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1. Introduction15

Contests are used widely in economics and political theory. Specific applications include marketing,16

rent-seeking, campaigning, military conflict, and sports, for instance.1 A useful contest technology,17

conveniently parameterized by a parameter r ∈ (0,∞), has been popularized by Tullock (1980). Pure-18

strategy Nash equilibria have been identified for low values of r (Mills, 1959; Pérez-Castrillo and19

Verdier, 1992; Nti, 1999, 2004; Cornes and Hartley, 2005), and mixed-strategy equilibria for high20

values of r (Baye et al., 1994; Alcade and Dahm, 2010; Ewerhart, 2015, 2016). For intermediate values21

of r and heterogeneous valuations, Wang (2010) has constructed additional equilibria in which only22

one player randomizes.23

The present paper complements and, in a sense, completes the equilibrium analysis of Tullock’s24

model in the important special case of two players and heterogeneous valuations. We first show25

that, for r ≤ 2, the equilibrium is unique. This observation is useful because for r > 2, the usual26

equilibrium characteristics, such as expected efforts, participation probabilities, winning probabilities,27

expected payoffs, and revenue, are known to be independent of the equilibrium. Then, we document the28

properties of the equilibrium, including rent-dissipation, comparative statics, and robustness. Finally,29

as an application, we prove a revenue ranking result for optimally biased contests.30

The remainder of this paper is structured as follows. Section 2 introduces the notation and reviews31

existing equilibrium characterizations. Section 3 presents our uniqueness result. Comparative statics32

are discussed in Section 4. Section 5 deals with robustness. Optimal discrimination is examined in33

Section 6. An Appendix contains an auxiliary result.34

2. Set-up and notation35

There are two players i = 1, 2. Player i’s valuation of the prize is denoted by Vi, where we assume36

V1 ≥ V2 > 0. Given efforts x1 ≥ 0 for player 1 and x2 ≥ 2 for player 2, player i’s probability of winning37

is specified as38

pi(x1, x2) =
xri

xr1 + xr2
, (1)39

where r ∈ (0,∞), and the ratio is replaced by p0i = 0.5 should the denominator vanish.2 Player i’s40

payoff is given by Πi = piVi − xi. This defines the two-player contest C = C(V1, V2, r).41

A mixed strategy µi for player i is probability measure on [0, Vi]. Let Mi denote the set of42

player i’s mixed strategies. Given µ = (µ1, µ2) ∈M1×M2, we write pi(µ1, µ2) = E[pi(x1, x2)|µ] and43

1Cf. Konrad (2009).
2The assumption on p0i will be relaxed in Section 5.
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Πi(µ1, µ2) = E[Πi(x1, x2)|µ], where E[ ·|µ] denotes the expectation operator. An equilibrium is a44

pair µ∗ = (µ∗1, µ
∗
2) ∈ M1 ×M2 satisfying Π1(µ

∗
1, µ

∗
2) ≥ Π1(µ1, µ

∗
2) for any µ1 ∈ M1 and Π2(µ

∗
1, µ

∗
2) ≥45

Π2(µ
∗
1, µ2) for any µ2 ∈M2.46

For an equilibrium µ∗ = (µ∗1, µ
∗
2), we define player i’s expected effort xi = E[xi|µ∗i ], participa-47

tion probability πi = µ∗i ({xi > 0}), winning probability p∗i = pi(µ
∗
1, µ

∗
2), and expected payoff48

Π∗i = p∗iVi− xi, as well as the designer’s revenue R = x1 + x2. An equilibrium µ∗ is an all-pay auc-49

tion equilibrium if it shares these characteristics with the unique equilibrium of the corresponding50

all-pay auction (Alcade and Dahm, 2010).51

Let ω = V2/V1. The following three propositions summarize much of the existing equilibrium52

characterizations.53

Proposition 1. (Mills, 1959; Pérez-Castrillo and Verdier, 1992; Nti, 1999, 2004; Cornes54

and Hartley, 2005) A pure-strategy equilibrium exists if and only if r ≤ 1 +ωr. This equilibrium is55

interior, and unique within the class of pure-strategy equilibria.356

Proposition 2. (Baye et al., 1994; Alcade and Dahm, 2010; Ewerhart, 2015, 2016) For any57

r ≥ 2, there exists an all-pay auction equilibrium. Moreover, for r > 2, any equilibrium is an all-pay58

auction equilibrium, and both players randomize.59

Proposition 3 (Alcade and Dahm, 2010; Wang, 2010). For any r ∈ (1 + ωr, 2], there exists an60

equilibrium in which player 1 chooses a pure strategy, while player 2 randomizes between zero and a61

positive effort.62

For convenience, the cases captured by Propositions 1 through 3, respectively, will be referred to as63

the pure, mixed, and semi-mixed cases. See Figure 1 for illustration.464

65

Figure 1: The parameter space.66

3For homogeneous valuations and r ≤ 2, the equilibrium is known to be unique even within the class of all equilibria.
4Note the overlap between the cases. Indeed, for r = 2 and ω = 1, the all-pay auction equilibrium is in pure strategies.

Further, for r = 2 and ω < 1, the semi-mixed equilibrium is an all-pay auction equilibrium.
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3. Uniqueness67

The following result is key to all what follows.68

Proposition 4. For any r ≤ 2, there is precisely one equilibrium.69

Proof. Assume first that r ≤ 1 + ωr. By Proposition 1, there exists an interior pure-strategy70

equilibrium (x∗1, x
∗
2). Moreover, the only candidate for an alternative best response to x

∗
1 is the zero71

bid (Pérez-Castrillo and Verdier, 1992; Cornes and Hartley, 2005). Since equilibria in contests are72

interchangeable (cf. the Appendix), the support of any alternative equilibrium strategy must be a73

subset of {0, x∗2}. However, player 1’s first-order necessary condition for the interior optimum,74

∂p1(x
∗
1, x

∗
2)

∂x1
V1π2 − 1 = 0, (2)75

holds for π2 = 1, so that it cannot hold for π2 < 1. By an analogous argument, necessarily π1 = 176

and, hence, the equilibrium is unique in this case. Assume next that r > 1 + ωr. By Proposition 3,77

there exists a semi-mixed equilibrium in which player 1 uses a pure strategy x∗1 > 0, while player 278

randomizes, choosing some x2 = x∗2 with probability π2 ∈ (0, 1), and x2 = 0 otherwise. As above,79

it follows that player 2’s best-response set is {0, x∗2}. Any alternative equilibrium strategy could,80

therefore, only use a different probability π2 of randomization across the set {0, x∗2}. But this is81

impossible in view of (2), which must hold also in the semi-mixed case. Moreover, by the construction82

of the semi-mixed equilibrium (Alcade and Dahm, 2010; Wang, 2010), player 1’s best-response set83

is the same as in the associated pure-strategy equilibrium in the contest Ĉ = C(V̂1, V2, r), with V̂1 =84

V2/(1 − r)1/r. Hence, x∗1 is the unique best response, and uniqueness of the equilibrium follows as85

above. �86

Proposition 4 implies, in particular, that for r = 2, there does not exist any equilibrium other than87

the all-pay auction equilibrium identified by Alcade and Dahm (2010, Ex. 3.3).588

Define rent dissipation as the fraction φi = xi/Vi of the valuation spent by player i. In the pure89

and mixed cases, φi is known to be identical for the two players, with φ ≡ φ1 = φ2 being strictly90

increasing in ω. As noted by Wang (2010), this extends to the semi-mixed case, where91

φ = α(r)
ω

2
, (3)92

5Unfortunately, however, the argument does not deliver uniqueness for r > 2 because the best-response set is countably
infinite in that case.
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with93

α(r) =
2

r
(r − 1)

r−1
r . (4)94

The present analysis shows that φ is globally strictly increasing in ω for any r ∈ (0,∞), regardless of95

the equilibrium.96

4. Comparative statics97

Table I provides an overview of the comparative statics of the equilibrium.6 As can be seen, the98

comparative statics of the semi-mixed equilibrium with respect to V1 and V2 is identical to that of99

the all-pay auction. The comparative statics of the semi-mixed equilibrium with respect to r is as100

follows. As the contest becomes more decisive, expected efforts, player 2’s participation probability,101

and revenue are all strictly declining towards the respective all-pay auction levels. In contrast, player102

1’s winning probability and expected payoff are both strictly increasing towards the respective all-pay103

auction levels.104

105

Table I: Comparative statics.106

One can check that all the equilibrium characteristics listed in the table depend continuously on107

parameters. In other words, there are no jumps in the possible transitions between pure, semi-mixed,108

and mixed equilibria. This allows deriving global comparative statics results. For example, Yildirim109

(2015) has made the intuitive observation that, if the contest technology exhibits decreasing returns,110

the weaker player never prefers a more decisive contest. But, as dΠ∗2/dr ≤ 0 holds globally, the same111

conclusion holds for technologies with constant or increasing returns.112

6The table summarizes and extends the results of Nti (1999, 2004), Wang (2010), and Yildirim (2015).
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5. Robustness113

So far, we assumed that p01 = p02 = 0.5. However, as our next result shows, this assumption is not114

crucial.115

Proposition 5. The equilibrium set remains unchanged when p01, p
0
2 ∈ [0, 1] and p01 + p02 ≤ 1.116

Proof. Let µ∗ = (µ∗1, µ
∗
2) be an equilibrium under the modified rules that is not an equilibrium in C.117

Since mutual inactivity cannot occur with positive probability in µ∗, some player i finds a deviation118

to zero profitable in C, but not profitable under the modified rules. Moreover, µ∗j , with j 6= i, must119

have an atom at zero, and p0i < 0.5. But then, player i has a profitable deviation to some small xi > 0120

both in C and under the modified rules. Contradiction! Conversely, suppose that µ∗ = (µ∗1, µ
∗
2) is121

an equilibrium in C that is not an equilibrium under the modified rules. Then some player i finds122

a deviation to zero profitable under the modified rules, yet not profitable in C. Moreover, player j’s123

mixed strategy µ∗j , with j 6= i, necessarily has an atom at zero. Given Propositions 1 and 4, this is124

feasible only if i = 1 and r > 1 +ωr. In the semi-mixed case, however, bidding zero yields a payoff for125

player 1 of126

Π1 = p01V1(1− π2) ≤ V1(1− π2) = V1 −
V2

(r − 1)1/r
, (5)127

which is weakly less than128

Π∗1 =

{
π2

(x∗1)
r

(x∗1)
r + (x∗2)

r
+ 1− π2

}
V1 − x∗1 = V1 −

2(r − 1)
r−1
r

r
V2, (6)129

because 2(r− 1)/r ≤ 1. Similarly, in the mixed case, Π∗1 = V1− V2, whereas a deviation to zero yields130

only Π1 = p01V1(1− π2) ≤ V1 − V2. Contradiction! �131

6. Optimally biased contests132

Suppose now that a designer may inflate or deflate player 2’s effort by a factor λ > 0. I.e., players’133

probabilities of winning are given in the interior by134

pλ1(x1, x2) =
xr1

xr1 + (λx2)r
(7)135

and pλ2 = 1 − pλ1 . Let φ(λ) denote the rent-dissipation in the contest Cλ = C(V λ
1 , V

λ
2 , r), where136

V λ
1 = max{V1, λV2} and V λ

2 = min{V1, λV2}. Since players act as if in Cλ, the revenue from the137
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biased contest is given by138

R(λ) = (V1 + V2)φ(λ). (8)139

Franke et al. (2014) obtained a dominance result. Epstein et al. (2013) compared pure-strategy140

equilibria directly with all-pay auction equilibria. The following result ranks a continuum of contest141

technologies, explicitly taking into account the possibility of semi-mixed equilibria.142

Proposition 6. For any r ∈ (0,∞), the revenue-maximizing bias is λ∗ = 1/ω, with143

R(λ∗) = min{r
2
, 1} · V1 + V2

2
(9)144

Thus, the revenue from the optimally biased contest is strictly increasing for r ≤ 2, and constant for145

r ≥ 2.146

Proof. Suppose first that r ≤ 2. In a pure-strategy equilibrium, maximizing147

R(λ) =
rV r
1 (λV2)

r(V1 + V2)

(V r
1 + λrV r

2 )2
(10)148

yields the solution λ∗ = 1/ω, with R(λ∗) = (r/4) · (V1 + V2). For a semi-mixed equilibrium,149

R(λ) =


λω
2 α(r)(V1 + V2) if λω < (r − 1)1/r

1
2λωα(r)(V1 + V2) if λω > (r − 1)−1/r.

(11)150

In the first case, R(λ) is strictly increasing in λ. In the second case, R(λ) is strictly declining in λ.151

Hence, it is strictly suboptimal to implement a semi-mixed equilibrium. For r > 2, the claim has been152

proved by the author in prior work (2016). �153

Appendix A. An auxiliary result154

Two equilibria (µ∗1, µ
∗
2) and (µ∗∗1 , µ

∗∗
2 ) are called interchangeable if (µ∗1, µ

∗∗
2 ) and (µ∗∗1 , µ

∗
2) are equi-155

libria as well.156

Lemma A.1. Equilibria in two-player contests are interchangeable.157

Proof. The proof is a straightforward adaptation on an argument detailed in Klumpp and Polborn158

(2006, p. 1104), and therefore omitted. �159
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