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Abstract

We propose a semiparametric estimator to determine the effects of explanatory variables

on the conditional interquantile expectation (IQE) of the random variable of interest, with-

out specifying the conditional distribution of the underlying random variables. IQE is the

expected value of the random variable of interest given that its realization lies in an interval

between two quantiles, or in an interval that covers the range of the distribution to the left

or right of a quantile. Our so-called interquantile expectation regression (IQER) estimator

is based on the GMM framework. We derive consistency and the asymptotic distribution

of the estimator, and provide a consistent estimator of the asymptotic covariance matrix.

Our results apply to stationary and ergodic time series. In a simulation study we show that

our asymptotic theory provides an accurate approximation in small samples. We provide

an empirical illustration in finance, in which we use the IQER estimator to estimate one-

step-ahead daily expected shortfall conditional on previously observed daily, weekly, and

monthly aggregated realized measures.
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1 Introduction

We propose a semiparametric estimator to determine the effects of explanatory variables on

the conditional interquantile expectation (IQE) of the random variable of interest. IQE is the

expected value of the random variable of interest given that its realization lies in an interval

between two quantiles, or in an interval that covers the range of the distribution to the left

or right of a quantile. We refer to the latter two special cases as lower-quantile expectation

(LQE) and upper-quantile expectation (UQE). Our so-called interquantile expectation regres-

sion (IQER) estimator estimates the interquantile expectation jointly with the quantiles and

does not require the specification of the conditional distribution of the variable of interest. We

show that our estimator is consistent and asymptotically normal for stationary and ergodic time

series. To the best of our knowledge we are the first to study a semiparametric estimator of the

conditional interquantile expectation and its asymptotic properties.

Our estimator is useful in several settings. In various academic disciplines LQE and UQE are

used to measure risk, because they capture the expected value of rare events beyond a certain

(tail) quantile. In finance the LQE of an asset return is referred to as expected shortfall (ES).

Our estimator is the first to facilitate the estimation of ES conditional on several explanatory

variables without specifying a full multivariate model. As a consequence it is easy to estimate

systemic risk measures such as CoES of Adrian and Brunnermeier (2016), which relates the

ES of the financial system to the return of an individual financial asset and several state vari-

ables, whereas current approaches require multivariate modelling and neglect important state

variables.

IQE can be seen as the expectation of a truncated distribution. Our estimator is there-

fore related to estimators of trimmed or truncated conditional means, such as the trimmed

least squares estimator of Ruppert and Carroll (1980). This estimator aims to robustly, but

inefficiently, estimate the parameters of a linear conditional mean model by removing outliers

of the dependent variable in a first stage. Our estimator can be used for the same purpose,

but improves on such estimators because it provides standard errors that do not depend on a

nuisance parameter. Moreover, it is not restricted to robustly estimating conditional means.

We can estimate the parameters of IQEs on any interquantile interval, such that we can study

and compare the relation of the explanatory variables and the variable of interest on different

intervals of the support of the conditional distribution. Our estimator can therefore be used to
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quantify nonlinearities in the relation between the variable of interest and explanatory variables.

IQER is closely related to linear regression and quantile regression (Koenker and Bassett,

1978), since these methods estimate the parameters of linear models for the conditional mean

and the conditional quantile, whereas we estimate the parameters of a linear model for the

conditional IQE. We pursue a linear IQE specification because it is suitable in many scenarios.

This follows from a linear quantile specification implying a linear IQE specification, and the

widespread use of such linear quantile specifications, see for instance Koenker and Hallock (2001)

for an overview. We leave the development of a nonlinear IQER estimator for future research.

To develop our estimator we use a recently proposed strictly consistent scoring function for

the quantile and LQE pair introduced in Fissler et al. (2016b) to obtain the moment conditions

required in the generalized method of moments (GMM) framework of Hansen (1996). The strict

consistency of this scoring function, or loss function as it is often referred to in econometrics,

implies that its expectation is uniquely minimized at the true quantile and LQE, such that we

can use the first order conditions as moment conditions. The moment conditions obtained from

the scoring function are nonsmooth, such that we use results on nonsmooth GMM estimation

in Newey and McFadden (1994) to obtain the consistency and asymptotic distribution of the

IQER estimator, and a consistent estimator of the asymptotic covariance matrix.

By construction the estimation of IQE requires the estimation of the quantiles that are

used in the definition of the IQEs, either jointly or in a preceding stage. The IQER estimator

therefore also estimates the quantile parameters. Moreover, we allow for the joint estimation of

IQEs and quantiles at many quantile levels, such that we can test hypotheses that relate to IQEs

at different quantile levels. We show that estimation error of the quantile parameter estimates

does not affect the estimation error of the IQE parameter estimates. Moreover, unlike the

standard errors of the quantile parameters, the standard errors of the IQE parameters obtained

with the IQER estimator do not contain a nuisance parameter in terms of the conditional

density function. As such, we do not require numerical approximation or bootstrap techniques

to overcome the nuisance parameter problem when we only consider IQE parameter estimates.

We propose a multi-stage estimation procedure in which we (i) obtain quantile parameter

estimates in a first stage through GMM quantile estimation, and (ii) obtain the IQE estimates

in the subsequent stages that consist of auxiliary regressions. This procedure is computationally

fast and we show that it results in an asymptotically efficient estimator. Finally, we show that

in the case of iid data we can substitute GMM quantile estimation with quantile regression, for
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which optimization routines are available in most statistical computing packages.

When we only consider LQEs we can relate the IQER estimator to several estimators of

ES. Our estimator differs from the others in that these are usually parametric or nonparametric

and univariate in nature, whereas our method allows for multiple relevant explanatory variables

and does not require the specification of the conditional distribution. A large number of such

estimators is summarized in Nadarajah et al. (2014). The two methods that are closest in spirit

to our estimator are firstly Taylor (2008a), who proposes an estimator based on expectiles, a

generalized form of quantiles introduced by Newey and Powell (1987). Secondly, Taylor (2008b)

provides an estimator of LQE that is equivalent to the IQER estimator in the unconditional

case, i.e. when we do not consider explanatory variables.

In simulation experiments we show that our asymptotic theory provides a good approxi-

mation in small samples. We use a data generating process in which an explanatory variable

linearly affects the conditional mean and volatility of the dependent variable. This data gener-

ating process has an exact solutions for the true IQE parameters, and allows for autocorrelation

and conditional heteroskedasticity.

In an empirical illustration we provide an application of the IQER estimator in finance.

We estimate one-step-ahead ES of the daily return of a S&P 500 exchange traded fund using

the IQER estimator with previously observed daily, weekly, and monthly aggregated realized

volatility as explanatory variables. We compare our method to estimates of one-step-ahead ES

that first estimate one-step-ahead realized volatility with the same variables, as in the HAR

model of Corsi (2009), and subsequently impose a distributional form on the standardized

errors to map realized volatility to ES. The estimates of the IQER estimator are on average

more conservative than other models, and react more strongly to realized volatility observed

in the recent past. Moreover, we can reject a significant relation between monthly aggregated

realized volatility and one-step-ahead ES.

The remainder is structured as follows. Section 2 introduces the IQE models and develops

the estimation method and asymptotic theory of the IQER estimator. Section 3 uses Monte

Carlo experiments to study the small-sample properties of our estimators. Section 4 provides

two empirical illustrations of our method. Section 5 concludes.
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2 Theory

2.1 Definitions

Consider a stochastic process {(Yt,Z′
t)′ ∶ Ω Ð→ Rl+1, 1 ≤ l < ∞, t = 1, . . . , T} defined on a

complete probability space (Ω,F , P ), where F ≡ {Ft, t = 1, . . . , T} and Ft is defined as the

σ-algebra Ft = σ{(Ys−1,Z
′
s)′, s ≤ t}. Yt ∶ Ω Ð→ R denotes the random variable of interest,

whereas Zt ∶ Ω Ð→ Rl defines a vector of random variables of length l. We select k, 1 ≤ k < ∞,

elements from (Yt−1,Z
′
t, Yt−2,Z

′
t−1, . . .)′ to include in the explanatory variable vector Xt, for all

t = 1, . . . , T .

Define Ft(⋅), F −1
t (⋅), ft(⋅), and Et[⋅] as the distribution function, the inverse distribution

function, the probability density function, and the expectation of Yt conditional on Ft. We

assume that ft(⋅) is continuous and strictly positive, such that Ft(⋅) has unique quantiles. This

assumption is common in the quantile estimation literature.

Consider two levels αi and αj , such that 0 < αi < αj < 1. Then the conditional quantile,

F−1
t (αi), will be referred to as Qt(αi), the conditional lower-quantile expectation, Et[Yt∣Yt <

Qt(αi)], as Lt(αi), the interquantile expectation Et[Yt∣Qt(αi) < Yt < Qt(αj)], as It(αi, αj), and

the upper-quantile expectation, Et[Yt∣Yt > Qt(αi)], as Ut(αi).

From the definitions above we see that Lt(αi) and Ut(αi) denotes the expectation of Yt

conditional on its realization lying below and above the conditional quantile of Yt given the

realization. These quantities are sometimes also referred to as first order lower and upper

partial moments. The quantity It(αi, αj) denotes the expectation of Yt conditional on its

realization lying between two conditional quantiles given the realization. We can therefore use

these quantities to study the average effect of Ft-measurable explanatory variables on Yt on a

specific subset of realizations defined by open intervals in which realizations of Yt must fall.

We propose the following linear models to study the effect of the explanatory variables

collected in Xt on the conditional quantiles and interquantile expectations of Yt.

Qt(αi) = X′
tβQ,i, (1)

Lt(αi) = X′
tβL,i, (2)

It(αi, αj) = X′
tβI,i,j , (3)

Ut(αi) = X′
tβU,i, (4)
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where βQ,i and βL,i, βI,i,j , and βU,i denote the (k × 1) parameter vectors at quantile level αi,

and between αi and αj .

The Qt model in (1) was introduced in the literature by Koenker and Bassett (1978). The

linear models (2)-(4) have, to the best of our knowledge, not been studied before.

Whether these linear models are appropriate is ultimately determined by the research ques-

tion at hand. It should be noted, however, that empirical studies that employ quantile regression

methods generally use linear quantile regression specifications. This suggests that linear models

of (2)-(4) should be appropriate as well. Indeed a linear model of Qt naturally suggests a linear

model for Lt(αi), It(αi, αj), and Ut(αi). This can be seen by, for instance, rewriting Lt(αi) as

the integral Lt(αi) = 1
αi ∫

αi
0 Qt(u)du = X′

t( 1
αi ∫

αi
0 βQ,udu) = X′

tβL,i.

Another benefit of linear models concerns the the transition from conditional IQEs to

marginal IQEs, which is straightforward for linear models. Without loss of generality con-

sider the marginal LQE given by E[Lt(αi)] = E[Yt∣Yt < Qt(αi)]. We find the linear relation

E[Lt(αi)] = E[Xt∣Yt < Qt(αi)]′βL,i. We can therefore study hypothetical changes to Lt(αi) by

changing βL,i and estimating E[Xt∣Yt < Qt(αi)] from the data. One caveat here is that we as-

sume constant conditional quantiles. If this assumption is too restrictive we must resort to other

methods, because the transition of conditional to marginal quantiles requires more advanced

methods, see for instance Chernozhukov et al. (2013). However, when we consider underlying

changes that affect tails but not the body of the distribution, or vice versa, the assumption is

justified.

2.2 Moment conditions

The basis of our estimation theory is the existence of a strictly consistent scoring function

for the pair (Qt(αi), Lt(αi)) as shown in Fissler et al. (2016b). The expectation of strictly

consistent scoring function, or loss function, is uniquely optimized at the true values of the

statistics that it takes as arguments. Examples of well-known scoring functions are the mean

squared prediction error function, which is strictly consistent for the mean, and the tick-loss

function, which is strictly consistent for the quantile. We refer to Gneiting and Raftery (2007)

and Gneiting (2011) for a detailed treatment of strictly consistent scoring functions.

For our linear model we consider the following specification of the strictly consistent scoring
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function:

S(Yt,X′
tβQ,i,X

′
tβL,i) ≡ (αi − 1[Yt −X′

tβQ,i < 0])(Yt −X′
tβQ,i)

− 1

αi
exp (X′

tβL,i)1[Yt −X′
tβQ,i < 0](Yt −X′

tβQ,i) (5)

+ exp (X′
tβL,i)(X′

tβL,i −X′
tβQ,i) − exp (X′

tβL,i).

This specification is not unique. The entire set of strictly consistent scoring functions for

(Qt(αi), Lt(αi)) is given in Corollary 5.5 in Fissler et al. (2016b). We use (5) because it is

closely related to the tick-loss function and it is recommended in Fissler et al. (2016a), which

accompanies Fissler et al. (2016b) as an empirical note.

The existence of this scoring function facilitates the estimation of (Qt(αi), Lt(αi)) by op-

timization of its expectation, because the strict consistency of (5) implies that the conditional

expectation of the scoring function is optimal at the true values, i.e.:

Et[S(Yt,X′
tβ0,Q,i,X

′
tβ0,L,i)] ≤ Et[S(Yt,X′

tβ
∗
Q,i,X

′
tβ

∗
L,i)], (6)

for all (β∗Q,i
′
,β∗L,i

′)′ in the parameter space, and where Xtβ0,Q,i = Qt(αi) and X′
tβ0,L,i = Lt(αi)

equal the true values.

Fissler et al. (2016b) show that no strictly consistent scoring function exists for Lt(αi) alone.

We must therefore either estimate Lt(αi) and Qt(αi) jointly or estimate Qt(αi) in advance. Here

we consider the joint estimation of the LQEs, IQEs, and UQEs of interest, and the respective

quantiles that we must necessarily estimate to find these quantities.

We therefore derive moment conditions for Qt(αi), Lt(αi), It(αi, αj), and Ut(αi) from con-

ditional moment restrictions such that we can obtain an estimator using the GMM framework.

We obtain conditional moment restrictions for Qt(αi), Lt(αi), and Ut(αi) from the first order

conditions of Et[S(Yt,X′
tβQ,i,X

′
tβL,i)]. The conditional moment restriction for It(αi, αj) is

subsequently derived from a generalization of the conditional moment restrictions of Lt(αi) and

Ut(αi).

Let β0,Q,i, β0,L,i, β0,I,i,j , and β0,U,i denote the true parameter vectors of the linear models at

quantile level αi. The following lemma shows that β0,Q,i, β0,L,i, and β0,U,i satisfy the following

first order conditions.

Lemma 1. (First order conditions) Assume that for every t, 1 ≤ t ≤ T , Yt has a continuously
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differentiable conditional distribution function Ft. Then, for any level αi, 0 < αi < 1, the optimal

parameter vector (β′0,Q,i,β′0,L,i)′ satisfies the following first order conditions:

Et

⎡⎢⎢⎢⎢⎢⎣

gQ,i(β0,Q,i, Yt,Xt)

gL,i(β0,Q,i,β0,L,i, Yt,Xt)

⎤⎥⎥⎥⎥⎥⎦
= 0 a.s.-P, (7)

where gQ,i(βQ,i, Yt,Xt) ≡ 1(Yt −X′
tβQ,i < 0)−αi, and gL,i(βQ,i,βL,i, Yt,Xt) ≡ X′

tβL,i −X′
tβQ,i −

1
αi
1(Yt −X′

tβQ,i < 0)(Yt −X′
tβQ,i).

Similarly, the optimal parameter vector (β′0,Q,i,β′0,U,i)′ satisfies the following first order

conditions:

Et

⎡⎢⎢⎢⎢⎢⎣

gQ,i(β0,Q,i, Yt,Xt)

gU,i(β0,Q,i,β0,U,i, Yt,Xt)

⎤⎥⎥⎥⎥⎥⎦
= 0 a.s.-P, (8)

where gU,i(βQ,i,βU,i, Yt,Xt) ≡ X′
tβU,i −X′

tβQ,i − 1
1−αi

1(Yt −X′
tβQ,i > 0)(Yt −X′

tβQ,i).

In gQ,i(⋅) we recognize the derivative of the tick-loss function, which is the strictly consistent

scoring function for Qt(αi). Notice that it only depends on βQ,i. A similar consistent moment

condition for the quantile is given in Giacomini and Komunjer (2005), who use a GMM quantile

estimator to obtain an encompassing test of two quantile forecasts.

Moreover, we find that gL,i(⋅) and gU,i(⋅) depend linearly on βL,i and βU,i, respectively.

Alternative conditional moment restrictions for βL,i and βU,i can be directly derived from the

definitions of Lt(αi) and Ut(αi) in (2) and (4), e.g. Et[X′
tβL,i − 1

αi
1(Yt − X′

tβQ,i < 0)Yt] = 0

for Lt(αi) . However, this specification leads to standard errors that contain ft(⋅) as nuisance

parameter, which is a considerable disadvantage.

The conditional moment condition restriction for It(αi, αj) cannot be obtained from a

strictly consistent scoring function, because this scoring function has not been developed yet.

We can, however, induce a conditional moment restriction for It(αi, αj) from the functions

gL,i(⋅) and gU,i(⋅). Specifically, consider the function

gI,i,j(βQ,i,βQ,j ,βI,i,j , Yt,Xt) ≡ X′
tβU,i −

1

αj − αi
[αjX′

tβQ,j + (1 − αi)X′
tβQ,i

+ 1(X′
tβQ,i < Yt < X′

tβQ,j)Yt − 1(Yt −X′
tβQ,i > 0)X′

tβQ,i − 1(Yt −X′
tβQ,j < 0)X′

tβQ,j]. (9)

Using the definition of It(αi, αj) and under the assumptions of Lemma 1 we immediately
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find the following conditional moment restriction for It(αi, αj):

Et[gI,i,j(β0,Q,i,β0,Q,j ,β0,I,i,j , Yt,Xt)] = 0. (10)

The moment conditions now follow by multiplying gQ,i(⋅), gL,i(⋅), gI,i,j(⋅), and gU,i(⋅) by a

Ft-measurable vector.

2.3 Estimation

We consider the joint estimation of many Qt(αi), Lt(αi), It(αi, αj), and Ut(αi) parameter

vectors. Let 0 < α1 < α2 < . . . < αdQ < 1 denote the dQ quantile levels necessary to find all

quantities of interest. Since we do not necessarily consider all possible Lt(αi), It(αi, αj), and

Ut(αi) under the dQ quantile levels, we must carefully specify which quantities we consider at

which levels. To do so we introduce some notation concerning the particular choice of Lt(αi),

It(αi, αj), and Ut(αi). However, this extra notation can be skipped when we only consider

estimation at a single quantile level. In Section 2.6 we treat the special case of LQE estimation

at a single quantile level.

Let dL denote the number of Lt(αi) we consider, dI the number of It(αi, αj), and dU the

number of Ut(αi), such that we consider d = dQ + dU + dI + dU parameter vectors in total. Now

let {nL ≡ nL,1, nL,2, . . . , nL ≡ nL,dL} denote a finite sequence of length dL of unique integers

on [1, dQ], such that we consider lower-quantile expectations Lt(αnL), . . . , Lt(αnL). Similarly,

let {nU ≡ nU,1, nU,2, . . . , nU ≡ nU,dU } denote a finite sequence of length dU of unique integers

on [1, dQ], such that we consider upper-quantile expectations Ut(αnU ), . . . , Ut(αnU ). Finally,

let {{nI,1, nI,2} ≡ {nI,1,1, nI,1,2},{nI,2,1, nI,2,2} . . . ,{nI,1, nI,2} ≡ {nI,dI ,1, nI,dI ,2}} denote a finite

sequence of unique pairs on [1, dQ]2, with nI,i,1 < nI,i,2, such that we consider interquantile

expectations It(αnI,1 , αnI,2), . . . , It(αnI,1 , αnI,2).

We can now stack all model paramaters in the (kd × 1) parameter vector

β = (β′Q,1, . . . ,β′Q,dQ ,β
′
L,nL

, . . . ,β′L,nL ,β
′
I,nI,1,nI,2

, . . . ,β′I,nI,1,nI,2 ,β
′
U,nU

, . . . ,β′U,nU )
′. (11)

In what follows we denote the true parameter vector as β0 and the estimator as β̂T . Sub-

vectors of β, β0 and β̂T are given equivalent notation. We will refer to the full estimator β̂T

as the IQER estimator, whereas we will refer to the subvector β̂Q,T = (β′Q,1, . . . ,β′Q,dQ)
′ as the

GMM quantile estimator.
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Consider the (kd × 1) vector

g(β;Yt,Xt) = (gQ,1, . . . , gQ,d, gL,nL , . . . , gL,nL , gI,nI,1,nI,2 , . . . , gI,nI,1,nI,2 , gU,nU , . . . , gUnU , )′ ⊗Xt,

(12)

with ⊗ denoting the Kronecker product operator and where we use abbreviated notation

gQ,i = gQ,i(βQ,i, Yt,Xt), gL,i = gL,i(βQ,i,βL,i, Yt,Xt), gI,i,j = gI,i,j(βQ,i,βI,i,j , Yt,Xt), and gU,i =

gU,i(βQ,i,βU,i, Yt,Xt).

Since Xt is a Ft-measurable vector, we find the moment conditions

g0(β0) = E[g(β0;Yt,Xt)] = 0, (13)

such that we obtain the GMM-estimator β̂T defined as

β̂T = arg min
β∈B

ḡT (β)′Ŵ−1
T ḡT (β), (14)

with sample moment function ḡT (β) = 1
T ∑

T
t=1 g(β;Yt,Xt), and a consistent estimator ŴT of

some asymptotic weighting matrix W0.

We proceed with the asymptotic properties of β̂T . To prove the consistency of β̂T , we

must show that β0 is the unique vector at which (13) holds. The following lemma shows that

uniqueness holds under mild conditions.

Lemma 2. (Uniqueness) Assume that for every t, 1 ≤ t ≤ T , (a) the conditional distribution

of Yt has finite first moments and the conditional density ft is continuous and strictly positive;

(b) E[(Ft(X′
tβQ,i) − αi)Xt] ≠ 0, for all β ∈ B ∖ β0 and i = 1, . . . , dQ; and (c) E[XtXt

′] is

nonsingular. Then β0 is unique.

Assumption (a) is standard in quantile regression estimation and ensures Yt will have unique

quantiles. Assumption (b) ensures that uniqueness under the conditional moment condition

implies uniqueness under the unconditional moment condition (13). In the iid case we should

therefore include an intercept when all explanatory variables have mean zero. Assumption (c)

ensures that Xt does not contain linearly dependent explanatory variables.

We show the consistency of the estimator in the following theorem.

Theorem 1. (Consistency) Let the assumptions (a)-(c) hold. Furthermore assume that (d)
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{Yt,Xt} is stationary and ergodic sequence; (e) B is compact; (f) E [∥Xt∥2 + ∣Yt∣∥Xt∥] < ∞;

and (g) ŴT
pÐ→W0, with W0 a positive semi-definite matrix. Then, as T →∞, β̂T

pÐ→ β0.

We let the ∥ ⋅ ∥ operator denote to the L2-norm. Assumption (d) precludes heterogeneity

in the data, such as breaks and unconditional heteroskedasticity. Assumption (f) contains a

boundedness condition on the unconditional mean of the moment conditions. We can ignore

assumption (f) when dL = dU = 0, because it coincides with assumption (c) in this case. This

follows from the realizations of Yt that lie outside the conditional quantiles not entering in

levels in g(β;Yt,Xt). Assumptions (e) and (g) are relatively standard assumptions for GMM

estimation on the parameter space and the weighting matrix.

We provide the asymptotic distribution of the estimator in the following theorem.

Theorem 2. (Asymptotic normality) Let assumptions (a)-(e) and (g) hold. Furthermore as-

sume that (h) the conditional density of Yt, ft, is bounded; (i) β0 is an interior point of B;

(j) E [∥Xt∥4 + ∣Yt∣∥Xt∥3 + ∣Yt∣2∥Xt∥2 + ∣Yt∣∥Xt∥2] < ∞; (k) for any δT → 0, sup∥β−β0≤δT ∥

√
T×

∥ḡT (β) − ḡT (β0) − g0(β)∥/(1+
√
T ∥β −β0∥)

pÐ→ 0; (l) Σ0 ≡ E[g0(β0)g0(β0)′] is a positive defi-

nite matrix; and (m) E[f(X′
tβ0,Q,i)XtXt

′] is nonsingular for all i = 1, . . . , d. Then, as T →∞,

β̂T is asymptotically normal,

Ω
−1/2
0

√
T (β̂T −β0)

dÐ→N(0, I), (15)

with Ω0 = (G′
0W0G0)−1G′

0W0Σ0W0G0(G′
0W0G0)−1, and G0 is a diagonal matrix with d

(k × k) diagonal blocks

G0,ii ≡ E
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ft(X′
tβ0,Q,i)XtX

′
t, if i ≤ dQ,

XtX
′
t, if i > dQ.

(16)

Assumption (j) imposes more stringent moment conditions as required by the central limit

theory. When dL = dU = 0 we can replace assumption (j) with the substantially weaker assump-

tion E∥Xt∥4 < ∞, such that we do not impose bounds on the moments of Yt. Again, this follows

from the realizations of Yt that lie outside the conditional quantiles not entering in levels in

g(β;Yt,Xt). In this scenario Yt can therefore be Cauchy-distributed.

Additionally, when we study financial time series data, or fat-tailed data in general, we

must be confident that assumption (j) holds. Imposing more structure on the data helps. For

instance, Bai et al. (2003) provide conditions on GARCH processes with non-normal standard
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errors such that the fourth moments of the process and its conditional volatility are bounded.

These conditions amount to boundedness of the fourth moment of the standardized errors and

some parameter restrictions. We can therefore use the results in Bai et al. (2003) to verify

assumption (j) when Yt is a GARCH process and Xt contains the conditional volatility.

We impose assumption (h) to ensure that the matrix G0 is bounded. Assumption (k)

ensures stochastic equicontinuity of the nonsmooth sample moment condition. More primitive

conditions for this property are difficult to obtain for the amount of dependence we allow in the

data, i.e. asymptotical independence, because the sample moment conditions are unbounded,

and partly non-Lipschitz continuous. Andrews (1994) provides more primitive conditions that

are easily applied to our sample moment condition vector under the stronger condition of m-

dependence, which covers the iid case. Assumption (i) and (l) are fairly standard for GMM

estimation. Finally, we impose assumption (m) to obtain invertibility of the outmost factors of

the asymptotic covariance matrix. Assumption (m) follows trivially from assumption (c) when

the data is iid.

The first dQ diagonal blocks of the matrix G0, which belong to β0,Q,i, contain an infinitely

dimensional nuisance parameter in the form of conditional density ft. Giacomini and Komunjer

(2005) propose an approximation matrix that does not require knowledge of ft. We apply their

method to arrive at the block-diagonal approximation matrix ĜT,τ , with (k×k) diagonal blocks

(ĜT,τ)ii, given by

(ĜT,τ)ii ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
T ∑

T
t=1[ 1

τ exp( 1
τ (Yt −X′

tβ̂T,Q,i))]1 (Yt −X′
tβ̂T,Q,i)XtX

′
t, if i ≤ dQ,

1
T ∑

T
t=1 XtX

′
t, if i > dQ.

(17)

The following theorem establishes convergence in probability of the components of the sam-

ple covariance matrix. Let Σ̂T ≡ 1
T ∑

T
t=1 g(β̂T ;Yt,Xt)g(β̂T ;Yt,Xt)′.

Theorem 3. (Asymptotic covariance) Under the assumptions of Theorem 2, Σ̂T
pÐ→ Σ0, and

limτ→0 ĜT,τ
pÐ→G0. Then, Ω̂T ≡ lim

τ→0
(Ĝ′

T,τŴT ĜT,τ)
−1

Ĝ′
T,τŴT Σ̂TŴT ĜT,τ (Ĝ′

T,τŴT ĜT,τ)
−1 pÐ→

Ω0.

We find the efficient covariance matrix Ω0 = (G′
0Σ

−1
0 G0)

−1
and its sample counterpart

Ω̂T = (Ĝ′
T,τ Σ̂

−1

T ĜT,τ)
−1

when we set W0 = Σ−1
0 and ŴT = Σ̂

−1

T . Due to the invertibility of

G0 by assumptions (c) and (m), however, we also find the efficient covariance matrix when

we set W0 = I, or any other positive definite weighting matrix. With this result we obtain an

12



efficient multi-stage estimator in the next subsection that is considerably less time-intensive to

obtain. Moreover, for efficient estimators the particular block-diagonal structure of G0 implies

that estimation error of β̂T,Q,i does not enter the estimation error of the β̂T,L,i, and vice versa.

There is also no estimation error spillover between parameter estimates at different levels αi.

A test of linear null hypotheses of the form H0 ∶ Rβ0 = r follows from the Wald test statistic

WT = T (Rβ̂T − r)′(RΩ̂TR′)−1(Rβ̂T − r), (18)

where R is a (r × n) matrix of full row rank, r is a vector of length r, and for which we reject

the null hypothesis at a level q when WT > χ2
2dk,1−q, where χ2

2dk,1−q denotes the (1 − q) quantile

of a χ2-distribution with 2dk degrees of freedom.

2.4 Multi-stage estimation

When W0 = I we can restate optimization problem (14) as the multi-stage GMM problem

β̂T,Q,i = arg min
βQ,i∈BQ,i

ḡ′T,i ḡT,i for all i = 1, . . . , dQ,

β̂T,L,i = (X′X)−1X′ỸL,i for all i ∈ {nL, . . . , nL}, (19)

β̂T,I,i,j = (X′X)−1X′ỸI,i,j for all {i, j} ∈ {{nI,1, nI,2}, . . . ,{nI,1, nI,2}},

and

β̂T,U,i = (X′X)−1X′ỸU,i for all i ∈ {nU , . . . , nU},

where ḡT,Q,i refers to the ith element of ḡT , BQ,i denotes the part of domain B relating to

βQ,i, X = [X1, . . . ,XT ]′, and ỸL,i, ỸI,i,j , and ỸU,i denote (T ×1) auxiliary vectors with elements

ỸL,i,t = X′
tβQ,i + 1

αi
1(Yt −X′

tβQ,i < 0)(Yt −X′
tβQ,i), ỸI,i,j,t = 1

αj−αi
[αjX′

tβQ,j + (1 − αi)X′
tβQ,i +

1(X′
tβQ,i < Yt < X′

tβQ,i)Yt − 1(Yt − X′
tβQ,i > 0)X′

tβQ,i) − 1(Yt − X′
tβQ,j < 0)X′

tβQ,j], and

ỸU,i,t = X′
tβQ,i + 1

1−αi
1(Yt −X′

tβQ,i > 0)(Yt −X′
tβQ,i).

The equivalence of (14) and (19) follows from the cross-products of the quadratic objective

function in (14) being zero when W0 = I, and the last k(d − dQ) elements of ḡT (β) being

linear in the lower-, inter-, and upperquantile expectation parameter vectors, such that, given

any quantile parameter vector, a closed-form solution exists that sets these elements exactly to

zero. Moreover, the parameter estimates obtained from (19) will be asymptotically efficient as

shown in the previous subsection.
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When dL = dU = 0 the multi-stage estimator is related to the trimmed OLS estimator of

Ruppert and Carroll (1980). However, their estimator first removes all observations of Yt and

Xt lying outside the conditional quantiles and performs OLS on the remaining sample, whereas

our multi-stage estimator can be viewed as an auxiliary regression on the full sample, with

explanatory variables Xt and dependent variable 1
αj−αi

[αjX′
tβQ,j +(1−αi)X′

tβQ,i +1(X′
tβQ,i <

Yt < X′
tβQ,j)Yt − 1(Yt −X′

tβQ,i > 0)X′
tβQ,i) − 1(Yt −X′

tβQ,j < 0)X′
tβQ,j].

2.5 Substitution with quantile regression

In practice the linear conditional quantile parameters are often estimated by quantile regression

instead of the GMM estimation procedure provided in this paper. Quantile regression optimiza-

tion routines are included in many statistical computing packages and these routines are fast,

because the quantile regression optimization problem can be restated as a linear programming

problem.

Here we show that when W0 = I and we consider iid data we can replace the GMM quantile

estimator with the quantile regression estimator and retain the preceding asymptotic distribu-

tion of the IQER estimator, because this estimator is consistent and satisfies an asymptotic first

order condition.

This asymptotic first order condition ḡT (β̂T )′ŴT ḡT (β̂T ) ≤ inf
β∈B

ḡT (β)′ŴT ḡT (β) + oP (T−1)

ensures that the GMM objective function is optimal asymptotically at the estimator β̂T , see

Newey and McFadden (1994, p. 2187). This condition holds trivially for the GMM estimator

proposed in this paper. Lemma A.1 and A.2 in Ruppert and Carroll (1980) show that the quan-

tile regression estimator satisifies
√
T 1
T ∑

T
t=1 gQ,i(β̂T,KB,i;Yt,Xt) ⊗Xt

pÐ→ 0, for all i = 1, . . . , d,

where β̂T,KB,i denotes the quantile regression estimator at quantile level αi. In combination

with the IQE moment conditions being exactly equal to zero this implies that the asymptotic

first order condition is satisfied as well for the estimator that replaces the GMM quantile esti-

mator with the quantile regression estimator in multi-stage optimization problem (19). Finally,

Koenker and Bassett (1978) show the consistency of the quantile regression estimator for iid

data.

For more general data settings the GMM quantile estimator provided in this paper can

be used. The quantile regression estimator can then provide a valuable starting point in the

optimization procedure.
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2.6 LQE estimation at a single quantile level

When we are only interested in the LQE at a single quantile level, α1, the notation simplifies

considerably. Let β0 = (β′0,Q,1,β′0,L,1)′ denote the true parameter vector relating to Qt(α1) and

Lt(α1). We can estimate β̂T = (β̂′T,Q,1, β̂
′

T,L,1)′ as in problem (14) or multi-stage problem (19),

with g(β;Yt,Xt) = (gQ,1(βQ,1, Yt,Xt), gL,1(βQ,1,βL,1, Yt,Xt))
′ ⊗ Xt. Our estimator β̂T con-

verges in distribution as in Theorem 2, and we obtain an estimate of the asymptotic covariance

matrix as in Theorem 3, with

ĜT,τ =
⎡⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1[ 1

τ exp( 1
τ (Yt −X′

tβ̂T,Q,1))]1 (Yt −X′
tβ̂T,Q,1)XtX

′
t, 0

0 1
T ∑

T
t=1 XtX

′
t

⎤⎥⎥⎥⎥⎥⎦
. (20)

3 Simulation experiment

We conduct a Monte Carlo experiment to study the small sample properties of the IQER

estimator. We will consider LQEs at tail quantile levels α = 0.01,0.025,0.05,0.10, and IQEs

between quantile levels 0.10 and 0.20, 0.45 and 0.55, 0.10 and 0.90, and 0.01 and 0.99. We do

not consider UQEs, since these have equivalent properties to LQEs for symmetric distributions.

Using these quantile levels we can evaluate whether the asymptotic distribution provides a good

approximation to the small sample distribution of the estimator, and how this approximation

worsens as we consider more extreme tail quantile levels or smaller intervals between quantile

levels.

We consider a data generating process that allows for conditional heteroskedasticity as well

as dependence in the error term of the dependent variable and explanatory variables. It is

defined as follows:

Yt = γ0 + γ1Xt +
1√

1 + γ2
2

(1 + γ2Xt)εt,

Xt = φXXt−1 + νt,

εt = φεεt−1 + ζt,

νt ∼ iid N (0, (1 − φ2
X)) ,

ζt ∼ iid N (0, (1 − φ2
ε)) ,

cov(εt,Xt) = 0.

(21)

We choose this data specification, because the regressor Xt can have a nonlinear effect on Yt
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by affecting its volatility. As a direct consequence of this the quantile and IQE parameters will

differ across quantile levels. Moreover, for the normal distribution and several other distributions

the true values of these parameters are known in closed form.

The data generating process allows for persistence in Xt and εt by setting non-zero AR(1)

parameters φX and φε. Especially in macroeconomic and financial applications this setting is

important because explanatory variables are usually highly persistent in these scenarios, i.e. φX

is close to one. Values of φε that are different from zero indicate that the model specification

is not able to correct for all autocorrelation in Yt. We assume that the researcher is able to

propose a model that explains most of the autocorrelation in Yt, such that we consider values

of φε that are close to zero. Through the autocorrelation in Xt and εt the dependent variable

Yt will be autocorrelated as well. Yt is stationary when ∣φX ∣ < 1 and ∣φε∣ < 1. The iid case

follows when φX = φε = 0. Moreover, the variances of νt and ζt, and the division by the factor
√

(1 + γ2
2) ensure that the unconditional variances of Xt, εt, and the errors Yt − γ0 − γ1Xt equal

one, such that the signal-to-noise ratio is equivalent across parameter settings in which γ0 and

γ1 are fixed.

For any two quantile level αi, αj , 0 < αi < αj < 1, the DGP in (21) implies the following

values for the quantile, LQE, and IQE parameters:

βQ,i,1 = γ0 +Φ−1(αi), (22)

βQ,i,2 = γ1 +
γ2√

1 + γ2
2

Φ−1(αi), (23)

βL,i,1 = γ0 −
φ(Φ−1(αi))

αi
, (24)

βL,i,2 = γ1 −
γ2√

1 + γ2
2

φ(Φ−1(αi))
αi

, (25)

βI,i,j,1 = γ0 −
φ(Φ−1(αi) − φ(Φ−1(αj))

αj − αi
, (26)

βI,i,j,2 = γ1 −
γ2√

1 + γ2
2

φ(Φ−1(αi) − φ(Φ−1(αj))
αj − αi

, (27)

where Φ−1 and φ denote the inverse cdf and the density of the standard normal distribution,

respectively.

We consider three relations between Yt and Xt. Firstly, we let Yt be independent of Xt by

setting γ0 = γ1 = γ2 = 0. Secondly, we let Xt influence the volatility of Yt by setting γ1 = 0.25 and

γ0 = γ2 = 0. Finally, we let Xt influence the mean and volatility of Yt by setting γ1 = γ2 = 0.25
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and γ0 = 0. We pick these parameter values because they impose a moderate effect of Xt on

Yt by affecting the mean and volatility. However, experiments with other parameter values

show we can pick any γ1 parameter value for similar results. The parameter γ2 must be chosen

with more care because we find that values above 0.75 introduce bias into the estimation of

the quantiles and subsequently the LQE estimates, even at larger sample sizes. Essentially the

variance of γ2Xt must be relatively small with respect to the error variance.

With regard to stationary GARCH processes (Bollerslev, 1987) we verify that sufficiently

persistent conditional volatilities, i.e. where the GARCH coefficient has a value larger than

0.80, we do not encounter this bias problem in the estimation procedure. This covers the range

of values we typically find for financial time series.

We study sample sizes T = 50,100,250,500,1000,2500, such that we can draw conclusions

for very small data sets, e.g. yearly macroeconomic data collected since the 1960s, to larger

data sets, e.g. daily financial returns collected over a period of 10 years. Finally, we choose

tuning parameters τ = 0.02,0.05,0.10,0.20,0.50 for the approximate gradient matrix ĜT,τ . Our

results are based on 10,000 simulations.

The tables below provide results for the scenario where Xt influences the mean and volatility

of Yt, and where φX = 0.85 and φε = 0. The results for the iid scenario and the scenario Xt

only influences the volatility of Yt are similar, such that we do not show them here. In the

final paragraphs of this Section we discuss several data settings we consider to study robustness

of these results. These scenarios include the presence of autocorrelation in the error, and

standardized t-distributed regressors and errors.

Table 1 provides descriptive statistics of the LQE and IQE parameter estimates that we

have estimated for the simulations at sample sizes T = 50,100,1000. We first discuss the LQE

parameter estimates at tail quantiles levels α = 0.01,0.025,0.05,0.10. We observe that the

estimates have positive bias in small samples, which is larger at more extreme tail levels. The

LQE parameter estimates are biased toward the respective quantile parameter estimates, and

when the sample size does not contain any observations that exceed the quantile, e.g. T = 50

for α = 0.01, or few observations, e.g. T = 50 for α = 0.025, the LQE parameter estimates

are respectively exactly equal or close to the quantile parameter estimates. This is a direct

consequence of the definition of gL,i(⋅). This bias vanishes as the sample size increases and

we obtain more information on realizations below the quantile. We see that the bias is mostly

negligible at T = 1000, even for the extreme tail quantile levels. Dispersion of the parameter
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estimates, as described by the standard deviation and 10%-90% range, is larger for more extreme

tail quantile levels and reduces as the sample size increases. The dispersion of LQE parameter

estimates is comparable to the dispersion of the respective quantile parameter estimates, as can

be observed from Table 3 in the Appendix.

The descriptive statistics of the IQE parameter estimates show that the bias is negligible

for all considered sample sizes and across all quantile level combinations that we consider.

Moreover, the dispersion of the IQE parameter estimates is substantially smaller than those of

the LQE parameter estimates. We see that the dispersion of the LQE and IQEs on equally-

sized quantile intervals decreases as we move towards the center of the distribution. This can

be observed from the LQE at α = 0.10 and the IQEs lying between quantile intervals of size

0.10. Moreover, the dispersion of IQE parameter estimates decreases as the quantile interval on

which the IQE lies increases. The distinctions weaken as the sample size increases.

[Table 1 about here.]

Table 2 provides the coverage rates of the standard errors of the LQE and IQE parameter

estimate that we have estimated at sample sizes T = 50,100,250,500,1000,2500. The coverage

rates are calculated as the percentage of simulations for which the true parameter value lies

within the 95% confidence interval based on the estimated parameters and asymptotic covariance

matrix.

We observe that the coverage rates of the LQE parameter estimates converge to their nominal

values when the sample size increases. For the LQEs at tail quantile levels α = 0.01,0.025 the

coverage rates are around 90% at sample size T = 2500. This suggests that we need quite

large sample sizes to obtain accurate standard errors of LQEs at extreme tail quantile levels.

Moreover, the coverage rates are inaccurate when the sample has no observations below a certain

quantile level, i.e. when T = 50 for α = 0.01.

Table 4 in the Appendix presents the coverage rates of the GMM quantile estimator. Cover-

age rates based on the true asymptotic covariance matrix are provided in brackets, whereas the

approximated asymptotic covariance matrix based on Theorem 3 are provided outside brackets.

The true asymptotic covariance matrix assumes knowledge of the specification of the conditional

density function. The approximated asymptotic covariance matrix results are those calculated

with tuning parameter value τ = 0.05, which is the best performing value for T = 2500. We ob-

serve that the true coverage rates of the quantile parameter estimates converge more quickly to
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their nominal values than the LQE parameter estimates at equivalent quantile leves. However,

we also find evidence of the nuisance parameter problem, since the approximated coverage rates

do not agree precisely with the nominal coverage rates at T = 2500.

Coverage rates of the IQE parameter estimates converge quickly to their nominal values.

Sample sizes of T = 250 are generally sufficient. We observe that coverage rates converge more

quickly for IQEs on quantile intervals closer to the center of the distribution.

[Table 2 about here.]

We consider several alternative data settings to study the robustness of these results. First,

we allow for some persistence in the errors εt by setting φε = 0.10, to capture residual auto-

correlation in Yt that is not be explained by Xt. As such, we assume that the model defined

by the researcher is able to capture a substantial amount of the autocorrelation in Yt, but not

all. Second, we consider regressors and errors that are independently standardized t-distributed

with four and ten degrees of freedom. As such, the regressors and errors have fat tails, which

increases the probability of extreme events. We study these cases because fat tails are commonly

found in many time series. The four degrees of freedom case concerns the fattest tails that are

allowed by our theory. This minimum is imposed by assumption (j) of Theorem 2, because a

t-distributed random variable has as many bounded moments as it has degrees of freedom. The

error εt is allowed to have fatter tails, when we only consider IQE parameters.

We briefly summarize the results for the LQE and IQE estimators. Setting φε = 0.10

instead of φε = 0 does not meaningfully change our results in terms of bias or dispersion of

parameter estimates in both experiments. Coverage rates are not affected. When we compare

t-distributed and normally distributed regressors and errors we find that the standard normal

and standardized t with ten degrees of freedom cases are similar. Bias and dispersion are

slightly worse for the LQE parameter estimates, and coverage rates converge to nominal values

at a similar pace for both experiments. When we compare the normal and standardized t with

four degrees of freedom case we find larger bias in LQE parameters estimates, larger dispersion

for all parameter estimates, and coverage rates that are about five percentage points lower for

the LQE parameter estimates.
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4 Empirical illustration

In finance LQE is known as expected shortfall. There exists a well-documented relation between

volatility and expected shortfall, see for instance Nadarajah et al. (2014) for an overview. In

time-varying settings estimates of one-step-ahead expected shortfall that consider volatility are

generally obtained as a function of a previously estimated one-step-ahead volatility estimate.

The IQER estimator obviates this two-stage approach, since we can estimate one-step-ahead

expected shortfall directly from current and prior period volatility, such that we circumvent the

intermediate step of estimating one-step-ahead volatility.

We study the differences between our direct estimator and the estimators implied from using

the previously obtain one-step-ahead volatility estimate and imposing the standard normal

distribution, the standardized t distribution, or the empirical distribution function (EDF) to

describe the distribution of the standardized errors of the model. We use realized volatility as

an estimate of volatility, which is a volatility estimator based on intra-day data that has become

prevalent in finance. Andersen et al. (2006) provide an overview of realized volatility and other

volatility estimators, and their relation to expected shortfall forecasting.

We study the daily returns of the Spyder exchange traded fund, which tracks the S&P 500

index, and its five-minute realized volatility estimate. We obtain the data from the Oxford-Man

Institute of Quantitative Finance Realized Library for the period February 2000 to 5 December

2016 for a total of 4,137 daily observations.1 We consider open-to-close returns, because realized

volatilities are estimated for this intraday-period.

We study quantile level vector α = (0.025,0.05,0.10)′ to cover frequently used quantile levels

in financial risk management, and to assess the impact of estimation error when moving further

into the left tail of the distribution.

We consider the simple conditionally heteroskedastic model

Yt+1 = σt+1εt+1, (28)

where Yt+1 denotes the Spyder daily log return, σt+1 denotes the conditional volatility of Yt+1,

and εt+1 denotes the error term at time t+1 with mean zero and unit variance. Moreover, under

certain conditions it follows that realized volatility is a good estimators of σt, i.e. σt ≈ RVt,
1The data is available at http://realized.oxford-man.ox.ac.uk/data/download. We remove trading days

with unusual trading hours.

20



where RVt denotes the daily realized volatility at time t, calculated from five-minute returns.

Corsi (2009) proposes the HAR model to estimate the one-step-ahead realized volatility

based on currently observed realized volatilities. The HAR model is a linear model using this

period’s realized volatility, the average of the realized volatilities of the last five periods, and

the average of the realized volatilities of the last 25 periods to cover daily, weekly, and monthly

effects.

The HAR model estimate of one-step-ahead volatility is given by

R̂V t+1 = φ̂1 + φ̂2RVt + φ̂3RV
(w)
t + φ̂4RV

(m)
t , (29)

where RV
(w)
t = 1/5∑5

i=1RVt−i+1 is the weekly aggregated realized volatility, and RV
(m)
t =

1/25∑25
i=1RVt−i+1 is the monthly aggregated realized volatility.

This linear structure allows us to compare a one-step-ahead expected shortfall obtained with

the IQER estimator, given by

L̂t+1 = β̂L,1 + β̂L,2RVt + β̂L,3RV (w)t + β̂L,4RV (m)t , (30)

with estimates based on the two-stage approach, where we first estimate the HAR model and

subsequently estimate one-step-ahead expected shortfall as

L̂t+1(αi) = ĥiR̂V t+1 = ĥi (φ̂1 + φ̂2RVt + φ̂3RV
(w)
t + φ̂4RV

(m)
t ) , (31)

where ĥi denotes an LQE estimate at quantile level αi of the standardized errors εt+1 =

Yt+1/RVt+1. For instance, when εt+1 is standard normally distributed ĥi = −φ(Φ
−1(αi)
αi

, whereas

if ε̂t+1 is standardized t-distributed ĥi = −
√

ν̂−2
ν̂

gν̂(t
−1
ν̂ (αi)

αi

ν̂+(t−1ν̂ (αi))
2

ν̂−1 , as shown in McNeil et al.

(2015, p. 71), with ν̂ denoting the degrees of freedom estimate, and tν and gν denoting the

cumulative distribution function and density function of a t-distribution. We also derive ĥi

nonparametrically from the EDF function. We can therefore compare the IQER estimator

coefficient β̂L,i,j to ĥi φ̂j , for all i = 1, . . . ,3 and j = 1, . . . ,4.

Figure 1 provides plots of the point estimates of the IQER estimator coefficients in blue,

their 95% confidence intervals in red, and the point estimates obtained from the two-stage

procedure with the standard normal distribution and EDF in green and black, respectively.

When we impose a standardized t-distribution on the standardized residuals we find a very
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large degrees of freedom estimate, such that expected shortfall estimates based on the standard

normal and standardized t distribution coincide. We therefore only report expected shortfall

estimates based on the standard normal distribution and the EDF.

Generally, we observe that the estimates based on the EDF and standard normal distribution

are largely similar, with the EDF being slightly more negative. Our IQER estimates differs from

the other two estimates in several ways.

First, the intercept is more negative for the IQER estimates, which suggests that they are

more conservative. Indeed, in annualized percentages the expected shortfall estimates obtained

with the IQER estimator are on average about 0.5 percentage points lower than the standard

normal and EDF expected shortfall estimates. This difference vanishes when we remove the

intercept from the models.

The coefficients of the daily realized volatility show a similar pattern, although the IQER

estimates are lower. The IQER estimate is significantly different from zero and differences

between the IQER estimate and the two-stages estimates are insignificant.

The weekly aggregated realized volatility coefficients are similar as well, although the IQER

estimates are again lower. Again, the IQER estimates are significantly different from zero and

differences between IQER estimates and the two-stage estimates are insignificant.

The monthly aggregated realized volatility coefficients are more distinct. The IQER estimate

is close to zero, whereas the two-stage estimates suggest a negative coefficient. The IQER

confidence interval suggests that the LQE coefficients are not significantly different from zero

and differences between IQER estimates and the two-stage estimates are insignificant. We can

draw the conclusion that the monthly coefficient is insignificant using the IQER estimator, as

the standard errors follow directly from the estimation. Obtaining the standard errors of the

two-stage estimators is less straightforward, because we must take into account the two-stage

estimation procedure and potential spillover of the estimation error from the first stage into the

second stage.

In short, using the IQER estimator we show that the monthly aggregated realized volatility

estimate does not contain explanatory power for one-step-ahead daily expected shortfall for

daily log returns of the Spyder fund, whereas IQER coefficients are significantly different from

zero and lower for daily realized volatility and the weekly aggregated volatility. As such, one-

step-ahead expected shortfall point estimates that are obtained with the IQER estimator react

more forcefully to recently observed realized volatility estimates.
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[Figure 1 about here.]

5 Concluding remarks

We propose a semiparametric estimator of the parameters in linear models of conditional LQE,

IQE, and UQE. Our so-called IQER estimator is based on the GMM framework of Hansen (1996)

where we use the strictly consistent scoring function for the quantile and LQE pair introduced

by Fissler et al. (2016b) to obtain moment conditions. We provide conditions under which the

estimator is consistent and derive its asymptotic distribution, and a consistent estimator of

the asymptotic covariance matrix. We propose a convenient multi-stage optimization method

that results in the efficient estimator and which is computationally fast. Our theory applies to

stationary and ergodic time series.

In a simulation study we show that the asymptotic theory provides an accurate approxima-

tion in small samples for data settings that include autocorrelation in the regressors, conditional

heteroskedasticity, and fat tails.

We provide an empirical illustration of our theory in finance, in which we estimate one-step-

ahead daily tail-quantile LQE, or expected shortfall, of a S&P 500 exchange traded fund return

by IQER estimation conditional on previously observed daily, weekly, and monthly aggregated

realized volatility estimates of Corsi (2009) and compare this to commonly used two-stage

models, in which we first estimate one-step-ahead realized volatility and then use an estimate of

the distribution of the standardized errors separately to map the next period realized volatility

to a next period expected shortfall. We find that the IQER point estimates differ from the

other methods.

Several extensions to the theory in this paper come to mind. First, an LQE specification

testing framework can be developed that in part uses our asymptotic theory. Second, we can

extend our theory to include nonlinear specifications of IQE models.
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A Additional results

Lemma A.1. Let assumptions (a), (c), (d), and (j) hold. Then, as T → ∞, the sample

covariance matrix Σ̂T (β) ≡ 1
T ∑

T
t=1 g(β;Yt,Xt)g(β;Yt,Xt)′

pÐ→ E[g(β;Yt,Xt)g(β;Yt,Xt)′].

Proof: We apply a LLN for stationary and ergodic sequences to Σ̂T (β) to establish that

for every β ∈ B Σ̂T (β) pÐ→ E[g(β;Yt,Xt)g(β;Yt,Xt)′]. It suffices to show that the assumptions

of Theorem 3.34 in White (2001) hold.

The function g(β;Yt,Xt)g(β;Yt,Xt)′ is measurable. Moreover, by assumption (d) {Yt,Xt}

is a stationary and ergodic sequence. Therefore, {g(β;Yt,Xt)g(β;Yt,Xt)′} is stationary and

ergodic by Theorem 3.35 of White (2001).

We can now apply Theorem 3.34 in White (2001) to all elements of {g(β;Yt,Xt)g(β;Yt,Xt)′}

to obtain the desired result if E∥g(β;Yt,Xt)g(β;Yt,Xt)′∥∞ < ∞. The operator ∥ ⋅ ∥∞ denotes

the (matrix) maximum norm, i.e. for a given matrix A with ijth element A(i,j), ∥A∥∞ =

maxi,j ∣A(i,j)∣.

By norm equivalence,

∥g(β;Yt,Xt)g(β;Yt,Xt)′∥∞ ≤ c2 ⋅ ∥g(β;Yt,Xt)∥2 (32)

≤ c3 ⋅ ((1 + ∥Xt∥ + ∣Yt∣) ⋅ ∥Xt∥)2 a.s.-P, (33)

for finite constants c2, and c3. By assumption (j) we then have the required result

E∥g(β;Yt,Xt)g(β;Yt,Xt)′∥∞ ≤ c2 ⋅E [max{1 , [(1 + ∥Xt∥ + ∣Yt∣) ⋅ ∥Xt∥]2}] (34)

≤ c3 ⋅ (1 +E {(1 + ∥Xt∥ + ∣Yt∣) ⋅ ∥Xt∥}2) (35)

≤ c4 ⋅E [∥Xt∥4 + ∣Yt∣∥Xt∥3 + ∣Yt∣2∥Xt∥2 + ∣Yt∣∥Xt∥2] (36)

< ∞, (37)

for some finite constant c4. The third inequality follows from expansion and noting that

E∥Xt∥2 < E∥Xt∥3 < E∥Xt∥4 by Hölder’s inequality.

It follows that Σ̂T (β) pÐ→ E[g(β;Yt,Xt)g(β;Yt,Xt)′], and for some consistent estimate β̂T

of β0 specifically, Σ̂T (β̂T )
pÐ→Σ0.
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B Proofs

B.1 Proof of Lemma 1.

Under the assumption that Ft is continuously differentiable we find that

∇βV Et [1(Yt −X′
tβV < 0)(Yt −X′

tβV )] = −Et[1(Yt −X′
tβV < 0)Xt], (38)

as shown in the proof of Lemma 1 in Giacomini and Komunjer (2005).

We find that the respective parts of the gradient of the conditional mean of the loss function

∇βEt[S(Yt,Xtβ0,Q,i,Xtβ0,L,i)] are as follows.

∇βQ,iEt[S(Yt,XtβQ,i,XtβL,i)]

= ∇βQ,iEt[(αi − 1(Yt −X′
tβQ,i < 0))(Yt −X′

tβQ,i)]

− 1

αi
exp (X′

tβL,i)∇βQ,iEt[1(Yt −X′
tβQ,i < 0)(Yt −X′

tβQ,i)] − exp (X′
tβL,i)∇βQ,iX

′
tβQ,i

= Et(
1

αi
exp(X′

tβL,i)1(Yt −X′
tβQ,i < 0) − exp (X′

tβL,i) − (αi − 1(Yt −X′
tβQ,i < 0)))Xt (39)

= (1 + 1

αi
exp(X′

tβL,i))Et(1(Yt −X′
tβQ,i < 0) − αi)Xt, (40)

and,

∇βL,iEt[S(Yt,XtβQ,i,XtβL,i)]

= ∇βL,i
(− 1

αi
exp (X′

tβL,i)Et[1(Yt −X′
tβQ,i < 0)(Yt −X′

tβQ,i)])

+ ∇βL,i
(exp (X′

tβL,i)(X′
tβL,i −X′

tβQ,i) − exp (X′
tβL,i))

= Et(X′
tβL,i −X′

tβQ,i −
1

αi
1(Yt −X′

tβQ,i < 0)(Yt −X′
tβQ,i)) exp (X′

tβL,i)Xt. (41)

If β0 is a solution to (6) then ∇βEt[S(Yt,XtβQ,i,XtβL,i)]∣β=β0
= 0 a.s.-P , such that

Et

⎡⎢⎢⎢⎢⎢⎢⎣

(1 + 1
αi

exp(X′
tβ0,L,i))(1(Yt −X′

tβ0,Q,i < 0) − αi)Xt

(X′
tβ0,L,i −X′

tβ0,Q,i − 1
αi
1(Yt −X′

tβ0,Q,i < 0)(Yt −X′
tβ0,Q,i)) exp(X′

tβ0,L,i)Xt

⎤⎥⎥⎥⎥⎥⎥⎦

= 0 a.s.-P,

(42)

because the discontinuities occur at the events Yt = X′
tβ0,Q,i, which have zero probability due

to Yt being a continuous random variable.
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This is equivalent to

Et

⎡⎢⎢⎢⎢⎢⎣

1(Yt −X′
tβ0,Q,i < 0) − αi

X′
tβ0,L,i −X′

tβ0,Q,i − 1
αi
1(Yt −X′

tβ0,Q,i < 0)(Yt −X′
tβ0,Q,i)

⎤⎥⎥⎥⎥⎥⎦
= 0 a.s.-P, (43)

since Xt and exp(X′
tβ0,L,i) are Ft-measurable.

We obtain the first order conditions for (β′0,Q,i,β′0,U,i)′ straightforwardly by recognizing

that Ut(αi) = Et[Yt∣Yt > Qt(αi)] = −Et[−Yt∣ − Yt < −Qt(αi)] and that −Qt(αi) is the (1 − αi)-

quantile of −Yt. Consider αj = 1 − αi, and let F̃ −1
t (αj) = −Xtβ̃Q,j and define linear models

Et[−Yt∣ − Yt < F̃−1
t (αj)] = −Xtβ̃L,j , with F̃−1

t denoting the inverse distribution function of −Yt.

We then find the equalities βU,i = β̃L,j and βQ,i = β̃Q,j , such that we find the first order

conditions for (β′0,Q,i,β′0,U,i)′, given by

Et

⎡⎢⎢⎢⎢⎢⎣

1(Yt −X′
tβ0,Q,i < 0) − αi

X′
tβ0,U,i −X′

tβ0,Q,i − 1
1−αi

1(Yt −X′
tβ0,Q,i > 0)(Yt −X′

tβ0,Q,i)

⎤⎥⎥⎥⎥⎥⎦
= 0 a.s.-P, (44)

by substituting βU,i = β̃L,j , βQ,i = β̃Q,j , and αi = 1 − αj in the first order conditions of

(β̃′0,L,j , β̃
′

0,L,j)′.

B.2 Proof of Lemma 2.

We give the proof for (β′0,Q,i,β′0,L,i)′. The proof for the full vector β0 follow straightforwardly

from similar steps by noting the uniqueness of β′0,Q,i, for all i = 1, . . . , dQ, and the linearity of

the moment conditions in the other parameters. At the true parameter vector (β′0,Q,i,β′0,L,i)′

we have the following equalities by assumption (a):

Et[1(Yt −X′
tβ0,Q,i < 0)] = Ft(X′

tβ0,Q,i) = αi, (45)

1

αi
Et[1(Yt −X′

tβ0,Q,i < 0)Yt] = X′
tβ0,L,i. (46)

It is thus obvious that (43) holds at β0. Moreover, by assumption (b), the optimal β0,Q,i

is unique. Finally, it is easily shown that the optimal β0,L,i is unique for a given optimal

β0,Q,i under assumption (c), because β0,L,i = (E[XtX
′
t])

−1
E[Xt{X′

tβ0,Q,i + 1
αi
1(Yt −X′

tβ0,Q,i <

0)(Yt −X′
tβ0,Q,i)}].

We conclude that β0 is the unique vector for which the moment condition holds.
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B.3 Proof of Theorem 1.

Similar to steps in the proof of A.1 we can show by assumption (d) that the sequences {g(β;Yt,Xt)}

and {g(β;Yt,Xt)g(β;Yt,Xt)′} are Ft-measurable, stationary, and ergodic. Moreover, by as-

sumption (g) ŴT
pÐ→W0, such that we can apply Theorem 2.6 of Newey and McFadden (1994)

to show consistency.

Assumption 2.6(i) is satisfied, because the conditions of Lemma 2 hold and W0 is positive

definite under assumption (g), such that E[g0(β)] = 0 ⇐⇒ W−1
0 E[g0(β)] = 0 for β0 uniquely.

Assumption 2.6(ii) coincides with assumption (e). Assumption 2.6(iii) holds because the

discontinuities in g(β;Yt,Xt) occur a.s.-P at the events Yt = X′
tβQ,i, for all i = 1, . . . , d, which

have zero mass by Yt being a continuous random variable under assumption (a).

To show assumption 2.6(iv) holds, notice that

∥g(β;Yt,Xt)∥ ≤ c1 (1 + ∥Xt∥ + ∣Yt∣) ∥Xt∥ < ∞ a.s.-P, (47)

for some finite constant c1, such that E[supβ∈B ∥g(β;Yt,Xt)∥] ≤ c1E[(1 + ∥Xt∥ + ∣Yt∣) ∥Xt∥] <

c1(E∥Xt∥2 +E[∣Yt∣∥Xt∥]) < ∞ by assumption (f), and where the second inequality follows from

E∥Xt∥ < E∥Xt∥2 by Hölder’s inequality.

This concludes the proof.

B.4 Proof of Theorem 2.

We verify that the assumptions of Theorem 7.2 of Newey and McFadden (1994) hold. Firstly,

by assumption (e) B is a compact set, such that in combination with (14), for all T ≥ 1,

gT (β̂T )′ΣT (β̂T )−1gT (β̂T ) = infβ∈B gT (β)′ΣT (β)−1gT (β). Moreover, Theorem 1 establishes

that β̂T
pÐ→ β0, and assumption (g) imposes ŴT

pÐ→W0, with W0 positive definite.

The first assumption of Theorem 7.2 is satisfied as shown by Lemma 2. Assumption 7.2(iii)

holds by assumption (i).

We prove 7.2(iv) using the CLT for martingale difference sequences (MDS) in Corollary

5.24 in White (2001). The proof for iid data follows similar steps (using Theorem 5.2 of White

(2001)), and is not presented here. Notice that {g(β0;Yt,Xt),Ft} is a MDS under Lemma

1. Here we use the slightly uncommon notation of Ft instead of Ft−1, but this is a labelling

choice. By assumption (d) and the MDS property E[ḡT (β0)] = E[g(β0;Yt,Xt)] = 0 and

var[
√
T ḡT (β0;Yt,Xt)] = var[g(β0;Yt,Xt)] = E[g(β0;Yt,Xt)g(β0;Yt,Xt)′] = Σ0. Under as-
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sumption (l) Σ0 is positive definite. Under assumptions (a), (d), and (j) Theorem A.1 shows

that Σ̂T (β0) = 1
T ∑

T
t=1 g(β0;Yt,Xt)g(β0;Yt,Xt)′

pÐ→Σ0.

Consider
√
Tλ′Σ

−1/2
0 ḡT (β0;Yt,Xt), for any real vector λ, such that λ′λ = 1, and let Zt =

λ′Σ
−1/2
0 gT (β0;Yt,Xt). It is easily shown that {Zt,Ft} is an MDS. Moreover, {Zt} is stationary

and ergodic by Theorem 3.35 in White (1996), such that its distribution, which we denote by

F , does not change with t. Moreover, by stationarity var[
√
Tλ′Σ

−1/2
0 ḡT (β0;Yt,Xt)] = var[Zt] =

λ′Σ
−1/2
0 Σ0Σ

−1/2
0 λ = 1. In similar steps to the proof of Theorem A.1 it can be shown that {Z2

t }

has finite absolute expected values under assumption (j). Then it follows from Theorem 3.34

and Theorem 2.24 in White (1996) that 1
T ∑

T
t=1Z2

t − 1
pÐ→ 0.

We now verify that the Lindeberg condition of Theorem 5.24 is satisfied by following similar

steps to those in the proof of Theorem 5.25 in White (2001). Since {Zt} is stationary the

Lindeberg condition reduces to limT→∞ ∫z2>εT z2dF (z) = 0. Let rT (z) = z21[z2 ≤ εT ], such that

{rT } is an increasing sequence of functions that converges to r(z) = z2. Using the monotone

convergence theorem we can interchange limit and integral such that

lim
T→∞

∫
z2≤εT

z2dF (z) = lim
T→∞

∫
∞

−∞
rT (z)2dF (z)

= ∫
∞

−∞
lim
T→∞

rT (z)2dF (z)

= ∫
∞

−∞
z2dF (z) = 1.

Hence,

lim
T→∞

∫
z2>εT

z2dF (z) = lim
T→∞

[1 − ∫
∞

−∞
rT (z)2dF (z)] = 0.

Then it follows from Theorem 5.24 that
√
Tλ′Σ

−1/2
0 ḡT (β0;Yt,Xt)

dÐ→ N(0,1). Using the

Cramér-Wold device we find that
√
T ḡT (β0)

dÐ→N(0,Σ0).

Assumption (k) coincides with 7.2(v). To our knowledge no general theory exists to provide

more primitive conditions for stationary ergodic processes where g(β;Yt,Xt) is unbound and

non-Lipschitz continuous. For strong mixing martingale difference sequences the stochastic

equicontinuity of the last (k + 1)d elements of g(β;Yt,Xt) could be shown using the results for

Lipschitz continuous functions in Hansen (1996). If the process is m-dependent or iid, results

of Andrews (1994) apply to all elements of g(β;Yt,Xt), and stochastic equicontinuity follows

from the elements of g(β;Yt,Xt) being VC classes of functions.
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We prove 7.2(ii) for the subvector (β′Q,i,β′L,i)′. The proof for the full vector β follows

straightforwardly from repeating the steps outlined in this proof by noting that parameters

relating to αi do not enter the moment conditions for parameters relating to αj , for all i ≠ j,

and by rewriting gI,i,j(⋅) as

gI,i,j(βQ,i,βQ,j ,βI,i,j , Yt,Xt) ≡ X′
tβU,i−

1

αj − αi
[−(αiX′

tβQ,i+1(Yt−X′
tβQ,i < 0)(Yt−X′

tβQ,i))

+ (αjX′
tβQ,j + 1(Yt −X′

tβQ,j < 0)(Yt −X′
tβQ,j))]. (48)

Notice that g0(β) = E[g(β;Yt,Xt)] = E[Et[g(β;Yt,Xt)]] by the law of iterated expec-

tations. We will see that the derivative of the function Et[g(β;Yt,Xt)] exists and is domi-

nated by a function that is not dependent on β, everywhere on B, such that it follows that

∇βg0(β) = E[∇βEt[g(β;Yt,Xt)]]. We have

Et[g(β;Yt,Xt)] =
⎡⎢⎢⎢⎢⎢⎣

(Ft(X′
tβQ,1) − α)Xt

(X′
tβL,1 −X′

tβQ,1 − 1
αEt[1(Yt −X′

tβQ,1 < 0)(Yt −X′
tβQ,1)])Xt

⎤⎥⎥⎥⎥⎥⎦
. (49)

Then, using the result in (38), and the fact that Et[1(Yt < c)] = Ft(c) by assumption (a),

∇βEt[g(β;Yt,Xt)] =
⎡⎢⎢⎢⎢⎢⎣

ft(X′
tβQ,1)XtX

′
t 0

( 1
αFt(X

′
tβQ,1) − 1)XtX

′
t XtX

′
t

⎤⎥⎥⎥⎥⎥⎦
. (50)

From assumption (a) it follows that Ft(X′
tβ0,Q,1) = α1, such that

∇βEt[g(β;Yt,Xt)]∣β=β0
=
⎡⎢⎢⎢⎢⎢⎣

ft(X′
tβ0,Q,1)XtX

′
t 0

0 XtX
′
t

⎤⎥⎥⎥⎥⎥⎦
. (51)

As ft is bounded by assumption (h), the matrix ∇βEt[g(β;Yt,Xt)] is uniformly bounded on

B, by assumption (j). Therefore, a function ξ(Xt) exists that dominates ∇βEt[g(β;Yt,Xt)]

for all β ∈ B. We can therefore differentiate under the integral and find

G0 = ∇βg0(β0) = E
⎡⎢⎢⎢⎢⎢⎣

ft(X′
tβ0,Q,1)XtX

′
t 0

0 XtX
′
t

⎤⎥⎥⎥⎥⎥⎦
. (52)

Notice that G0W0G0 is nonsingular, because G0 is nonsingular by its block-diagonality and

assumptions (c) and (m), and W0 is positive semi-definite by (g).
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This concludes the proof.

B.5 Proof of Theorem 3.

Theorem A.1 establishes that Σ̂T (β̂T )
pÐ→ Σ0 and Σ0 is positive definite, such that Σ−1

0 is

positive definite as well. Notice that we are specifically concerned with the upper-left block of

ĜT,τ . The moment conditions of XtX
′
t as given in (f) and (j) are sufficient for the boundedness

conditions in the proof of Lemma 2 in Giacomini and Komunjer (2005). We can therefore apply

the steps in their proof to arrive at what needs to be shown.

C Additional tables

[Table 3 about here.]

[Table 4 about here.]
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Table 1: Descriptive statistics of the IQER estimator in the simulation experiment

βL,1,1 βL,1,2 βL,2.5,1 βL,2.5,2 βL,5,1 βL,5,2 βL,10,1 βL,10,2

T = 50

True -2.59 -0.40 -2.27 -0.32 -2.00 -0.25 -1.70 -0.18

Bias 0.51 0.23 0.29 0.15 0.16 0.09 0.09 0.05

Std. Dev. 0.49 0.57 0.45 0.50 0.37 0.44 0.31 0.37

Median -2.02 -0.20 -1.94 -0.18 -1.82 -0.16 -1.60 -0.12

90%-10% 1.17 1.37 1.10 1.20 0.93 1.04 0.76 0.88

T = 100

Bias 0.27 0.15 0.14 0.08 0.08 0.04 0.04 0.02

Std. Dev. 0.42 0.45 0.32 0.35 0.26 0.29 0.20 0.23

Median -2.27 -0.28 -2.11 -0.24 -1.92 -0.20 -1.65 -0.15

90%-10% 1.02 1.09 0.80 0.84 0.64 0.70 0.51 0.56

T = 1000

Bias 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.00

Std. Dev. 0.14 0.15 0.10 0.11 0.08 0.08 0.06 0.07

Median -2.55 -0.37 -2.25 -0.30 -1.99 -0.24 -1.70 -0.17

90%-10% 0.36 0.38 0.26 0.27 0.20 0.21 0.16 0.17

βI,10,20,1 βI,10,20,2 βI,45,55,1 βI,45,55,2 βI,10,90,1 βI,10,90,1 βI,1,99,1 βI,1,99,2

T = 50

True -1.01 0.00 0.00 0.25 0.00 0.25 0.00 0.25

Bias 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00

Std. Dev. 0.25 0.32 0.20 0.25 0.16 0.19 0.16 0.18

Median -1.00 0.01 0.00 0.25 0.00 0.25 0.00 0.25

90%-10% 0.61 0.76 0.49 0.59 0.42 0.46 0.40 0.45

T = 100

Bias 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Std. Dev. 0.16 0.18 0.13 0.16 0.11 0.12 0.11 0.12

Median -1.01 0.01 0.00 0.25 0.00 0.25 0.00 0.25

90%-10% 0.39 0.44 0.33 0.38 0.28 0.30 0.27 0.29

T = 1000

Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Std. Dev. 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.03

Median -1.01 0.00 0.00 0.25 0.00 0.25 0.00 0.25

90%-10% 0.12 0.13 0.10 0.11 0.08 0.09 0.08 0.09

Note: This table presents descriptive statistics for the the LQE regression (L) and IQE regression (I)
estimators of the mean-volatility model described in (21) based on 10,000 simulations. We consider LQEs
below α = 0.01,0.025,0.05,0.10, and IQEs between 0.10 and 0.20, 0.45 and 0.55, 0.10 and 0.90, and 0.01
and 0.99. We indicate the quantile level(s) (in percentages) with the second subscript for the LQE
estimator, and with the second and third subscript for the IQE estimator. The table provides results
for a normally distributed regressor and error, and φX = 0.85 and φε = 0, such that the regressor Xt has
considerable persistence and Yt is conditionally heteroskedastic and persistent. We consider sample sizes
T = 50,100,1000. The first row gives the true values of the parameters. The subsequent panels show the
bias, standard deviation, median, and the difference between the 90% and 10% percentiles.
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Table 2: Coverage rates of the IQER estimator in the simulation experiment

βL,1,1 βL,1,2 βL,2.5,1 βL,2.5,2 βL,5,1 βL,5,2 βL,10,1 βL,10,2

T = 50 0 0 18 9 57 46 76 70

T = 100 1 1 57 46 76 69 86 82

T = 250 57 44 80 73 87 82 92 89

T = 500 76 67 87 82 91 88 93 91

T = 1000 86 80 91 88 93 91 94 92

T = 2500 90 87 93 91 94 93 94 94

βI,10,20,1 βI,10,20,2 βI,45,55,1 βI,45,55,2 βI,10,90,1 βI,10,90,1 βI,1,99,1 βI,1,99,2

T = 50 88 87 88 90 94 94 94 93

T = 100 92 92 91 92 94 94 94 94

T = 250 94 93 93 94 95 95 95 95

T = 500 94 94 94 94 95 95 95 95

T = 1000 94 95 95 95 95 95 95 95

T = 2500 95 95 95 95 95 94 95 95

Note: This table presents coverage rates of the 95% confidence intervals of the LQE regression (L) and
IQE regression (I) estimators of the mean-volatility model described in (21) based on 10,000 simulations.
We consider LQEs below α = 0.01,0.025,0.05,0.10, and IQEs between 0.10 and 0.20, 0.45 and 0.55, 0.10
and 0.90, and 0.01 and 0.99. We indicate the quantile level(s) (in percentages) with the second subscript
for the LQE estimator, and with the second and third subscript for the IQE estimator. The table
provides results for a normally distributed regressor and error, and φX = 0.85 and φε = 0, such that
the regressor Xt has considerable persistence and Yt is conditionally heteroskedastic and persistent. We
consider sample sizes T = 50,100,250,500,1000,2500. Each panel gives the coverage rate in percentages
that the true parameter falls within the 95% confidence interval based on the asymptotic covariance
matrix.
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Table 3: Descriptive statistics of the GMM quantile estimator in the simulation experiment

βQ,1,1 βQ,1,2 βQ,2.5,1 βQ,2.5,2 βQ,5,1 βQ,5,2

T = 50

True -2.26 -0.31 -1.90 -0.23 -1.60 -0.15

Bias 0.19 0.15 0.02 0.07 0.01 0.04

Std. Dev. 0.49 0.57 0.43 0.49 0.33 0.38

Median -2.02 -0.20 -1.84 -0.18 -1.57 -0.12

90%-10% 1.17 1.37 1.05 1.18 0.83 0.91

T = 100

Bias -0.06 0.07 -0.01 0.04 0.00 0.02

Std. Dev. 0.42 0.45 0.28 0.29 0.22 0.23

Median -2.27 -0.29 -1.89 -0.21 -1.59 -0.14

90%-10% 1.02 1.10 0.70 0.70 0.56 0.58

T = 1000

Bias 0.00 0.01 0.00 0.01 0.00 0.00

Std. Dev. 0.12 0.11 0.08 0.08 0.07 0.06

Median -2.25 -0.31 -1.90 -0.22 -1.60 -0.15

90%-10% 0.30 0.27 0.21 0.19 0.17 0.15

βQ,10,1 βQ,10,2 βQ,20,1 βQ,20,2 βQ,45,1 βQ,45,2

T = 50

True -1.24 -0.06 -0.82 0.05 -0.12 0.22

Bias 0.01 0.02 0.01 0.01 0.00 0.00

Std. Dev. 0.27 0.31 0.23 0.25 0.20 0.21

Median -1.23 -0.05 -0.80 0.06 -0.12 0.22

90%-10% 0.68 0.74 0.56 0.61 0.50 0.52

T = 100

Bias 0.00 0.01 0.00 0.01 0.00 0.00

Std. Dev. 0.18 0.18 0.15 0.15 0.13 0.13

Median -1.23 -0.06 -0.81 0.05 -0.12 0.22

90%-10% 0.45 0.46 0.38 0.38 0.34 0.34

T = 1000

Bias 0.00 0.00 0.00 0.00 0.00 0.00

Std. Dev. 0.05 0.05 0.05 0.04 0.04 0.03

Median -1.24 -0.06 -0.82 0.05 -0.12 0.22

90%-10% 0.14 0.12 0.12 0.10 0.10 0.09

Note: This table presents descriptive statistics for the GMM quantile estimator of the mean-
volatility model described in (21) based on 10,000 simulations. We consider quantile levels α =
0.01,0.025,0.05,0.10,0.20,0.45, and indicate the quantile level with the second subscript (in percent-
ages). The table provides results for a normally distributed regressor and error, and φX = 0.85 and
φε = 0, such that the regressor Xt has considerable persistence and Yt is conditionally heteroskedastic
and persistent. We consider sample sizes T = 50,100,1000. The first row gives the true values of the pa-
rameters. The subsequent panels show the bias, standard deviation, median, and the difference between
the 90% and 10% percentiles.
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Table 4: Coverage rates of the GMM quantile estimator in the simulation experiment

βQ,1,1 βQ,1,2 βQ,2.5,1 βQ,2.5,2 βQ,5,1 βQ,5,2

T = 50 - (30) - (20) - (78) - (71) - (87) - (88)

T = 100 - (53) - (43) - (89) - (88) - (91) - (92)

T = 250 80 (89) 79 (86) 87 (92) 82 (93) 89 (93) 86 (95)

T = 500 89 (91) 87 (91) 92 (93) 89 (94) 94 (94) 92 (95)

T = 1000 93 (92) 91 (93) 95 (94) 94 (94) 96 (95) 95 (95)

T = 2500 96 (94) 94 (92) 97 (95) 96 (95) 97 (95) 97 (95)

βQ,10,1 βQ,10,2 βQ,20,1 βQ,20,2 βQ,45,1 βQ,45,2

T = 50 - (91) - (94) - (95) - (97) - (97) - (99)

T = 100 - (93) - (95) - (95) - (97) - (96) - (97)

T = 250 92 (94) 90 (95) 93 (95) 91 (96) 92 (95) 91 (97)

T = 500 96 (95) 94 (95) 95 (95) 95 (95) 94 (95) 94 (96)

T = 1000 96 (95) 96 (95) 96 (95) 96 (95) 95 (95) 95 (96)

T = 2500 97 (95) 97 (95) 96 (95) 97 (95) 95 (95) 95 (95)

Note: This table presents coverage rates of the 95% confidence intervals of the GMM quantile estimator of
the mean-volatility model described in (21) based on 10,000 simulations. We consider quantile levels α =
0.01,0.025,0.05,0.10,0.20,0.45, and indicate the quantile level with the second subscript (in percentages).
The table provides results for a normally distributed regressor and error, and φX = 0.85 and φε = 0,
such that the regressor Xt has considerable persistence and Yt is conditionally heteroskedastic and
persistent. We consider sample sizes T = 50,100,250,500,1000,2500. Each panel gives the coverage rate
in percentages that the true parameter falls within the 95% confidence interval based on the asymptotic
covariance matrix. The coverage rates based on the approximated asymptotic covariance matrix of
Theorem 3 are given outside brackets, with τ = 0.05 - the best performing tuning parameter for this
DGP. We do not provide results for T = 50,100 because the approximation is poor for samples of this
size. Coverage rates inside brackets are based on the true standard errors.
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Figure 1: S&P 500 ETF return LQE coefficients. IQER coefficients are given in blue, and
their 95% confidence bounds in red. LQE coefficients obtained from the two-stage procedures
are presented in green and black for the standard normal normal distribution and the EDF,
respectively.
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