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Estimating location values of agricultural land* 

Georg Helbing**, Zhiwei Shen, Martin Odening, Matthias Ritter 
Department of Agricultural Economics, Humboldt-Universität zu Berlin 

Abstract 

“Bodenrichtwerte” reflect the average location value of land plots within a specific area. They 
constitute an important source of information that contributes to price transparency on land 
markets. In Germany, “Bodenrichtwerte” are provided by publicly appointed expert groups (Gu-
tachterausschüsse). Using empirical data from Mecklenburg-Western Pomerania between 
2013 and 2015, this article examines the relation between “Bodenrichtwerten” and statistically 
determined location values. It turns out that “Bodenrichtwerte” tend to underestimate location 
values of arable land by 11.5 percent on average. This underestimation can be traced back to 
the pronounced increase of land prices in the observation period. As an alternative to the ex-
pert-based determination of location values, we suggest a nonparametric smoothing procedure 
that rests on the Propagation-Separation Approach. The application of this data-driven proce-
dure achieves an accuracy comparable to that of official “Bodenrichtwerte” at the one-year 
ahead prediction of location values without the requirement of expert knowledge. 
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1. Introduction 

Information about realized prices is crucial for the price formation process on land markets. An 
important source of information that contributes to price transparency on land markets are 
location values, estimates for which (referred to as Bodenrichtwerte, BRW) are provided by 
publicly appointed expert groups (Gutachterausschüsse) in Germany. According to the Federal 
Building Code (Baugesetzbuch), BRW are intended to reflect the average location value (per 
square meter) of pieces of land. The purpose of these values is to reduce transaction costs 
related to real estate transactions by offering reliable benchmarks for purchases and taxation.  

Unfortunately, three features of land markets impede the accurate estimation of location val-
ues. First, land markets are characterised by a relatively low liquidity. For example, in Germany 
on average only less than one percent of the agricultural area is sold each year (STATISTISCHES 
BUNDESAMT 2015). Actually, it may happen that only a few or even no land transactions take 
place within a particular sub-district (Gemarkung) during one or two years. As a consequence, 
estimating location values typically warrants pooling observations from sub-districts for which 
one can assume a similar location value. In practice, this entails a bias-variance trade-off: by 
including weighted observations from other sub-districts, one can reduce variance, but if the 
assumption of equal location value is violated, considerable bias may be incurred. The second 
feature that impedes estimation of location values is that land is an extremely heterogeneous 
asset: Its value depends on a variety of attributes and conditioning variables, such as soil 
quality, plot size, land use systems, or distance to cities1. This heterogeneity complicates a 
direct comparison of observed prices. The third characteristic that complicates the determina-
tion of BRW is the dynamics inherent to land markets. Changes in the location value of land 
may arise from changes in interest rates or agricultural product prices, technological change, 
or changes in legislation. To capture these dynamics, BRW are updated every two years at 
the latest. The method to be applied in this task is comparative analysis, i.e., pooling prices of 
similar plots and adjusting prices for deviations of the underlying plot to make them compara-
ble. For this purpose, homogeneous sub-districts showing similar price determining attributes, 
so-called location value zones (Bodenrichtwertzonen), are defined.  

In view of the aforementioned characteristics of land markets, it is quite obvious that expert 
groups face a challenging statistical estimation problem. Observed transactions have to be 
filtered to reflect market conditions, i.e., purchases between family members, forced sales, or 
seizure should be ruled out. Moreover, prices that are untypical need to be identified as outliers 
and either adjusted or dropped. Finally, observed transactions need to be ‘translated’ to reflect 
typical land characteristics of the sub-district, which implies that observed prices have to be 
weighted or otherwise adjusted. While there are some clear procedures for filtering, much in-
tuition is required for adjusting and weighting observed land prices when updating the location 
value estimates. In practice, expert knowledge comes into play at this point. In the case that 
no sufficient amount of transactions for pooling is available, ‘deductive methods’ may be ap-
plied (BUNDESMINISTERIUM FÜR VERKEHR, BAU UND STADTENTWICKLUNG 2011). These include 
the consideration of past location values and general market trends. 

From a scientific point of view, the question arises if BRW actually reflect location values and 
how the procedure applied by the experts can be assessed. In particular, it would be interesting 
to analyse if BRW show systematic biases and if so, where and why these biases occur2. Any 

                                                
1 See HÜTTEL ET AL. (2013) and the literature cited therein for an overview on land price determinants. 
2 Biases of BRW could be rooted in the underlying methodological procedure. Apart from that, expert 
groups might have a tendency to update BRW conservatively in phases of booming land prices to 
dampen further price increases. 
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answer to these questions has to cope with the problem that location values are hypothetical 
values and thus unobservable. Nonetheless, given their definition, one would expect that BRW 
do not systematically deviate from realized prices in a location value zone. 

This paper contributes to the evaluation of BRW as indicators of location values of agricultural 
land. However, we do not confine our analysis to a comparison of BRW and sample statistics 
of observed land prices. Rather, we propose a statistical smoothing procedure as a data driven 
alternative to the expert-based approach. More specifically, we make use of an adaptive 
smoothing procedure that has been introduced as the “Propagation-Separation Approach” 
(PSA) by POLZEHL AND SPOKOINY (2006) into the literature. This method was originally devel-
oped as “Adaptive Weights Smoothing” in the context of image denoising (POLZEHL AND 
SPOKOINY 2000). Recently, it has also been used in geology for the estimation of seismic pa-
rameter fields (GITIS ET AL. 2015) and in econometrics for the estimation of land values in an 
urban context (KOLBE ET AL. 2015). PSA is a nonparametric regression method that allows 
separating the underlying structure in the data from distorting noise by means of an iterative 
locally adaptive smoothing algorithm. Unlike conventional smoothing algorithms, such as fixed-
bandwidth kernel regression, PSA does not only consider the distance between two locations 
when determining the weight of observations; rather, it adds a second component that takes 
into account the difference in resulting regression estimates. The attractiveness of PSA is 
based on an appealing statistical property: The estimator obeys a “small modelling bias con-
dition” meaning that it shows the smallest variance given a predetermined bias which can be 
controlled by the econometrician (POLZEHL AND SPOKOINY 2006). Thus, PSA addresses the 
variance-bias trade-off in pooling observations from different sub-districts. Previous applica-
tions have documented that PSA performs well, if data show large homogeneous zones that 
are separated by sharp discontinuities (BECKER AND MATHÉ 2013). In contrast, SHEN ET AL. 
(2016) report that PSA has difficulties to identify outliers in otherwise homogeneous data. Thus, 
it is not clear whether PSA constitutes a superior alternative to the expert-based determination 
of location values. The application and the evaluation of this rather new statistical method con-
stitutes the second contribution of our study. 

The remainder of the article is organized as follows: Section 2 describes the land transaction 
data from Mecklenburg-Western Pomerania that we use as the empirical basis of our analysis. 
Afterwards, we derive a benchmark for assessing the performance of location value estima-
tors. In Section 3, we analyse whether BRW show a significant bias and what factors this 
hinges on. In particular, we are interested in whether there are any significant differences in 
bias between different expert groups. In Section 4, we introduce the PSA method in general 
and demonstrate how it can be applied to our data. Section 5 presents the results of an out-
of-sample forecast application, which compares the performance of BRW and PSA at the one-
year ahead prediction of location value. The paper ends with an assessment of the current 
practice of calculating BRW and answers the question if the use of formal statistical procedures 
can improve the informational content of BRW. 

2. Empirical Data and Derivation of a Benchmark 

In this study, we use a data set of purchases of arable land in Mecklenburg-Western Pomera-
nia through the years 2013–2015.3 We drop some transactions that are labelled as ‘unsuited 
to analysis’, since they took place between family members or show other irregularities that 
mark them as not being representative. We also cut off the lowest and highest percentiles of 

                                                
3 Data source: Landesweite Datensammlung des Oberen Gutachterausschusses für Grundstücks-
werte im Land Mecklenburg-Vorpommern (OGAA M-V) 
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the prices for each year from 2013-15. This serves to remove extreme prices, which are unre-
alistic for agricultural land and are therefore most likely affected by some sort of error, e.g., a 
misplaced decimal point, or are a very untypical sale. Altogether, we obtain 4,374 observations 
over three years. The summary statistics in Table 1 depict an almost linear increase in mean 
land prices of about 0.23 EUR/m² from 2013 to 2015. The spatial unit of analysis that is used 
for location value estimation is the sub-district (Gemarkung), a historic administrative unit that 
is usually situated at a sub-municipality level. In Mecklenburg-Western Pomerania, there are 
3,557 sub-districts altogether, which implies that in most years there is not even one observa-
tion per sub-district available. This gives rise to the necessity of using observations from sev-
eral years for location value prediction. Experts may use deductive methods and their experi-
ence for this purpose. For PSA, we will pool time-adjusted prices from 2013 and 2014 as the 
basis for predicting the location values of 2015.  

Table 1. Summary statistics of observed purchase prices, plot size and soil quality of 
sold pieces of land 

Summary 
statistics 

Plot 
size 
(ha) 

Soil 
quality 

Prices 
(EUR/m²) 

Prices 2013 
(EUR/m²) 

Prices 2014 
(EUR/m²) 

Prices 2015 
(EUR/m²) 

Mean 8.89 38.18 1.64 1.43 1.64 1.92 

Standard 
Deviation 19.94 8.14 0.76 0.66 0.72 0.82 

Observations 4,374 4,278 4,374 1,651 1,479 1,244 

Note: Soil quality is measured on a scale from 0 to 120 in ascending order. Different total 
counts result from missing soil quality values in the data set. In the subsequent analyses, the 
largest possible datasets are used. 

In order to assess the predictive performance of BRW and PSA, we need to establish a bench-
mark, given that the true location values are not observable. We call this benchmark empirical 
location values (ELV). An important property of ELV is that by design they are an unbiased 
estimator of location value. Briefly, they are obtained by calculating the average price of a sub-
district in a given year. However, we first perform an adjustment of the observed purchase 
prices. This step serves to reduce the variance of ELV by shifting observed prices towards the 
expected value, which is particularly useful to mitigate extreme prices and to some extent 
should compensate the fact that in many sub-districts only few transactions are observed per 
year. Adjustment consists in subtracting from the observed prices the effects of certain individ-
ual plot characteristics, e.g., an above-average fertility, so that we obtain the price that would 
have been realised had the transacted plot been ‘typical’ for its sub-district. 

To calculate the effects of conditioning variables, we set up a linear regression model for (log) 
land-prices. We consider soil quality and plot size as covariates. Soil quality is known to have 
a considerable influence on land prices (e.g., HENNIG ET AL. 2014). Plot size on the other hand 
is included because we hypothesize that large plot sizes tend to be sold by the federal trust 
(BVVG) that is in charge of administrating formerly state owned land. It is not unlikely that the 
prices from these sales differ from sales among private parties (HÜTTEL ET AL. 2016). Given 
the observed linear trend in our data, we also account for temporal effects by including time 
dummy variables. Hence, we fit the following log-linear regression model to our data (see next 
paragraph for details): 
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 log�𝑝𝑝𝑖𝑖,𝑗𝑗,𝑡𝑡� =  𝛼𝛼𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡 +  𝛽𝛽𝑞𝑞𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝛾𝛾𝐼𝐼𝑖𝑖,𝑗𝑗,𝑡𝑡,2014 + 𝛿𝛿𝐼𝐼𝑖𝑖,𝑗𝑗,𝑡𝑡,2015 + 𝑏𝑏 + 𝜀𝜀𝑖𝑖,𝑗𝑗,𝑡𝑡 (1) 

where, 𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡 denotes plot size of transaction 𝑖𝑖 in sub-district 𝑗𝑗 in year 𝑡𝑡, 𝑞𝑞𝑖𝑖,𝑗𝑗,𝑡𝑡 denotes the corre-
sponding soil quality, 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑡𝑡,2014 and 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑡𝑡,2015 are time dummy variables indicating the year the 
transaction took place in, and 𝑏𝑏 is a constant. The subsequent adjustment step corrects actual 
prices for effects of above-average or below-average values of soil quality and plot size: 

 log (𝑝𝑝�𝑖𝑖,𝑗𝑗,𝑡𝑡) = log (𝑝𝑝𝑖𝑖,𝑗𝑗,𝑡𝑡) −  𝛼𝛼��𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡  −  𝑠𝑠𝑗𝑗� − �̂�𝛽(𝑞𝑞𝑖𝑖,𝑗𝑗,𝑡𝑡 − 𝑞𝑞𝑗𝑗) (2) 

where 𝑝𝑝�𝑖𝑖,𝑗𝑗,𝑡𝑡 denotes adjusted prices. We determine average soil quality 𝑞𝑞𝑗𝑗 and average plot 
size 𝑠𝑠𝑗𝑗 of sub-district 𝑗𝑗 by taking the mean soil quality and plot size of all sold plots in that sub-
district from 2013–15 (see Table 1 for summary statistics). Note that we do not adjust for tem-
poral effects, because we want to estimate time-varying location values. In a final step, the 
ELV 𝜃𝜃�𝑗𝑗,𝑡𝑡 of sub-district 𝑗𝑗 in year 𝑡𝑡 is derived by retransforming the adjusted log-price with the 
exponential and taking the sub-district- and year-wise mean of the adjusted prices: 

 
𝜃𝜃�𝑗𝑗,𝑡𝑡 =

1
𝑛𝑛𝑗𝑗,𝑡𝑡

�𝑝𝑝�𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑛𝑛𝑗𝑗,𝑡𝑡

𝑖𝑖=1

 (3) 

where 𝑛𝑛𝑗𝑗,𝑡𝑡 denotes the number of observations in sub-district j in year t. 

The model in Eq. (1) is estimated with OLS yielding highly significant effects for all covariates, 
as displayed in Table 2. The effects of the years 2014 and 2015 reflect the upward trend of 
land prices observed in our data. Soil quality has a positive effect on land prices as expected. 
Plot size, too, shows a positive effect. We performed a Beusch-Pagan test confirming that the 
residuals are homoscedastic (p-value 0.0494).  We are aware that the rather simple model in 
Eq. (1) may not capture heterogeneity of land prices completely, but the moderate model fit 
suggests that ELV constitute a fair approximation of the true location value. 

Table 2. Regression model for price adjustment 

Covariate Effect (EUR/m²) Standard error 

Intercept -0.7142*** 0.0326 

Year 2014 0.1327*** 0.0156 

Year 2015 0.2881*** 0.0163 

Soil Quality 0.0243*** 0.0008 

Plot Size (ha) 0.0044*** 0.0000 

Note: The effects refer to log-prices. R² = 0.26. *** denotes significance at the 1 percent 
level. 

To measure the performance of a location value predictor, we use the mean squared error 
(MSE) and the bias, as explained in the following. The calculation basis for these measures is 
the so-termed ‘observed deviation’, which denotes the deviation 𝜃𝜃�𝑗𝑗,𝑡𝑡 −  𝜃𝜃�𝑗𝑗,𝑡𝑡 of a predicted value 
𝜃𝜃�𝑗𝑗,𝑡𝑡 from the ELV 𝜃𝜃�𝑗𝑗,𝑡𝑡, that we observe for each sub-district 𝑗𝑗 and year 𝑡𝑡. Being a common 
measure of predictive performance, the MSE is usually computed with regard to the true value 
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that is to be estimated. Seeing as true location values are not observable, however, we can 
only compute the MSE with respect to ELV. The relationship between the MSE with respect to 
a benchmark and the MSE with respect to the true location value can be derived from the 
decomposition 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀 ��𝜃𝜃� − 𝜃𝜃�2� =  𝑀𝑀 ��𝜃𝜃� − 𝜃𝜃��2� + 𝑀𝑀 ��𝜃𝜃� − 𝜃𝜃�2� + 2𝑀𝑀��𝜃𝜃� − 𝜃𝜃���𝜃𝜃� − 𝜃𝜃��.  

More than in the MSE itself, we are interested in the MSE difference between two predictors 
𝜃𝜃�1  and 𝜃𝜃�2 . We have 𝑀𝑀𝑀𝑀𝑀𝑀2 −𝑀𝑀𝑀𝑀𝑀𝑀1 = 𝑀𝑀 ��𝜃𝜃�2 − 𝜃𝜃��2� − 𝑀𝑀 ��𝜃𝜃�1 − 𝜃𝜃��2� + 2𝑀𝑀��𝜃𝜃�2 − 𝜃𝜃�1��𝜃𝜃� − 𝜃𝜃��. If 
the deviations  �𝜃𝜃�2 − 𝜃𝜃�1�  and �𝜃𝜃� − 𝜃𝜃�  have a low correlation, then 𝑀𝑀��𝜃𝜃�2 − 𝜃𝜃�1��𝜃𝜃� − 𝜃𝜃�� ≈
𝑀𝑀��𝜃𝜃�2 − 𝜃𝜃�1��𝑀𝑀��𝜃𝜃� − 𝜃𝜃�� = 0.4 It follows that the MSE with respect to the benchmark (i.e., com-
puted on the basis of the observed deviation) is equivalent to the MSE with respect to the true 
location value for comparing predictors. Therefore, we use the MSE with respect to ELV as a 
measure of performance in this study. Finally, we are interested in the bias of a predictor, which 
we estimate with the mean observed deviation. 

3. Analysing BRW Bias and Deviations from Empirical Location Values 

In this section, we will have a closer look at BRW as one-year ahead predictor with the goal of 
assessing bias and identifying the factors that explain the observed deviation. It is important 
to note that our data set does not contain BRW for all sub-districts, so we have to perform this 
analysis on the subset (‘BRW test set’) of sub-districts and years for which we have a BRW 
and at least one suitable transaction. This leaves us with 900 (in 2013), 664 (in 2014) and 808 
(in 2015) sub-districts, respectively. 

Figure 1. Distribution of ELV and BRW, as well as observed deviation in the BRW test 
set 

 
  

                                                
4 We have 𝑀𝑀��𝜃𝜃� − 𝜃𝜃�� = 0, because ELV is an unbiased location value estimator. 
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Figure 1 displays boxplots of ELV, BRW, and the observed deviation of BRW. We find that 
compared to ELV, BRW show a smaller variability as well as a lower price level, which points 
at an underestimation of location values. We therefore expect to find a significant bias for BRW. 
For the test set, we obtain for BRW a bias of −0.22 EUR/m². This means an underestimation 
by 11.5 percent in relation to average land prices in 2015. In order to infer whether this figure 
is statistically significant, we perform a one-sample t-test for the null hypothesis of zero bias. 
From the resulting p-value < 10−15 we conclude that BRW has a significant, negative bias. To 
make our result more robust to violations of the normality assumption underlying the t-test, we 
also perform Wilcoxon’s signed-rank test for the null-hypothesis of the median being equal to 
zero. This test only requires the weaker assumption that the distribution of the observed devi-
ation is symmetric, which is approximately given, as illustrated by Figure 1. Here again we 
obtain a p-value < 10−15, which corroborates the previous result. This shows that BRW actu-
ally tend to underestimate location values. 

Figure 2. Mean deviation of BRW from ELV per sub-district from 2013 to 2015 

 
Note: Categories are quintiles. The blank sub-districts are owing to a lack of BRW values 
and/or transactions for our analysis. 

Figure 2 depicts the spatial distribution of observed differences between BRW and ELV. Ap-
parently, there are some regional clusters, in particular in the central South and the North-
West. This observation suggests that systematic factors exist that explain the bias of BRW. To 
analyse the observed deviation of BRW from ELV further, we develop a linear regression 
model for the absolute value of the observed deviation – this does not cover the direction of 
the deviation, but only its magnitude. In order to determine what factors lead to an over- or 
underestimation, we furthermore perform a logistic regression of the sign of observed deviation 
against the same factors. As explanatory variables, we again consider the indicators of soil 
quality and plot size, a time dummy and a categorical variable indicating which expert group 



8 

determined the BRW.5 The rationale of choosing these covariates is as follows: One might 
conjecture that experts tend to oversmooth location values in areas with high soil quality, i.e., 
high land prices. Likewise, experts may have difficulties to smooth prices for small plots, which 
are often sold at high prices (per square meter). Moreover, since BRW are not continuously 
updated, they may lag behind the actual development of location values, particularly during a 
period of booming prices. Finally, the expert groups themselves may have an impact on the 
bias, because BRW are not calculated with a clear algorithm but involve personal judgements 
that may differ among expert groups. However, the effect of this variable has to be interpreted 
with caution, because it is difficult to separate the impact of experts from unobserved regional 
effects. As both expert group and year are categorical variables and we use a model without 
a constant, we have to exclude one dummy variable from the model. We chose the time 
dummy for 2013, which is then the reference year. All expert group dummies are included so 
that they can be interpreted as regional fixed effects. To better quantify the regional effects, 
we use centred versions of the variables ‘average plot size’ and ‘average soil quality' by sub-
tracting their individual means.  

Table 3 summarises the results of the regression model estimated with OLS. Both years as 
well as average plot size and average soil quality are significant at least at the 5 percent level. 
Note that we have already adjusted ELV for the effects of soil quality and plot size of individual 
transactions. The effects of this regression model therefore refer to properties of a sub-district, 
not of transactions. The effect of average plot size is significant at the 5 percent level, yet – at 
less than 0.01 EUR/ha and 0.05 EUR for a sub-district with mean average plot size 𝑠𝑠𝑗𝑗  of 
9.77 ha – rather small in magnitude. Average soil quality has an effect of 0.17 EUR/m² for a 
sub-district of mean average soil quality 𝑞𝑞𝑗𝑗 of 38.94. Temporal effects are in the same order of 
magnitude as average soil quality. The magnitude of bias in BRW increases with every year, 
which we attribute to the linear increase in mean land prices that we have observed between 
2013 and 2015. It seems as though BRW do not sufficiently take market trends into account. 
As for expert effects, we find that all expert groups show effects significant at the 1 percent 
level, ranging from 0.36 EUR/m² to 0.48 EUR/m². This means that there is a significant devia-
tion in 2013 for all expert groups, which even increases in the following years. To determine, 
however, if a systematic over- or underestimation is present, we perform a logistic regression.  

Table 4 summarises the effects of our covariates on the probability of BRW overestimating 
(positive sign) or underestimating (negative sign) location value. We find that average plot size 
shows a significant negative effect, meaning that the larger transacted plots in a sub-district 
on average, the more does BRW tend to underestimate its location value. The results for av-
erage soil quality do not show any significant effect for the direction of the bias. Finally, we see 
that all expert groups tend to underestimate location values in 2013, even though this effect is 
comparatively weak and not significant for Group 4. In the years 2014 and 2015, no significant 
change occurs in this regard. 

                                                
5 There are six expert groups in our BRW test set, with 506, 300, 462, 389, 259, and 552 observations, 
respectively. 
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Table 3. Coefficients of BRW  
deviation OLS linear regression. 

Note: Dependent variable is the absolute value 
of deviation. R² = 0.603. ** and *** denote signifi-
cance at the 5 and 1 percent levels, respec-
tively.  

Covariate Coeff. Std. error 

Year 2014 0.0467** 0.0213 

Year 2015 0.1179*** 0.0197 

Avg. Plot Size (ha) 0.0051*** 0.0000 

Avg. Soil Quality 0.0043*** 0.0015 

Expert Group 1 0.4502*** 0.0213 

Expert Group 2 0.4583*** 0.0300 

Expert Group 3 0.4779*** 0.0224 

Expert Group 4 0.4535*** 0.0268 

Expert Group 5 0.4051*** 0.0281 

Expert Group 6 0.3600*** 0.0231 

Table 4. Coefficients of BRW  
deviation logistic regression. 

Note: Dependent variable is the sign of deviation 
(1 = non-negative, 0 = negative). The model has 
been fit with ML. Nagelkerke pseudo-R² = 0.054. 
*** denotes significance at the 1 percent level.  

Covariate Coeff. Std. error 

Year 2014 -0.0101 0.1103 

Year 2015 0.0598 0.1030 

Avg. Plot Size (ha) -0.0349*** 0.0000 

Avg. Soil Quality -0.0049 0.0077 

Expert Group 1 -0.6448*** 0.1119 

Expert Group 2 -0.8678*** 0.1634 

Expert Group 3 -0.4858*** 0.1162 

Expert Group 4  -0.0799 0.1374 

Expert Group 5 -0.9822*** 0.1535 

Expert Group 6 -0.6232*** 0.1204 

To summarise the findings of this section, our analysis shows that there is a significant negative 
bias in BRW – meaning that experts systematically underestimate location value in our BRW 
test set. This underestimation may be linked to the fact that in the years covered by our study, 
we observe a nearly linear increase in land prices, suggesting that experts do not sufficiently 
take the trend into consideration, which is corroborated by our regression analysis of BRW 
deviation from ELV. This analysis has further shown that high average soil quality in a sub-
district likewise increases deviation, but in both directions; market trend therefore does not 
appear to be the only source of erroneous assessment, but it accounts more than other factors 
for the observed bias. Finally, we have found some heterogeneity between expert groups, 
which can also be interpreted as regional heterogeneity. 

4. A Propagation-Separation Approach for Estimating Location Value 

In the introduction to this paper, we have pointed out that data scarcity requires to pool obser-
vations from different sub-districts to estimate location values. Depending on how the pooling 
is carried out, it trades a reduced variance for an increased bias. In the previous section, we 
have seen that BRW show a relatively low variance compared to the benchmark, but at the 
same time are afflicted by a significant bias. In the present section, we introduce a statistical 
procedure, which unlike BRW selects the sub-districts used for pooling in a purely data-driven 
way for every sub-district. 



10 

The “Propagation-Separation Approach” (PSA; POLZEHL AND SPOKOINY 2006) is an iterative, 
adaptive procedure based on local constant regression. The underlying idea of this approach 
is to find for every point 𝑥𝑥𝑖𝑖 a maximal local neighbourhood in which the local constant para-
metric assumption is not violated – in other words, in which we can assume equal location 
value. At the beginning of the procedure, a small neighbourhood 𝑈𝑈0(𝑥𝑥𝑖𝑖) of every point 𝑥𝑥𝑖𝑖 is 
considered to estimate the location value 𝜃𝜃(𝑥𝑥𝑖𝑖).6 Afterwards, in each step 𝑘𝑘, we update the 
initial location value estimate by including new points 𝑥𝑥𝑗𝑗  from an extended neighbour-
hood 𝑈𝑈𝑘𝑘(𝑥𝑥𝑖𝑖); but those candidates 𝑥𝑥𝑗𝑗 are tested for homogeneous location value and only used 
for re-estimation of location value if the hypothesis of local homogeneity 𝜃𝜃(𝑥𝑥𝑖𝑖) = 𝜃𝜃(𝑥𝑥𝑗𝑗) is not 
rejected. This iterative procedure is continued until we reach a pre-defined maximal radius of 
the neighbourhood. 

The underlying local regression model for estimating the location values can be described as 

 𝑦𝑦𝑖𝑖 = 𝜃𝜃(𝑥𝑥𝑖𝑖) + 𝜖𝜖𝑖𝑖 ,         𝜖𝜖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑖𝑖2) (4) 

where 𝑦𝑦𝑖𝑖 denotes the observed log price of agricultural land, 𝑥𝑥𝑖𝑖 is a vector of explanatory vari-
ables which determine the distribution of observation 𝑦𝑦𝑖𝑖. Since we are interested in finding sub-
districts with homogeneous location values, 𝑥𝑥𝑖𝑖 simply refers to location coordinates [𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖] in 
our case.7 In a local regression model, the local parameter 𝜃𝜃(𝑥𝑥𝑖𝑖) can be estimated by the 
weighted maximum likelihood estimation where a nonnegative weight 𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑤𝑤𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖) ≤ 1  is 
given to each observation 𝑦𝑦𝑗𝑗, 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛. The corresponding local maximum likelihood esti-
mator for a fixed 𝑥𝑥𝑖𝑖 is given by: 

 
𝜃𝜃�(𝑥𝑥𝑖𝑖) = argmax

𝜃𝜃
�𝑤𝑤𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖)log𝑝𝑝�𝑦𝑦𝑗𝑗 ,𝜃𝜃�
𝑛𝑛

𝑗𝑗=1

, (5) 

where 𝑝𝑝(⋅,𝜃𝜃) denotes the density function. In the case of the density function 𝑝𝑝(⋅,𝜃𝜃) from the 
exponential family functions, for instance Gaussian distribution, POLZEHL AND SPOKOINY (2006) 
have shown that the explicit solution of (5) is in fact a Nadaraya-Watson estimator: 

 
𝜃𝜃�(𝑥𝑥𝑖𝑖) =

∑ 𝑤𝑤𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖)𝑦𝑦𝑗𝑗𝑛𝑛
𝑗𝑗=1

∑ 𝑤𝑤𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑗𝑗=1

. (6) 

As above mentioned, the PS approach is an iterative procedure, and in each iteration step, the 
local estimator is defined as a weighted mean of observations. Therefore, in iteration step 𝑘𝑘 
(i.e., within the neighbourhood  𝑈𝑈𝑘𝑘(𝑥𝑥𝑖𝑖)), the adaptive local estimator 𝜃𝜃�𝑘𝑘(𝑥𝑥𝑖𝑖) is 

 
𝜃𝜃�𝑘𝑘(𝑥𝑥𝑖𝑖) =

∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖)𝑦𝑦𝑗𝑗𝑛𝑛
𝑗𝑗=1

∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘 (𝑥𝑥𝑖𝑖)𝑛𝑛
𝑗𝑗=1

. (7) 

The main advantage of the PS approach arises from the construction of the weights 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖). 
The determination of weights in the PS approach not only considers the likeness of the data 
with the sub-district of interest, but also controls the bias possibly introduced from the exten-
sion of data samples. To be specific, the weights depend on the product of two components: 
the location component 𝐾𝐾loc and the homogeneity component 𝐾𝐾hom: 

                                                
6 For our analysis, the initial neighbourhood includes only 𝑥𝑥𝑖𝑖 itself. 
7 We use the coordinates of a sub-district’s centre point as coordinates of the sub-district. 
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 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘 = 𝐾𝐾loc�𝑙𝑙𝑖𝑖𝑗𝑗𝑘𝑘 �𝐾𝐾hom�𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 �, (8) 

where 𝐾𝐾loc(⋅) and 𝐾𝐾hom(⋅) are two kernel functions that are non-negative and strictly monoton-
ically decreasing on the support [0, 1], for example the  triangular kernel function. Similar to 
the standard nonparametric regression, the argument in the location component 𝐾𝐾loc is the 
Euclidean distance measure between the locations 𝑖𝑖 and 𝑗𝑗 divided by the bandwidth ℎ𝑘𝑘: 

 𝑙𝑙𝑖𝑖𝑗𝑗𝑘𝑘 =
𝜌𝜌(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
ℎ𝑘𝑘

 (9) 

On the other hand, 𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘  in the homogeneity component is a statistical penalty:  

 
𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 =

𝑇𝑇𝑖𝑖𝑗𝑗𝑘𝑘

𝜆𝜆
, (10) 

where 𝑇𝑇𝑖𝑖𝑗𝑗𝑘𝑘 is the test statistic for a constant local parametric estimate and 𝜆𝜆 is the critical value 
of the test statistic 𝑇𝑇𝑖𝑖𝑗𝑗𝑘𝑘. The homogeneity component 𝐾𝐾hom�𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 � becomes relevant for control-
ling the bias when extending the size of neighbourhood  𝑈𝑈𝑘𝑘(𝑥𝑥𝑖𝑖). To test the hypothesis of local 
homogeneity 𝜃𝜃(𝑥𝑥𝑖𝑖) = 𝜃𝜃(𝑥𝑥𝑗𝑗) at each step 𝑘𝑘, the estimates 𝜃𝜃�𝑖𝑖𝑘𝑘−1(𝑥𝑥𝑖𝑖) and 𝜃𝜃�𝑗𝑗𝑘𝑘−1�𝑥𝑥𝑗𝑗� obtained from 
the previous iteration is compared. Following POLZEHL AND SPOLOINY (2006) and BECK AND 
MATHÉ (2013), the test statistic 𝑇𝑇𝑖𝑖𝑗𝑗𝑘𝑘 is constructed based on the Kullback-Leibler divergence 
between the pointwise parameter estimates of the previous iteration step at two different points. 
Formally it states  

 𝑇𝑇𝑖𝑖𝑗𝑗𝑘𝑘 = 𝑁𝑁𝑖𝑖𝑘𝑘−1𝒦𝒦ℒ�𝜃𝜃�𝑖𝑖𝑘𝑘−1,𝜃𝜃�𝑗𝑗𝑘𝑘−1� (11) 

where 𝑁𝑁𝑖𝑖𝑘𝑘 = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑗𝑗=1 . The decision rule of the test requires to compare 𝑇𝑇𝑖𝑖𝑗𝑗𝑘𝑘 with the corre-

sponding critical values 𝜆𝜆. The null hypothesis of parameter homogeneity is rejected if 𝑇𝑇𝑖𝑖𝑗𝑗𝑘𝑘 > 𝜆𝜆. 

As a result, 𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 =
𝑇𝑇𝑖𝑖𝑗𝑗
𝑘𝑘

𝜆𝜆
> 1, 𝐾𝐾hom�𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 � = 0 and 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘 = 0, i.e., observation 𝑥𝑥𝑗𝑗  does not belong to 

 𝑈𝑈𝑘𝑘(𝑥𝑥𝑖𝑖) and will not be used to estimate 𝜃𝜃(𝑥𝑥𝑖𝑖).These two characteristics of PS approach are 
very desirable: it extends the homogeneous neighbourhood with non-zero weights to reduce 
the variance of the estimates, and separates every two regions with different parameter values 
to control the bias. 

In summary, the procedure for a fixed location 𝑥𝑥0 is provided as follows: 

1) Start with the smallest initial bandwidth ℎ0, compute the initial estimate 𝜃𝜃�0(𝑥𝑥𝑖𝑖) according to 
(6) with 𝑤𝑤𝑖𝑖𝑗𝑗0 = 𝐾𝐾loc�𝑙𝑙𝑖𝑖𝑗𝑗0 �. 𝑁𝑁𝑖𝑖0 = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗0 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑗𝑗=1  

2) For 𝑘𝑘 = 1, the bandwidth is extended to ℎ1. Calculate the components 𝑙𝑙𝑖𝑖𝑗𝑗1 = 𝜌𝜌(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)
ℎ1

 and 

𝑠𝑠𝑖𝑖𝑗𝑗1 =
𝑇𝑇𝑖𝑖𝑗𝑗
1

𝜆𝜆
= 𝜆𝜆−1𝑁𝑁𝑖𝑖0𝒦𝒦ℒ(𝜃𝜃�𝑖𝑖0,𝜃𝜃�𝑗𝑗0) . Then derive the adaptive weights 𝑤𝑤𝑖𝑖𝑗𝑗1 = 𝐾𝐾loc�𝑙𝑙𝑖𝑖𝑗𝑗1 �𝐾𝐾hom�𝑠𝑠𝑖𝑖𝑗𝑗1 � 

and estimate 𝜃𝜃�1(𝑥𝑥𝑖𝑖). 
3) For 𝑘𝑘 ≥ 2 , the bandwidth increase to ℎ𝑘𝑘 . Derive the adaptive weights 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘 =

𝐾𝐾loc�𝑙𝑙𝑖𝑖𝑗𝑗𝑘𝑘 �𝐾𝐾hom�𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 �  with 𝑙𝑙𝑖𝑖𝑗𝑗𝑘𝑘 = 𝜌𝜌(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)
ℎ1

 and 𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 =
𝑇𝑇𝑖𝑖𝑗𝑗
𝑘𝑘

𝜆𝜆
= 𝜆𝜆−1𝑁𝑁𝑖𝑖𝑘𝑘−1𝒦𝒦ℒ(𝜃𝜃�𝑖𝑖𝑘𝑘−1,𝜃𝜃�𝑗𝑗𝑘𝑘−1)  and 𝑁𝑁𝑖𝑖𝑘𝑘 =

∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑗𝑗=1  Then estimate 𝜃𝜃�𝑘𝑘(𝑥𝑥𝑖𝑖). 

4) The procedure stops if 𝑘𝑘 = 𝑘𝑘∗ , otherwise 𝑘𝑘 = 𝑘𝑘 + 1. 𝑘𝑘∗ indicates that the bandwidth ℎ𝑘𝑘 
reaches the pre-defined maximum bandwidth ℎ∗.  
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The crucial parameter of PS approach is the critical value 𝜆𝜆 that determines the number of 
observations to be used in the estimation of each location value. Greater values of 𝜆𝜆 allow the 
inclusion of more points into a homogeneous region, leading to a smoother parameter surface 
and potentially a higher bias at reduced variance. In fact, for 𝜆𝜆 → ∞, we obtain a non-adaptive 
kernel smoother. On the other hand, smaller values of 𝜆𝜆 will lead to a stricter selection of ho-
mogeneous regions and less points being included into the estimation. As a result, less avail-
able information is used and the variance of the estimate is generally higher. Due to the multi-
ple testing procedure in this adaptive algorithm, there is no well-defined choice of 𝜆𝜆 (KOLBE ET 
AL., 2015). POLZEHL AND SPOKOINY (2006) suggest performing Monte Carlo simulations of the 
relevant likelihood function with globally constant parameters on the design space. 𝜆𝜆 can then 
be chosen as the smallest value that ensures the homogeneity assumption holds everywhere 
with a high probability. For computing PSA estimates, we use the package ‘aws’ for the statis-
tical software R (POLZEHL 2016). Here, an adequate simulation-based choice of 𝜆𝜆 is provided 
automatically for a given set-up. 

5. Comparing BRW and PSA 

In this section, we compare the performance of BRW and PSA at the one-year ahead predic-
tions of location values. For this purpose, we use a training set for PSA based on adjusted 
prices from 2013 and 2014, and a test set of ELV from 2015 for validation purposes. As ex-
plained in Section 2, the low number of observations in 2014 requires that we pool data from 
2013 and 2014. Moreover, it is convenient that for obtaining our training set, we use the same 
procedure that we previously applied to compute ELV, but only taking into account observa-
tions from 2013 and 2014 since we cannot include information from the test set. In particular, 
we use Eq. (2) for price adjustment where we furthermore add the estimated temporal effect 𝛾𝛾� 
to observations from the year 2014. This approach to temporal pooling is very similar to the 
deductive methods available to land price experts. The resulting prices reflect the 2014 price 
level of typical plots. As with ELV, we compute the mean per sub-district and obtain a training 
set of 1,556 average prices that represent the initial location value estimates for PSA. There 
are, however, 3,557 sub-districts in Mecklenburg-Western Pomerania, so we do not have PSA 
estimates of the 2015 location values for all sub-districts; moreover, we do not have corre-
sponding BRW for all sub-districts, either. Consequently, we have to filter the 2015 ELV data 
by selecting only those sub-districts, for which we have a value in the PSA training set and a 
BRW to enable a fair comparison. This shrinks the number of sub-districts in the test set to 
502. 

As explained above, PSA has two parameters λ and ℎ𝑚𝑚𝑚𝑚𝑥𝑥 that control the threshold of the 
homogeneity test and the maximum distance of observations that are included in local estima-
tion, respectively. For our PSA baseline predictor, λ is set to 9.72 by suggestion of POLZEHL 
AND SPOKOINY (2006) (cf. Section 4). ℎ𝑚𝑚𝑚𝑚𝑥𝑥 can be selected such that for any cell on the grid, 
all other cells lie within the maximum distance. As we use a 100x100 grid, we set ℎ𝑚𝑚𝑚𝑚𝑥𝑥 to 150, 
which is slightly greater than the length of the grid’s diagonal. This is the configuration of our 
default PSA predictor ‘PSA1’. 

To demonstrate the sensitivity of the results to parameter choice, we also perform PSA with a 
reduced value of ℎ𝑚𝑚𝑚𝑚𝑥𝑥 (‘PSA2’) as well as with greater (‘PSA4’) and smaller (‘PSA3’) values of 
λ. Furthermore, we seek to account for the fact that expert-based estimates can leverage 
trends observed during the past years for prediction, whereas PSA is limited to synchronous 
data. To reflect this possibility, we combine PSA with a linear trend, based on the effect γ from 
the regression model in Eq. (1) fitted to the 2013/14 data. We compute this trend-adjusted 
predictor (‘PSA5’) as 𝜃𝜃

�

𝑒𝑒γ�
, where 𝜃𝜃� is the PSA baseline predictor. If no abrupt change in trend is 
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expected for the next year, this should improve the PSA estimate significantly. An overview of 
the predictors used in our analysis and of their characteristics is provided in Table 5. 

Table 5. Characteristics of the used predictors 

Predictor Description  

BRW Expert based location value 

PSA1 𝜆𝜆 = 9.72; ℎ𝑚𝑚𝑚𝑚𝑥𝑥 = 150 

PSA2 𝜆𝜆 = 9.72;  ℎ𝑚𝑚𝑚𝑚𝑥𝑥 = 10 

PSA3 𝜆𝜆 = 0.972;  ℎ𝑚𝑚𝑚𝑚𝑥𝑥 = 150 

PSA4 𝜆𝜆 = 97.2;  ℎ𝑚𝑚𝑚𝑚𝑥𝑥 = 150 

PSA5 PSA1 trend-adjusted 

Figure 3 contains in its upper panel boxplots of the distributions of empirical location values in 
the test set and the predicted values. The lower panel displays boxplots of the differences 
between predicted and empirical location values. The more a predictor’s deviations from ELV 
are centred around zero, the less bias it has. A first impression is that BRW as well as PSA 
predictors have a significant bias, with the single exception to the trend-adjusted PSA5. Alto-
gether, the distributions of observed deviation are quite similar. To formally compare the pre-
dictors, we compute the MSE and test whether the predictors (i) have a bias significantly dif-
ferent from zero and (ii) have a significantly smaller bias than BRW. For (i), we perform one-
sample t-tests assuming a non-homogeneous variance, and additional non-parametric Wil-
coxon’s signed-rank tests as in Section 3. For (ii), we carry out two-sample t-tests assuming a 
non-homogeneous variance (Welch test) and, to make the results robust against a violation of 
the t-test’s normality assumption, Wilcoxon’s rank-sum test.  
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Figure 3. Top: Empirical and predicted location values for 2015.  
Bottom: Observed deviation in 2015. 

 
Note: Observed deviation is the differences between predicted and empirical location value. 
1–5 denote PSA1–PSA5. 

Table 6 lists the results of these tests as well as the mean squared error (MSE) for every 
predictor. We find that all predictors except for PSA5 have a significant, negative bias in the 
same order of magnitude. The MSE, too, indicates a similar performance of all PSA predictors 
and BRW, with the MSE of PSA5 of course being lower due to its reduced bias. 
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Table 6. Estimated bias, test statistics of the applied tests and the MSE w.r.t.  

Predictor Bias 
(EUR/m²) 

Test (i): 
One-sample 
t-test 

Test (i):  
Wilcoxon 
signed rank 
test 

Test (ii): 
Welch 
test 

Test (ii):  
Wilcoxon 
rank sum 
test 

MSE 
(EUR/m²)² 

BRW -0.25 -8.1858*** 39368*** - - 0.5194 

PSA1 -0.26 -8.9151*** 38215*** -0.3835 125210 0.5081 

PSA2 -0.26 -8.8788*** 38513*** -0.3699 125480 0.5095 

PSA3 -0.25 -7.9708*** 38067*** -0.1433 124400 0.5725 

PSA4 -0.26 -8.8116*** 38818*** -0.3056 125700 0.5055 

PSA5 -0.03 -0.94044 62974 5.21*** 150250*** 0.4347 

Note: ELV for all predictors; *** denotes significance at the 1 percent significance level. 

In summary, our results show that PSA in various configurations can reach the same level of 
accuracy in terms of MSE and bias as BRW. Since, apart from PSA5, none of the PSA esti-
mators have shown less bias than BRW, we find that its data-driven approach to pooling does 
not show any apparent advantage over the fixed BRW zones. The substantial improvement of 
PSA5 achieved by considering linear trend on top of PSA indicates how strongly the general 
market trend from 2013–15 impacts on the performance of predictors. Indeed, the fact that, 
like PSA, BRW does not seem to take trend into consideration would explain the negative bias, 
especially seeing as the increase in mean land prices from 2014 to 2015 (0.28 EUR/m²) lies in 
the same order of magnitude. 

6. Discussion and Conclusion 

In our analysis based on purchase prices of arable land in Mecklenburg-Western Pomerania 
over the years 2013–15, we have found that BRW significantly underestimates location values 
of the following year. A regression analysis of the observed deviation has pointed towards 
regional heterogeneity, soil quality, and temporal effects as explanatory factors of this devia-
tion. Indeed, we observe a strong linear increase in mean land prices for every year from 2013–
15, which suggests that the time trend is not sufficiently taken into account in BRW estimation. 
However, soil quality also shows a strong effect, suggesting that experts have difficulties in 
correctly considering soil quality for location value estimation. Secondly, we find that on our 
2015 test data, PSA predicts location values with an accuracy comparable to that of BRW, 
both in terms of bias and MSE. These findings are in line with KOLBE ET AL. (2015), who find 
that PSA is able to replicate BRW in an urban context. The performance depends to a limited 
degree on the choice of the algorithm’s parameters, but neither bias nor MSE have proven too 
sensitive in this regard. Since PSA does not achieve a reduction of bias, it appears as though 
its adaptive approach does not hold any advantage over fixed BRW zones in the estimation of 
location values of agricultural land. On the other hand, the substantial performance improve-
ment when linear trend is taken into consideration hints at a great potential for improving BRW 
as location value predictor by complementing this approach with conventional forecasting tech-
niques. 
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A practical issue with PSA is that outliers are usually not smoothed by PSA – the reason being 
that the homogeneity test, which is performed at every iteration when smoothing the sub-dis-
trict with the outlier, will most certainly result in zero weights for most values other than the 
outlier itself. On the one hand, this is precisely the sort of behaviour that we wish, because it 
keeps the bias low when pooling values. On the other hand, it does not allow us to reach a 
reasonable estimate for the outlier itself. The reasons for the occurrence of such singular val-
ues may be manifold, and it is impractical to derive a general rule of treating them – in this 
analysis, we have opted for an a priori removal of the highest and lowest percentiles of prices. 
Our original concern that the results might be too sensitive to the choice of parameters has 
proven unjustified after this outlier removal. It seems that results for different parameters di-
verge more strongly in the presence of extreme values. 

One limitation to our results is that our data set is of rather limited size. Carrying out similar 
calculations for other regions with a longer time series of land prices and BRW could improve 
the reliability of our findings. Moreover, our observation period is characterised by a strong 
linear upward trend of mean land prices. Further assessment of BRW and PSA on data without 
such a trend might elucidate if the performance of PSA holds under different market conditions, 
too. This caveat notwithstanding, we have found PSA to be a convenient tool for the automatic 
estimation of location value of agricultural land in a transparent way since no expert knowledge 
is required for the procedure. Such a tool can complement the expert-based approach and 
serve as a benchmark. 
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