundreds of trials (depending on the amount of available Computer resources), reduce a

as indicated above and so on.

Table 8 provides results of a comparison of MIN LFj with JOSEMODA1 for projects

with I = 10, C = 1.5, R = 3, N = 3, and D = 2 as well as varying resource availabilities.

For each combination of Kl and K2 five data sets have been generated and solved with

both procedures, where the number of trials of JOSEMODA1 was set equal to 30 and a

= e = 1.0. Each entry #1 / #2 corresponds to the number of data sets, for which MIN

LF- (#1) and JOSEMODA2 (#2) were unable to find a feasible Solution, respectively.

12

These results demonstrate that the stochastic procedura JOSEMODA1 has a much

greater capability of finding feasible solutions than the deterministic procedure

MIN LF., even in the case of rather scarce renewable and nonrenewable resources.

Table 8: Comparison 1 of MIN LF- and JOSEMODA1

K2

Kl
1.0 0.9 0.8 0.7

3.3 1/0 4/0 4/0 4/2

3.0 4/0 4/2 5/1 5/2

2.7 3/0 5/0 4/2 5/1

2.4 5/0 4/0 5/4 4/3

2.1 4/0 3/0 5/2 5/3

1.8 3/0 5/2 4/3 5/4

1.5 1 3/0 5/0 5/4 5/5

Table 9 compares the quality of solutions for those cases of table 8, in which MIN LF-

could find a feasible Solution (23 from 4-7-5 = 140 in total). Percentage deviations of

objective function values (OFV) are mesured according to

[(°FVMIN LFj " OFVJOSEMODAp / OFVJOSEMODA J'

where OFVjQgg^Qj-j^^ corresponds to the best objective function value found within

30 trials. These results show that JOSEMODA1 produces results which are, except for

rather few cases, much more better than those produced by MIN LF;.

Table 9: Comparison 2 of MIN LF^ and JOSEMODA1

percentage
deviation

-2>0% 0% >0-4% >4-8% >8-12% >12%

quantity 2 1 6 8 4 2

13

Tables 8 and 9 demonstrate that JOSEMODA1 is superior to MIN LF. with respect to

two important capabilities of heuristics, i.e. to find existing feasible solutions and to

produce "good" solutions rather quickly. These results are rather typical with respect to

the behavior of both methods. They remain unchanged especially for projects with a

larger job number I and with other network complexities C.

Resource Requirements Varying with Time

Model (l)-(8) Covers project scheduling problems with time-varying supply resource

profiles. Now we are going to model the Situation where the job resource requirements are

time-varying, too.

Specifically k^r7. , k?-rr and k^rr (r = l,...,d-j) denotes the requirements of renewable,

nonrenewable and doubly-constrained resources which are necessary to schedule job i in

mode j in period t+r, where t corresponds to the period (unknown in advance) in which

scheduling of job i will Start. Regarding (l)-(8) we thus easily get the generalized model

(11X18):

Mj LF

(11)

Subject to:

= 1 (i=l I) (12)

Mh LFh M, LF j

^ St* Xijt < E S ^"^ii)xiit (^~1»—»I» he V«) (13)
j = l t=EFh ÜJt j = l t=EF- ^ 1Jt 1

i=l j-, M —1

L xiit - Kr (r"1'-'N) (15)

14

j Mj t +d • j-1

E E E k:
i=l j = 1 q=t fjr(q-t+l) xijq - "rt (r_1 D;t_1 (16>

LF' *
E xii't - KT (17)

xijt ^ {0»1} (i=l»—>Ii j—l»«.»Mj; t — l,...,LFj) (18)

It is simple to see that MIN LFj and JOSEMODA1 can easily be generalized in such a

way that model (11)-(18) can be solved. In contrast to this it would be - though possible

in principal - rather involved (and inefficient as well) to generalize the exact method

accordingly. Thus we compare MIN LF- and JOSEMODA1 only.

The experimental design described above is generalized as follows: At first job-specific

resource requirements are generated at level A (0 < A < 3 ; constant over time). Then

each resource level A is changed in a random fashion such that (max {0, A-2} < k^jrr,

kjjrr, k^rr< A + 2) holds for all r = l,...,d.. . Once resource requirements are known

resource availabilities ^ , and are determined appropriately.

MIN LFj and JOSEMODA1 have been compared analogously to tables 8 and 9. The

results are rather similar. They show (once again) that JOSEMODA1 has a much greater

capability of finding "good" feasible solutions than MIN LF..

Computational times of both procedures are nearly identical with those presented in

table 2 because there is only little additional effort necessary for updating arrays in the

case of time-varying resource requirements.

Summary and Conclusions

The paper presents models for formulating nonpreemptive project scheduling problems

with general resource availabilities and requirements as well as multi-mode time resource

tradeoffs. For the Solution of this model, a stochastic scheduling method is presented

which outperformes traditional deterministic scheduling rules drastically.

15

The method is general and flexible enough for being applied to project planning problems

which incorporate some additional features such as multiple projects (Kurtulus and Davis

[11], Mohanty and Siddiq [13]), time windows (Bartusch et al. [3]), and distributed

Simulation concepts (Arora and Sachdewa [2]). Thus it is supposed to be well suited for

DSS approaches to project scheduling (Anthonisse et al. [1]), Bartusch et al. [4]) and

future work should show that it may be usefully embedded in DSS.

References

[1] Anthonisse, J.M., Van Hee, K.M., Lenstra, J.K., "Resource-Constrained Project
Scheduling: an International Exercise in DSS Development", Decision Support
Systems, Vol. 4 (1988), pp. 249-257.

[2] Arora, R.K., Sachdewa, R.K., "Distributed Simulation of Resource Constrained
Project Scheduling", Comput. L Ops. Res., Vol. 16 (1989), pp. 295-304.

[3] Bartusch, M., Möhring, R.H. Radermacher, F.J., "Scheduling Project Networks with
Resource Constraints and Time Windows", Annais of Operations Research, VoL 16
(1988), pp. 201-240.

[4] Bartusch, M., Möhring, R.H., Radermacher, F.J., "Design Aspects of an Advanced
Model- Oriented DSS for Scheduling Problems in Civil Engineering", to appear in
Decision Support Systems.

[5] Blacewicz, J., Cellary, W., Slowinski, R., Weglarz, J., " Scheduling Under Resource
Constraints - Deterministic Models", Basel 1986 (Annais of Operations Research,
Vol. 7).

[6] Christofides, N., Alvarez-Valdes, R., Tamarit, J.M., "Project Scheduling with
Resource Constraints: A Brauch and Bound Approach", European Journal of
Operational Research, Vol. 29 (1987), pp. 262-273.

[7] Davis, E.W., Patterson, J.H., "A Comparison of Heuristic and Optimum Solutions in
Resource-Constrained Project Scheduling", Management Science, Vol. 21 (1975), pp.
944-955.

[8] Domschke, W., Drexl, A., "Deterministische Modelle zur Planung und Kontrolle von
Projekten mit Kapazitätsrestriktionen", Discussion Paper, Technische Hochschule
Darmstadt, February 1989.

[9] Drexl, A, "Scheduling of Project Networks by Job Assignment", Discussion Paper,
Technische Hochschule Darmstadt, February 1989.

[10] Elmaghraby, S.E., "Activity Networks: Project Planning and Control by Network
Modell, New York 1977.

[11] Kurtulus, LS., Davis, E.W., "Multi-Project Scheduling: Categorization of Heuristic
Rules Performance", Management Science, Vol. 28 (1982), pp. 161-172.

[12]Kurtulus, LS., Narula, S C., "Multi-Project Scheduling: Analysis of Project
Performance", IIE Transactions, Vol. 17 (1985), pp. 58-66.

[13] Mohanty, R.P., Siddiq, M.K., "Multiple Projects - Multiple Resources - Constrained
Scheduling: Some Studies", International Journal of Production Research, Vol. 27
(1989), pp. 261-280.

[14] Patterson, J., Slowinski, R., Talbot, B., Weglarz, J., "An Algorithm for a General
Class of Precedence and Resource Constrained Scheduling Problems", in: Slowinski,
R., Weglarz, J. (Eds.): "Advances in Project Scheduling", Amsterdam 1989, pp.

16

[15] Pritsker, A.A.B., Watters, W.D., Wolfe, P.M., "Multiproject Scheduling With
Limited Resources: A Zero-One Programming Approach", Management Science, Vol.
16 (1969), pp. 93-108.

[16]Radermacher, F.J., "Scheduling of Project Networks", Annais of Operations
Research, Vol. 4 (1985/6), pp. 227-252.

[17] Slowinski, R., "Two Approaches to Problems of Resource Allocation Among Project
Activities - A Comparative Study", Journal of the Operational Research Society,
Vol. 31 (1980), pp. 711-723.

[18] Slowinski, R., "Multiobjective Network Scheduling With Efficient Use of Renewable
and Nonrenewable Resources", European Journal of Operational Research, Vol. 7
(1981), pp. 265-273.

[19] Stinson, J.P., Davis, E W., Khumawala, B.M., "Multiple Resource-Constrained
Scheduling Using Branch and Bound", AHE Transactions, Vol. 10 (1978), pp.
252-259.

[20]Talbot, F.B., "Resource - Constrained Project Scheduling With Time-Resource
Tradeoffs: The Nonpreemptive Case", Management Science, Vol. 28 (1982), pp.
1197-1210.

[21]Talbot, F.B., Patterson, J.H., "An Efficient Integer Programming Algorithm With
Network Cuts for Solving Resource-Constrained Scheduling Problems", Management
Science, Vol. 24 (1978), pp. 1163-1174.

[22] Weglarz, J., " Project Scheduling With Continuously Divisible, Doubly - Constrained
Resources", Management Science, Vol. 27 (1981), pp. 1040-1053.

[23]Weiss, E.N., "An Optimization Based Heuristic for Scheduling Parallel Project
Networks with Constrained Renewable Resources", IIE Transactions, Vol. 20 (1988),
pp. 137-143.

