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Christian Ewerhart* Kremena Valkanova**3

December 6, 20164

Abstract. This paper studies �ctitious play in networks of noncooperative two-player games. We5

show that continuous-time �ctitious play converges to Nash equilibrium provided that the overall6

game is zero-sum. Moreover, the rate of convergence is 1=� , regardless of the size of the network.7

In contrast, arbitrary n-player zero-sum games do not possess the �ctitious-play property. As an8

extension, we consider networks in which each bilateral game is strategically zero-sum, a weighted9

potential game, or a two-by-two game. In those cases, convergence requires either a condition on10

bilateral payo¤s or that the underlying network structure is acyclic. The results are shown to11

hold also for the discrete-time variant of �ctitious play, which entails a generalization of Robinson�s12

theorem to arbitrary zero-sum networks. Applications include security games, con�ict networks, and13

decentralized wireless channel selection.14
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1. Introduction1

Fictitious play (Brown, 1949, 1951; Robinson, 1951) refers to a class of simple and intuitive models2

of learning in games. The common element of such models is that a player is imagined to respond3

optimally to an evolving belief on the behavior of his opponents, where the player�s belief at any point4

in time is formed on the basis of the empirical frequencies of strategy choices made by his opponents5

up to that point in time. Understanding the conditions under which �ctitious play converges to Nash6

equilibrium is important because such results help to clarify the intuition that equilibrium play may7

be reached even if players are not perfectly rational.1 While variants of �ctitious play are known8

to converge in large classes of two-player games, the case of n-player games has been explored to a9

much lesser extent.210

This paper studies the dynamics of �ctitious play in general classes of network games. We11

�rst consider what we call zero-sum networks (Bregman and Fokin, 1987, 1998; Daskalakis and12

Papadimitrou, 2009; Cai and Daskalakis, 2011; Cai et al., 2016). These are multiplayer zero-sum13

games that can be represented as a network of two-player games. This class of games is actually quite14

large and includes practically relevant examples of resource allocation games such as generalized15

Blotto and security games. We show that the Lyapunov methods of Hofbauer (1995) and Harris16

(1998) can be extended to the class of zero-sum networks. Speci�cally, the Lyapunov function17

considered in the present paper aggregates, across all players in the network, the maximum payo¤18

that could be obtained by optimizing against the empirical frequency distribution of prior play.19

This function converges to zero at rate 1=t on any continuous-time �ctitious-play (CTFP) path, and20

regardless of the size of the network. In particular, CTFP converges to equilibrium in any zero-sum21

network. However, as we also show with an example, arbitrary n-player zero-sum games do not22

possess the �ctitious-play property, i.e., the network assumption is crucial.23

To gauge the role of the zero-sum assumption, we consider three additional classes of network24

games. First, we look at networks of strategically zero-sum games, or con�ict networks.3 Thus,25

1The literature on �ctitious play is too large to be surveyed here. For an introduction to the theory of learning in
games, see Fudenberg and Levine (1998). The literature on learning in social networks has recently been surveyed by
Acemoglu and Ozdaglar (2011). For a concise discussion of epistemic vs. dynamic foundations of Nash equilibrium,
see Krishna and Sjöström (1997).

2Positive convergence results for n-players have been established, in particular, for games solvable by iterated
dominance (Milgrom and Roberts, 1991), games with identical interests (Monderer and Shapley 1996b; Harris, 1998),
and various classes of star-shaped network games (Sela, 1999). Jordan (1993) has shown that �ctitious play need not
converge in a non-zero-sum three-player game. See also Gaunersdorfer and Hofbauer (1996).

3Recent papers that look at con�ict networks include Bozbay and Vesperoni (2014), Dziubiński et al. (2016a),
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each bilateral game in the network is assumed to be best-response equivalent in mixed strategies1

to a zero-sum game. Moulin and Vial (1978) noted that �ctitious play converges in this class of2

two-player games. In networks of con�icts, CTFP converges as well, provided that valuations in the3

bilateral games satisfy a condition that we call pairwise homogeneity of valuations. This assumption is4

satis�ed, for example, in transfer networks considered by Franke and Öztürk (2015). When valuations5

are heterogeneous, however, convergence need not hold in general. Intuitively, the aggregation of6

bilateral payo¤s does not commute with the strategic equivalence because the payo¤ transformations7

that turn two di¤erent bilateral games into zero-sum games need not be identical. We illustrate this8

fact with a surprisingly simple example in the spirit of Jordan (1993). But convergence can still9

be obtained with heterogeneous valuations when the underlying network structure is acyclic, i.e., a10

disjoint union of trees.411

Next, we assume that bilateral games are weighted potential games. Applications include channel12

selection problems in wireless communication networks, and the spreading of ideas and technologies13

over social networks, for instance. Extending the analysis of Cai and Daskalakis (2011), it is shown14

that CTFP converges to equilibrium in any network of exact potential games. However, as we show15

with still another example, �ctitious play need not converge in general networks of weighted poten-16

tial games. Instead, in a somewhat unexpected analogy, the convergence result holds for weighted17

potential games under the condition that the underlying network structure is acyclic. Finally, by18

combining our �ndings for con�ict networks with pairwise homogeneous valuations and for net-19

works of exact potential games, we obtain a generalization of Miyasawa�s (1961) theorem to network20

games on arbitrary graphs. As additional extensions, the paper looks at discrete-time �ctitious play21

(DTFP), generalizing Robinson�s (1951) famous result for two-person zero-sum games to arbitrary22

n-player zero-sum networks, and at the possibility of correlated beliefs which is a relevant aspect in23

multiplayer games.24

As a contribution of potentially independent interest, we substantially simplify the Lyapunov25

approach to CTFP in two-player zero-sum games introduced by Hofbauer (1995) and Harris (1998).26

That approach has traditionally combined the envelope theorem with the theory of di¤erential in-27

Franke and Öztürk (2015), Huremovic (2016), Jackson and Nei (2015), König et al. (2015), Kovenock et al. (2015),
amongst others. For a survey, see Dziubiński et al. (2016b).

4E.g., any star-shaped network considered by Sela (1999) is acyclic, but the network shown in Figure 1 below is not
acyclic.

2



clusions, where the former part is fairly simple (cf., e.g., Krishna and Sjöström, 1997), while the1

latter part is quite hairy (cf. Harris, 1998, Sec. 5-6). Driesen (2009) proposed an alternative way to2

simplify the proof by relating to the general belief a¢ rmation result of Monderer et al. (1997), yet3

at the cost of assuming that players choose pure strategies, which might interfere with existence (cf.4

Harris, 1998, p. 242).5 In our derivation of the convergence result, however, no additional assump-5

tions are imposed. In fact, the technical apparatus of di¤erential inclusions is entirely dropped and6

replaced by elementary considerations. The brevity of the argument will become apparent from the7

proof of Proposition 1 below.68

Related literature. The �rst paper studying �ctitious play in an environment similar to ours is9

Sela (1999). His observation was that some of the convergence results for two-player games generalize10

quite easily to n-player games with a �one-against-all�structure. In that setting, one player located11

in the center of the star-shaped network chooses a compound strategy that is the same in every12

bilateral interaction. The crucial point to note is then that the network game can be transformed13

into a two-player game in which the choices of the non-centered players are orchestrated by a single14

agent that maximizes the sum of the payo¤s of all the non-centered players. Under a speci�c tie-15

breaking rule, the DTFP process in the reduced game turns out to be identical, for any given initial16

condition, to the DTFP process in the �one-against-all�game. Thereby, the �ctitious-play property17

in the network game can be established as a corollary of results for two-person games provided that18

the bilateral games are all of the same type, like zero-sum, identical payo¤, or two-by-two. It is,19

however, not immediate to see how this trick could be generalized to networks that are not star-20

shaped. The present paper extends the results of Sela (1999) to general network structures. We also21

drop the tie-breaking rule, and deal more explicitly with the case of CTFP.22

An interesting recent strand of literature, related to the interdisciplinary �eld of algorithmic23

game theory, has taken up the study of networks of two-player games, where it is assumed that each24

player�s payo¤ is the sum of payo¤s obtained in the bilateral games with neighboring players.7 Cai25

et al. (2016) have clari�ed how far results traditionally known only for two-person zero-sum games26

5See also Shamma and Arslan (2004) for a unifying presentation of existing Lyapunov arguments in a set-up with
a �soft-max�best-response function.

6However, di¤erential inclusions will still be used to prove existence of a CTFP, as well as for the analysis of the
discrete-time variant of �ctitious play.

7Network games have, of course, a long tradition in game theory. See, e.g., the recent survey by Bramoullé and
Kranton (2016), and references given therein.
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(such as solvability by a linear program, existence of a value, equivalence of max-min and equilibrium1

strategies, exchangeability of Nash equilibria, and the relationship to coarse correlated equilibrium)2

can be extended to zero-sum network games. Moreover, in that class of games, discrete-time no-3

regret learning algorithms converge to Nash equilibrium (Daskalakis and Papadimitriou, 2009; Cai4

and Daskalakis, 2011).8 Another natural class of network games is de�ned by the requirement that, in5

each bilateral game, both players have identical payo¤ functions (Cai and Daskalakis, 2011).9 Under6

the condition that pairwise interactions are games with identical payo¤s, the network game is shown7

to possess an exact potential, which implies that in that class of games, certain learning algorithms8

converge to equilibrium. In particular, the discrete dynamics of pure best responses converges to a9

Nash equilibrium. However, these contributions do not discuss any �ctitious-play dynamics.10

The remainder of this paper is structured as follows. Section 2 contains preliminaries. The CTFP11

property of zero-sum networks is established in Section 3. Section 4 deals with additional classes of12

games. DTFP is considered in Section 5. Section 6 discusses the case of correlated beliefs. Section13

7 concludes.14

2. Preliminaries15

2.1 Network games16

There is a �nite set V = f1; :::; ng of players (countries, �rms, consumers, political institutions,...).1017

Let E � V � V be a set of bilateral relationships. Any two agents i; j 2 f1; :::; ng are either in18

interaction ((i; j) 2 E) or not in interaction ((i; j) =2 E). Thus, the pair (V;E) is a graph, and we19

assume that it is (i) undirected (8i; j : (i; j) 2 E , (j; i) 2 E), and (ii) irre�exive (8i : (i; i) =2 E).1120

Each edge (i; j) 2 E represents a �nite two-person game Gij between players i and j, with strategy21

set Sij for player i, strategy set Sji for player j, payo¤ function uij : Sij � Sji ! R for player i,22

8 In a no-regret learning process, aggregate historical payo¤s are asymptotically not below optimal payo¤s achievable
against historical frequency distributions. An example is the multiplicative-weights adaptive learning algorithm of
Freund and Schapire (1999). For additional background, see the monograph of Cesa-Bianchi and Lugosi (2006).

9This class includes, e.g., binary coordination games, as considered by Bramoullé and Kranton (2016, Prop. 3). See
also Bramoullé et al. (2014) and Bourlès et al. (2015). For early uses of potential methods in network models, see
Blume (1993) and Young (1993).
10Finiteness of the network looks essential to the convergence of �ctitious play. However, we have not looked

speci�cally into this issue. Blume (1993) studies the strategic interaction of players that are located on an in�nite
lattice. Morris (2000) considers best-response dynamics in locally �nite networks of coordination games.
11While the underlying network structure is assumed to be exogenous, our set-up is consistent with the view that

players strategically choose a subset of their neighbors as (potential) partners (see, e.g., Jackson, 2005). Along these
lines, the dynamic evolution of a network is subsumed as well.
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and payo¤ function uji : Sji � Sij ! R for player j.12 Choices made in the bilateral games (or edge1

games) will be referred to as bilateral strategies.2

3

Figure 1. A network game.4

Let N(i) = fj : (i; j) 2 Eg denote the set of neighbors of player i. Figure 1 provides an5

illustration of a network with three players, each of them playing against two neighbors. Note that6

the number of neighbors of a player corresponds to the player�s degree as a node in the network7

of interactions. In the example, the network is complete, but this is not assumed.13 Denote by8

? 6= Xi � ��j2N(i)Sij the set of multilateral strategies of agent i (defense policies, trade quotas,9

promotional strategies, prices, invitation or acceptance of friendship, etc.). It is important to note10

that we allow for Xi ( ��j2N(i)Sij , which will be the interesting case in most applications. For11

example, there could be budget constraints, limited resources (e.g., planes in a military con�ict), or12

the need for price coherence across platforms.1413

For a given multilateral strategy xi 2 Xi of player i, we denote by �j(xi) = sij 2 Sij the14

corresponding bilateral strategy vis-a-vis player j. Going over all neighbors of player i, we see15

that any multilateral strategy xi 2 Xi may be considered as a vector of bilateral strategies xi =16

fsijgj2N(i) = f�j(xi)gj2N(i). Conversely, the set of pro�les composed of multilateral strategies17

12Thus, Gij and Gji refer to the same game, yet in the �rst case from player i�s perspective, and in the second case
from player j�s perspective. Note also that the �rst argument in a bilateral payo¤ function uij always refers to player
i�s strategy. E.g., even in the expression u21(s21; s12), strategy s21 is player 2�s bilateral strategy vis-a-vis player 1, and
s12 is player 1�s bilateral strategy vis-a-vis player 2.
13We shall use the standard terminology of graph theory (see, e.g., Bollobás, 2013). Thus, a network (V;E) is

complete if N(i) = V nfig for all i = 1; :::; n; it is called acyclic when there is no �nite sequence of pairwise distinct
players i1; :::; i� 2 V with � � 3 such that (i1; i2) 2 E, (i2; i3) 2 E,..., (i��1; i�) 2 E, and (i�; i1) 2 E; a network is
star-shaped if there is a player i such that N(i) = V nfig and such that N(j) = fig for any j 6= i; �nally, a network is
called connected if, for any i and j with i 6= j, there is a �nite sequence i1; i2; :::; i� 2 V with i1 = i and i� = j such
that (i1; i2) 2 E, (i2; i3) 2 E,..., and (i��1; i�) 2 E.
14A special case of our setting occurs if Sij ' Xi for any i = 1; :::; n and any j 2 N(i). In that case, a player�s

multilateral strategy xi 2 Xi is assumed to implement the same compound strategy sij = xi in each bilateral game
with neighbor j 2 N(i), so that Xi corresponds to the diagonal in �j2N(i)Sij . Settings along these lines have been
considered, in particular, by Sela (1999) and Cai et al. (2016), and will also be used in our examples. Clearly, our
set-up is no less general than those settings.
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chosen by the neighbors of player i is XN(i) = ��j2N(i)Xj , with typical element xN(i) = fxjgj2N(i).1

A network game (or separable game or polymatrix game) G is an n-player game in which each player2

i = 1; :::; n has strategy set Xi and utility3

ui(xi; x�i) = ui(xi; xN(i)) =
X
j2N(i)

uij(sij ; �
i(xj)). (1)

Re�ecting the local nature of interaction and payo¤s, it will be assumed below that players form4

beliefs about the play of their neighbors only (rather than about the play of all the other players).5

While this assumption is not required for our results, it may be considered somewhat more plausible6

in a learning context.7

We denote by �(Xi) the set of mixed multilateral strategies for player i, with typical element8

�i. Thus, �i is an arbitrary probability distribution on the �nite set of pure multilateral strategies9

Xi. Player i�s payo¤ function ui in the network game extends to mixed multilateral strategies in the10

usual fashion. Speci�cally, if ��i denotes the pro�le of mixed multilateral strategies of all players11

except i, and if �N(i) denotes the pro�le of mixed multilateral strategies for the neighbors of player12

i, then player i�s expected payo¤ from playing xi 2 Xi is given by ui(�i; �N(i)) = E[ui(xi; xN(i))] =13

E[ui(xi; x�i)], where the expectations are taken with respect to �N(i) and ��i, respectively. Player14

i�s mixed best-response correspondence MBRi assigns to any pro�le �N(i) 2 ��j2N(i)�(Xj) the set of15

mixed strategies ��i 2 �(Xi) such that ui(��i ; �N(i)) = max�i2�(Xi) ui(�i; �N(i)). Further, the mixed16

best-response correspondence MBR of the gameG assigns to any pro�le � = (�1; :::; �n) 2 ��n
i=1�(Xi)17

the Cartesian product MBR(�) = ��n
i=1MBRi(�N(i)). Since strategy spaces are �nite, a mixed-18

strategy Nash equilibrium � = (�1; :::; �n) exists in the network game by Nash�s theorem.19

2.2 Continuous-time �ctitious play with independent beliefs20

In the main part of the analysis, we look at the �ctitious-play process in continuous time (Rosen-21

müller, 1971). Moreover, consistent with a common interpretation of �ctitious play, according to22

which players take it as given that their opponents adhere to some independently chosen mixed23

strategy, we assume that all empirical frequencies are accounted for as marginal distributions only,24

so that beliefs formed by a single player are independent across his opponents. Later, in Section 6,25

this assumption will be relaxed.26

With continuous time, let m : [0;1)! �(X1)� :::��(Xn) be a (measurable) path specifying,27
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for i = 1; :::; n, player i�s mixed strategy at time � , i.e., mi(�) 2 �(Xi). As time is continuous,1

averaging over time amounts to integrating each mi over an interval [0; � ], for some � > 0. The2

independent average � : [1;1)! �(X1)� :::��(Xn) of the path m at time � � 1 is consequently3

de�ned as4

�(�) � �(�;m) =
�
1

�

Z �

0
m1(�

0)d� 0; :::;
1

�

Z �

0
mn(�

0)d� 0
�
. (2)

The de�nition of a continuous-time path of �ctitious play reads as follows.5

De�nition 1. (CTFP) A continuous-time �ctitious play (with independent beliefs) is a measurable6

mapping m : [0;1)! ��n
i=1�(Xi) such that m(�) 2 MBR(�(�)) for all � � 1.7

The following lemma assures us of the existence of a CTFP learning process. The proof of the lemma8

checks that demanding optimality at all points in time, as this paper does, is equivalent to demanding9

optimality at almost any point in time (Harris, 1998).10

Lemma 1. A CTFP exists.11

Proof. From Harris (1998, p. 244), it is known that a path bm : [0;1) ! ��n
i=1�(Xi) exists such12

that bm(�) 2 MBR(�(�; bm)) for almost all � � 1. Let Z �[1;1) be a null set such that bm(�) 213

MBR(�(�; bm)) for all � 2 [1;1)nZ. De�ne now the path m : [0;1) ! ��n
i=1�(Xi) by letting14

m(�) = bm(�) for any � 2 [0;1)nZ, and by letting m(�) 2 MBR(�(�; bm)) for any � 2 Z. Then, for15

any � � 1, clearly �(�;m) = �(�; bm), so that m(�) 2 MBR(�(�;m)). The claim follows. �16

Next, we de�ne convergence of �ctitious play in a given n-player network game G. Recall that, for17

an arbitrary path m : [0;1)! �(X1)� :::��(Xn), the corresponding averaging path � ! �(�) �18

�(�;m) is a continuous curve in the space of mixed strategy pro�les, �(X1)� :::��(Xn). Denote19

by A(m) the set of all accumulation points of the curve �(:).15 Convergence of �ctitious play is then20

de�ned by the requirement that A(m) is a subset of the set of Nash equilibria of G.21

De�nition 2. A path m : [0;1)! �(X1)� :::��(Xn) is said to converge to Nash equilibrium if22

every limit distribution �� 2 A(m) is a Nash equilibrium in G.23

15Thus, A(m) consists of all strategy pro�les that are limit points of some converging sequence of independent
beliefs, f�(�q)g1q=1, where f�qg1q=1 is any sequence in [1;1) such that limq!1 �q = 1. Because the set of mixed
strategy pro�les �(X1)� :::��(Xn) is bounded and closed, there will be at least one such limit point, i.e., A(m) 6= ?.

7



Clearly, a network player that optimizes simultaneously against several opponents behaves di¤erently1

from an unconstrained player in a bilateral game. Sela (1999) has provided a couple of examples2

illustrating the fact that the �ctitious-play property in the bilateral games is, indeed, not generally3

informative about the �ctitious-play property in the network game. Speci�cally, even if two bilateral4

games have the �ctitious-play property, this need not be the case for the network game (poten-5

tially after eliminating weakly dominated strategies). Conversely, even if neither of the bilateral6

games possesses the �ctitious-play property, the network game may still possess the �ctitious-play7

property.168

3. Zero-sum networks9

Given two players i, j with j 6= i, the bilateral game Gij is called zero-sum if uij + uji � 0. By10

a network of zero-sum games, we mean a network game in which each bilateral game is zero-sum.11

More generally, by a zero-sum network, we mean a network game G that is zero-sum as an n-player12

game, i.e., a network game in which u1+ :::+ un � 0.17 Related classes of games have been studied,13

in particular, by Bregman and Fokin (1987, 1998), Daskalakis and Papadimitriou (2009), Cai and14

Daskalakis (2011), and Cai et al. (2016). Clearly, if each bilateral game in a given network is zero-15

sum, the network game G is an n-person zero-sum game. However, the converse is not generally16

true. Importantly, even if payo¤s are given in the n-player normal form, there are e¢ cient ways to17

check if the game is a zero-sum network (cf. Cai et al., 2016).18

The following result is the �rst main result of the present paper.19

Proposition 1. Fictitious play converges to equilibrium in any zero-sum network.20

Proof. For a given independent pro�le of mixed strategy beliefs � = (�1; :::; �n) 2 �(X1) � ::: �21

�(Xn), let �N(i) = f�jgj2N(i) 2 ��j2N(i)�(Xj) denote the corresponding independent pro�le of22

mixed strategies for the neighbors of player i. De�ne the Lyapunov function23

L(�) =
nX
i=1

max
xi2Xi

�
ui(xi; �N(i))� ui(�i; �N(i))

	
. (3)

Intuitively, this function measures �rst each player�s scope for individual improvement relative to �,24

and then aggregates the result across all n players in the network. Clearly, as a direct consequence25

16For further details, we refer the reader to Sela (1999, Ex. 4 and 6).
17Alternative terminology includes zero-sum polymatrix game and separable zero-sum multiplayer game.

8



of the de�nition, L(�) � 0. Note next that, because the network is zero-sum, an alternative way to1

write the Lyapunov function is2

L(�) =
nX
i=1

max
xi2Xi

ui(xi; �N(i)). (4)

Consider now a continuous-time �ctitious play m : [0;1)! �(X1)� :::��(Xn), with independent3

average �(�) � �(�;m) at some �xed point in time t � 1. Then, because mi(�) is a best response to4

��i(�) for i 2 f1; :::; ng, and because interactions are bilateral,5

L(�(�)) =
nX
i=1

ui(mi(�); �N(i)(�)) (5)

=

nX
i=1

X
j2N(i)

uij(mi(�); �j(�)) (6)

=
nX
i=1

X
j2N(i)

mi(�) �Aij�j(�), (7)

where Aij is the matrix representing player i�s payo¤s in the bilateral game Gij , i.e.,186

�i �Aij�j � uij(�i; �j): (8)

Consider now a player i 2 f1; :::; ng. Then, given that mi(�) is a best response to �N(i)(�), we have7 P
j2N(i)mi(�) �Aij�j(�) �

P
j2N(i)mi(b�) �Aij�j(�), (9)

for any b� � 1. Adding up across players, and subsequently multiplying through with � , one obtains8

�L(�(�)) �
Pn
i=1

P
j2N(i)mi(b�) �AijFj(�), (10)

where9

Fj(�) = � � �j(�) =
Z �

0
mj(�

0)d� 0. (11)

Subtracting inequality (10) from the equation10

b�L(�(b�)) =Pn
i=1

P
j2N(i)mi(b�) �AijFj(b�), (12)

and subsequently dividing by b� � � , one arrives at the key inequality11

b�L(�(b�))� �L(�(�))b� � � �
Pn
i=1

P
j2N(i)mi(b�) �Aij �Fj(b�)� Fj(�)b� � �

�
, (13)

for any b� > � . By the fundamental theorem of calculus, the di¤erential quotient on the right-hand12

side converges for b� ! � to mj(�), for almost any � � 1. This shows that for almost any � � 1,13

18Here and in the sequel, the dot � denotes the scalar product between two vectors.
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limb�!�;b�>�
b�L(�(b�))� �L(�(�))b� � � �

Pn
i=1

P
j2N(i)mi(�) �Aijmj(�) = 0, (14)

where the equality on the right-hand side re�ects the zero-sum property of the network. Since L(�(�))1

is continuous, it follows that �L(�(�)) is monotone decreasing. Hence, there is a constant C � 02

such that L(�(�)) � C=� for any � � 1. Noting that the individual terms of the Lyapunov function3

(3) are all positive, we therefore obtain for any player i = 1; :::; n and for any pure strategy xi 2 Xi4

that5

ui(xi; �N(i)(�))� ui(�i(�); �N(i)(�)) �
C

�
: (15)

Consider now any accumulation point �� 2 A(m) of the path �(:). Then, taking the limit � ! 16

shows that7

ui(xi; �
�
N(i))� ui(�

�
i ; �

�
N(i)) � 0, (16)

i.e., xi is not a pro�table deviation for player i. Since i and xi were arbitrary, �� is necessarily a8

Nash equilibrium. This proves convergence of CTFP in any zero-sum network. �9

The proof uses the well-known combination of the Lyapunov method and the envelope theorem10

(Hofbauer, 1995; Harris, 1998). Indeed, as equation (12) shows, the expression �L(�(�)) corresponds11

to the total (across all players in the network) of the maxima over �cumulative payo¤s.�But the12

network is zero-sum, so that the sum of instantaneous payo¤s vanishes. Therefore, the �rst-order13

change to �L(�(�)) must vanish as well. However, the proof provided above is much less technical14

than existing derivations (even in the case of two-player zero-sum games), because no reference is15

made to the approximation theorem nor to directional derivatives.1916

Regarding the rate of convergence, we mention that a minor re�nement of the proof shows that,17

as in the case of two-person zero-sum games considered by Harris (1998), the rate of convergence in18

payo¤s, i.e., the rate by which the Lyapunov function approaches zero, is precisely 1=� .19

Corollary 1. The rate of convergence of CTFP in any zero-sum network game is 1=� .20

Proof. For 1 < b� < � , the inequality sign in (13) is reversed. Therefore, following the steps of21

19Notably, Proposition 1 provides a proof of existence of a Nash equilibrium in any zero-sum network. However, in
contrast to the case of two-person zero-sum games, this observation does not imply a minmax theorem for zero-sum
networks. For a generalization of the minmax theorem to zero-sum networks, the reader is referred to Cai et al. (2016).
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the proof of Proposition 1, �L(�(�)) is seen to be not only monotone decreasing, but also monotone1

increasing, hence constant. �2

The observation that the rate of convergence does not depend on the size of the network may be3

surprising. However, it should be noted that convergence is measured here on the aggregate level.4

That is to say, when the network is large, then the value of the Lyapunov function provides little5

information about the scope of improvement that is feasible for an individual player. Therefore, it6

might indeed take longer in a larger network to reach, say, an "-equilibrium.7

One might conjecture that it is the zero-sum property that drives convergence also in n-player8

games with n � 3, and that the network structure of the game is not needed. However, as the9

following example illustrates, this is not the case. I.e., there are multiplayer zero-sum games in10

which CTFP need not converge.11

Example 1. (Three-player zero-sum game) Consider the following game G1 between three12

players:2013

14

Figure 2. The game G1.15

Here, player 1 and player 2 each have three pure strategies, whereas player 3 has just one pure16

strategy. Therefore, to see what happens under either Nash assumptions or �ctitious play, player 317

may be safely ignored. But with player 3 eliminated from the game, the two-player game between18

players 1 and 2 is of the Shapley (1964) type, so that nonconvergence obtains.2119

20Here and elsewhere in the paper, payo¤ vectors are arranged diagonally in each box, starting with player 1�s payo¤
in the respective upper-left corner.
21That conclusion does not depend on the fact that player 3 has only one strategy. In fact, we have constructed also

an example of a 2 � 2 � 2 zero-sum game with a Shapley hexagon, similar to the three-player non-zero-sum example
of Jordan (1993). On a related note, we conjecture that Example 1 as well as the later examples of the present paper
could be made robust by introducing additional strategies for all players.
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The example shows that the network assumption in Proposition 1 cannot be easily dropped. On the1

other hand, the zero-sum assumption may be relaxed to a certain extent for convergence in network2

games, as will be discussed in the next section.3

4. Additional classes of network games4

4.1 Con�icts5

A bilateral game Gij will be called a con�ict if there exist valuations vij > 0 and vji > 0, success6

functions pij : Sij � Sji ! [0; 1] and pji : Sji � Sij ! [0; 1], as well as cost functions cij : Sij ! R7

and cji : Sji ! R such that8

uij(sij ; sji) = pij(sij ; sji)vij � cij(sij), (17)

uji(sji; sij) = pji(sji; sij)vji � cji(sji), (18)

and9

pij(sij ; sji) + pji(sji; sij) = 1 (19)

hold for any sij 2 Sij and any sji 2 Sji. Examples include probabilistic contests such as the Tullock10

(1980) contest, the Hirshleifer contest (1989), the Lazear-Rosen (1981) tournament, the �rst-price all-11

pay auction (Baye et al., 1996), and Colonel Blotto games (Roberson, 2006), to name a few. The class12

of con�icts de�ned above corresponds precisely to the class of strategically zero-sum games (Moulin13

and Vial, 1978). However, we will use the terminology of con�ict because it is more suggestive and14

also because it allows to make an important distinction (homogeneous vs. heterogeneous valuations)15

that is absent from the original theory but crucially needed below.2216

A network game G will be called a con�ict network if the bilateral game Gij is a con�ict for each17

pair (i; j) 2 E. We will say that a con�ict network has pairwise homogeneous valuations if valuations18

of two players coincide in any pairwise con�ict, i.e., if vij = vji for any two players i and j with (i; j) 219

E. An example is Franke and Öztürk�s (2015) transfer network where the net valuations of winning20

a con�ict are assumed to be identical across players. If valuations are not pairwise homogeneous, we21

will (somewhat loosely) say that the con�ict network exhibits heterogeneous valuations.22

Proposition 1 can be extended to these additional classes of games as follows.23

22This distinction is similar in spirit to the di¤erence between exact and weighted potential games.
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Proposition 2. Let G be either (i) a con�ict network with pairwise homogeneous valuations, or1

(ii) an acyclic con�ict network with heterogeneous valuations. Then, G has the continuous-time2

�ctitious-play property.3

Proof. (i) Starting from the con�ict network G, we construct another network game eG on the same4

graph and with identical strategy sets by letting payo¤s in the bilateral game eGij be given by5

euij(sij ; sji) = uij(sij ; sji)� vij
2
+ cji(sji). (20)

Then, clearly, each player i�s payo¤s in eG satisfy6

eui(xi; xN(i)) � X
j2N(i)

euij(�j(xi); �i(xj)) = ui(xi; xN(i))� X
j2N(i)

nvij
2
� cji(�i(xj))

o
, (21)

which shows that eG is best-response equivalent in mixed strategies to G.23 Moreover, for any pair7

(i; j) 2 E, using (17-19) and vij = vji, we have8

euij(sij ; sji) + euji(sji; sij)
= uij(sij ; sji)�

vij
2
+ cji(sji) + uji(sji; sij)�

vji
2
+ cij(sij) (22)

= pij(sij ; sji)vij � cij(sij)�
vij
2
+ cji(sji) + pji(sji; sij)vji � cji(sji)�

vji
2
+ cij(sij) (23)

= 0, (24)

Thus, eG is a network of two-person zero-sum games and, hence, a zero-sum network. By Proposition9

1, CTFP converges in eG. Using the best-response equivalence in mixed strategies, both the set of10

continuous-time �ctitious plays and the set of Nash equilibria are the same for G and eG. Hence,11

CTFP converges also in G.12

13

Figure 3. Partitioning the set of nodes in an acyclic network.14

23Two n-player games G and G0 with identical strategy spaces X1; :::; Xn are called best-response equivalent in mixed
strategies (Monderer and Shapley, 1996b) if for any i = 1; ::; n, and any ��i 2 �1 � ::: ��i�1 ��i+1 � ::: ��n (or
any ��i 2 ��i), argmaxxi2Xi ui(xi; ��i) = argmaxxi2Xi u

0
i(xi; ��i).
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(ii) Without loss of generality, the network may be assumed to be connected. The set of players can1

then be partitioned into a �nite number of subsets V0; V1; :::; VK , where i 2 Vk for k 2 f0; :::;Kg if and2

only if the graph-theoretic distance between players 1 and i equals k. See Figure 3 for illustration.3

Thus,4

V0 = f1g, (25)

V1 = N(1), and (26)

Vk+1 = f
[

i2Vk
N(i)gnVk�1 (k = 1; :::;K � 1). (27)

We will describe an iterative construction that transforms the con�ict network with bilateral payo¤5

function uij and heterogeneous valuations vij into a con�ict network with bilateral payo¤ functions6

buij and homogeneous valuations bvij . For this, we initialize the iteration by letting bu1j = u1j and7

bv1j = v1j for any neighbor j 2 N(1). We start now with k = 1 and consider some player i 2 Vk.8

Since the network is acyclic, there is precisely one player l 2 Vk�1 such that i 2 N(l). We rescale9

player i�s payo¤ function uij in his relationship with any neighbor j 2 N(i) by letting10

buij(sij ; sji) = bvli
vil
� uij(sjl; slj), (28)

so that player i�s valuation becomes11

bvij = bvli
vil
� vij . (29)

Since the factor (bvli=vil) does not depend on the neighbor j 2 N(i), such rescaling does not a¤ect12

player j�s multilateral best-response correspondence. Moreover, the resulting bilateral game bGij13

between players i and j (with payo¤ function buij for player i, and payo¤ function buji for player j) is14

a con�ict with homogeneous valuations, since bvji = bvij by equation (29). Once this is accomplished15

for any i 2 Vk, the index k is incremented, and the rescaling procedure repeated. After the iteration16

has reached k = K, we end up with a con�ict network bG with pairwise homogeneous valuations that17

is best-response equivalent in mixed strategies to G. Convergence of CTFP follows, therefore, from18

part (i). �19

The intuition is as follows. If valuations are homogeneous, then each bilateral game is essentially a20

constant-sum game with costly strategies.24 Suppose that the cost of a player in any bilateral con�ict21

24This useful interpretation is borrowed from Ben-Sasson et al. (2007).
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is not lost, but reaches the other player as a subsidy. Then, as the size of the subsidy does not depend1

on the player�s choice of strategy, his best-response correspondence remains una¤ected. However,2

if the subsidy is implemented in any bilateral con�ict, the network game becomes constant-sum,3

and we are done. If valuations are heterogeneous, and the underlying network structure is acyclic,4

then the con�ict network can be transformed into a con�ict network with pairwise homogeneous5

valuations by a simple iteration that starts at player 1 and works its way through the tree, where6

in each step, valuations and cost functions of a new set of players are rescaled so as to render the7

backward-looking con�ict homogeneous.8

However, rescaling does not work in general con�ict networks. Indeed, as the following example9

illustrates, �ctitious play need not converge in cyclic con�ict networks with heterogeneous valuations.10

Example 2. (Network of con�icts) Suppose there are three players i = 1; 2; 3, where X1 = X2 =11

X3 = fL;Hg. The network structure is a triangle. In the network game G2, each bilateral game is a12

con�ict with heterogeneous valuations. Speci�cally, one assumes13

vi;i+1 = 6, vi;i�1 = 3, (30)

ci;i+1(L) = ci;i�1(L) = 0, ci;i+1(H) = ci;i�1(H) = 1 (31)

pi;i+1(H;L) = 3
4 , pi;i+1(L;H) =

1
3 , pi;i+1(L;L) = pi;i+1(H;H) =

1
2 , (32)

where i + 1 refers to player 1 if i = 3, and similarly, i � 1 refers to player 3 if i = 1. Denote by14

ri = prfxi = Hg the probability that player i uses strategy H. There is a unique Nash equilibrium15

(r�1; r
�
2; r

�
3) = (0; 0; 0).

25 Moreover, �ctitious play need not converge to equilibrium, but may follow a16

triangle-shaped path that runs in a round-robin fashion through the points17

:::! p1 = (
2
7 ;
4
7 ;
1
7)! p2 = (

1
7 ;
2
7 ;
4
7)! p3 = (

4
7 ;
1
7 ;
2
7)! :::, (33)

as illustrated in Figure 4. Thus, the dynamic con�ict does not settle down, which shows that the18

assumption of homogeneous valuations cannot be dropped unless the network is acyclic.19

25So all players would choose the e¤ort level L.
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1

Figure 4. Fictitious play need not converge in a network of con�icts.2

4.2 Potential games3

We introduce notions of increasing �exibility �rst for bilateral games and then for network games.4

A bilateral game Gij is said to possess identical payo¤ functions if uij(sij ; sji) = uji(sji; sij) for all5

sij 2 Sij and all sji 2 Sji.26 A bilateral game Gij is an exact potential game (Monderer and Shapley,6

1996a) if there exists a potential function Pij : Sij � Sji ! R such that7

uij(sij ; sji)� uij(bsij ; sji) = Pij(sij ; sji)� Pij(bsij ; sji), (34)

uji(sji; sij)� uji(bsji; sij) = Pij(sij ; sji)� Pij(sij ; bsji), (35)

for all sij ; bsij 2 Sij and all sji; bsji 2 Sji. Next, a bilateral game Gij is a weighted potential game8

(Monderer and Shapley, 1996a) if there exists a potential function Pij : Sij � Sji ! R as well as9

weights wij > 0 and wji > 0 such that10

uij(sij ; sji)� uij(bsij ; sji) = wij fPij(sij ; sji)� Pij(bsij ; sji)g , (36)

uji(sji; sij)� uji(bsji; sij) = wji fPij(sij ; sji)� Pij(sij ; bsji)g , (37)

for all sij ; bsij 2 Sij and all sji; bsji 2 Sji.27 A network game G will be said to be an exact potential11

network if all bilateral games Gij are exact potential games. Finally, a network game G will be12

referred to as a weighted potential network if all bilateral games Gij are weighted potential games.13

26A game with identical interests (Monderer and Shapley, 1996b) is a game that is best-response equivalent in mixed
strategies to a game with identical payo¤ functions. Thus, games with identical interests relate to games with identical
payo¤ functions in the same way as strategically zero-sum games relate to zero-sum games.
27The following observation shows that the notation need not lead to confusion: Let Gij be a weighted potential

game with potential Pij and weight wij for player i and weight wji for player j. De�ne a potential Pji : Sji�Sij ! R by
Pji(sji; sij) = Pij(sij ; sji). Then, the bilateral game Gji (i.e., the game Gij with the roles of players i and j exchanged)
is a weighted potential game with potential Pji and weight wji for player j and weight wij for player i.
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Cai and Daskalakis (2011) have shown that if all bilateral games in a network have identical payo¤1

functions then the network game allows an exact potential (the welfare function). The following result2

applies their reasoning, but also o¤ers some extensions in so far that bilateral games may merely3

be exact potential games or even weighted potential games. We also use a slightly di¤erent proof.4

Speci�cally, we construct the potential of the network game as the sum over all potentials rather5

than as the sum over all payo¤ functions. Moreover, in the case of weighted potential games, we6

employ a similar induction argument as in the proof of Proposition 2(ii).7

Proposition 3. Let G be either (i) an exact potential network, or (ii) a weighted potential network8

on an acyclic graph. Then, G has the continuous-time �ctitious-play property.9

Proof. (i) Suppose that the network game G is an exact potential network. Then, since any bilateral10

game Gij is an exact potential game, there exist a potential function Pij : Sij � Sji ! R such that11

uij(sij ; sji)� uij(bsij ; sji) = Pij(sij ; sji)� Pij(bsij ; sji), (38)

uji(sji; sij)� uji(bsji; sij) = Pij(sij ; sji)� Pij(sij ; bsji), (39)

for any sij ; bsij 2 Sij and any sji; bsji 2 Sji. In particular, by exchanging the roles of players i and j12

in equation (39) and comparing with (38), we obtain13

Pij(sij ; sji)� Pij(bsij ; sji) = Pji(sji; sij)� Pji(sji; bsij). (40)

Consider now the aggregate potential P : X ! R de�ned through14

P(x) = 1

2

X
(i;j)2E

Pij(sij ; sji), (41)

where sij = �j(xi) 2 Sij denotes player i�s bilateral strategy vis-a-vis player j under the multilateral15

strategy xi and, analogously, sji = �i(xj) 2 Sji denotes player j�s bilateral strategy vis-a-vis player i16

under the pro�le of multilateral strategies x�i = (x1; :::; xi�1; xi+1; :::; xn). It is claimed that P is an17

exact potential for G. Indeed, for any xi 2 Xi, bxi 2 Xi, and x�i 2 X�i, writing bsij = �j(bxi) 2 Sij ,18

it is straightforward to check that19
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ui(xi; x�i)� ui(bxi; x�i)
=
X
j2N(i)

fuij(sij ; sji)� uij(bsij ; sji)g (42)

=
X
j2N(i)

fPij(sij ; sji)� Pij(bsij ; sji)g (43)

=
1

2

8<: X
(i;j)2E

fPij(sij ; sji)� Pij(bsij ; sji)g+ X
(j;i)2E

fPji(sji; sij)� Pji(sji; bsij)g
9=; (44)

=
1

2

8<: X
(i;j)2E

Pij(sij ; sji) +
X
(j;i)2E

Pji(sji; sij)

9=;� 12
8<: X
(i;j)2E

Pij(bsij ; sji) + X
(j;i)2E

Pji(sji; bsij)
9=; (45)

= P(xi; x�i)� P(bxi; x�i). (46)

Hence, P is indeed an exact potential for the n-player game G. Therefore, from Harris (1998), CTFP1

converges.2

(ii) From the weighted potential network, an exact potential network is constructed as follows.3

First, players are assigned to subsets V0; V1; :::; VK according to their distance k from player 1, as4

in the proof of Proposition 2. Then, we initiate an iteration by letting eu1j = u1j for all j 2 N(1).5

We begin with k = 1. Consider any player j 2 Vk, and recall that there is precisely one player6

i 2 Vk�1 such that j 2 N(i).28 By assumption, the bilateral game Gij is a weighted potential game.7

Therefore, there exists a potential function Pij : Sij�Sji ! R, as well as weights wij > 0 and wji > 08

such that9

uij(sij ; sji)� uij(bsij ; sji) = wij fPij(sij ; sji)� Pij(bsij ; sji)g , (47)

uji(sji; sij)� uji(bsji; sij) = wji fPij(sij ; sji)� Pij(sij ; bsji)g , (48)

for any sij ; bsij 2 Sij and any sji; bsji 2 Sji. Without loss of generality, wij = 1. Given this normal-10

ization, we rescale all bilateral payo¤ functions of player j by letting eujl = ujl=wji, for any l 2 N(j).11

Then, the bilateral game eGij with payo¤ functions euij = uij for player i and euji = uji=wji for player12

j is easily seen to allow the exact potential Pij . Moreover, the linear aggregation of payo¤s implies13

that euj = uj=wji, so that player j�s best-response correspondence is not a¤ected. In particular,14

any bilateral game Gjl with l 2 N(j)nfig remains a weighted potential game. Once all players15

28Note that this notation di¤ers from the one used in the proof of Proposition 2(ii).
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j 2 Vk have been dealt with, the running index k is incremented. Clearly, when the iteration ends at1

k = K, the bilateral games eGij form an exact potential network that is best-response equivalent in2

mixed strategies to the weighted potential network we started from. Hence, invoking part (i), CTFP3

converges to equilibrium. �4

The intuition of the �rst part is simple. Because bilateral games possess exact potentials, the5

aggregate potential re�ects incentives precisely as the network game.29 The intuition of the second6

part is very similar to Proposition 2(ii).7

Sela (1999, Prop. 12) has shown that a star-shaped network of generic weighted potential two-8

by-two games is, when reduced to a two-player game, best-response equivalent in mixed strategies to9

a game with identical interests. This implies the �ctitious-play property. Proposition 3 shows that10

the �one-against-all�assumption, the assumption on the number of strategies, and the genericity of11

payo¤s may be dropped without weakening the conclusion.12

The following example shows that a general network consisting of weighted potential games need13

not have the �ctitious-play property.14

Example 3. (Network of weighted potential games) Consider the following game G3 between15

three players i = 1; 2; 3, each of them having two compound strategies, i.e., X1 = X2 = X3 = fH;Tg.16

Bilateral payo¤s are speci�ed in Figure 5.17

18

19

Figure 5. A network of weighted potential games.20

Thus, each player is involved in two coordination games, where for player i, coordination with player21

i � 1, is more valuable than coordination with player i + 1.30 Moreover, there is a twist in the22

coordination between players 1 and 3. The game G3 allows a unique Nash equilibrium in which each23

29Extending the proof, one can easily convince oneself that arbitrary networks (so-called hypergraphs) of multiplayer
exact potential games possess an exact potential.
30We use the same notational conventions as in the previous example.
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player randomizes with equal probability over his two alternatives. However, CTFP goes through1

the hexagonal cycle (the entries correspond to the respective probability of playing strategy H)2

:::! p1 = (a; b; c)! p2 = (1� c; a; b)! p3 = (1� b; 1� c; a)! (49)

! p4 = (1� a; 1� b; 1� c)! p5 = (c; 1� a; 1� b)! p6 = (b; c; 1� a)! :::,

where (a; b; c) = (49 ;
8
9 ;
7
9). A numerical �ctitious-play path approaching the cycle is illustrated in3

Figure 6.4

5

Figure 6. A network of weighted potential games need not possess the CTFP property.6

4.3 Two-by-two games7

Finally, we consider two-by-two games, i.e., two-player games in which each player has just two8

strategies.31 It will be recalled (e.g., Krishna and Sjöström, 1997, Prop. 3) that any two-by-two9

game without weakly dominated strategies is best-response equivalent in mixed strategies to either10

a zero-sum game or to a game with identical payo¤ functions. Miyasawa�s theorem is therefore11

customarily presented as a corollary of the corresponding results for zero-sum and identical interest12

games. Similarly, our network generalization of Miyasawa�s theorem will be derived as an implication13

of our respective results for con�ict and potential networks.14

A network game G will be called a network of strategically similar two-by-two games if (i) Xi has15

precisely two elements, for any i 2 f1; :::; ng, and (ii) either all bilateral games Gij are con�icts with16

pairwise homogeneous valuations, or all bilateral games Gij allow an exact potential.17

31Miyasawa (1961) has shown that every two-by-two game has the �ctitious-play property. That result was later
seen to depend on a particular tie-breaking rule (Monderer and Sela, 1996). With generic payo¤s, however, the theorem
holds. For further discussion of this important special case, see Metrick and Polak (1994) and Sela (1999).
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Proposition 4. Let G be a network of strategically similar two-by-two games. Then, G has the1

continuous-time �ctitious-play property.2

Proof. Immediate from Propositions 2 and 3. �3

Proposition 4 extends Miyasawa�s theorem to arbitrary network structures. As seen above in Propo-4

sitions 2 and 3, the assumptions on the bilateral games can be further relaxed when the underlying5

network structure is acyclic. This implies, in particular, a related result by Sela (1999, Cor. 13)6

for star-shaped networks. However, Example 2 above shows that it is not possible to generalize7

Proposition 4 to arbitrary networks of strategically zero-sum games. Neither is it possible, in view8

of Example 3, to extend the result to arbitrary networks of weighted potential games.329

5. Discrete-time �ctitious play10

While the continuous-time variant of �ctitious play considered above is analytically more convenient,11

there are reasons to be interested also in the discrete-time variant. For instance, the �rst major12

result in the literature by Robinson (1951) concerned the discrete-time process in two-person zero-13

sum games. It has often been suggested that the two processes should behave similarly. This is also14

intuitive because the incremental changes in the discrete time process become smaller and smaller15

over time. Harris (1998) has developed a very useful approach that, indeed, allows transferring16

results for the continuous-time case to the discrete-time case. Below, we will exploit his arguments17

to extend some of our conclusions to the case of discrete-time �ctitious play.3318

In contrast to the analysis so far, time progresses now in stages. In each stage t 2 N = f1; 2; 3; :::g,19

each player i 2 f1; :::; ng chooses a pure multilateral strategy xi(t) 2 Xi. The initial strategy pro�le20

x(0) 2 X is considered given. Then, the empirical frequencies of pure-strategy choices made before21

stage t are re�ected in the (discrete independent) average22

�d(t) � �d(t; x(:)) =
 
1

t

t�1X
t0=0

x1(t
0); :::;

1

t

t�1X
t0=0

xn(t
0)

!
(t = 1; 2; 3; :::). (50)

32Similarly, it does not seem possible to obtain a general convergence result in mixed networks, i.e., networks where
some edge games are zero-sum, while others re�ect identical interests.
33The idea is it to make a simple change in the time scale, such that the di¤erential inclusion de�ning the continuous-

time process becomes autonomous and, in fact, equivalent to the best-response population dynamics, as in Gilboa and
Matsui (1991) and Matsui (1992). Thereby, it is feasible to exploit the near-convergence of a su¢ ciently delayed
discrete-time process. As discussed in Hofbauer and Sorin (2006), that method of proof extends to arbitrary �nite
n-player games in which �ctitious play converges uniformly across initial conditions. As we have seen in Corollary 1,
the class of zero-sum networks satis�es this condition.
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For a mixed strategy pro�le � 2 �(X1)� :::��(Xn), we denote by BR(�) = MBR(�) \X the set1

of best-response pro�les to � that consist of pure strategies only.2

De�nition 3 (DTFP). A discrete-time �ctitious play in the network game G is a sequence of3

multilateral pure-strategy pro�les x(:) = fx(t)g1t=1 such that x(t) 2 BR(�d(t)) for all t 2 N.4

For a given DTFP x(:) = fx(t)g1t=1, the corresponding sequence of averages, de�ned through �d(t) =5

�d(t; x(:)), is a sequence in �(X1)� :::��(Xn). We denote by Ad(x(:)) the set of all accumulation6

points of f�d(t)g1t=1.7

De�nition 4. A sequence of multilateral pure-strategy pro�les x(:) = fx(t)g1t=1 is said to converge8

to equilibrium if any accumulation point �� 2 Ad(x(:)) of the corresponding process of discrete-time9

averages f�d(t)g1t=1 is a Nash equilibrium in G.10

The following result generalizes Robinson�s (1951) theorem to n-player zero-sum networks.11

Proposition 5. Let G be an arbitrary zero-sum network. Then any discrete-time �ctitious play in12

G converges to equilibrium.13

Proof. Take any DTFP x(:) = fx(t)g1t=1 in G, and consider the associated process of discrete14

averages de�ned through �d(t) = �d(t; x(:)). Then, for any i = 1; :::; n,15

�di (t) =
1

t

t�1X
t0=0

xi(t
0) (t = 1; 2; 3; :::). (51)

By simple algebraic manipulation,16

�di (t+ 1) =
1

t+ 1

tX
t0=0

xi(t
0) =

1

t+ 1
xi(t) +

1

t+ 1

t�1X
t0=0

xi(t
0) =

1

t+ 1
xi(t) +

t

t+ 1
�di (t). (52)

Hence, recalling that xi(t) 2 BRi(�dN(i)(t)) � MBRi(�
d
N(i)(t)), the process of averages satis�es17

�di (t+ 1) 2
1

t+ 1
MBRi(�dN(i)(t)) +

t

t+ 1
�di (t) (i 2 f1; :::; ng, t = 1; 2; 3; :::). (53)

By Corollary 1, there exists �� such that any solution of the autonomous di¤erential inclusion18

@�

@ ln �
2a.e. MBR(�)� � (54)

starting anywhere at � = 1 is "-close to the set of Nash equilibria of G from time �� onwards. Clearly,19

the correspondence MBR is u.s.c., compact-, and convex-valued. Applying now Hofbauer and Sorin20
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(2006, Prop. 7), it follows that there exists t� such that �d(t) is "-close to the set of Nash equilibria1

of G from time t� onwards. Hence, any accumulation point of the sequence f�d(t)g1t=1 is a Nash2

equilibrium, which proves the proposition. �3

Proposition 5 extends Sela�s (1999, Prop. 7) result for star-shaped networks of zero-sum games in4

three ways. First, the restriction regarding the network structure is dropped. Second, Proposition 55

imposes the zero-sum assumption only on the network, rather than on each of the bilateral games. Fi-6

nally, no assumptions regarding tie-breaking are used here. In sum, it is feasible to address additional7

applications such as security games (Cai et al., 2016) and, as has been seen, con�ict networks.8

As in the case of two-player zero-sum games, the transformation of the DTFP process into a9

continuous-time process that is �close�to a CTFP process comes at a cost, which is the slower rate10

of convergence. More speci�cally, the discrete-time process is known to �overshoot,�which makes it11

generally hard to nail down the rate of convergence of the discrete process. For two-player zero-sum12

games, Robinson�s proof allows to derive an upper bound for the rate of convergence (Shapiro, 1958).13

The resulting estimate is of the order O(t�1=(�1+�2�2)), where �i is the number of strategies for player14

i = 1; 2. If the game is symmetric, and consequently both players have the same number of strategies15

�1 = �2 � �, the upper bound may be sharpened to O(t�1=(��1)). Given the lack of a direct extension16

of Robinson�s proof to zero-sum networks, however, that upper bound is not easily generalized to17

zero-sum networks. Improving on Shapiro�s upper bound, Karlin�s strong conjecture says (or more18

precisely, said) that DTFP converges at rate O(t�1=2) in two-person zero-sum games, regardless of19

the number of strategies. Daskalakis and Pan (2014) have recently disproved that conjecture, showing20

that the rate of convergence in an asymmetric two-player zero-sum game in which both players have21

the same number of strategies � may be as low as O(t�1=�). That lower bound holds, obviously, also22

for zero-sum networks.3423

The so-called �Rosy Theorem�of Monderer et al. (1997) says that, in DTFP, a player�s expected24

payo¤s at any given stage are weakly higher than his average payo¤ experience. Using Robinson�s25

(1951) theorem on the convergence of DTFP in two-player zero-sum games, it can be concluded that26

every DTFP in a two-person zero-sum game is belief-a¢ rming, which means here that a player�s27

average payo¤ experience converges against his value of the game. It is tempting to suggest that28

34For related work, see Gjerstad (1996), Conitzer (2009), and Brandt et al. (2013).
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an extension to zero-sum network games is feasible. However, Nash equilibrium payo¤s are not1

necessarily unique in zero-sum networks (cf. Cai et al., 2016). Thus, even though the Rosy Theorem2

holds for zero-sum networks, the average payo¤ experience of an individual player may vary as much3

as his equilibrium payo¤. Hence, Monderer et al. (1997, Th. B), which states an equality between a4

player�s long-run payo¤ experience and the value of the game in two-player zero-sum games, cannot5

be easily generalized to zero-sum networks.6

Cai and Daskalakis (2011) have shown that, if every node in a separable multiplayer game plays7

a no-regret sequence of pure strategies in discrete time, then the resulting frequency distributions of8

pure strategies ultimately form an "-equilibrium. No-regret is a property that is less stringent than9

being belief-a¢ rming. Speci�cally, under no-regret learning, a player�s expected payo¤s are assumed10

to be asymptotically weakly below his average payo¤ experience, while in a belief-a¢ rming process11

like �ctitious play in two-person zero-sum games, a player�s expected payo¤s are asymptotically even12

equal to his average payo¤ experience. In other words, by combining the conclusions of Robinson�s13

theorem and Monderer et al. (1997, Th. B), DTFP in two-player zero-sum games is recognized as14

a no-regret learning algorithm. There is, consequently, no simple way to deduce Proposition 5 from15

the existing literature.16

The following should now be immediate.17

Corollary 2. Let G be a network game that satis�es the assumptions of any of the Propositions 118

through 4. Then any DTFP process in G converges to equilibrium.19

Proof. For zero-sum networks, the claim follows from Proposition 5. Since con�ict networks with20

pairwise homogeneous valuations, and also acyclic con�ict networks with heterogeneous valuations21

are best-response equivalent in mixed strategies to zero-sum networks, the claim holds also for these22

classes of network games. Regarding exact bilateral potential games, it was shown above that the23

corresponding network game allows an exact potential. Hence, the claim follows in this case from24

Monderer and Shapley (1996a, 1996b). Finally, to deal with weighted potential networks on acyclic25

graphs, it su¢ ces to recall the best-response equivalence in mixed strategies to an exact potential26

network. �27
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6. The case of joint beliefs1

Above, it was assumed that each player i�s beliefs about his opponents�play are independent across2

opponents. However, in a network with more than two players, a player might observe correlations3

between the behavior of two or more of his neighbors.35 We will therefore explore in this section the4

implications of assuming that players take account of such correlations when deciding about their5

best responses.6

Let e�N(i) 2 �(XN(i)) be player i�s joint belief over strategies chosen by his neighbors, where the7

tilde indicates that correlation is feasible. Player i�s expected payo¤ from player xi 2 Xi is written8

as ui(xi; e�N(i)) = E[ui(xi; xN(i))], where the expectation is taken with respect to e�N(i). Player i�s9

mixed best-response correspondence MBRi extends as usual to joint beliefs, e�N(i) 2 �(XN(i)), in10

the sense that MBRi(e�N(i)) is the set of mixed strategies ��i 2 �(Xi) such that ui(��i ; e�N(i)) =11

max�i2�(Xi) ui(�i; e�N(i)). Similarly, the mixed best-response correspondence MBR of G extends12

to arbitrary probability distributions e� 2 �(X) by assigning the Cartesian product MBR(e�) =13

��n
i=1MBRi(e�N(i)), where e�N(i) denotes then the marginal of e� on XN(i). Let m : [0;1)! �(X1)�14

:::��(Xn) be a measurable path specifying each player i�s mixed strategy at any time � . Then the15

continuous-time joint average e� is de�ned as16

e�(�) � e�(�;m) = 1

�

Z �

0
m(� 0)d� 0 (� � 1), (55)

where the integral is now taken in �(X). Similarly, if fx(t)g1t=0 is a sequence in ��n
i=1�(Xi), we may17

de�ne the discrete-time joint average e�d as18

e�d(t) � e�d(t; x(:)) = 1

t� 1

t�1X
t0=0

x(t0) (t = 1; 2; 3; :::), (56)

where the sum is again taken in �(X). The following de�nition of joint �ctitious play should contain19

no surprises.20

De�nition 5. (ĈTFP, D̂TFP) A continuous-time �ctitious play with joint beliefs is a measurable21

mapping m : [0;1) ! ��n
i=1�(Xi) such that m(�) 2 MBR(e�(�)) for any � � 1.36 Similarly, a22

35 Indeed, correlation of the limit pro�le is a well-documented possibility (Young, 1993; Fudenberg and Kreps, 1993;
Jordan, 1993; Fudenberg and Levine, 1998).
36Adapting the proof of Harris (1998), existence of a ĈTFP can be veri�ed for any n-player game. For network

games, however, existence follows more easily from the proof of Proposition 6 below.
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discrete-time �ctitious play with joint beliefs is a sequence fx(t)g1t=0 in ��n
i=1�(Xi) such that x(t) 21

BR(e�d(t)) for any t 2 N.2

The de�nition of convergence is adapted as follows. Denote by eA(m) and eAd(x(:)), respectively, the3

set of all accumulation points of e�(:) and e�d(:). We will say that e�� 2 �(X) is an observational4

equilibrium when, for each player i = 1; :::; n, player i�s marginal distribution e��i 2 �(Xi) is a mixed5

best response to the marginal e��N(i) 2 �(XN(i)), i.e., when ui(xi; e��N(i)) � ui(e��i ; e��N(i)) for any6

player i = 1; :::; n and for any strategy xi 2 Xi.37 We will further say that a path m, or a sequence7

x(:), converges observationally to Nash if any e�� 2 eA(m), or e�� 2 eAd(x(:)), is an observational8

equilibrium.9

In the proof of the following result, we generalizes an insight of Sela (1999, Lemma 1) to arbitrary10

networks, and apply it to the present situation.11

Proposition 6. Let G be an arbitrary network game satisfying assumptions of any of the Proposi-12

tions 1 through 4. Then any ĈTFP, and likewise any D̂TFP, converges observationally to Nash.13

Proof. Because interactions are bilateral, and linear expectations ignore correlations, expected14

payo¤s satisfy15

ui(�i; e�N(i)) = X
j2N(i)

uij(�i; �j), (57)

for any player i = 1; :::; n. Therefore, if e� 2 �(X) is a probability distribution over pure strategy16

pro�les in G, and if � 2 �(X1) � ::: � �(Xn) is the corresponding pro�le composed of marginal17

distributions, then MBR(e�) = MBR(�). The claim follows. �18

Intuitively, correlation is irrelevant for the best-response correspondence in a network gameG because19

all interactions are bilateral. As a consequence, a path m is a CTFP if and only if it is a ĈTFP,20

and a sequence x(:) is a DTFP if and only if it is a D̂TFP. Therefore, in the considered class of21

network games, �ctitious play with joint beliefs converges to a potentially correlated pro�le in which22

each player�s marginal distribution is a best response to the marginal distribution, formed either23

independently or jointly, of his neighbor�s mixed strategies.24

37For example, it follows from the analysis of Cai et al. (2016) that any coarse correlated equilibrium in a zero-sum
network is an observational equilibrium.
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7. Concluding remarks1

In this paper, we have identi�ed new and large classes of network games with the �ctitious-play2

property. Using entirely elementary arguments, we have derived simple and natural conditions on3

either bilateral payo¤s or on the network structure su¢ cient to guarantee convergence of the naive4

learning procedure even when a player�s decisions across bilateral games are interdependent. We5

have also constructed several examples of multiplayer games that show that these conditions cannot6

be easily relaxed.7

Applications of our results are manifold and include security games, con�ict networks, and decen-8

tralized wireless channel selection, for instance. Our �ndings con�rm the intuition that equilibrium9

behavior in important types of social interaction can be reached without assuming strong forms of10

economic rationality.11

Our results on the discrete-time variant of �ctitious play entail, in particular, a substantial exten-12

sion of Robinson�s (1951) classic result. This might serve as a basis for further analysis and simulation13

exercises. Our derivation also provides an additional illustration of the intimate relationship between14

the continuous-time and the discrete-time processes that has been suggested in many studies.15

We did not address all open issues on �ctitious play in network games. For instance, we did not16

examine stochastic �ctitious play. It should be noted, however, that the convergence of stochastic17

�ctitious play follows directly from our results for networks of exact potential games and, similarly,18

for acyclic networks of weighted potential games. Moreover, we conjecture that the techniques devel-19

oped by Hofbauer and Sandholm (2002) apply also to the zero-sum networks and con�ict networks20

discussed in the present paper.21

Last but not least, there is some recent work that digs deeply into the di¤erential topology and22

projective geometry of �ctitious-play paths in two-person zero-sum games (van Strien, 2011; Berger,23

2012). Exploring the potentially interesting implications of such approaches for zero-sum network24

games remains, however, beyond the scope of the present study.3825

38Further, one might want to seek conditions that ensure that the results of the present paper continue to hold if
all bilateral games are dominance solvable (Milgrom and Roberts, 1991) or exhibit strategic complementarities and
diminishing returns (Krishna, 1992; Berger, 2008). However, as discussed in Sela (1999), this last route seems less
promising because interdependencies between choices in bilateral games undermine such structural properties of the
bilateral games.
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Appendix (not for publication): Details on Examples 2 and 31

Details on Example 2. Payo¤s in the bilateral con�ict Gi;i+1, where i 2 f1; 2; 3g, are shown in2

the left panel of Figure 7.3

4

Figure 7. Bilateral payo¤s (left panel), and the normal form representation of G2 (right panel).5

Lemma A.1. The best-response correspondence in G2 may be described as follows: Player i 2 f1; 2; 3g6

optimally chooses H if ri�1 � 2ri+1 � 0; player i optimally chooses L if ri�1 � 2ri+1 � 0.7

Proof. Looking at bilateral payo¤s, one notes that8

ui(H; ri+1; ri�1)� ui(L; ri+1; ri�1)

= ui;i+1(H; ri+1)� ui;i+1(L; ri+1) + ui;i�1(H; ri�1)� ui;i�1(L; ri�1) (58)

= ri+1 � 0 + (1� ri+1) � 12 + ri�1 � (�
1
4) + (1� ri�1) � (�

1
2) (59)

= 1
4(ri�1 � 2ri+1). (60)

The claim follows. �9

Lemma A.2. The game G2 has a unique Nash equilibrium, that is given by (r�1; r
�
2; r

�
3) = (0; 0; 0).10

Proof. One easily checks that G2 has the payo¤s shown in the right panel of Figure 7. Clearly,11

(L;L;L) is a pure-strategy Nash equilibrium in G2. Next, we show that the equilibrium is unique.12

Suppose �rst that there is a completely mixed-strategy equilibrium (r1; r2; r3). Then, it follows13

from Lemma A.1 that r3 � 2r2 = 0, r1 � 2r3 = 0, and r2 � 2r1 = 0. But the sole solution of14

this system is (r1; r2; r3) = (0; 0; 0). Hence, G2 does not allow a completely mixed equilibrium.15

Moreover, if another equilibrium exists, at least one player must choose a pure strategy. Without16

loss of generality, suppose that this is player 3. Assume �rst that r3 = 1, so that player 3 chooses17

H. Then the iterated elimination of strictly dominated strategies implies that player 2 chooses L and18
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that player 1 chooses H, but then player 3 would want to deviate to x3 = L. Conversely, assume1

that player 3 chooses L. In this case, if r1 > 0, then player 2 chooses H and consequently r1 = 0,2

which is impossible. If, however, player 1 chooses L with probability one, then player 3 would want3

to deviate unless also player 2 chooses L with probability one. But that only brings us back to4

(r1; r2; r3) = (0; 0; 0). This proves uniqueness, and hence, the lemma. �5

Next, recall the coordinates of the points at which the process changes its direction:6

:::! p1 = (
2
7 ;
4
7 ;
1
7)! p2 = (

1
7 ;
2
7 ;
4
7)! p3 = (

4
7 ;
1
7 ;
2
7)! :::, (61)

The following lemma shows that this process is indeed a stable cycle.7

Lemma A.3. (i) At pi, with i 2 f1; 2; 3g, player i optimally chooses L, while players i� 1 and i+ 18

are both indi¤erent. (ii) There is a � > 1 such that9

�(p1 � (0; 1; 0)) = p3 � (0; 1; 0), (62)

�(p2 � (0; 0; 1)) = p1 � (0; 0; 1), (63)

�(p3 � (1; 0; 0)) = p2 � (1; 0; 0). (64)

Proof. (i) From Lemma A.1, player 1 optimally chooses L if r3 � 2r2 � 0. But, at p1 = (27 ;
4
7 ;
1
7), we10

even have r3 � 2r2 = �1 < 0. Moreover, players 2 and 3 are indi¤erent at p1 because r1 � 2r3 = 011

and r2 � 2r1 = 0. The analysis of the points p2 and p3 follows by symmetry. This proves the �rst12

claim. (ii) Note that with � = 2 > 1,13

�(p1 � (0; 0; 1)) = 2 � (27 ;
1
7 ;�

3
7) = (

4
7 ;
2
7 ;�

6
7) = p3 � (0; 0; 1): (65)

The other two equations follow, again, by symmetry. This proves the second claim, and hence, the14

lemma. �15
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Details on Example 3. The payo¤ matrix of G3 looks as follows:1

2

Figure 8. The game G3.3

Lemma A.4. The best-response correspondence in G3 is given as follows: Player 1 optimally chooses4

H if 5r3�r2 � 2; he optimally chooses T if 5r3�r2 � 2. Player 2 optimally chooses H if 5r1+r3 � 3;5

he optimally chooses T if 5r1 + r3 � 3. Player 3 optimally chooses H if 5r2 � r1 � 2; he optimally6

chooses T if 5r2 � r1 � 2.7

Proof. As for player 1, one notes that8

u1(H; r2; r3)� u1(T; r2; r3)

= r2r3 � (�4) + (1� r2)r3 � (�6) + r2(1� r3) � 6 + (1� r2)(1� r3) � 4 (66)

= 4 + 2r2 � 10r3. (67)

This proves the claim regarding player 1. Similarly,9

u2(r1;H; r3)� u2(r1;T; r3)

= r1r3 � 6 + (1� r1)r3 � (�4) + r1(1� r3) � 4 + (1� r1)(1� r3) � (�6) (68)

= �6 + 10r1 + 2r3, (69)

proving the claim regarding player 2. Finally,10

u3(r1; r2;H)� u3(r1; r2;T)

= r1r2 � 4 + (1� r1)r2 � 6 + r1(1� r2) � (�6) + (1� r1)(1� r2) � (�4) (70)

= 4� 2r1 + 10r2. (71)

This proves the �nal claim, and hence, the lemma. �11
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Lemma A.5. The game G3 has a unique Nash equilibrium, that is given by (r�1; r
�
2; r

�
3) = (

1
2 ;
1
2 ;
1
2):1

Proof. Suppose �rst that player 1 chooses H with probability one. Then, by iterated elimination of2

strictly dominated strategies, player 2 chooses H, and so does player 3. But then, player 1 would3

deviate to T. Suppose next that player 1 chooses T with probability one. Then, by the iterated4

elimination of strictly dominated strategies, player 2 chooses T, and so does player 3. But then5

player 1 would deviate to H. Thus, there is no equilibrium in which player 1 plays a pure strategy.6

Thus, r1 2 (0; 1), and by Lemma 3.A, 5r3 � r2 = 2. Clearly, this precludes r3 = 0 and r3 = 1,7

so that also player 3 must randomize. By Lemma 3.A, 5r2 � r1 = 2. But this excludes r2 = 08

and r2 = 1. Hence, any equilibrium is necessarily completely mixed. There is a unique completely9

mixed equilibrium, because the system of indi¤erence relationships �r2 +5r3 = 2, 5r1 + r3 = 3, and10

�r1 + 5r2 = 2 has the unique solution (r1; r2; r3) = (12 ;
1
2 ;
1
2). �11

Recall the cycle12

:::! p1 = (a; b; c)! p2 = (1� c; a; b)! p3 = (1� b; 1� c; a)! (72)

! p4 = (1� a; 1� b; 1� c)! p5 = (c; 1� a; 1� b)! p6 = (b; c; 1� a)! :::,

where (a; b; c) = (49 ;
8
9 ;
7
9). The following two lemmas show that the cyclic process is indeed a13

continuous-time �ctitious play.14

Lemma A.6. (i) At p1, players 1 optimally chooses T, player 2 is indi¤erent, and player 3 optimally15

chooses H. (ii) At p2, players 1 and 2 optimally choose T, whereas player 3 is indi¤erent. (iii) At16

p3, player 1 is indi¤erent, while players 2 and 3 optimally choose T. (iv) At p4, player 1 optimally17

chooses H, player 2 is indi¤erent, and player 3 optimally chooses T. (v) At p5, players 1 and 218

optimally choose H, whereas player 3 is indi¤erent. (vi) At p6, player 1 is indi¤erent, while players19

2 and 3 optimally choose H.20

Proof. (i) By Lemma A.4, player 1 optimally chooses T if 5r3 � r2 � 2. But, at p1 = (a; b; c) =21

(49 ;
8
9 ;
7
9), we even have 5r3�r2 = 3 > 1. Next, player 2 is indi¤erent if 5r1+r3 = 3. But this is true at22

p1. Finally, player 3 optimally chooses H if 5r2 � r1 � 2. But, at p1, we even have 5r2 � r1 = 4 > 1.23

(ii) Player 1 optimally chooses T if 5r3 � r2 � 2. But, at p2 = (1 � c; a; b) = (29 ;
4
9 ;
8
9), we even24
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have 5r3 � r2 = 4 > 1. Next, player 2 optimally choses T if 5r1 + r3 � 3. But, at p2, we even have1

5r1+r3 = 2 < 3. Finally, player 3 is indi¤erent if 5r2�r1 = 2. And at p2, we indeed have 5r2�r1 = 2.2

(iii) Player 1 is indi¤erent if 5r3 � r2 = 2. And indeed, at p3 = (1� b; 1� c; a) = (19 ;
2
9 ;
4
9), we have3

5r3� r2 = 2. Player 2 optimally choses T if 5r1+ r3 � 3. But, at p3, we even have 5r1+ r3 = 1 < 3.4

Finally, player 3 optimally chooses T if 5r2 � r1 � 2. But, at p3, we even have 5r2 � r1 = 1 < 2.5

(iv) Player 1 optimally chooses H if 5r3 � r2 � 2. But, at p4 = (1 � a; 1 � b; 1 � c) = (59 ;
1
9 ;
2
9), we6

even have 5r3 � r2 = 1 < 2. Next, player 2 is indi¤erent if 5r1 + r3 = 3. But this is true at p4.7

Finally, player 3 optimally chooses T if 5r2 � r1 � 2. But, at p4, we even have 5r2 � r1 = 0 < 1.8

(ii) Player 1 optimally chooses H if 5r3 � r2 � 2. But, at p5 = (c; 1 � a; 1 � b) = (79 ;
5
9 ;
1
9), we even9

have 5r3 � r2 = 0 < 2. Next, player 2 optimally choses H if 5r1 + r3 � 3. But, at p5, we even have10

5r1 + r3 = 4 > 3. Finally, player 3 is indi¤erent if 5r2 � r1 = 2. And at p5, we indeed have this.11

(iii) Player 1 is indi¤erent if 5r3 � r2 = 2. And indeed, at p6 = (b; c; 1� a) = (89 ;
7
9 ;
5
9), we have this.12

Player 2 optimally choses H if 5r1 + r3 � 3. But, at p6, we even have 5r1 + r3 = 5 > 3. Finally,13

player 3 optimally chooses H if 5r2� r1 � 2. But, at p6, we even have 5r2� r1 = 3 > 2. This proves14

the last claim and therefore the lemma. �15

Lemma A.7. There is a � > 1 such that16

�(p2 � (0; 0; 1)) = p1 � (0; 0; 1) (73)

�p3 = p2 (74)

�(p4 � (1; 0; 0)) = p3 � (1; 0; 0) (75)

�(p5 � (1; 1; 0)) = p4 � (1; 1; 0) (76)

�(p6 � (1; 1; 1)) = p5 � (1; 1; 1) (77)

�(p1 � (0; 1; 1)) = p6 � (0; 1; 1). (78)

Proof. One can easily verify that equations (73-78) are satis�ed for � = 2. �17
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