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1 Introduction

Substitution is in common language ‘the act of putting one thing or person in the

place of another’. In consumer demand the term refers to substitution in space, re-

placing different goods with each other at the same time, intratemporal substitution,

and to exchanging items of the same good (or of different goods) between periods,

intertemporal substitution. How is substitution in the spatial sense related to sub-

stitution in the temporal sense? Can estimates obtained from data with spatial

variation be applied in exploring temporal variation and vice versa? The answers to

these questions are important on the one hand because elasticities of intertemporal

substitution are crucial parameters in numerous macro models, with implications

to, inter alia, the saving-consumption decision, on the other hand because within-

period commodity substitution and systems of demand and substitution elasticities

are core elements in numerous micro-economic and -econometric studies and policy

analyses. It would be convenient if the two concepts coincide, making estimates

from cross-section and time related studies potentially interchangeable.

Because of its importance for policy analysis it is not surprising that there is

a substantial literature dealing with the intra-inter-temporal substitution distinc-

tion; see Kim (1993), McLaughlin (1995), Blundell (1999), Browning (2005), and

Pakoš (2011), for examples, and Thimme (2016) for a literature review related to

intertemporal substitution. However, as the model and assumptions, e.g., with re-

spect to parametrization, differ and are not always fully spelt out, it may be difficult

to see the similarities and differences in approaches and conclusions. This paper is

an attempt to give some clarifications and provide elements of a synthesis, without

contrasting different parametric specifications. The seminal article on demand elas-

ticities in a static, ‘non-parametric’ context, Frisch (1959), building on Frisch (1932,

1936), is a starting point, in addition to Houthakker (1960) and Theil (1975).

The paper proceeds as follows: Sections 2–4 deal with the static, one-period

model, Sections 5–7 with multi-period models. Section 2 gives some basics for

the static model, Section 3 surveys implied Frischian results on substitution. The

resulting decompositions of the rates of increase of consumption involve rates of

increase of price indexes, based on mean budget shares (the Divisia price index),

and on marginal budget shares (the Frisch price index). Cases with homothetic and

with additively separable utility functions are considered, the latter in Section 4.

The measures of substitution motivated by this theory, often used in ‘calibration’

exercises, are strongly related to assumptions made about the underlying prefer-

ences both when it comes to (non-)additivity and to (non-)hometheticity. For the

multi-period models, basics are given in Section 5. Generalized results on substi-

tution, covering both the spatial and the temporal dimension, are considered in

Section 6. Special cases imposing additive separability of the utility function over

periods, across commodities and over both dimensions, and important implications,

are considered in Section 7. Aggregate elasticities and some of their relationships
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are considered in Section 8, while Section 9 brings cases with more restrictive addi-

tive specifications of the utility functions, which makes the model better suited to

applications, in focus. Conclusions are summarized in Section 10.

2 One-period model: Basics

Let the quantity vector of the n commodities and the vector of their prices for a

static, one-period model be given by x = (x1, . . . , xn) and p = (p1, . . . , pn). The

utility function and the marginal utilities are

U = U(x),(2.1)

ui = ui(x) ≡ ∂U(x)/∂xi, i = 1, . . . , n.(2.2)

Denoting the vector of marginal utilities as u = (u1, . . . , un), the system (2.2) implies

a system of inverse marginal utility functions of the form

(2.3) xi = hi(u), i = 1, . . . , n,

see Frisch (1959), Eqs. (24)–(25). The (n × n)-matrix whose element (i, j) is

∂hi(u)/∂uj is the inverse of the Hessian matrix of U(x), i.e., the (n × n)-matrix

whose element (i, j) is ∂ui(x)/∂xj . Following Frisch, we define1

uij ≡
∂ui(x)

∂xj

xj
ui(x)

,

φij ≡
∂hi(u)

∂uj

uj
hi(u)

, i, j = 1, . . . , n.

The first-order conditions for maximization of U subject to

(2.4)
∑n

i=1 pixi ≡ px
′ = y,

given total expenditure (income) y, with Lagrange multiplier ω, which can be in-

terpreted as the marginal utility of income at optimum, or the conditions for mini-

mization of y given U , with Lagrange multiplier ω−1, are2

(2.5) ui(x) = ωpi, i = 1, . . . , n.

From (2.5) and Young’s theorem it follows that

pixiuij = pjxjuji,(2.6)

pixiφij = pjxjφji, i, j = 1, . . . , n.(2.7)

1Frisch (1959), see Eqs. (26)–(27), denotes uij and φij (xij in his notation) as the ‘utility accelerations’ and the
‘want elasticities’, respectively.

2Browning, Deaton and Irish (1985, pp. 507–508) give a third interpretation of the optimizing conditions, as
obtained by maximization of the consumer’s ‘profit function’, interpreting ω−1 as the price (marginal cost) of utility.
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The ordinary (Marshall), compensated (Hicks), and marginal income-utility con-

stant (Frisch) demand functions, and the marginal utility of income function have

the respective forms:3

xi = fi(p, y),(2.8)

xi = gi(p, U),(2.9)

xi = hi(ωp), i = 1, . . . , n,(2.10)

ω = ω(p, y),(2.11)

to which correspond Engel, Cournot, Slutsky and Frisch demand elasticities:

Ei ≡
∂fi(p, y)

∂y

y

fi(p, y)
, i = 1, . . . , n,

eij ≡
∂fi(p, y)

∂pj

pj
fi(p, y)

,

εij ≡
∂gi(p, U)

∂pj

pj
gi(p, U)

,

φij ≡
∂hi(ωp)

∂pj

pj
hi(ωp)

, i, j = 1, . . . , n,

and ‘marginal utility flexibilities’ (Frisch’s terminology) of income and prices:

ωy ≡
∂ω(p, y)

∂y

y

ω(p, y)
,

ωj ≡
∂ω(p, y)

∂pj

pj
ω(p, y)

, j = 1, . . . , n.

The first flexibility or its inverse, sometimes denoted as the Frisch parameter, of-

ten plays a core role in modeling substitution. The latter is also used extensively

by Frisch (1959) in exploring relationships between the classical elasticities, the

Frischian flexibilities and the ‘want elasticities’ φij, which clarify the argument.

The homogeneity of (2.8) in (p, y), of (2.9) in p, and of (2.11) in (p, y), of degrees,

0, 0, and −1, respectively, imply the well-known relationships:
∑n

j=1eij+Ei = 0,(2.12)
∑n

j=1εij = 0, i = 1, . . . , n,(2.13) ∑n
j=1ωj + ωy = −1.(2.14)

The budget shares and the Hicks-Allen4 and Frisch elasticities of substitution,

αi ≡
pixi
px′

,(2.15)

σij ≡
εij
αj
,(2.16)

ψij ≡
φij

αj
,(2.17)

3Reminder: (2.8) is obtained by solving for x from (2.4) and (2.5) for given p and y, (2.9) is obtained by solving
for x from (2.1) and (2.5) for given p and U ; and (2.10) is obtained by solving for x from (2.5) for given ω and
p. The marginal utility of income constant demand functions, introduced in Frisch (1959, p.184), are labeled Frisch
demand functions by Browning, Deaton and Irish (1985, p. 505), a term used by several authors thereafter.

4Blackorby and Russell (1981, 1989) call it the Allen elasticity of substitution; see Allen (1938, Secs. 13.7–13.8).
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satisfy

σij = σji ⇐⇒ αiεij = αjεji,(2.18)

ψij = ψji ⇐⇒ αiφij = αjφji,(2.19)

denoted as Slutsky-symmetry and Frisch-symmetry, respectively:5 Each set then

has 1
2n(n−1) distinct cross elasticities and n direct elasticities.

3 One-period model: Frischian results on substitution

Frisch (1959) demonstrates several important results on demand elasticities and

commodity substitution. We recapitulate some of them and give useful extensions.

From (2.5) it follows, by taking elasticity with respect to y and to pj, letting

δij=1 for i=j and=0 for i 6=j, that
∑n

j=1 uijEj = ωy, i = 1, . . . , n,(3.1)
∑n

k=1 uikekj = ωj + δij , i, j = 1, . . . , n.(3.2)

Solving (3.1) as one equation system in (E1, . . . , En) and (3.2) as n equation systems

in (e1j , . . . , enj) (j = 1, . . . , n), utilizing (2.7) and the relationships between the

derivatives of (2.2) and (2.3), we obtain

Ei = ωy

∑n
k=1 φik, i = 1, . . . , n,(3.3)

eij = φij + ωj

∑n
k=1 φik = φij +

ωj

ωy

Ei, i, j = 1, . . . , n.(3.4)

Equations (3.1)–(3.4) correspond to Frisch (1959), Eqs. (42)–(45). From (3.3), (3.4),

(2.16) and the Slutsky-equation6

(3.5) eij = εij − αjEi ≡ αj(σij −Ei), i, j = 1, . . . , n,

it follows that

(3.6) εij = φij+(ωj+αjωy)
∑n

k=1φik = φij+

(
ωj

ωy

+αj

)
Ei, i, j=1, . . . , n.

Furthermore, (2.4) implies:7

∑n
i=1 αi = 1,(3.7) ∑n

i=1 αiEi ≡
∑n

i=1 γi = 1,(3.8) ∑n
i=1αieij = −αj , j = 1, . . . , n,(3.9)

where γi = ∂(pixi)/∂y ≡ αiEi is the marginal budget share of commodity i. Corre-

sponding expressions for the Slutsky- and Frisch-elasticities are:8

5Reminder: Let C(p, U) ≡
∑

i pigi(p, U) be the cost function, and Ci and Cij its derivatives with respect to
pi and (pi, pj). Since Young’s theorem and Shephard’s Lemma imply Cij = Cji and gi(p, U) = Ci, (2.18) follows
because αj = pjCj/C and εij = Cijpj/Ci =⇒ σij = εij/αj = CijC/(CiCj) = σji, while (2.19) is implied by (2.7).
See also Uzawa (1962), Blackorby and Russell (1981), Eq. (1), and Blackorby and Russell (1989), Eq. (3).

6On the origin of the Slutsky equation, its history and its dissemination, see Slutsky (1915), Barnett (2007),
and Bjerkholt (2015).

7Reminder: (3.7) is implied by (2.4) and (2.15), (3.8) and (3.9) follow by taking the elasticity of
∑

i pifi(p, y) = y
with respect to y and pj , respectively.

8Reminder: (3.10) follows from (2.18) and (2.13); (3.11) follows from (3.6) and (3.10).
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∑n
i=1αiεij = 0,(3.10)

∑n
i=1αiφij = −

(
ωj

ωy
+ αj

)
, j = 1, . . . , n.(3.11)

From (2.19), (3.3) and (3.11) it follows that

ωj + αjωy = −αjEj ≡ −γj ,(3.12)
∑n

i=1αiφij = αj
Ej

ωy

, j = 1, . . . , n,(3.13)

(3.12) corresponding to Frisch (1959), Eq. (50). Expressions connecting (eit, εij)

to (φij, ωy, αj, Ej) follow by inserting (3.12) in (3.4) and (3.6), which gives, see

Frisch (1959), Eqs. (52)–(53):9

eij = φij − αjEi

(
Ej

ωy
+ 1

)
,(3.14)

εij = φij − αj
EjEi

ωy

⇐⇒ σij = ψij −
EiEj

ωy

, i, j = 1, . . . , n.(3.15)

These equations are basic to the following argument.10

Following Theil (1975, Section 1.4) and Houthakker (1960, footnote 8),11 the

Hicks-Allen elasticity σij is the total substitution effect and its components, ψij and

(3.16) Sij ≡
EiEj

ωy

,

are the specific and general substitution effects.12 Then (3.14) and (3.15) read

eij = φij − αj(Sij+Ei) ≡ αj(ψij−Sij−Ei),(3.17)

εij = φij−αjSij ⇐⇒ σij = ψij−Sij .(3.18)

We will denote Sij as the Houthakker-Theil general (HTG) substitution elasticity.

To summarize:

Proposition 1:

1. The HTG elasticities are connected to ω−1
y by Sij = EiEjω

−1
y , which

under homotheticity (Ei=1) simply gives Sij=ω
−1
y for all i and j.

2. No one-to-one relationships in general exist between the Frisch elasticities

and ω−1
y , for given Ei. From (3.3) is seen that φi1, . . . , φin are related to

ω−1
y via

∑n
j=1 φij=Eiω

−1
y , which because of (3.8) implies

(i)
∑n

i=1

∑n
j=1αiφij=ω

−1
y in general,

(ii)
∑n

j=1φij=ω
−1
y for all i, under homotheticity.

9Equations corresponding to (3.13) and (3.4), using income and price derivatives instead of elasticities, can be
found in e.g. Theil (1975), Eqs. (3.9) and (3.14), in matrix notation, the last in scalar notation as Eq. (4.1).

10Versions of (3.15) have been frequently used in the literature as a kind of a ‘vehicle’ in discussing of (intra-
and/or intertemporal) substitution in consumer demand; see e.g., Theil (1975), Eq. (4.3), Browning, Deaton and
Irish (1985), Eq. (1.16), McLaughlin (1995), Eq. (3), and Blundell (1999), Eq. (1.1).

11See also Barten (1964, Section 2.1).
12Theil (1975), in Eqs. (4.3), (4.5), and (4.7), uses derivatives instead of elasticities.
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As is well known, however, homothetic preferences is an extreme case, inconsistent

with well-established empirical regularities in consumer behaviour, e.g., Engel’s Law.

From (3.7), (3.8) and (3.13)–(3.16), it follows that
∑n

i=1

∑n
j=1 αieij = −1,(3.19)

∑n
i=1

∑n
j=1 αiεij ≡

∑n
i=1

∑n
j=1 αiαjσij = 0,(3.20) ∑n

i=1

∑n
j=1αiφij ≡

∑n
i=1

∑n
j=1 αiαjψij = ω−1

y ,(3.21)
∑n

i=1

∑n
j=1αiαjSij = ω−1

y ,(3.22)

where (3.21) corresponds to Frisch (1959), Eq. (47). Hence, the overall budget-share-

weighted Hicks-Allen, Frisch and HTG elasticities are 0, ω−1
y , and ω−1

y , respectively.

Arguably, (3.20)–(3.22) do not strictly measure substitution, since an appropriate

measure should only include cross-commodity terms (i 6= j). Now
∑n

i=1

∑n
j=1, 6=iαiαjσij ≡ −

∑n
i=1 α

2
iσii,∑n

i=1

∑n
j=1, 6=iαiαjψij ≡ ω−1

y −
∑n

i=1 α
2
iψii,∑n

i=1

∑n
j=1, 6=iαiαjSij ≡ ω−1

y −
∑n

i=1 α
2
iSii,

so that (2.15)–(2.17) imply:
∑n

i=1

∑n
j=1αi(εij − αjεjj) ≡

∑n
i=1

∑n
j=1αiαjσij −

∑n
j=1 α

2
jσjj

≡
∑n

i=1

∑n
j=1, 6=iαiαjσij ,∑n

i=1

∑n
j=1αi(φij − αjφjj) ≡

∑n
i=1

∑n
j=1αiαjψij −

∑n
j=1 α

2
jψjj

≡
∑n

i=1

∑n
j=1, 6=iαiαjψij ,∑n

i=1

∑n
j=1αi[αj(Sij − αjSjj)] ≡

∑n
i=1

∑n
j=1αiαjSij −

∑n
j=1 α

2
jSjj

≡
∑n

i=1

∑n
j=1, 6=iαiαjSij.

Hence, since
∑n

i=1 α
2
iσii ≡

∑n
i=1(ψiiα

2
i −ω

−1
y γ2i ) and

∑n
i=1 α

2
iSii ≡ ω−1

y

∑n
i=1 γ

2
i , it

follows from (3.20)–(3.22), with ‘modified substitution elasticities’ defined as

σ∗
ij ≡ σij − αjσjj ,(3.23)

ψ∗
ij ≡ ψij − αjψjj ,(3.24)

S∗
ij ≡ Sij − αjSjj,(3.25)

that
∑n

i=1

∑n
j=1αiαjσ

∗
ij ≡ −

∑n
i=1 α

2
iσii ≡

∑n
i=1(γ

2
i ω

−1
y −α2

iψii),
∑n

i=1

∑n
j=1αiαjψ

∗
ij ≡ ω−1

y −
∑n

i=1 α
2
iψii,∑n

i=1

∑n
j=1αiαjS

∗
ij ≡ ω−1

y −
∑n

i=1 α
2
iSii ≡ (1−

∑n
i=1 γ

2
i )ω

−1
y .

Equation (3.23) is related to the transformation which takes Slutsky and Allen

elasticities into ‘Morishima elasticities’, defined as mji = εij − εjj ≡ αj(σij−σjj);

see Blackorby and Russell (1981), Eqs. (1)–(4), Blackorby and Russell (1989), Eq.

(8), and McFadden (1963). While mji ‘nets out’ the direct effect σjj by a simple

deduction, σ∗
ij weights this effect by the budget share αj . The severe limitations of
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(Hicks-)Allen elasticities of substitution (AES) σij (i 6= j) for n> 2, pointed out by

Blackorby and Russell (1981, Sections 1–2; 1989), should, however, be recalled:

“....while the AES reduces to the original Hicksian concept in the two-dimensional
case, in general it preserves none of the salient properties of the Hicksian notion.....the
Allen elasticity of substitution (i) is not a measure of the “ease” of substitution, or
curvature of the isoquant, (ii) provides no information about relative factor shares, and
(iii) cannot be interpreted as a (logarithmic) derivative of a quantity ratio with respect
to a price ratio (or the marginal rate of substitution). As a quantitative measure, it
has no meaning; as a qualitative measure, it adds no information to that contained
in the (constant output) cross-price elasticity......the elasticity-of-substitution concept,
as originally conceived by Hicks, has nothing to do with the substitute/complement
taxonomy”. [Blackorby and Russell (1989, pp. 882–884)].

Since
∑n

i=1

∑n
j=1αiαj = 1, overall Hicks-Allen, Frisch, and HTG cross-elasticities

can be defined as the following means of the n2 values of σ∗
ij , ψ

∗
ij , S

∗
ij:

σ̄∗ =
∑n

i=1

∑n
j=1αiαjσ

∗
ij ≡ −

∑n
i=1 α

2
iσii ≡

∑n
i=1(γ

2
i ω

−1
y −α2

iψii),(3.26)

ψ̄∗ =
∑n

i=1

∑n
j=1αiαjψ

∗
ij ≡ ω−1

y −
∑n

i=1 α
2
iψii,(3.27)

S̄∗ =
∑n

i=1

∑n
j=1αiαjS

∗
ij ≡ ω−1

y −
∑n

i=1 α
2
iSii ≡ (1−

∑n
i=1 γ

2
i )ω

−1
y .(3.28)

Alternative measures are the means of the n(n−1) values of σij , ψij , Sij (i 6=j), after

renormalization, using
∑n

i=1

∑n
j=1, 6=iαiαj≡1−

∑n
i=1α

2
i :

σ̄ =

∑n
i=1

∑n
j=1, 6=iαiαjσij∑n

i=1

∑n
j=1, 6=iαiαj

≡

∑n
i=1(γ

2
i ω

−1
y − α2

iψii)

1−
∑n

i=1 α
2
i

,(3.29)

ψ̄ =

∑n
i=1

∑n
j=1, 6=iαiαjψij∑n

i=1

∑n
j=1, 6=iαiαj

≡ ω−1
y +

∑n
i=1 α

2
i (ω

−1
y −ψii)

1−
∑n

i=1 α
2
i

,(3.30)

S̄ =

∑n
i=1

∑n
j=1, 6=iαiαjSij∑n

i=1

∑n
j=1, 6=iαiαj

≡ ω−1
y +

∑n
i=1(α

2
i −γ

2
i )

1−
∑n

i=1 α
2
i

ω−1
y .(3.31)

The aggregate Houthakker-Theil decompositions corresponding to (3.18) thus read:

σ̄∗ = ψ̄∗ − S̄∗,

σ̄ = ψ̄ − S̄.

To summarize:

Proposition 2:

1. While any σij depends on ω−1
y , the latter is no aggregate indicator of

Hicks-Allen substitution. We have:
∑n

i=1

∑n
j=1αiαjσij=0, while∑n

i=1

∑n
j=1αiαjψij=

∑n
i=1

∑n
j=1αiαjSij=ω

−1
y .

The overall cross-substitution elasticities satisfy (3.26)–(3.31).

2. If n is large,
∑

i α
2
i ,
∑

i γ
2
i are small, and ψii is finite, then (ψ̄∗, ψ̄) ≈ ω−1

y ,

(S̄∗, S̄) ≈ ω−1
y , and (σ̄∗, σ̄)=(ψ̄∗−S̄∗, ψ̄−S̄)≈0.
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Example: The stylized case with homotheticity and equal budget shares: αi=
1
n
, Ei=1 =⇒

∑
α2
i =
∑
γ2i =

1
n
, letting ψ̃ = 1

n

∑
ψii, gives

σ̄∗ = 1
n
(ω−1

y − ψ̃), σ̄ = 1
n−1

(ω−1
y − ψ̃),

ψ̄∗ = ω−1
y − 1

n
ψ̃, ψ̄ = n

n−1
(ω−1

y − 1
n
ψ̃),

S̄∗ = n−1
n
ω−1
y , S̄ = ω−1

y .

Interesting byproducts of these results, useful for doing comparative statics, fol-

low by inserting for eij from (3.5) and (3.15) in the general expression for the rate

of increase of xi induced by arbitrary changes in income and prices. We first get

dxi
xi

= Ei
dy

y
+

n∑

j=1

eij
dpj
pj

≡ Ei

(
dy

y
−

n∑

j=1

αj
dpj
pj

)
+

n∑

j=1

εij
dpj
pj
,

and next

dxi
xi

= Ei

(
dy

y
−

n∑

j=1

αj
dpj
pj

)
+

n∑

j=1

(
φij − αj

EiEj

ωy

)
dpj
pj

(3.32)

≡ Ei

(
dy

y
−
dPα

Pα

)
+

n∑

j=1

φij
dpj
pj

−
Ei

ωy

dPγ

Pγ

,

where dPα/Pα and dPγ/Pγ are the changes in price indexes which weight commodity

prices by, respectively, average and marginal budget shares:

dPα

Pα
=

n∑

j=1

αj
dpj
pj
,

dPγ

Pγ
=

n∑

j=1

γj
dpj
pj
.

The former is (the rate on increase of) the Divisia price index, the latter is often

denoted as (the rate of increase of) the Frisch price index, after Frisch (1932; pp.

74–82) and Frisch (1936).13 Using (3.13), we finally rewrite (3.32) as

dxi
xi

= Ei

(
dy

y
−
dPα

Pα

)
+

n∑

j=1

φij

(
dpj
pj

−
dPα

Pα

)
+
Ei

ωy

(
dPα

Pα

−
dPγ

Pγ

)
(3.33)

≡ Ei

(
dy

y
−
dPα

Pα

)
+ φii

(
dpi
pi

−
dPα

Pα

)

+
n∑

j=1, 6=i

φij

(
dpj
pj

−
dPα

Pα

)
+
Ei

ωy

(
dPα

Pα
−
dPγ

Pγ

)
,

which decomposes dxi/xi into a real income effect, n real price effects, one direct

and n−1 cross-effects, and a ‘correction’ term reflecting the difference between the

Divisia and the Frisch price indexes:

dPα

Pα

−
dPγ

Pγ

≡
∑

j

αj(1−Ej)
dpj
pj
.

Equivalently, using
∑n

j=1φij=Eiω
−1
y and rearranging, we get

13See also Theil (1975; Sections 5.1 and 5.2) and Barnett and Serletis (2008).
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(3.34)
dxi
xi

= Ei

(
dy

y
−
dPα

Pα

)
+
Ei

ωy

(
dpi
pi

−
dPγ

Pγ

)
+

n∑

j=1

φij

(
dpj
pj

−
dpi
pi

)
.

This expression decomposes dxi/xi into a real income effect (based on the Divisia

price index), a real price effect (based on the Frisch price index) and n−1 cross-price

effects. Both the real price effects and the cross-price effects involve ω−1
y , the latter

via
∑n

j=1φij =Eiω
−1
y . Imposing homotheticity, and thus eliminating ‘scale effects’,

the expression simplifies to

dxi
xi

=

(
dy

y
−
dPα

Pα

)
+ ω−1

y

(
dpi
pi

−
dPα

Pα

)
+

n∑

j=1

φij

(
dpj
pj

−
dpi
pi

)
,

which shows succinctly the roles of ω−1
y and the φijs in describing substitution.

4 One-period model and substitution: additive utility

Additively separable utility, ‘want independence’ in the terminology of Frisch, is

often assumed in empirical demand analysis and makes the Hessian matrix of U(x)

diagonal. On the ordinality-cardinality distinction and the imposition of additive

utility to save parameters, he says:

“By making assumptions about want independence, we introduce concepts that are
not invariant under a general monotonic transformation of the utility indicator. I am
not very concerned about this.....By introspection we are frequently in a position to say
something fairly definite and plausible about the non-invariant concepts, for instance
about want-independence.....From assumptions as to want-independence there follow
very definite conclusions about certain observable demand phenomena. Assumptions
of this sort can therefore be classified as refutable hypotheses...... I shall therefore
not plead guilty of heresy even if I do work with choice-theory concepts that are not
invariant under a general monotonic transformation of the utility indicator. At any
subsequent step one can, if need be, verify whether any derived expression is invariant
or not.” [Frisch (1959, pp.177–178)]

If (2.1) has this form, i.e.,

(4.1) U = U(x) =
∑n

i=1 Ui(xi),

(2.2), (2.3), and (2.5) simplify to

ui = ui(xi) ≡ dUi(xi)/dxi,(4.2)

xi = hi(ui) = u−1
i (ui),(4.3)

ui(xi) = ωpi, i = 1, . . . , n,(4.4)

and uij = δijuii, φij = δijφii and φii = 1/uii. In the Houthakker-Theil usage, all

‘specific cross-substitution’ is eliminated, i.e., Frischian cross-substitution vanishes.

Then (3.1)–(3.4) simplify to

uiiEi = ωy ⇐⇒ Ei = ωyφii, i = 1, . . . , n,(4.5)

uiieij = ωj + δij ⇐⇒ eij = (ωj + δij)φii, i, j = 1, . . . , n,(4.6)

while
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(4.7) φij =
δijEi

ωy

⇐⇒ ψij =
δijEi

αjωy

, i, j = 1, . . . , n,

so that (3.14) and (3.15) simplify to

eij =
Ei

ωy

[δij−αjEj ]− αjEi,(4.8)

εij =
Ei

ωy

[δij−αjEj ] ⇐⇒ σij =
Ei

ωy

[
δij
αj

− Ej

]
.(4.9)

Further, (3.21) simplifies to

(4.10)
∑n

i=1αiφii ≡
∑n

i=1 α
2
iψii = ω−1

y ,

and since ψii = Eiω
−1
y /αi, (3.26) and (3.29) simplify to

σ̄∗ = −(1−
∑n

i=1 γ
2
i )ω

−1
y ,(4.11)

σ̄ = −
1−
∑n

i=1 γ
2
i

1−
∑n

i=1 α
2
i

ω−1
y .(4.12)

The results are summarized in:

Proposition 3:

1. Additive utility, implying φij = 0 (i 6= j), gives a one-to-one relationship

between the direct Frisch elasticities and ω−1
y : φii=Eiω

−1
y . Hence,

(i) σij=−EiEjω
−1
y (i 6= j) under additivity,

(ii)
∑n

i=1αiφii=ω
−1
y under additivity,

(iii) φii=ω
−1
y , σij=−ω−1

y (i 6= j) under additivity and homotheticity.

2. Since then the aggregate Frisch cross-elasticities equal (ψ̄∗, ψ̄)= 0, their

aggregate Hicks-Allen counterparts become (σ̄∗, σ̄)=(ψ̄∗−S̄∗, ψ̄−S̄) ≈−ω−1
y .

Example: The stylized case with additivity, homotheticity and equal budget

shares: αi=
1
n
, Ei=1 =⇒

∑
α2
i =
∑
γ2i =

1
n
, ψii = ψ̃ = nωy, gives

σ̄∗ = −n−1
n
ω−1
y , σ̄ = −ω−1

y ,

ψ̄∗ = 0, ψ̄ = 0,

S̄∗ = n−1
n
ω−1
y , S̄ = ω−1

y .

Imposing additivity, i.e., φij=δijφii, (3.34) is simplified to

(4.13)
dxi
xi

=Ei

(
dy

y
−
dPα

Pα

)
+
Ei

ωy

(
dpi
pi

−
dPγ

Pγ

)
,

which says that the real price and the real income elasticities are proportional across

i, with factor of proportionality ω−1
y . If also homotheticity prevails, we get simply

dxi
xi

=
dy

y
−
dPα

Pα

+ ω−1
y

(
dpi
pi

−
dPα

Pα

)
,

which again elucidates the role of ω−1
y in describing substitution.14 The changed

interpretation of (σ̄∗, σ̄) when additivity is imposed, is reflected in the disappearance

of the summation term in the expression for dxi/xi.

14In the (highly degenerate) case where also ωy = −1 (exemplified by the Cobb-Douglas utility function), the
latter equation simply gives dxi/xi=dy/y−dpi/pi for all i (implying price and income invariant budget shares).
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5 Multi-period-commodity model. Basics

The second part of the paper will be concerned with combined intra-intertemporal

substitution, formalized as an extension of the model in Section 2 to a T -period,

n-commodity model, imagining a consumer in period 1, who decides on consumption

in this period and makes plans for periods 2, . . . , T . The quantity vector of the n

commodities and the vector of their marginal utilities and prices for period t are,

respectively, xt = (x1t, . . . , xnt), ut = (u1t, . . . , unt) and pt = (p1t, . . . , pnt). Further,

we define p̄t = βtpt, where βt is the discounting factor for period t (β1 = 1) and

the composite nT -vectors x = (x1, . . . ,xT ), u = (u1, . . . ,uT ), p = (p1, . . . ,pT ),

p̄=(p̄1, . . . , p̄T ). The intertemporal utility function, the marginal utilities and their

inverses, the counterparts to (2.1)–(2.3), can then be expressed as, respectively:

U = U(x1, . . . ,xT ) ≡ U(x),(5.1)

uit = uit(x) ≡ ∂U(x)/∂xit,(5.2)

xit = hit(u), i = 1, . . . , n; t = 1, . . . , T,(5.3)

giving

uit,js ≡
∂uit(x)

∂xjs

xjs
uit(x)

,

φit,js ≡
∂hit(u)

∂ujs

ujs
hit(u)

, i, j = 1, . . . , n; t, s = 1, . . . , T.

The first-order conditions for maximization of U subject to

(5.4)
∑T

t=1

∑n
i=1 p̄itxit ≡

∑T
t=1 p̄tx

′
t =W,

for given wealth W (the multi-period counterpart to y), with Lagrange multiplier Ω

(the multi-period counterpart to ω), are

(5.5) uit(x) = Ωp̄it, i = 1, . . . , n; t = 1, . . . , T.

It follows from (5.5) and Young’s theorem that (2.6) and (2.7) are generalized to

p̄itxituit,js = p̄jsxjsujs,it,(5.6)

p̄itxitφit,js = p̄jsxjsφjs,it, i, j = 1, . . . , n; t, s = 1, . . . , T.(5.7)

The multi-period Marshall, Hicks, and Frisch demand functions and the marginal

utility of wealth function have the respective forms:

xit = fit(p̄,W ),(5.8)

xit = git(p̄, U),(5.9)

xit = hit(Ωp̄), i = 1, . . . , n; t = 1, . . . , T,(5.10)

Ω = Ω(p̄,W ),(5.11)

to which correspond Engel, Cournot, Slutsky, and Frisch elasticities:
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Eit ≡
∂fit(p̄,W )

∂W

W

fit(p̄,W )
, i = 1, . . . , n; t = 1, . . . , T,

eit,js ≡
∂fit(p̄,W )

∂p̄js

p̄js
fit(p̄,W )

,

εit,js ≡
∂git(p̄, U)

∂p̄js

p̄js
git(p̄, U)

,

φit,js ≡
∂hit(Ωp̄)

∂p̄js

p̄js
hit(Ωp̄)

, i, j = 1, . . . , n; t, s = 1, . . . , T,

and marginal utility flexibilities of wealth and prices:

ΩW ≡
∂Ω(p̄,W )

∂W

W

Ω(p̄,W )
,

Ωjs ≡
∂Ω(p̄,W )

∂p̄js

p̄js
Ω(p̄,W )

, j = 1, . . . , n; s = 1, . . . , T.

The inverse of the first flexibility frequently occurs in modeling intertemporal sub-

stitution. We will denote it as the generalized Frisch parameter. The homogeneity

of (5.8) in (p̄,W ), of (5.9) in (p̄,W ) and of (5.11) in p̄, of degrees 0, 0, and −1,

respectively, imply, as counterparts to (2.12)–(2.14),
∑n

j=1

∑T
s=1 eit,js + Eit = 0,(5.12)

∑T
s=1

∑n
j=1 εit,js = 0, i = 1, . . . , n; t = 1, . . . , T,(5.13) ∑n

j=1

∑T
s=1Ωjs + ΩW = −1.(5.14)

The multi-period budget shares and the Hicks-Allen and Frisch elasticities of (intra-

and intertemporal) substitution become, respectively,

αit =
p̄itxit
p̄x′ ,(5.15)

σit,js ≡
εit,js
αjs

,(5.16)

ψit,js ≡
φit,js

αjs

, i, j = 1, . . . , n; t, s = 1, . . . , T,(5.17)

while generalized Slutsky-symmetry and Frisch-symmetry are expressed by

σit,js = σjs,it ⇐⇒ αitεit,js=αjsεjs,it,(5.18)

ψit,js = ψjs,it ⇐⇒ αitφit,js=αjsφjs,it.(5.19)

Each set has nT direct elasticities and 1
2nT (nT −1) cross-elasticities. As will be

explained in Section 7, this number is reduced when restrictions are imposed on the

utility function.

6 Multi-period model: Frischian results on substitution

The multi-period counterparts to (3.1) and (3.2), obtained from (5.5), become
∑n

j=1

∑T
s=1 uit,jsEjs = ΩW ,(6.1)

∑n
k=1

∑T
r=1 uit,krekr,js = Ωjs + δijδts, i, j = 1, . . . , n; t, s = 1, . . . , T.(6.2)
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The former gives one equation system in (E11, . . . , En1, . . . , E1T , . . . , EnT ), the latter

gives nT systems in (e11,js, . . . , en1,js, . . . , e1T,js, . . . , enT,js) (j=1, . . . , n; s=1, . . . , T ).

Solving (6.1) and (6.2), utilizing (5.7) and the relationships between the derivatives

of (5.2) and (5.3), gives as generalizations of (3.3)–(3.6) and (3.14)–(3.15),

Eit = ΩW

∑n
k=1

∑T
s=1 φit,ks, i = 1, . . . , n; t = 1, . . . , T,(6.3)

eit,js = φit,js +
Ωjs

ΩW

Eit = φit,js−αjsEit

(
Ejs

ΩW

+ 1

)
,(6.4)

εit,js = φit,js +

(
Ωjs

ΩW
+ αjs

)
Eit = φit,js−αjs

EjsEit

ΩW
⇐⇒(6.5)

σit,js = ψit,js +

(
Ωjs

αjsΩW
+1

)
Eit = ψit,js−

EjsEit

ΩW
,

eit,js=εit,js−αjsEit=αjs(σit,js−Eit), i, j = 1, . . . , n; t, s = 1, . . . , T.(6.6)

The counterparts to (3.7)–(3.13) become
∑n

i=1

∑T
t=1 αit = 1,(6.7)

∑n
i=1

∑T
t=1 αitEit ≡

∑n
i=1

∑T
t=1 γit = 1,(6.8)

∑n
i=1

∑T
t=1 αiteit,js = −αjs,(6.9)

∑n
i=1

∑T
t=1 αitεit,js = 0,(6.10)

∑n
i=1

∑T
t=1αitφit,js = −

(
Ωjs

ΩW
+ αjs

)
= αjs

Ejs

ΩW

,(6.11)

Ωjs + αjsΩW = −αjsEjs ≡ −γjs, j = 1, . . . , n; s = 1, . . . , T.(6.12)

The HTG substitution elasticity between commodity i in period t and commodity

j in period s, i.e., the counterpart to (3.16), is

(6.13) Sit,js =
EitEjs

ΩW

,

giving as counterparts to (3.17) and (3.18):

eit,js = φit,js−αjs(Sit,js+Eit) ≡ αjs(ψit,js−Sit,js−Eit),(6.14)

εit,js=φit,js−αjsSit,js ⇐⇒ σit,js=ψit,js − Sit,js.(6.15)

To summarize, Proposition 1 is generalized to:

Proposition 4:

1. The HTG elasticities are connected to Ω−1
W by Sit,js = EitEjsΩ

−1
W , which

under homotheticity (Eit=1) simply gives Sit,js=Ω−1
W for all i, j, t, s.

2. No one-to-one relationships in general exist between the general-

ized Frisch elasticities and Ω−1
W , for given Eit. From (6.3) is

seen that φit,11, . . . , φit,1T , . . . , φit,n1, . . . , φit,nT are related to Ω−1
W via∑n

j=1

∑T
s=1 φit,js=EitΩ

−1
W , which because of (6.8) implies

(i)
∑n

i=1

∑T
t=1

∑n
j=1

∑T
s=1αitφit,js=Ω−1

W in general,

(ii)
∑n

j=1

∑T
s=1φit,js=Ω−1

W for all (i, t), under homotheticity.
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The overall multi-period budget-share-weighted Hicks-Allen, Frisch and HTG elas-

ticities of substitution equal 0, Ω−1
W , and Ω−1

W , respectively, since the counterparts to

(3.19)–(3.22) become

∑n
i=1

∑T
t=1

∑n
j=1

∑T
s=1αiteit,js = −1,(6.16)

∑n
i=1

∑T
t=1

∑n
j=1

∑T
s=1αitεit,js≡

∑n
i=1

∑T
t=1

∑n
j=1

∑T
s=1αitαjsσit,js=0,(6.17)

∑n
i=1

∑T
t=1

∑n
j=1

∑T
s=1αitφit,js≡

∑n
i=1

∑T
t=1

∑n
j=1

∑T
s=1αitαjsψit,js=Ω−1

W ,(6.18)
∑n

i=1

∑T
t=1

∑n
j=1

∑T
s=1αitαjsSit,js=Ω−1

W .(6.19)

Direct generalizations of (3.23)–(3.25) are

σ∗
it,js ≡ σit,js − αjsσjs,js,(6.20)

ψ∗
it,js ≡ ψit,js − αjsψjs,js,(6.21)

S∗
it,js ≡ Sit,js − αjsSjs,js.(6.22)

Since
∑

i

∑
t

∑
j

∑
s αitαjs=1 and

∑
i,t

∑
j,s,(j,s)6=(i,t) αitαjs=1−

∑
i

∑
tα

2
it, we obtain

as generalizations of (3.26)–(3.28) and (3.29)–(3.31), boldface letters symbolizing

substitution elasticities aggregated over all commodities and periods jointly:

σ̄∗ =
∑

i

∑
t

∑
j

∑
s αitαjsσ

∗
it,js ≡

∑
i

∑
t(γ

2
itΩ

−1
W −α2

itψit,it),(6.23)

ψ̄
∗
=
∑

i

∑
t

∑
j

∑
s αitαjsψ

∗
it,js ≡ Ω−1

W −
∑

i

∑
t α

2
itψit,it,(6.24)

S̄
∗
=
∑

i

∑
t

∑
j

∑
s αitαjsS

∗
it,js ≡ (1−

∑
i

∑
tγ

2
it)Ω

−1
W ,(6.25)

σ̄ =

∑
i,t

∑
j,s,(j,s)6=(i,t)αitαjsσit,js∑

i,t

∑
j,s,(j,s)6=(i,t) αitαjs

≡

∑
i

∑
t(γ

2
itΩ

−1
W −α2

itψit,it)

1−
∑

i

∑
t α

2
it

,(6.26)

ψ̄ =

∑
i,t

∑
j,s,(j,s)6=(i,t)αitαjsψit,js∑

i,t

∑
j,s,(j,s)6=(i,t)αitαjs

≡ Ω−1
W +

∑
i

∑
t α

2
it(Ω

−1
W −ψit,it)

1−
∑

i

∑
t α

2
it

,(6.27)

S̄ =

∑
i,t

∑
j,s,(j,s)6=(i,t)αitαjsSit,js∑

i,t

∑
j,s,(j,s)6=(i,t)αitαjs

≡ Ω−1
W +

∑
i

∑
t(α

2
it−γ

2
it)

1−
∑

i

∑
tα

2
it

Ω−1
W .(6.28)

Finally, the Houthakker-Theil decompositions of the aggregate Hicks-Allen cross-

elasticities, corresponding to (6.15), are

σ̄∗ = ψ̄
∗
− S̄

∗
,

σ̄ = ψ̄ − S̄.

The results can be summarized in the following generalization of Proposition 2:

Proposition 5:

1. While any σit,js depends on Ω−1
W , Ω−1

W is no aggregate indicator of Hicks-

Allen substitution. We have
∑n

i=1

∑T
t=1

∑n
j=1

∑T
s=1αitαjsσit,js=0, while∑n

i=1

∑T
t=1

∑n
j=1

∑T
s=1αitαjsψit,js=

∑n
i=1

∑T
t=1

∑n
j=1

∑T
s=1αitαjsSit,js=Ω

−1
W .

The overall cross-substitution elasticities satisfy (6.23)–(6.28).

2. If nT is large,
∑

t

∑
i α

2
it,
∑

t

∑
iγ

2
it are small, and ψit,it is finite, then

(ψ̄
∗
, ψ̄)≈Ω−1

W , (S̄
∗
, S̄)≈Ω−1

W , and (σ̄∗, σ̄) = (ψ̄
∗
−S̄

∗
, ψ̄−S̄)≈0.
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Example: The stylized case with homotheticity and equal budget shares: αit=
1
nT
, EiT =1 =⇒

∑
i

∑
t α

2
it=
∑

i

∑
t γ

2
it=

1
nT

, letting ψ̃ = 1
nT

∑
i

∑
t ψit,it, gives

σ̄∗ = 1
nT

(Ω−1
W − ψ̃), σ̄ = 1

nT−1
(Ω−1

W − ψ̃),

ψ̄
∗
= Ω−1

W − 1
nT
ψ̃, ψ̄ = nT

nT−1
(Ω−1

W − 1
nT
ψ̃),

S̄
∗
= nT−1

nT
Ω−1

W , S̄ = Ω−1
W .

7 Multi-period model and substitution: additive utility

We next consider three specializations of the multi-period model with the utility

function (5.1) restricted to be additively separable. The quotation from Frisch

in of Section 4, on the ordinality-cardinality distinction and the non-invariance of

important measures to general monotonic transformations, is relevant also here.

Hoel (1975) elaborates, and illustrates, by a simple parametric model, the inter-

pretation of a counterpart to ΩW in a related context. Browning, conducting an

empirical analysis involving both durable and non-durable goods, concludes15

“That preferences over purchases are not separable over time (even if one takes a
time period such as a year) seems to be well established. What is a good deal less
obvious is the source of such intertemporal dependencies. .... (1) Time separability is
rejected. (2) Once one allows for intertemporal nonseparabilities, neither the rational
nor the myopic variants of the model are rejected by the data. (3) Not accounting for
intertemporal dependencies biases considerably the estimates of intratemporal alloca-
tion. For example, the categorization of goods as luxuries or necessities is considerably
changed by allowing for nonseparabilities over time.” [Browning (1999, pp. 631–632)]

1. First, let U(·) be additively separable over periods, having the form:

(7.1) U = U(x) =
∑T

t=1 Ut(xt),

where xt = (x1t, . . . , xnt) and ut = (u1t, . . . , unt). The Hessian matrix of U(x) is

block-diagonal, the blocks representing periods, and (5.2), (5.3), and (5.5) become

(subscript P signalizing that u(·) and h(·) have period-specific arguments)16

uit = uit.P (xt) ≡ ∂Ut(xt)/∂xit,(7.2)

xit = hit.P (ut),(7.3)

uit.P (xt) = Ωp̄it.(7.4)

Since (7.1) implies uit,js=φit,js=0, t 6= s, (6.3) and (6.5) simplify to

Eit = ΩW

∑n
k=1 φit,kt,(7.5)

εit,js = δtsφit,jt−αjsEjsEitΩ
−1
W ⇐⇒ σit,js = δtsψit,jt−EjsEitΩ

−1
W .(7.6)

2. Next, let U(·) be additively separable over commodities, having the form:

(7.7) U = U(x) =
∑n

i=1 U(i)(x(i)),

15See also Crossley and Low (2011).
16The (n× n)-matrix whose element (i, j) is ∂hit.P (ut)/∂ujt is the inverse of the Hessian matrix of Ut(xt), i.e.,

the (n× n)-matrix whose element (i, j) is ∂uit.P (xt)/∂xjt.
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where x(i) = (xi1, . . . , xiT ) and u(i) = (ui1, . . . , uiT ). After a reordering of the el-

ements, the Hessian matrix is block-diagonal, with blocks representing commodi-

ties, (5.2), (5.3), and (5.5) become (subscript C signalizing that u(·) and h(·) have

commodity-specific arguments)17

uit = uit.C(x(i)) ≡ ∂U(i)(x(i))/∂xit,(7.8)

xit = hit.C(u(i)),(7.9)

uit.C(x(i)) = Ωp̄it, t = 1, . . . , T.(7.10)

Since (7.1) implies uit,js=φit,js=0, i 6= j, (6.3) and (6.5) simplify to

Eit = ΩW

∑T
s=1 φit,is,(7.11)

εit,js = δijφit,is−αjsEjsEitΩ
−1
W ⇐⇒ σit,js = δijψit,is−EjsEitΩ

−1
W .(7.12)

3. Finally, let U(·) be fully separable, having the form:

(7.13) U = U(x) =
∑T

t=1

∑n
i=1 Uit(xit).

Since this implies uit,js=δijδtsuit,it, φit,js=δijδtsφit,it, where φit,it = 1/uit,it, (6.3) and

(6.5) become simply

Eit = ΩWφit,it,(7.14)

εit,js = δijδtsφit,it−αjsEjsEitΩ
−1
W = EitΩ

−1
W (δijδts−αjsEjs) ⇐⇒(7.15)

σit,js = δijδtsψit,it−EjsEitΩ
−1
W = EitΩ

−1
W (δijδts/αjs−Ejs).

The first and third kind of separability are often considered. While the second

is more rare, it may deserve attention not only as reference point, but also because

it may be used to handle preference rigidities, habit formation, and durable goods.

Briefly, (7.1), (7.7), and (7.13) restrict Frisch-substitution by simplifying (6.18)

to, respectively,

∑n
i=1

∑n
j=1

∑T
t=1αitαjtψit,jt = Ω−1

W ,(7.16)
∑n

i=1

∑T
t=1

∑T
s=1αitαisψit,is = Ω−1

W ,(7.17)
∑n

i=1

∑T
t=1α

2
itψit,it=Ω−1

W .(7.18)

These equations can be viewed as extensions of Frisch (1959), Eq. (47). Therefore:

• The quadruple sum (6.18) restricts the 1
2nT (nT−1) cross-elasticities ψit,js=ψjs,it.

• The triple sum (7.16) restricts the 1
2nT (n−1) non-zero cross-elasticities ψit,jt=ψjt,it.

• The triple sum (7.17) restricts the 1
2nT (T−1) non-zero cross-elasticities ψit,is=ψis,it.

• The double sum (7.18) restricts no cross-elasticity, as ψit,js=0, for (j, s) 6=(i, t).

The following generalization of Proposition 3 summarizes the results:

17The (T ×T )-matrix whose element (t, s) is ∂hit.C(u(i))/∂uis is the inverse of the Hessian matrix of U(i)(x(i)),

i.e., the (T × T )-matrix whose element (t, s) is ∂uit.C(x(i))/∂xis.
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Proposition 6:

1. Fully additive utility, ψit,ks=0, (i, t) 6=(k, s), gives a relationship between

the direct Frisch elasticities and Ω−1
W : φit,it=EitΩ

−1
W . Hence,

(i) σit,js=−EitEjsΩ
−1
W , (i, t) 6=(j, s), under full additivity,

(ii)
∑n

i=1

∑T
t=1αitφit,it=Ω−1

W under full additivity,

(iii) φit,it = Ω−1
W , σit,js = −Ω−1

W , (i, t) 6= (j, s), under full additivity and

homotheticity.

2. Since the aggregate Frisch cross-elasticities then equal (ψ̄
∗
, ψ̄)=0, their

Hicks-Allen counterparts become (σ̄∗, σ̄)=(ψ̄
∗
−S̄

∗
, ψ̄−S̄) ≈−Ω−1

W .

3. Utility additively separable over periods, ψit,js=0, t 6=s, implies
∑n

i=1

∑T
t=1 αitψit,jt=EjtΩ

−1
W ,

∑n
i=1

∑n
j=1

∑T
t=1αitαjtψit,jt = Ω−1

W .

Utility additively separable across commodities, ψit,js=0, i 6=j, implies
∑n

i=1

∑T
t=1 αitψit,is=EisΩ

−1
W ,

∑n
i=1

∑T
t=1

∑T
s=1αitαisψit,is = Ω−1

W .

Example: The stylized case with full additivity, homotheticity, and equal bud-

get shares: αit =
1
nT
, EiT = 1 =⇒

∑
i

∑
t α

2
it =

∑
i

∑
t γ

2
it =

1
nT

, ψit,it = ψ̃ =

nTΩ−1
W , is characterized by the following aggregate cross-elasticities:

σ̄∗ = −nT−1
nT

Ω−1
W , σ̄ = −Ω−1

W ,

ψ̄
∗
= 0, ψ̄ = 0,

S̄
∗
= nT−1

nT
Ω−1

W , S̄ = Ω−1
W .

8 Substitution: Aggregate implications

The results in Sections 5 through 7 have aggregate implications relevant to the ques-

tions posed in the introduction. In this section we will show that aggregate analogues

to the relationships between ‘two-dimensional’ elasticities are easily obtained. Let

α·t ≡
∑n

i=1 αit and αi· ≡
∑n

t=1 αit, and write the period-conditional (within-period)

and commodity-conditional (within-commodity) budget shares as

αi|t ≡ αit/α·t,
∑n

i=1 αi|t = 1, t = 1, . . . , T,(8.1)

α̃t|i ≡ αit/αi·,
∑T

t=1 α̃t|i = 1, i = 1, . . . , n.(8.2)

Average, budget-share-weighted Engel elasticities for period t and for commodity i

are defined as, respectively,

E·t ≡
∑n

i=1 αi|tEit,
∑T

t=1 α·tE·t = 1,(8.3)

Ei· ≡
∑T

t=1 α̃t|iEit,
∑n

i=1 αi·Ei· = 1,(8.4)

and average, double budget-share-weighted Hicks-Allen, Frisch, and HTG elasticities

for periods (t, s) and for commodities (i, j) as, respectively,18

18On the use of cost-shares in aggregation of elasticities of substitution in production function and cost functions
contexts, and its relation to ‘Hicks’ Aggregation Theorem’, see Diewert (1974) and Miyagiwa and Papgeorgiou (2007).
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σ·t,·s ≡
∑n

i=1

∑n
j=1 αi|tαj|sσit,js,(8.5)

ψ·t,·s ≡
∑n

i=1

∑n
j=1 αi|tαj|sψit,js,(8.6)

S·t,·s ≡
∑n

i=1

∑n
j=1 αi|tαj|sSit,js,(8.7)

and

σi·,j· ≡
∑T

t=1

∑T
s=1 α̃t|iα̃s|jσit,js,(8.8)

ψi·,j· ≡
∑T

t=1

∑T
s=1 α̃t|iα̃s|jψit,js,(8.9)

Si·,j· ≡
∑T

t=1

∑T
s=1 α̃t|iα̃s|jSit,js.(8.10)

From (6.5), (6.13), (6.17)–(6.19), and (8.1)–(8.10) it follows that equations sim-

ilar to (3.16) and (3.18) connect these aggregate elasticities:

S·t,·s = E·tE·sΩ
−1
W ,(8.11)

σ·t,·s = ψ·t,·s − S·t,·s, t, s = 1, . . . , T,(8.12)

Si·,j· = Ei·Ej·Ω
−1
W ,(8.13)

σi·,j· = ψi·,j· − Si·,j·, i, j = 1, . . . , n,(8.14)

while aggregate counterparts to (3.20)–(3.22) become
∑T

t=1

∑T
s=1 α·tα·sσ·t,·s ≡

∑n
i=1

∑n
j=1 αi·αj·σi·,j· = 0,(8.15)

∑T
t=1

∑T
s=1 α·tα·sψ·t,·s ≡

∑n
i=1

∑n
j=1 αi·αj·ψi·,j· = Ω−1

W ,(8.16)
∑T

t=1

∑T
s=1 α·tα·sS·t,·s ≡

∑n
i=1

∑n
j=1 αi·αj·Si·,j· = Ω−1

W .(8.17)

With additive utility, the expressions for the aggregate Hicks-Allen elasticities,

(8.12) and (8.14), using (7.6), (7.12), and (7.15), simplify to, respectively,

σ·t,·s=δtsψ·t,·t−S·t,·s, ψ·t,·t=

{∑n
i=1

∑n
j=1αi|tαj|tψit,jt, under period add.,∑n

i=1α
2
i|tψit,it, under full add.,

(8.18)

σi·,j· = δijψi·,i·−Si·,j·, ψi·,i·=

{∑T
t=1

∑T
s=1α̃t|iα̃s|iψit,is, under comm. add.,∑T

t=1α̃
2
t|iψit,it, under full add.

(8.19)

To conclude, the aggregate elasticities defined, by using as weights period-condi-

tional and commodity-conditional budget shares as in (8.3)–(8.10), satisfy:

A. Simple analogues exist (i) between the above two-dimensional relationships

(6.13) and (6.15) and the temporally and spatially aggregated relationships, and

(ii) between the uni-dimensional relationships (3.16) and (3.18) and the commodity-

specific, temporally aggregated relationships.

B. The inverse Frisch parameter, Ω−1
W , has a core role in these aggregate relationships

as it has in the disaggregate ones.

9 More parsimonious multi-period models

To preserve economy in parametrization, it is rarely convenient, in empirical appli-

cations, to let the sub-utility functions Ut and U(i) be unrestricted. As an extension
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of Section 7, we in this section impose restrictions on the within-period or within-

commodity relative marginal utilities which result in what we will call models with

restricted additive separability. We specifically reconsider, under three sets of re-

strictions, the Frischian flexibilities and the Hicks-Allen substitution elasticities and

their components.

1. Frischian flexibilities: restrictive period-separability. Let in (7.1) Ut(xt) =

ρtVP (xt), where VP (·) is a common ‘one-period, time invariant, multi-commodity

utility index’ and ρt a t-specific factor of proportionality of marginal utilities – a

discounting factor for period t utility, when sticking to the cardinalistic interpre-

tation. The Lagrange function for maximization of U =
∑T

t=1 ρtVP (xt) subject to

(5.4), written as
∑n

i=1pitxit=yt (t = 1, . . . , T ),
∑T

t=1βtyt=W , is

(9.1) L=
∑T

t=1ρtVP (xt)−
∑T

t=1 λt(
∑n

i=1pitxit−yt)−Ω(
∑T

t=1βtyt−W ).

Since in optimum λt=Ωβt, (7.4) implies

(9.2) ρtvit.P (xt) ≡ λtpit = Ωβtpit ⇐⇒ vit.P (xt) = ωPtpit,

where vit.P (xt) ≡ ∂VP (xt)/∂xit and ωPt = λt/ρt = Ωβt/ρt. The latter is the La-

grange multiplier for the period-t-problem conditional on yt:

(9.3)
max VP (xt) subject to

∑n
i=1pitxit=yt,

LPt = VP (xt)− ωPt(
∑n

i=1pitxit−yt).

This mimics the problem for a myopic consumer in (say) period t=1. Since

(9.4) ln(ωPt) = ln(Ω) + ln(βt)− ln(ρt),

it follows, provided that βt and ρt do not respond to changes in the ys, that

d ln(ωPt) = d ln(Ω) = ΩW

∑T
s=1 αysd ln(ys),

where αyt = ∂ ln(W )/∂ ln(βtyt) = βtyt/W , and hence,

(9.5) d ln(ωPt)/d ln(βtyt) = ΩW

∑T
s=1 αysd ln(ys)/d ln(yt),

so that

(9.6)
d ln(ωPt)

d ln(yt)

>
=
<

ΩW ⇐⇒

T∑

s=1

αys
d ln(ys)

d ln(yt)

>
=
<

1.

Of relevance here is the Hicksian elasticity of expectation, Hicks (1939, Chapter

XVI).19 Several authors using parametric models and calibration exercises for teach-

ing or policy application purposes, appear to inadvertently set (the counterpart to)

this elasticity to unity. An interpretation is that if d ln(ys)/d ln(yt) = 1 for all s, t,

there is proportionality between ωPt and Ω over time, so that

d ln(ωPt)/d ln(βtyt) = ΩW .

19See also Arrow and Nerlove (1958), Lachman (1945) and Ozga (1975).
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Commenting on price expectations in a similar full separability case (the remark is

equally relevant for income expectations and under full separability), Blundell, for

example, remarks, without expanding the argument in detail:

“For intertemporal allocations, the approach of Frisch has turned out to be extremely
attractive. Additive separability over time is commonly assumed and can easily be
extended to account for uncertainty. Moreover, the price elasticities from the Frisch de-
mands are identical with the good-specific intertemporal substitution elasticities........
where we relax the perfect-foresight assumption and allow for uncertainty, the Frisch
elasticities have to be interpreted as price responses along an anticipated price path.
As such, they do not necessarily correspond to the intertemporal elasticities needed
for policy analysis. Policy changes often are unexpected and therefore involve an
unanticipated income or wealth effect.” [Blundell (1999, pp. 148-149)]

Equation (9.5) connects the Frischian flexibility of the marginal utility of period-

t-income with the marginal utility of wealth flexibility ΩW , and the elasticities of

expectation of period income y, say d ln(ys)/d ln(y1), s = 2, 3, . . . , T .

2. Frischian flexibilities: restrictive commodity-separability. Let in (7.7) U(i)(x(i))=

µiVC(x(i)), where VC(·) is a ‘commodity-invariant, multi-period utility index’ and

µi an i-specific factor of proportionality of marginal utilities – interpreted as a

‘utility weight’ for commodity i. The Lagrange function for maximization of U =∑n
i=1 µiVC(x(i)) subject to (5.4), written as

∑T
t=1 p̄itxit=wi (i = 1, . . . , n),

∑n
i=1wi=

W , where wi can be interpreted as a (discounted) ‘commodity-i-expenditure’, is

(9.7) L=
∑n

i=1µiVC(x(i))−
∑n

i=1χi(
∑T

t=1p̄itxit−wi)−Ω(
∑n

i=1wi−W ).

Since in optimum χi = Ω, (7.10) implies

(9.8) µivit.C(x(i)) = χip̄it = Ωp̄it ⇐⇒ vit.C(x(i)) = ωCip̄it,

where vit.C(x(i)) ≡ ∂VC(x(i))/∂xit and ωCi = χi/µi = Ω/µi. The latter is the

Lagrange multiplier for the commodity i problem, conditional on wi:

(9.9)
max VC(x(i)) subject to

∑T
t=1p̄itxit=wi,

LCi = VC(x(i))− ωCi(
∑n

t=1p̄itxit−wi).

This mimics the problem for a consumer who, in period t=1, consider allocation of

the discounted sum wi on commodity i, say, foods, housing, or transportation, up

to period T .20 Since

(9.10) ln(ωCi) = ln(Ω)− ln(µi),

it follows, provided that µi does not respond to changes in the ws, that

d ln(ωCi) = d ln(Ω) = ΩW

∑N
k=1 αwkd ln(wk),

where αwi = ∂ ln(W )/∂ ln(wi) = wi/W , and hence,

(9.11) d ln(ωCi)/d ln(wi) = ΩW

∑n
k=1 αwkd ln(wk)/d ln(wi),

20A special case is the frequently used one-commodity dynamic model, with total consumption as one bundle.
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so that

(9.12)
d ln(ωCi)

d ln(wi)

>
=
<

ΩW ⇐⇒

n∑

k=1

αwk
d ln(wk)

d ln(wi)

>
=
<

1.

If all d ln(wk)/d ln(wi) = 1, implying proportionality between ωCi and Ω across

commodities – which, in view the commodities’ different ‘scale properties’, reflected

in the utility function being non-homothetic, seems less realistic than proportionality

between ωPt and Ω over time – we would in particular have

d ln(ωCi)/d ln(wi) = ΩW .

Equation (9.11) connects the Frischian flexibility of the marginal utility of commodity-

i expenditure with the marginal utility of wealth flexibility ΩW , and the relative

changes in commodity expenditures, say d ln(wk)/d ln(w1), k = 2, 3, . . . , n, which

are the formal counterparts to the income elasticities of expectation.

3. Frischian flexibilities: restrictive full separability. Let in (7.13) Uit(xit)=µiρtV (xit),

where ρt and µi are utility weights for, respectively, period t and commodity i and

V (·) is a prototype single-commodity utility element. The Lagrange function for

maximization of U=
∑n

i=1

∑T
t=1 ρtµiV (xit) subject to (5.4) is

L =

{∑T
t=1ρt

∑n
i=1µiV (xit)−

∑T
t=1λt(

∑n
i=1pitxit−yt)−Ω(

∑T
t=1βtyt−W ),∑n

i=1µi

∑n
t=1ρtV (xit)−

∑n
i=1χi(

∑T
t=1p̄itxit−wi)−Ω(

∑n
i=1wi−W ),

(9.13)

and (9.2) and (9.8), letting v′it(xit)≡dV (xit)/dxit, specialize to

ρtv
′
it(xit) = λtpit ⇐⇒ v′it(xit) = ωPtpit (t = 1, . . . , T ) ⇐⇒

µiv
′
it(xit) = χip̄it ⇐⇒ v′it(xit) = ωCip̄it (i = 1, . . . , n),

where ωPt = λt/ρt ≡ Ωβt/ρt, and ωCi = χi/µi ≡Ω/µi. The latter are the Lagrange

multipliers for, respectively,

max
∑n

i=1 µiV (xit) subject to
∑n

i=1pitxit=yt,

LPt =
∑n

i=1 µiV (xit)−ωPt(
∑n

i=1pitxit−yt),

max
∑T

t=1 ρtV (xit) subject to
∑T

t=1p̄itxit=wi,

LCi =
∑T

t=1 ρtV (xit)−ωCi(
∑T

t=1p̄itxit−wi).

Since (9.4) and (9.10) are still satisfied, these Lagrange multipliers are related by

ln(ωPt) + ln(ρt)− ln(βt) = ln(ωCi) + ln(µi) = ln(Ω).

Then, (9.5) and (9.11) summarize, for the cases with restrictive additive separa-

bility, the connection between the generalized Frisch parameter (the flexibility of the

marginal utility of wealth), the period-specific flexibility of the marginal utility of

income, and the commodity-specific flexibility of the marginal utility of expenditure.
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4. Hicks-Allen decomposition: restrictive period-separability. Conditional on period

expenditure yt, irrespective of ps and ys (s 6= t), we have in precise notation, in

analogy with (2.8), (2.10), (2.11), and (3.3), for the period-t-problem (9.3),

xi|Pt = fi|Pt(pt, yt), Ei|Pt ≡
∂fi|Pt(pt, yt)

∂yt

yt
fi|Pt(pt, yt)

, i = 1, . . . , n,

xi|Pt = hi|Pt(ωPtpt), φij|Pt ≡
∂hi|Pt(ωPtpt)

∂pjt

pjt
hi|Pt(ωPtpt)

, i, j = 1, . . . , n,

ωPt = ωPt(pt, yt), ωy|Pt ≡
∂ωPt(pt, yt)

∂yt

yt
ωPt(pt, yt)

,

where

Ei|Pt = ωy|Pt

∑n
k=1 φik|Pt.

This gives Hicks-Allen commodity, period-t-conditional substitution elasticities,

(9.14) σij|Pt = ψij|Pt−Sij|Pt,

the Frischian and general commodity substitution elasticities being, respectively,

ψij|Pt =
φij|Pt

αj|t

, Sij|Pt =
Ei|PtEj|Pt

ωy|Pt

, i, j = 1, . . . , n.

If commodity-separability for period t also prevails, then φij|Pt = δijφii|Pt = δijEi|Ptω
−1
y|Pt.

5. Hicks-Allen decomposition: restrictive commodity-separability. For the analogous

commodity-i-problem (9.9), we have in precise notation, with p̄(i) = (p̄i1, p̄i2, . . . , p̄iT ) ≡

(pi1, β2pi2, . . . , βTpiT ), conditional on the commodity expenditure wi, irrespective of

p̄(k) and wk (k 6= i),

xt|Ci = ft|Ci(p̄(i), wi), Et|Ci ≡
∂ft|Ci(p̄(i), wi)

∂wi

wi

ft|Ci(p̄(i), wi)
, t = 1, . . . , T,

xt|Ci = ht|Ci(ωCip̄(i)), φts|Ci ≡
∂ht|Ci(ωCip̄(i))

∂p̄is

p̄is
ht|Ci(ωCip̄(i))

, t, s = 1, . . . , T,

ωCi = ωCi(p̄(i), wi), ωw|Ci ≡
∂ωCi(p̄(i), wi)

∂wi

wi

ωCi(p̄(i), wi)
,

where
Et|Ci = ωw|Ci

∑T
s=1 φts|Ci.

This gives Hicks-Allen temporal, commodity-i-conditional substitution elasticities,

(9.15) σts|Ci = ψts|Ci−Sts|Ci,

the Frischian and general temporal substitution elasticities being, respectively,

ψts|Ci =
φts|Ci

α̃s|i

, Sts|Ci =
Et|CiEs|Ci

ωw|Ci

, t, s = 1, . . . , T.

If period-separability for commodity i also prevails, then φts|Ci = δtsφtt|Ci = δtsEt|Ciω
−1
w|Ci.
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We can then conclude:

a. Full period-separability and commodity-separability for period t – irrespective of

ys,ps (s 6= t) and irrespective of whether commodity-separability prevails for periods

s 6= t – implies

(9.16) σij|Pt =
Ei|Pt

ωy|Pt

(
δij
αj|Pt

−Ej|Pt

)
, i, j = 1, . . . , n.

b. Full commodity-separability and period-separability for commodity i – irrespec-

tive of wk, p̄(k) (k 6= i) and irrespective of whether period-separability prevails for

commodities k 6= i – implies

(9.17) σts|Ci =
Et|Ci

ωw|Ci

(
δts
αs|Ci

− Es|Ci

)
, t, s = 1, . . . , T.

c. Full period- and commodity-separability implies that jointly,

(9.18)

σij|Pt =
Ei|Pt

ωy|Pt

(
δij
αj|Pt

− Ej|Pt

)
, i, j = 1, . . . , n; t = 1, . . . , T,

σts|Ci =
Et|Ci

ωw|Ci

(
δts
αs|Ci

−Es|Ci

)
, t, s = 1, . . . , T ; i = 1, . . . , n.

Contrasting (9.16)–(9.18) with (9.5) and (9.11) – recalling all assumptions about

the utility function and the consumer’s optimization problem on which these two sets

of relationships rely – raises the empirically relevant question: when and how can

estimates of ‘conditional’ Frischian flexibilities like ωy|Pt and ωw|Ci be translated into

estimates of ΩW ? Elements of an answer have been given in the previous sections.

In the final section, we give some concluding remarks.

10 Discussion and conclusion

In focus of this paper has been substitution in the spatial and in the temporal

sense and the connection between them. Frisch (1959), discussing, inter alia, intra-

temporal commodity substitution, proposed, and demonstrated the usefulness of

systems of demand functions conditional on the marginal utility of income, later

labeled ‘Frisch demand functions’. Such functions and their multi-period counter-

parts, systems of dynamic demand functions conditional on the marginal utility of

wealth, have been a starting point for the present paper. A question which comes

to the forefront when discussing such systems is to what extent substitution elas-

ticities obtained from data with spatial variation, across commodities, agree with

substitution elasticities obtained by exploring data with temporal variation, across

time periods, for single commodities or for aggregates of them. More precisely, and

stated in econometric terms: when can estimates representing spatial substitution

be interchanged with estimates relevant for temporal substitution, and vice versa?
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Are there ceteris paribus clauses or issues related to autonomy and invariance that

should be considered?

In the paper, decompositions of the ‘total’ Hicks-Allen substitution, as following

from Slutsky type of substitution in classical demand analysis, into two components:

‘Frisch substitution’, also called ‘specific substitution’, and ‘general substitution’,

in the Houthakker-Theil sense, has been repeatedly exploited. The former refers

to the ‘genuine substitution’ that follows ‘directly’ from the form of the utility

indicator function, and in Frisch’s terminology represented by ‘want elasticities’.

The latter refers to substitution following from the commodities’ ‘competition within

the budget’. While the former may be, and in practice often is, eliminated for certain

commodity combinations through parameter-saving restrictions, the latter can never

be made to disappear (although it usually does not involve specific parameters). Of

particular importance is the fact that the inverse of the ‘flexibility of the marginal

utility of income’ (strictly a cardinal concept), often labeled the ‘Frisch parameter’,

is a core element in mathematical expressions of both kinds of substitution. Specific

substitution has a different meaning relative to the ‘Frisch parameter’ under additive

separability than in less restrictive cases, which should affect procedures for its

estimation both in parametric and non-parametric contexts. In the latter role,

however, the ‘Frisch parameter’ does not presume a cardinalistic interpretation of

utility, which is probably a primary reason for its popularity.

Ideally, though depending on purpose, scale effects, represented by Engel elas-

ticities, and substitution effects, represented by Hicks-Allen elasticities and their

components, should be allowed for jointly in modeling. For some applications it

may be worthwhile to ‘isolate’ one of them. The literature dealing with parametric

specifications give numerous examples as specific parameter restrictions, see e.g.,

Crossley and Low (2011, Section 2), Pakoš (2011, Section 2 and Appendix A) and

Thimme (2016, pp. 228 and 239), for a few recent examples. Sometimes, paramet-

ric utility functions, or utility elements, are restricted to be additively separable

and/or homothetic. Additive separability, in multi-period, multi-commodity con-

texts, restricts Frisch cross-elasticities, some of them or all, to be zero, between

commodities, between periods or both.21 Full homotheticity restricts all Engel elas-

ticities to equal one. The latter is, in a multi-commodity context, a quite unrealistic

implication which, with reference to, e.g., ‘Engel’s Law’ has been rejected in much

empirical work. The relevance of imposing homotheticity on the dynamic utility

function in a one-commodity context – neglecting any ‘scale effects’, say over a con-

sumer’s life-cycle, by making all Engel elasticities equal to unity – is still a contested

issue, notably when durable goods are involved.

We finish by briefly stating some more specific conclusions: First, depending on

the commodity grouping, specifications with additive separability across commodi-

21Crossley and Low (2011, Corollary 1) for example shows that if (i) the intertemporal utility function is additive
in period-specific ‘felicity functions’, corresponding to (7.1), (ii) the latter have a certain PIGL or PIGLOG form
and (iii) the within period preferences are nonhomothetic, then the elasticity of substitution is identified by the
shape of the Engel functions.
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ties and non-homotheticity over periods for each commodity are worth considering.

Second, other forms of restrictive block-additive separability over either time-periods

or commodities gives parameter-saving specifications also worth considering. Third,

when extending a static model to a dynamic one and attempting to ‘translate’

commodity-related elasticities of substitution into temporal elasticities, the Hick-

sian elasticity of expectation emerges as an interesting concept. Fourth, omission

of Hicks-Allen or Frisch direct substitution elasticities may be relevant in defining

aggregate substitution elasticities. The elasticities obtained are somewhat related to

Morishima elasticities. Fifth, an appropriate weighting by budget shares is essential

to construct from the commodity-temporal level expressions interpretable as aggre-

gate Engel and substitution elasticities. Sixth, the Frisch parameter in the income

and in the wealth sense cannot, in general, be interchanged. In particular cases,

e.g., with additive separability of the utility function over periods and commodities,

the translation raises few problems. Otherwise, giving attention to ceteris paribus

clauses and autonomy (in the econometric sense) is highly recommendable.
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