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Abstract

We analyze delegation of a set of decisions over time by an informed principal to a potentially

biased agent. Each period the principal observes a state of the world and sends a “cheap-talk”

message to the agent, who is privately informed about her bias. We focus on principal-optimal

equilibria that satisfy a Markovian property and show that if the potential bias is large, then the

principal assigns less important decisions in the beginning and increases the importance of de-

cisions towards the end. In the beginning of their relationship, the biased agent acts exactly in

accordance with the principal’s preferences, while towards the end, she starts playing her own fa-

vorite action with positive probability and gradually builds up her reputation. Principal provides

full information in every period as long as he has always observed his favorite actions in the past.

If we interpret the evolution of the importance of decisions over time as the career path of an

agent, this finding fits the casual observation that an agent’s career usually progresses by making

more and more important decisions and provides a novel explanation for why this is optimal. We

also show that the bigger the potential conflict of interest, the lower the initial rank and the faster

the promotion.
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1. INTRODUCTION

Consider a principal, say a career bureaucrat, who needs to delegate a series of operational decisions

to an agent, say a newly hired subordinate. The principal is more informed about the policy issues in-

volved and has an opportunity to communicate these issues to the agent before she makes a decision.

However, the agent could be biased and whether she is biased or not is her private information. How

should the principal sequence these decisions? More important ones first or less important ones?

Similarly, we could think of an informed investment advisor who gives advice to an investor, who

might have some behavioral bias. How should the advisor present investment opportunities? More

important ones first or less? A big bunch of them at the beginning or only a few?

We could also think of the problem faced by the principal as the optimal design of an agent’s

career path. At what level of the hierarchy should the principal start the agent and how should he

go about promoting her? Is it best to start her at a very low rank and keep her there for a long time,

or should the career of the agent progress at a steady pace? What is the role of potential conflict of

interest between the principal and the agent in the optimal design of the career path of the agent?

In our model, there is a principal who needs to delegate a set of decisions to an agent over finitely

many periods and some of these decisions might be more important than the others. Each period

the principal decides which decision (or set of decisions) to delegate to the agent in that period. He

then observes the relevant state of the world for that period and communicates this information to

the agent. The agent observes the message sent by the principal and makes a decision and the de-

cision is revealed. State of the world and the decision jointly determine the payoffs in each period.

Overall payoff of each player is equal to the weighted sum of period payoffs, where the weight of each

period is determined by the importance of the decisions made in that period. The principal would

like the decision to match the state of the world while the agent might be biased. More crucially, the

principal’s preferences are common knowledge while that of the agent is her private information.

We assume that the information on the state of the world is “soft,” i.e., it cannot be verified, and

that the messages are costless. This makes the communication phase in each period a “cheap-talk”

game, i.e., the principal may lie and this has no direct costs for him. We also assume that the de-

cisions of the agent are not contractible. This could be due to legal reasons, as in the example of a

bureaucrat and a subordinate, or because the decisions are impossible to reproduce before courts.1

Our third crucial assumption is that states of the world are independently distributed across periods.

This implies that the principal decides how much information to reveal each period without having

to worry about its informational implications for the future states. Finally, we assume that the agent’s

preferences are similar for each decision, i.e., she either shares the preferences of the principals or is

biased in the same manner for all the decisions. Therefore, our model is more suitable for situations

in which the decisions are related, such as a series of investment decisions, or budgetary decisions

for different departments, etc.

We assume that the agent is either an unbiased type, who myopically chooses the decision best

suited to the state given her beliefs in each period, or a biased type who acts strategically. The un-

1For example, the decision might be how much time to allocate to a certain task, or how much to invest in human capital,
which might be observable by the principal, but still impossible to verify. The assumption that decisions are observable but
not contractible follows the “incomplete contracts” perspective (e.g., Grossman and Hart (1986) and Hart and Moore (1990)
and is a standard one in the “optimal delegation” literature that we discuss in Section 5 (see, for example, Holmström (1977)
and Dessein (2002)).
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biased type resembles a commitment type that is common in reputation literature. But, unlike a

standard commitment type who always plays the same action, the unbiased agent plays a best re-

sponse to her beliefs in any given period. Our aim is to characterize the perfect Bayesian equilibria of

the resulting extensive form game with incomplete information.

In order to gain some intuition about the major forces at work in the model, note that the princi-

pal would like to receive his favorite decision, i.e., the unbiased decision which matches the state, in

each period. Therefore, if he believes that the agent is going to make the unbiased decision with high

enough probability, then he has an incentive to reveal the state of the world truthfully. The biased

agent, on the other hand, would like to make a decision that is best for her, i.e., the biased decision, in

any period and for that reason she would like to receive accurate information. However, if she makes

a decision that is different from the decision that would be made by the unbiased commitment type,

she would be revealed as biased and receive no information in the future. This introduces reputa-

tion concerns in the sense that she may masquerade as the unbiased agent and act against her own

interest today, in order to receive better information in the future.

It is clear that the agent benefits from truthful communication. It turns out that, ex-ante, the

principal also benefits from truthful communication, irrespective of whether the agent is biased or

not. In fact, if he could commit to a communication strategy before learning the state, he would

commit to full revelation. Therefore, the stage game exhibits both conflict of interest, because of the

possible bias, and common interest, because of the common preference for truthful communication.

These considerations imply that the principal may choose the allocation of decisions in a strategic

manner in order to exploit the reputational concerns of the agent and facilitate communication. In

particular, if he assigns relatively more important decisions to the future, then the biased agent may

choose to play the unbiased action early on in the game, which benefits the principal both because

he prefers the unbiased action and it enables truthful communication. At the same time, he would

not like to leave too many important decisions to later periods because the biased agent will surely

play the biased action at the end. This creates a trade-off in his choice of the allocation of decisions.

We aim to understand how this trade-off is resolved in equilibrium.

As is usual in cheap-talk games, our model exhibits multiple equilibria. In order to circumvent this

problem, we focus on equilibria that satisfy a Markovian property and yield the highest expected pay-

off for the principal, which we call the principal-optimal equilibria. We show that, in any principal-

optimal equilibrium, if the potential bias is large enough and the initial reputation of the agent is

not very good, then the principal assigns less important decisions in the beginning and increases the

importance of the decisions towards the end. If there are sufficiently many periods, then in the begin-

ning of their relationship, the biased agent acts exactly in accordance with the principal’s preferences,

while towards the end, she starts mixing, i.e., playing her own favorite action with positive probability,

and gradually builds up her reputation. Interestingly, once the agent starts mixing, she builds repu-

tation at just the right speed in order to facilitate communication in every period: If her reputation

were to evolve faster, then truthful communication would fail in the current period, while if it were to

evolve slower, it would fail in the future. Principal reveals the state truthfully in every period as long as

he has always observed the unbiased action in the past. If, in contrast, the potential bias of the agent

is small, then the principal chooses to assign more important decisions early on in their relationship.

The main reason behind this result is roughly as follows. Since the biased agent will definitely
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play the biased action at the end of the game, the principal would like to leave as little as possible

to the later periods of the game. However, doing so distorts the reputational incentives of the agent

and causes her to play the biased action early on. If the potential bias is large, then future must be

important enough in order to provide reputational incentives, which leads to increasing importance

over time, while if it is small, then these incentives can be provided even if the future is not very

important.

We also show that, for sufficiently bad initial reputation levels, the principal-optimal equilibrium

is also agent-optimal, i.e., the equilibrium that we focus on Pareto dominates all other equilibria.

Furthermore, since the principal fully reveals the state in every period as long as he observes the

unbiased action, a principal-optimal equilibrium is also the most informative one on the equilibrium

path.2 We therefore believe that principal-optimality is a reasonable equilibrium selection criterion.

Our results imply that as the potential conflict of interest between the principal and the agent

increases, initial decisions become less important but their growth rate increases. Finally, we show

that, if there is a large number of decisions and the principal can choose the number of periods over

which to allocate these decisions, she would prefer as many periods as possible. In other words, if the

potential bias is large, then the principal would prefer to give the agent trivial tasks for a long period

of time and then promote her quickly towards the end of her career.

We believe that our main findings are in line with causal observations. Usually an agent starts

her career in an organization by making less important decisions and is gradually promoted to make

more and more important decisions. Of course, there could be many reasons why this is the case,

including on the job training, testing the skills of the agent, etc. In this paper, we provide another

rationale, which is based on disciplining a possibly biased agent to act in the interest of the principal

and maintaining a healthy communication between them. Also, causal empirics suggest that a newly

hired agent with some history of past decisions (e.g., in another institution) would presumably have

a lower potential conflict of interest (for otherwise he would not be hired) and accordingly start at a

higher rank than an agent with no history. Still, the latter might be promoted at a faster rate as long

as her decisions turn out to be in the interest of the principal.

2. THE MODEL

A principal needs to delegate a decision to a potentially biased agent in each of N periods. In what

follows, it is more convenient to count the periods in reverse, so that the period in which the first

decision is made is labeled N , the second N −1, and so on. The agent’s type β ∈ {0,b}, where b > 0, is

her private information and she is biased, i.e., β = b, with probability p ∈ (0,1). With the remaining

probability, the agent is an unbiased commitment type, i.e., β = 0. We provide more details about

these types further below. In each period i of the N period game, the following stage-game is played:

1. The principal chooses the parameter δi ∈ [0,1] for period i . The parameter δi represents the

proportion of the remaining decisions deferred to subsequent periods and 1−δi represents the

proportion made in period i . Since there are no subsequent periods in the last period, we set

δ1 = 0.

2As we will show in the sequel, this is true except perhaps in the first period. We refer the reader to Chen et al. (2008) and
the references cited therein for justification of the most informativeness criterion in cheap-talk games.
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2. Nature chooses the state of the world θi ∈ {0,1}. We assume that each state is equally likely and

that states are independent across periods.

3. The principal observes the state of nature θi and chooses a message mi ∈ {0,1}.

4. The agent observes the principal’s message and chooses an action ai ∈Rwithout observing the

state of the world.

We define the importance parameter γi for period i as the proportion of decisions made in period

i . More precisely, γN = 1−δN , γi = δN · · ·δi+1(1−δi ), and γ1 = δN · · ·δ2(1−δ1). If the importance

parameter for the period is γi and the agent plays ai ∈ R, then the principal’s payoff for the period is

v(ai ,θi ,γi ) = −γi (ai −θi )2 while the biased agent’s payoff for the period is u(ai ,θi ,b,γi ) = −γi (ai −
(θi +b))2. The parameter b > 0, measures the divergence of the preferences of the principal and the

agent, or simply the “bias” of the agent. The payoff of each player over the N periods is simply the

sum of the payoffs from each period.

The state of the world, the messages, and the decisions of the agent are unverifiable and hence

cannot be contracted upon. Furthermore, as the payoff functions imply, the messages have no direct

payoff consequence. This implies that the communication between the principal and the agent is

“cheap-talk” and that outcome contingent contacts cannot be written. After the period is over, the

principal and agent observe their payoffs and therefore the agent learns the state in period i and the

principal learns the agent’s action.

We assume that the unbiased agent is a commitment type who, in each period, plays the action

that is perfectly aligned with the principal’s preferences. More precisely, fix a period i and let λ ∈ [0,1]

be the probability assigned by the agent to the event that θi = 1. Define the best period action for type

β ∈ {0,b} as follows:

aβ(λ) = argmax
ai

E
[−(ai − (θi +β))2]=λ+β.

We refer to a0(λ) as the unbiased action and to ab(λ) as the biased action. The unbiased agent is a

commitment type (or an automaton) who plays action a0(λ) in each period, i.e., she picks the myopic

best response of an agent who has zero bias and therefore chooses an action that is perfectly aligned

with the principal’s preferences. The biased agent, in contrast, is rational and chooses her period

action strategically.

The main question analyzed in the paper is the optimal sequencing of decisions by the principal.

For a fixed set of N decisions and arbitrary importance parameters, this is a difficult problem. We

analytically simplify the problem by assuming that the principal can choose any γi ∈ [0,1] at the be-

ginning of each period i and that at least one γi is positive. In other words, the principal can fine tune

the importance of period i decision in any way that he likes. This could be motivated in two different

ways: (1) There is a large set of decisions and each period the principal chooses which subset of these

decisions to delegate; (2) There is a large set of decisions with varying importance and each period

the principal chooses one decision from this set.

Let oi = (δi ,θi ,mi , ai ) denote a period i outcome and Oi the set of all possible period i outcomes.

For any i < N , let Hi be the set of all histories before decision i is made, i.e., sequences of the type

(oN , . . . ,oi+1). Define HN = {;}. The principal’s belief in period i is a mapping pi : Hi → [0,1] where

4



pi (h) = prob(β= b|h) for each h ∈ Hi . A period i strategy for the principal is comprised of two com-

ponents: a weight choice strategy τi : Hi → [0,1] where τi (h) is the principal’s choice of δi ∈ [0,1]

in period i after history h ∈ Hi and a communication strategy µi : Hi × [0,1]× {0,1} → [0,1] where

µi (h,δi ,θi ), denotes the probability of sending message 1 after history h, weight δi , and state θi . The

agent moves after histories of the type (h,δi ,θi ,mi ) where h ∈ Hi . For any history h ∈ Hi , a period i

information set for the agent is given by Ii = {(h,δi ,θi ,mi ) : θi ∈ {0,1}}. In other words, before making

a decision in period i , the only thing that is not known by the agent is θi . Let the set of all period i

information sets be Ii . Agent’s belief that θi = 1 is given by λi : Ii → [0,1]. Since the unbiased agent

is a commitment type, we will only describe strategies for the biased agent. Biased agent’s (mixed)

strategy is given by αi : Ii → ∆ (R), where ∆ (R) denotes the set of all probability distributions with

support in R. For ease of exposition we will sometimes write λi (h,δi ,mi ) and αi (h,δi ,mi ) for any

h ∈ Hi , δi ∈ [0,1], and mi ∈ {0,1}. A collection σ = (τi ,µi ,αi , pi ,λi )N
i=1 constitutes an assessment and

we focus our attention on perfect Bayesian equilibria (PBE) of the game that satisfy Properties 1 and 2

that we define below.

Property 1. Fix an assessment σ, a period i , a history h ∈ Hi , and an outcome oi = (δi ,θi ,mi , ai ). If

ai 6= a0(λi (h,δi ,mi )), then σ is a PBE only if p j (ĥ) = 1 in any period j = i −1, . . . ,1 and history ĥ ∈ H j

that follows oi .

This property implies that equilibrium beliefs put full probability on the agent being the biased

type (i.e., the strategic player) after histories that contain an action which is different from the un-

biased action. It is automatically satisfied in a sequential equilibrium because the unbiased action

is the unique action that is available to the unbiased type. However, we work with perfect Bayesian

equilibria because there are certain difficulties in defining sequential equilibria for games with infi-

nite action sets such as the game we consider in this paper.3

Property 2. For any i = N , . . . ,1 and h,h′ ∈ Hi : (1) pi (h) = pi
(
h′) implies τi (h) = τi (h′), µi (h,δi ,θi ) =

µi (h′,δi ,θi ), αi (h,δi ,mi ) =αi
(
h′,δi ,mi

)
; (2) αi (h,δi ,0) =αi (h,δi ,1).

The first part of this property states that past history matters only to the extent that it changes

the reputation of the agent, while the second part states that the agent plays a symmetric strategy.

Together, they imply that strategies do not depend on the past communication behavior of the prin-

cipal.4 Since the principal’s past communication behavior has no effect on current and future payoffs

or the states of the world, this is a Markovian property in the sense that strategies are independent

of payoff irrelevant histories. In particular, this restriction eliminates punishments in the form of “no

information revelation” or “playing the biased action” after histories in which the principal has lied.5

In addition to its Markovian nature, this property is also implied by “renegotiation-proofness”, be-

cause even after histories in which the principal has lied, both parties have an incentive to choose a

continuation equilibrium in which there is full communication. We will comment on how our results

change when this restriction is removed in Section 4.1.

3See Myerson and Reny (2015) for a definition of sequential equilibrium in infinite action games and a discussion of the
difficulties in extending the definition in a meaningful way from finite games to infinite games.

4Note that the second part, i.e., symmetry, is necessary for this to be true. If the agent plays differently after different
messages, then the principal’s choice of the message may induce different reputation levels, and hence different behavior,
in the future.

5See Maskin and Tirole (2001) for the notion of payoff irrelevant histories and some arguments in favor of focusing on
Markov perfect equilibria.
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From this point on, we restrict attention to PBE that satisfy Properties 1 and 2. Hence, when we

say that an assessment σ constitutes an equilibrium we mean that the assessment is a PBE and the

assessment satisfies Properties 1 and 2.

3. PRELIMINARIES

As is usual in cheap-talk games, there are many equilibria of the game defined above even under the

Markovian restriction introduced in Property 2. In this paper, we focus on the principal-optimal equi-

libria, i.e., equilibria that maximize the principal’s expected payoff. For expositional reasons, we will

also restrict attention to equilibria in which for any i ∈ {N , N −1, . . . ,1}, h ∈ Hi , and δ ∈ [0,1] (1) The

principal sends message m = 0 after observing θ = 0, i.e., µi (h,δ,0) = 0 and (2) The agent puts positive

probability only on the biased and unbiased actions, i.e.,αi (h,δ,m) ∈∆({
a0(λi (h,δ,m)), ab(λi (h,δ,m))

})
.

Given these restrictions, we simplify notation and describe period i strategies by functions τi :

Hi → [0,1], µi : Hi × [0,1] → [0,1], and qi : Hi × [0,1] → [0,1], where τi (h) determines the principal’s

choice of δ, µi (h,δ) determines the probability that the principal sends message 1 after choosing

δ and observing θi = 1, and the function qi (h,δ) is a distributional strategy (see Milgrom and We-

ber (1985)) for the agent that determines the total probability with which the agent plays the biased

action. Note that restriction (2) is satisfied in any equilibrium and restriction (1) is without loss of

generality in terms of equilibrium outcomes.

Fix an assessment σ, a period i , a history h ∈ Hi , and δi ∈ [0,1]. Let Pr(m) be the total probability

that the principal sends message m ∈ {0,1} in this assessment in period i after (h,δi ).6 Let q = qi (h,δi )

and λ (m) =λi (h,δi ,m). We can then write the principal’s and the agent’s ex-ante costs in that period

as follows:

C P
i (h,δi |σ) = qb2︸︷︷︸

Cost of bias

+ ∑
m∈{0,1}

Pr(m)λ(m)(1−λ(m))︸ ︷︷ ︸
Cost of miscommunication

C A
i (h,δi |σ) = (1−q)b2︸ ︷︷ ︸

Cost of bias

+ ∑
m∈{0,1}

Pr(m)λ(m)(1−λ(m))︸ ︷︷ ︸
Cost of miscommunication

This cost is composed of two components: The first component (cost of bias) comes from the fact that

the agent plays the biased action with probability q after both messages. The second component (cost

of miscommunication) comes from the fact that the principal may not provide full information. If, for

example, the principal’s message provides no information on θi , then λ (m) = 1/2 for m ∈ {0,1} and

the cost of miscommunication is equal 1/4. If it is perfectly informative, then λ (1) = 1 and λ (0) = 0

and the cost of miscommunication is equal to zero.

To fix ideas, we begin our analysis with the simple case of N = 1. In this game, sequential ratio-

nality implies that the biased agent plays the biased action, i.e., ab(λ) for any belief λ. As it is the

case in cheap-talk games, there is always an equilibrium in which the principal’s message provides

no information about the state; the so called “babbling equilibrium.” The following lemma argues

that there are only babbling equilibria if pb > 1
2 . It also shows that there are three types of equilibria if

pb ≤ 1
2 : one in which the principal reports the state truthfully; another in which the principal’s report

6More precisely, Pr(1) = 0.5µi
(
h,δi

)
and Pr(0) = 0.5+0.5

(
1−µi

(
h,δi

))
.
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is partially truthful; and babbling equilibrium. Define

q̄ = 1

2b

and note that q̄ < 1 if the bias exceeds 1/2.

Lemma 1. Let N = 1 and p ∈ (0,1) be the probability that the agent is biased. In any equilibrium, the

agent plays the biased action with probability one. If p > q̄ , then the principal’s message provides no

information. If p ≤ q̄ , then there is an equilibrium where the principal truthfully reports the state and

if 1/4b < p < q̄ , then there is an equilibrium where the principal’s report is partially truthful (i.e., the

principal sends the same message with positive probability in both states). These are the only equilibria.

Proof. Sequential rationality of the agent implies that he plays his best period action in the last pe-

riod. For proofs of the other parts see the proof of Lemma 2 in Section 7.

Remark 1. Note that the equilibria described in Lemma 1 are Pareto ranked: the more informative

equilibrium yields a strictly higher expected payoff to both the principal and the agent. In fact, in the

truthful equilibrium, the agent’s cost is equal to zero whereas the (ex-ante) cost of the principal is pb2.

In the partially informative equilibrium, agent’s cost is (1/2−pb) ∈ (0,1/4), whereas the principal’s is

equal to pb2 + (1/2−pb). In the babbling equilibrium, expected costs of the agent and the principal

are 1/4 and pb2 +1/4, respectively.

4. THE MAIN RESULT

In this section, we will show that there is a unique principal-optimal equilibrium outcome. Further-

more, this outcome is also optimal for the agent as long as the agent has a sufficiently bad initial

reputation. In other words, for sufficiently bad initial reputation levels, there is a unique equilibrium

outcome that Pareto dominates all other equilibrium outcomes.

Focusing on the principal-optimal equilibrium, we show that the optimal career path of the agent

is characterized by progressively more important decisions if the agent’s bias exceeds 1/2. Also, as the

agent’s bias increases, the initial decision becomes less important but promotion takes place faster.

If, on the other hand, the agent’s bias is less than 1/2, then the importance of the decisions decreases

over time, and as the agent’s bias increases, the initial decision becomes less important while the

importance of the decisions decreases at a slower rate.

In order to facilitate the definition of the principal-optimal equilibrium we first need some pre-

liminary definitions. Let δ∗1 = 0 and define δ∗i recursively as

δ∗2 = 4b2

1+4b2 (4.1)

δ∗i = 4b2

1+4b2 ∏i−1
j=2δ

∗
j

, i = 3, . . . , N (4.2)

For any p ∈ [0,1], let7

q∗
i (p) =


(
1− 1−p

(1−q̄)i−1

)+
, q̄ < 1 or i = 1

0, otherwise
(4.3)

7x+ = max{0, x} for any x ∈R.
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Define the set of period i histories H∗
i as follows. H∗

N = {;} and, for any i = N −1, . . . ,1, a history

h = (oN ,oN−1 . . . ,oi+1) ∈ H∗
i if (1) period N outcome, oN = (δN ,θN ,mN , aN ), is such that δN = δ∗N and

aN =
mN , if q∗

N

(
p

)≤ q̄

1/2, if q∗
N

(
p

)> q̄

(2) for all j = N −1, . . . , i +1, period j outcome, o j =
(
δ j ,θ j ,m j , a j

)
, is such that δ j = δ∗j and a j = m j .

In other words, a history belongs to H∗
i if in each previous period j the principal chooses δ∗j and the

agent plays the unbiased action after each message believing that the principal is telling the truth

(except in period N , where she believes the principal is telling the truth if and only if doing so is

sequentially rational for the principal).

We define the assessment σ∗ = (
τi ,µi , qi , pi ,λi

)
as follows. After each history in H∗

i , the principal

chooses δ∗i and after any other history he chooses δi = 0, i.e.,

τi (h) =
δ

∗
i , h ∈ H∗

i

0, otherwise
(4.4)

If h ∈ H∗
i and the principal has chosen δ∗i in period i , then the agent’s total probability of playing the

biased action is equal to q∗
i

(
pi (h)

)
, where q∗

i is defined in (4.3); otherwise, the biased agent plays the

biased action with probability one, i.e.,8

qi (h,δi ) =
q∗

i

(
pi (h)

)
, if h ∈ H∗

i , δi = δ∗i , pi (h) < 1

pi (h) , otherwise
(4.5)

The principal communicates truthfully in period i as long as the total probability of the biased action

in that period is less than or equal to q̄ , the history belongs to H∗
i , and he has chosen δ∗i . Since we

assumed type θi = 0 principal sends message mi = 0, this implies that the probability with which type

θi = 1 sends message mi = 1 is given by

µi (h,δi ) =
1, if h ∈ H∗

i , δi = δ∗i , qi (h,δi ) ≤ q̄ , pi (h) < 1

0, otherwise
(4.6)

In any period i , the unbiased action is given by a0 (λi (h,δi ,m)), where

λi (h,δi ,m) =


1−µi (h,δi )
2−µi (h,δi ) , m = 0

1, m = 1
(4.7)

Beliefs on the agent’s type are defined as follows: pN (;) = p and

pi−1 (h,oi ) = 1− 1−pi (h)

1−qi (h,δi )
, for all h ∈ Hi , oi ∈Oi (4.8)

Note that if the players play according to σ∗ up to and including period i +1, which implies that

8Note that in the last period δ1 = δ∗1 = 0 by construction.
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hi ∈ H∗
i , and the principal chooses δi = δ∗i , then hi−1 ∉ H∗

i−1 if and only if in period i the agent plays

an action that is different from the unbiased action, i.e., plays ai 6= mi . In that case, the principal

assigns probability one to the event that the agent is biased, provides no information, and terminates

the game by choosing δi−1 = 0.

Theorem 1. The assessment σ∗ is a perfect Bayesian equilibrium and induces the unique principal-

optimal equilibrium outcome. If p > 1− (1− q̄)N−1, then σ∗ is also an agent-optimal equilibrium.

In the equilibriumσ∗ described above, the principal leaves a proportion δ∗i of decisions to subse-

quent periods on the equilibrium path. This proportion leaves the agent exactly indifferent between

the biased and the unbiased actions in period i if, in each subsequent period, the principal commu-

nicates truthfully after observing the unbiased action in all prior periods and provides no information

otherwise.

In order to further describe the equilibrium, we need to consider two cases: Case (1) The agent

has a good initial reputation, i.e., p ≤ q̄ . In this case, truthful communication is possible even when

N = 1; Case (2) The agent has a bad initial reputation, i.e., p > q̄ . In this case, truthful communication

is not possible in the one-shot game, but in the repeated game that we consider, it is possible in all

periods except possibly the first period, as we will explain further below.

First, suppose that the agent has a good reputation, i.e., p ≤ q̄ . In this case, on the equilibrium

path, the agent plays the unbiased action in every period except the last one and the principal com-

municates truthfully in every period.

Instead suppose that the agent has a bad reputation, i.e., p > q̄ . We can describe equilibrium

behavior more precisely by focusing on two sub-cases: (1) N is sufficiently large so that p ≤ 1− (1−
q̄)N−1 and (2) N is small so that p > 1− (1− q̄)N−1.

If N is sufficiently large, then the agent plays the unbiased action with probability one until the

game reaches period k, where k is the first period (largest integer) such that p > 1− (1− q̄)k−1. The

agent plays the biased action with total probability equal to 1 − (1 − p)/(1− q̄)k−1 ≤ q̄ in period k

and plays the biased action with total probability q̄ in all subsequent periods. The agent’s reputation

remains constant and equal to 1−p until the game reaches period k and then monotonically increases

in each period to reach exactly 1− q̄ in the last period of the game. The principal reports the state

truthfully in every period after observing the unbiased action.

If, on the other hand, N is small, then the agent plays the biased action with total probability equal

to 1−(1−p)/(1−q̄)N−1 in period N and plays the biased action with total probability q̄ thereafter. The

principal reports the state truthfully in every period except possibly the first period. In the first period,

total probability of the biased action may exceed q̄ and if this is the case the principal communicates

no information. In other words, if the agent has a sufficiently bad initial reputation, then informative

communication may fail in the first period but communication is fully informative thereafter.

Figure 1 plots the importance parameter (γi ), reputation of the agent (1−pi ), and the total prob-

ability with which the agent plays the biased action (qi ) for each period i , when the bias is equal to 1,

the prior on b is 0.9, and total number of periods is 10. Note that q̄ = 1/2 and hence k = 4.

4.1. The two-period model. In this subsection, we provide some intuition for Theorem 1 by ana-

lyzing the simpler two-period version of the model. We will show that the strategy profile σ∗ is an

9
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Figure 1: b = 1, p = 0.9

equilibrium and the outcome of this strategy profile is the unique principal-optimal equilibrium out-

come. Moreover, if p > q̄ , then this is also the agent-optimal equilibrium outcome.

We first argue thatσ∗ is an equilibrium. Underσ∗, total probability of the biased action in the last

period is q1 (h,δ1) = p1 (h) for any history h (see (4.3) and (4.5)). In other words, the biased agent plays

the biased action with probability one in the last period, which is sequentially rational. The principal

reports truthfully if and only if p1 (h) ≤ q̄ and h ∈ H∗
1 (see (4.6)), which is sequentially rational for

the principal (see Lemma 1). It is easy to check that beliefs λ1 and p1, defined in (4.7) and (4.8),

respectively, satisfy the Bayes’ rule.

Now let us consider the first period behavior. Note that a history is in H∗
1 if and only if in the first

period the principal has chosen δ∗2 and the agent has played the unbiased action given her beliefs.

The agent plays the biased action with total probability q∗
2

(
p

)
if δ2 = δ∗2 and with total probability p

otherwise (see (4.5)). If δ2 = δ∗2 and the agent plays the unbiased action, then she induces a history

that belongs to H∗
1 and consequently learns the state perfectly in the next period and plays her best

period action. This implies that the total cost of playing the unbiased action is (1−δ∗2 )b2. If the agent

plays the biased action, then her cost is equal to zero in the current period, but she induces a his-

tory that is not in H∗
1 and receives no information in the next period, which costs her 1/4. Therefore,

the total cost of playing the biased action is equal to δ∗2 /4. Definition of δ∗2 (see (4.1)) implies that

(1−δ∗2 )b2 = δ∗2 /4, i.e., the agent is indifferent between the biased and the unbiased actions and hence

playing the biased action with total probability q∗
2

(
p

)
is sequentially rational. If, on the other hand,

δ2 6= δ∗2 , then the history is not in H∗
1 irrespective of what the agent does, which implies that the prin-

cipal will provide no information in the next period (see (4.6)). Therefore, it is sequentially rational to

play the biased action with probability one after any δ2 6= δ∗2 . Finally, given the behavior of the agent

in the first period, communication strategy of the principal specified in (4.6) is sequentially rational.9

9The key to this observation is the fact that under σ∗, the principal’s continuation payoff depends only on whether δ2 =
δ∗2 and whether the agent plays the unbiased action. This implies that it is sequentially rational to provide full information
if and only if the total probability of the biased action in the first period is smaller than or equal to q̄ . See Lemma 2 in
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Therefore, we conclude that σ∗ is a perfect Bayesian equilibrium.

We will now show that σ∗ yields the unique principal-optimal equilibrium outcome. Fix p ∈ (0,1)

and consider an equilibrium where the principal chooses δ2 ∈ [0,1) and the agent plays the biased

action with total probability q2 ∈
[
0, p

]
in the first period after both messages. The principal’s ex-ante

total cost in such an equilibrium is

C
(
δ2, q2,c2,cb

1 ,cu
1

)
= (1−δ2)

[
q2b2 + c2

]︸ ︷︷ ︸
Period 2 cost

+δ2[q2 (b2 + cb
1 )︸ ︷︷ ︸

Cost after biased action

+(1−q2) (p1b2 + cu
1 )︸ ︷︷ ︸

Cost after unbiased action

]

= (1−δ2)
[
q2b2 + c2

]+δ2

[
pb2 +q2cb

1 + (1−q2)cu
1

]
(4.9)

where p1 = (p − q2)/(1− q2) by Bayes’ rule, the cost of miscommunication in period 1 is equal to cb
1

and cu
1 after the biased and unbiased actions, respectively, and c2 is the cost of miscommunication in

period 2. For notational simplicity let q∗
2 = q∗

2

(
p

)
and note that q∗

2 < p. The cost under σ∗ is equal to

C∗ =C
(
δ∗2 , q∗

2 ,c∗2 ,0,0
)= (1−δ∗2 )

[
q∗

2 b2 + c∗2
]+δ∗2 [

pb2 + q∗
2

4

]
where c∗2 = 0 if q∗

2 ≤ q̄ and c∗2 = 1/4 otherwise.

Now, fix any other equilibrium σ and assume that δ2 < δ∗2 in σ. This implies that the biased agent

plays the biased action with probability one in the first period, i.e., q2 = p. This is because, the cost of

playing the biased action in the first period is at most δ2/4, while the cost of the unbiased action is at

least (1−δ2)b2 and δ2 < δ∗2 implies δ2/4 < (1−δ2)b2. The principal’s cost in such an equilibrium is

C ′ =C
(
δ2, p,c2,cb

1 ,cu
1

)
= pb2 + (1−δ2)c2 +δ2

(
pcb

1 + (
1−p

)
cu

1

)
Therefore,

C ′−C∗ = b2(1−δ∗2 )(p −q∗
2 )+ (1−δ2)c2 +δ2

(
pcb

1 + (
1−p

)
cu

1

)
− (1−δ∗2 )c∗2 −δ∗2

q∗
2

4

If p ≤ q̄ , then q∗
2 = c∗2 = 0, which implies that C ′−C∗ > 0. If p > q̄ , then b > 1/2 and Property 2 imply

that c2 = cb
1 = 1/4 (see Lemma 2 on page 19). Therefore,

C ′−C∗ = b2(1−δ∗2 )(p −q∗
2 )+ (1−δ2)

1

4
+δ2

(
p

1

4
+ (

1−p
)

cu
1

)
− (1−δ∗2 )c∗2 −δ∗2

q∗
2

4

≥ b2(1−δ∗2 )(p −q∗
2 )+ 1

4

(
δ∗2

(
1−q∗

2

)−δ2
(
1−p

))
> b2(1−δ∗2 )(p −q∗

2 )+ 1

4
δ∗2

(
p −q∗

2

)
> 0

where the first inequality follows from c∗2 ≤ 1/4, the second from δ2 < δ∗2 , and the third from q∗
2 < p.

Therefore, the cost in any equilibrium in which δ2 < δ∗2 is strictly greater than the cost in equilibrium

σ∗.

Assume now that δ2 ≥ δ∗2 . We will consider two cases separately: (1) p ≤ q̄ and (2) p > q̄ . Assume

first that p ≤ q̄ , i.e., the agent has a good reputation. In this case, q∗
2 = c∗2 = 0 and the principal’s cost

Section 7 for the details of this argument.
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under σ∗ is C∗ = δ∗2 pb2. The principal’s cost in any equilibrium with δ2 ≥ δ∗2 and q2 > 0, on the other

hand, is at least C ′ = (1−δ2)q2b2 +δ2pb2, which is strictly greater than δ∗2 pb2 for any δ2 ≥ δ∗2 and

q2 > 0. Intuitively, under strategy profile σ∗, the principal minimizes the amount of decisions left for

the last period (where the biased agent plays the biased action with probability one) subject to the

constraint δ2 ≥ δ∗2 , which provides incentives to the biased agent to choose the unbiased action in

the first period.

Assume now that p > q̄ , i.e., the agent has a bad reputation, and note that this implies b > 1/2. In

this case, there is no equilibrium where the total probability of the biased action in the first period is

less than q∗
2 . In order to establish this, suppose, to the contrary, that there is an equilibrium where

q2 < q∗
2 . Bayes’ rule implies that, following the unbiased action, the agent’s reputation next period is

equal to 1−p1 = 1−p
1−q2

. Therefore, our definition of q∗
2 = 1−(1−p)/(1−q̄) and q2 < q∗

2 imply that p1 > q̄ .

However, if p1 > q̄ , then the principal will not provide any information in the last period (see Lemma

1). But if the principal provides no information in the last period even after observing the unbiased

action, then the biased agent has no incentive to play the unbiased action in the first period: doing

so does not change her expected payoff in the subsequent period and decreases her payoff in the

current period. We conclude that the biased agent plays the biased action with probability one in the

first period, which contradicts the hypothesis that q2 < q∗
2 ≤ p.

The argument in the previous paragraph implies that q2 ≥ q∗
2 in any equilibrium where δ2 ≥ δ∗2

and p > q̄ . Also, b > 1/2 implies that the cost of miscommunication after the biased action is cb
1 = 1/4.

The principal’s cost in such an equilibrium is

C

(
δ2, q2,c2,

1

4
,cu

1

)
= (1−δ2)

[
q2b2 + c2

]+δ2

[
pb2 +q2

1

4
+ (1−q2)cu

1

]
.

Note that

C

(
δ2, q2,c2,

1

4
,cu

1

)
≥C

(
δ2, q2,c2,

1

4
,0

)
since deleting the communication costs in the last period will only decrease the principal’s cost. Also,

note that the function

C

(
δ2, q2,c2,

1

4
,0

)
= (1−δ2)

[
q2b2 + c2

]+δ2

[
pb2 +q2

1

4

]
is strictly increasing in q2: the principal would rather have the agent play the biased action later rather

than sooner. Therefore, we find that

C

(
δ2, q2,c2,

1

4
,cu

1

)
≥C

(
δ2, q2,c2,

1

4
,0

)
≥C

(
δ2, q∗

2 ,c2,
1

4
,0

)

because q∗
2 ≤ q2. Also, C

(
δ2, q∗

2 ,c2, 1
4 ,0

)≥C
(
δ2, q∗

2 ,c∗2 , 1
4 ,0

)
because q∗

2 ≤ q2 and Lemma 2 imply that
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c∗2 ≤ c2. Direct computation shows that C
(
δ2, q∗

2 ,c∗2 , 1
4 ,0

)
is strictly increasing in δ2:

∂

∂δ2
C

(
δ2, q∗

2 ,c∗2 ,
1

4
,0

)
≥ (

p −q∗
2

)
b2 − (

1−q∗
2

) 1

4

= (
1−q∗

2

)
q̄b2 − (

1−q∗
2

) 1

4

= (
1−q∗

2

)(b

2
− 1

4

)
> 0.

Intuitively, the principal would prefer not to leave too much to the last period, where the biased agent

plays the biased action with probability one. Therefore, C
(
δ2, q∗

2 ,c∗2 , 1
4 ,0

) ≥C
(
δ∗2 , q∗

2 ,c∗2 , 1
4 ,0

)
for any

δ2 ≥ δ∗2 and hence C
(
δ2, q2,c2, 1

4 ,cu
1

)≥C
(
δ∗2 , q∗

2 ,c∗2 , 1
4 ,0

)
. Therefore, the cost in any equilibrium where

δ2 ≥ δ∗2 is greater than or equal to the cost in equilibrium σ∗. This proves that σ∗ leads to the min-

imum possible cost for the principal. Furthermore, in any equilibrium that satisfies Property 2 such

that
(
δ2, q2,c2,cu

1

) 6= (
δ∗2 , q∗

2 ,c∗2 ,0
)
, the principal’s cost is strictly higher, which implies that σ∗ leads to

the unique principal-optimal equilibrium outcome.

Note that in this equilibrium, the principal leaves more important decisions to the last period, i.e.,

δ∗2 > 1/2, if and only if b > 1/2, i.e., the bias is large enough to make truthful communication with the

biased agent impossible in the one-shot game.

We now argue that σ∗ also yields the highest equilibrium payoff for the agent if p > q̄ . Note that

the agent’s total cost under σ∗ is
(
1−δ∗2

)
c∗2 +δ∗2 /4, where c∗2 = 0 if q∗

2 ≤ q̄ , and c∗2 = 1/4 otherwise.

As we have argued above, if δ2 < δ∗2 , then the biased agent plays the biased action with probability

one in the first period. Lemma 2, together with p > q̄ , implies that the agent’s cost is 1/4, which is

greater than or equal to her cost under σ∗. Therefore, in any agent-optimal equilibrium we must

have δ2 ≥ δ∗2 . We have already shown that p > q̄ implies that there is no equilibrium where q2 < q∗
2 . If

q2 ≥ q∗
2 , then the agent’s total cost is equal to (1−δ2)c2+δ2/4 and there are two cases to consider: (1)

q∗
2 ≤ q̄ , in which case the cost in the principal-optimal equilibrium is smaller: δ∗2 /4 ≤ (1−δ2)c2+δ2/4;

(2) q∗
2 > q̄ , in which case the cost in both cases is 1/4. Therefore, there is no equilibrium that yields

the agent a higher payoff when p > q̄ .10

To summarize, in any principal-optimal equilibrium: (1) The principal chooses the relative im-

portance of the first period so that the agent is indifferent between the biased and the unbiased ac-

tions for that period, given that the principal will communicate truthfully after the unbiased action

and will provide no information otherwise; (2) If the initial reputation of the agent is good, then she

plays the unbiased action in the first period, while if it is bad, she mixes in such way that her repu-

tation next period is just good enough to make truthful communication possible; (3) The principal

communicates truthfully in both periods if and only if the agent has a sufficiently good initial repu-

tation; (4) The principal leaves more important decisions to the future if and only if the bias is large

enough.

Remark 2. In the analysis above we have restricted the search for principal-optimal equilibrium to

those in which the Markov property, i.e., Property 2, holds. It is easy to adapt the arguments in the

text and show that, in any principal-optimal equilibrium, the agent plays the biased action with the

10If p ≤ q̄ , then the best equilibrium outcome for the agent is to play the biased action and receive full information in
both periods, which is different from the principal-optimal equilibrium outcome.
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same probability after any message sent with positive probability. In other words, the symmetry part

of the property is not binding for our results in the two-period model.

If, however, we allow the principal to punish himself in the future for not telling the truth today,

then the incentive compatibility constraint for telling the truth is relaxed. When the Markov property

holds, the binding constraint for telling the truth in the first period is given by q2b2 ≤ q2b2 +1−2q2b,

or q2 ≤ q̄ , where q2 is the total probability with which the agent plays the biased action. Without the

Markov restriction, this constraint is given by

(1−δ2) q2b2 +δ2

(
p2b2 + 1

4
q2

)
≤ (1−δ2)

(
q2b2 +1−2q2b

)+δ2

(
p2b2 + 1

4

)
,

which is equivalent to

q2 ≤ q̂(δ) ≡ δ2/4+ (1−δ2)

δ2/4+ (1−δ2)2b
.

Otherwise, the non-Markov principal-optimal equilibrium is exactly the same as the Markov equi-

librium. In particular, q2 = 1 − (
1−p

)
/
(
1− q̄

)
in any principal-optimal equilibrium, both Markov

and non-Markov. Since, q̂(δ) < q̄ for any b > 1/2, truth-telling is optimal for a larger set of prior

probabilities in the non-Markov principal-optimal equilibrium.11 For N > 2, we conjecture that any

principal-optimal non-Markov equilibrium involves similar behavior to that in the Markov equilib-

rium, except that truth-telling constraints are relaxed, i.e., in (4.6) q̄ is replaced with a properly de-

fined q̂i (δi ,δi−1, . . . ,δ2) > q̄ .

4.2. Sequencing of Decisions. We are now ready to answer the main question that motivated our

model: How should the principal choose the importance of the decisions he delegates to the agent?

Or equivalently, what is the optimal career path of the agent from the perspective of the principal?

Proposition 1. Suppose that play unfolds according to equilibrium σ∗ and denote by γ∗i the impor-

tance of decisions made in period i in this equilibrium. If b > 1/2, then the optimal career path of

the agent is characterized by progressively more important decisions, i.e., γ∗N < γ∗N−1 < ·· · < γ∗2 < γ∗1 ,

whereas if b < 1/2, then the importance of the decisions decreases over time, i.e., γ∗N > γ∗N−1 > ·· · > γ∗2 >
γ∗1 . As b increases, the initial decision becomes less important; but the growth rate of the importance of

decisions increases, i.e., γ∗j /γ∗i is increasing in b for all j < i .

Proof. See Section 7.

The proof of Proposition 1 shows that the unique solution for δ∗i is given by

δ∗i =
∑i−1

j=1 a j∑i−1
j=0 a j

,

where a = 4b2. We can then solve for the importance parameters as

γN−i = ai∑N−1
j=0 a j

, i = 0,1, . . . , N −1.

11If b ≤ 1/2, then truth-telling is optimal for any prior under both types of equilibria.
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In other words, the weight of the first decision, i.e., decision N , is given by

γN = 1∑N−1
j=0 a j

,

and then each subsequent weight is just a times the previous one. If a > 1, i.e., b > 1/2, this implies

that each period receives more weight than the previous one. More precisely, the growth rate of the

importance parameter is equal to ln a > 0, i.e., the greater the potential bias of the agent, the higher

the growth rate of the importance of decisions delegated, or equivalently the faster the agent is pro-

moted. If, on the other hand a < 1, i.e., b < 1/2, then the importance of the decisions decreases over

time.

Figure 2 plots the evolution of the importance parameter over time for three different bias param-

eters, two of which are greater than 1/2 and one is smaller than 1/2. Observe that, when the potential

bias is large, the principal delegates mostly trivial tasks in the beginning, but promotes the agent very

fast towards the end of her career.
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Figure 2: Importance parameter for different biases

Finally, we can show that the equilibrium cost of the principal is strictly decreasing in the number

of periods N .

Proposition 2. Total cost of the principal strictly decreases in N and it has a strictly positive lower

bound if and only if b > 1/2.

Proof. See Section 7.

This result implies that, if the principal had a choice over the number of periods over which to

spread the decisions, then she would choose as many periods as possible. Of course, this neglects any

cost of time, which would act as a countervailing force. Secondly, this result shows that if the potential

conflict of interest is large, then there is a lower bound to the cost of delegation, i.e., delegation is

always costly.
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5. RELATED LITERATURE

The main question analyzed in this paper, i.e., optimal sequential delegation, seems to be novel, but

“gradualism” (or “starting small”) has been a recurrent theme in economics. The most relevant papers

in that regard are Watson (1999, 2002) and Andreoni and Samuelson (2006).12 Watson (1999) and Wat-

son (2002) analyze an infinitely repeated prisoners’ dilemma type game with incomplete information

and variable stakes over time. In the stage game, the “low” type player prefers to “betray,” which ben-

efits herself, injures the other player, and ends the game, while the “high” type prefers cooperation

as long as the other player also cooperates. He shows that starting with small stakes supports per-

petual cooperation between the high types as an equilibrium outcome. Watson (2002) assumes that

players commit to the way stakes change over time while Watson (1999) characterizes an equilibrium

in which the stakes satisfy a renegotiation condition. Andreoni and Samuelson (2006) study a twice

repeated prisoners’ dilemma game with incomplete information and variable stakes. Players are con-

ditional cooperators in the sense that, in the stage game, a type-α player prefers to cooperate if she

believes that the other player cooperates with at leastα probability.13 They characterize the equilibria

of this game with exogenously given stakes and show that “starting small” leads to the best payoffs for

the players.14 The main point of departure of our model from these papers is that, in contrast to a

prisoners’ dilemma game, our stage game is a game of strategic communication that exhibits com-

mon interest as well as conflict of interest. Furthermore, we assume that one of the players has the

authority to determine the stakes involved in their relationship and analyze how they are determined

in equilibrium. Finally, we show that gradualism is not always the optimal arrangement for the prin-

cipal. Indeed, if the potential conflict of interest between the agent and the principal is small enough,

then the opposite arrangement of “starting big” turns out to be optimal for the principal.

The question of optimal delegation of decisions has been first studied by Holmström (1977). He

analyzes a model in which a principal who is unable to commit to outcome contingent transfers faces

an informed but biased agent. In equilibrium, the principal chooses a set of actions and gives the

agent the authority to choose an action from this set. Optimal delegation reflects the trade-off be-

tween the need to give flexibility to the agent in order to take advantage of her superior information

and the need to restrict her freedom in order to avoid her opportunism.15 Our model differs from

the models in this literature in three important aspects: (1) It is the principal who is informed about

the state of the world; (2) The agent’s bias is her private information; (3) Delegation problem is dy-

namic and concerns the optimal sequencing of decisions with respect to their importance rather than

a static one that concerns how much flexibility to give to the agent.

In each period of our model, the principal and the agent are involved in a cheap-talk game, which

has been introduced by Crawford and Sobel (1982). They analyze the equilibrium communication

behavior between an informed but biased sender and an uninformed receiver and show that the in-

formativeness of equilibrium decreases in the degree of the sender’s bias. There are two main differ-

12Other papers that feature gradualism as an optimal or equilibrium outcome include Marx and Matthews (2000), Blonski
and Probst (2004), and the loan model in Section 6 of Sobel (1985).

13They allow α to be negative or greater than one, which corresponds to unconditional cooperators or defectors, respec-
tively.

14Andreoni and Samuelson (2006) also test their theory experimentally and find empirical support for their predictions.
Andreoni et al. (2016) extend this paper so that players choose the stakes themselves in the experiment. They show that the
subjects indeed choose the payoff maximizing strategy of starting small.

15Holmström’s findings have further been generalized by Alonso and Matouschek (2008) and Amador and Bagwell
(2013a,b).
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ences between Crawford and Sobel (1982) and our model: (1) The degree of preference divergence

between the sender and receiver is the private information of the receiver; (2) The game is repeated,

where in each period a new state of the world is realized but preferences remain the same.

Morris (2001) also differs from Crawford and Sobel along those two dimensions. The main differ-

ence is that in Morris (2001) the bias is the private information of the sender whereas in our model it

is the private information of the receiver. Morris (2001) finds that the unbiased sender, who prefers to

inform the receiver about the state of the world, may choose not to do so in the first period in order to

be regarded as unbiased and hence better inform the receiver in the future. In contrast, in our model,

the biased receiver may mimic the unbiased receiver in order to maintain a good reputation and re-

ceive better information in the future. Furthermore, we analyze the optimal sequencing of decisions

by the sender (i.e., the principal).

Morgan and Stocken (2003) analyzes a one period cheap-talk game with a sender with uncertain

preferences, whereas Sobel (1985) and Benabou and Laroque (1992) are earlier papers that analyze

repeated cheap-talk games, except that they assume that the unbiased (or good) sender always tells

the truth. Li and Madarász (2008) extend Morgan and Stocken (2003) so that the bias can be in either

direction and compare equilibria under known and unknown biases, while Dimitrakas and Sarafidis

(2005) allow the bias to have an arbitrary distribution. Our model differs from these papers in that we

assume the bias is receiver’s private information and that the cheap-talk game is repeated.

Another related paper is Ottaviani and Sørensen (2001) in which a sequence of privately informed

experts, who are exclusively concerned about their reputation for being well-informed, offer public

advice to an uninformed agent. They show that reputational concerns may lead to herding by the

experts.16 Our model can also be framed as a model of sequential cheap-talk with multiple experts

(principals) but we have an agent who is privately informed about the preference divergence between

herself and the experts, and it is the agent who is concerned about reputation.17

Optimal delegation rules have also been studied by Dessein (2002) within a one-shot cheap-talk

game, in which an uninformed principal decides whether to delegate the decision making authority

to an informed but biased agent. He shows that decentralization is better as long as the bias is not

too large relative to the decision maker’s uncertainty about the state of the world.18 In our model,

the principal is informed and the agent’s preferences are private information. Furthermore, there are

multiple rounds of cheap-talk games and the delegation question pertains to the optimal sequencing

of decisions over time.

Our work is also related to the literature on pandering. Maskin and Tirole (2004) analyze a two-

period model where in the first period an official chooses a policy, which determines whether she

stays in office in the second period. They show that if the official’s desire to stay in office is sufficiently

strong, then in the first period she could choose a popular action, i.e., she could pander to public

opinion even if she does not think that the public opinion is the optimal policy. In our model, incen-

tives to pander come from the desire to receive better information rather than the desire to stay in

16Also see Ottaviani and Sørensen (2006a,b) in which an expert with reputational concerns (but no bias) fails to provide
full information to the receiver.

17There are other models in which multiple experts with known biases are involved in simultaneous or sequential cheap-
talk, among which are Gilligan and Krehbiel (1989), Austen-Smith (1990), and Krishna and Morgan (2001).

18Alonso et al. (2008) and Rantakari (2008) analyze the same question when there are more than one privately informed
and biased agent.
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office.19

Another related strand of literature is the one on career concerns pioneered by Holmström (1999),

in which an employee’s concern about her reputation for talent leads her to exert costly effort even

without explicit incentives provided by a contract.20 In our model, concern for reputation for being

unbiased arises from the agent’s incentives to obtain accurate information and leads her to act in the

interest of the principal.

6. CONCLUDING REMARKS

We have analyzed a model in which an informed principal delegates a set of decisions over time to an

uninformed and potentially biased agent. We find that, if the potential bias is large, then the principal

progressively increases the importance of decisions she assigns to the agent. In other words, the

agent starts her career at a lower rank in the hierarchy and is promoted as long as she does not make

decisions that reveal her as a biased agent. Furthermore, the larger the potential bias of the agent, the

lower the initial rank and faster the promotion.

Basically, the principal designs the career path of the agent in order to exploit her incentives to

build reputation for being unbiased. In equilibrium, the agent plays the principal’s favorite action in

the beginning of her career while towards the end she takes risks by playing her own favorite action

with positive probability. Principal’s optimal design also allows him to communicate truthfully with

the agent throughout their relationship as long as she always does the “right thing.”

We also showed that if the potential bias is small, i.e., smaller than 1/2, then this pattern is re-

versed and the importance of the decisions decreases over time. Note that if b < 1/2, or more gener-

ally the initial reputation of the agent is good enough to make truthful communication possible even

in the one-shot game, i.e., pb < 1/2, the principal-optimal equilibrium is not agent-optimal. In fact,

in this case, equilibrium is sustained by the principal’s off-the-equilibrium threat to communicate

no information if the agent plays the biased action. This threat is perfectly credible when b > 1/2,

because the only equilibrium behavior once the agent is revealed to be biased is to reveal no informa-

tion. The same is not true when b < 1/2. Since the principal prefers truthful communication ex-ante,

such a threat may be regarded as non-credible. If that is the position one takes, then our results

should be deemed most convincing and interesting for those cases in which the potential bias of the

agent is large enough.

The current work raises many other questions and could be extended in a number of ways. For

example, what would be the equilibrium allocation of decisions in a situation where reputational

concerns create perverse incentives as in Morris (2001), Ely and Välimäki (2003), Maskin and Tirole

(2004), or Kartik and Van Weelden (2015)? As opposed to what happens in our model, would it be

optimal to front-load the decisions in order to avoid such perverse incentives? More technical exten-

sions include richer type spaces for the players, but our preliminary analyses of such models have so

far proved non-trivial.

Finally, although we assumed that the unbiased agent is a commitment type who plays her my-

opic best response in each period, this behavior can be sustained as an equilibrium of a model in

19Brandenburger and Polak (1996), Vidal and Möller (2007), Acemoglu et al. (2013), Che et al. (2013), and Morelli and
Van Weelden (2013) are some of the other papers in the pandering literature.

20Holmstrom’s model was originally developed in a paper published in 1982 in an edited book. See also Holmström and
Costa (1986).
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which she is a fully strategic player. In fact, such a behavior seems intuitively the most plausible, dis-

regarding equilibria where she plays an extreme action in order to separate herself from the biased

agent. We did not consider such equilibria, which raise questions similar to the ones raised by the

“bad reputation” models mentioned in the previous paragraph.

7. PROOFS

Proof. [Proof of Theorem 1] We start with a lemma on the equilibrium communication behavior of

the principal.

Lemma 2. Fix a perfect Bayesian equilibrium a period i ∈ {1, . . . , N }, history h ∈ Hi , and δ ∈ [0,1].

Principal’s equilibrium communication strategy can be of three types: (1) fully informative; (2) partially

informative; or (3) non-informative. It is completely informative only if q (h,δ)b ≤ 1/2 and partially

informative only if 1/4 < q (h,δ)b < 1/2.

Proof. [Proof of Lemma 2] Let λm = λi (h,δ,m), q = q (h,δ), and note that the period cost of sending

message m for type θ ∈ {0,1} is

(λm −θ)2 +2(λm −θ)qb +qb2.

Property 2 implies that the continuation payoff does not depend on the message and hence only the

period payoff matters for sequential rationality of the principal. As it is always the case in cheap-talk

models, there is always an equilibrium in which the principal’s strategy is completely uninformative

irrespective of his beliefs, the so called “babbling equilibrium.” Suppose that in equilibrium the prin-

cipal provides full information to the agent. Sequential rationality of type θi = 0 is always satisfied,

whereas sequential rationality of type θi = 1 implies that qb2 ≤ 1−2qb+qb2 or qb ≤ 1/2. If type θi = 0

plays a completely mixed strategy, then λ2
1+2λ1qb =λ2

0+2λ0qb, which implies λ0 =λ1. This implies

that both types mix with equal probabilities and hence the principal’s strategy is non-informative.

Therefore, in any other type of equilibrium behavior, type 0 must be playing a pure strategy while

type 1 completely mixes. Suppose, without loss of generality, that type 0 sends message 0. This im-

plies that λ1 = 1 and λ0 ∈ (0,1/2). It is easy to show that type 0’s sequential rationality is satisfied while

type 1’s sequential rationality implies thatλ0 = 1−2qb, which, in turn, implies that 1/4 < qb < 1/2.

Lemma 3. The assessment σ∗ is a perfect Bayesian equilibrium.

Proof. Fix a history h ∈ H∗
1 and note that under σ∗ the biased agent plays the biased action with

probability one and the principal provides information if and only if p1 (h) ≤ q̄ . The agent’s strategy

is sequentially rational since period 1 is the last period and the principal’s strategy is sequentially

rational by Lemma 2.

Let i > 1 and fix a history hi ∈ H∗
i such that pi (hi ) < 1. If δi = δ∗i , then under σ∗ the agent is

indifferent between the biased and unbiased actions after any message mi . In order to see this, note

that it is true for i = 2, as we previously showed in section 4.1. Suppose that it is true in period i −1.

If, in period i , the agent chooses the biased action, then she induces a history that is not in H∗
i−1,

which implies that in period i − 1 the principal chooses δi−1 = 0, provides no information, and the

agent plays the biased action. Therefore, the cost of playing the biased action is δ∗i /4 . If she plays

the unbiased action instead, then she suffers a cost equal to b2 in period i but induces a history in

H∗
i−1. In the next period, the principal choses δ∗i−1 and provides full information. Under the induction
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hypothesis, her expected cost starting from period i −1 is equal to δ∗i−1/4, i.e., the cost of playing the

biased action in period i −1. Therefore, the cost of playing the unbiased action in period i is equal to(
1−δ∗i

)
b2 +δ∗i δ∗i−1/4. Definition of δ∗i (see 4.2) implies that

δ∗i
1

4
= (

1−δ∗i
)

b2 +δ∗i δ∗i−1
1

4

which, in turn, implies that she is indifferent between the biased and unbiased actions in period i .

Therefore, playing the biased action with total probability q∗
i

(
pi (h)

)
is optimal after such histories.

Lemma 2 implies that the communication strategy of the principal (see (4.6)) is sequentially ra-

tional. If the principal chooses δi 6= δ∗i , then in period i he provides no information and the biased

agent plays the biased action. In period i −1, he chooses δi−1 = 0, provides no information, and the

biased agent again plays the biased action. Therefore, his expected cost of choosing δi 6= δ∗i is equal

to

pi (h)b2 + 1

4
.

If he chooses δ∗i , then the agent plays the biased action with total probability q∗
i

(
pi (h)

)≤ pi (h), and

this cannot lead to a higher expected cost. Therefore, it is sequentially rational for the principal to

choose δ∗i .

If hi ∉ H∗
i or pi (h) = 1, then the biased agent plays the biased action with probability one. This

is sequentially rational because the principal provides no information in any subsequent period. The

principal is willing to provide no information because babbling is always an equilibrium of the cheap-

talk game. Moreover, it is sequentially rational for the principal to choose δi = 0 because his continu-

ation payoff is equal to pi (hi )b2 + 1
4 and independent of his choice of δi .

Finally, it is straightforward to check that the beliefs defined in (4.7) and (4.8) satisfy the Bayes’

rule whenever it can be applied conditional on reaching any h ∈ Hi .

Lemma 4. The assessment σ∗ is principal-optimal.

Proof. Fix an N period game and assessment σ.

Step 1. If σ is principal optimal, then the total probability that the agent plays the biased action is

at most q̄ for all i < N after any history where only the unbiased action has been observed.

Proof of Step 1. The assertion is automatically true if b ≤ 1/2. Assume that b > 1/2. On the way to

a contradiction, suppose that there is a period i < N where the agent plays the biased action with

strictly higher probability than q̄ under σ. We argue below that the agent plays the biased action with

probability q j = p > q̄ in period N under σ.

To see this, note that in period i + 1 the agent’s cost from playing the biased action is δi
4 + (1−

δi )x. The agent’s cost from playing the unbiased is (1−δi )(x +b2)+ δi
4 where the continuation payoff

is δi
4 because the principal’s communication is uninformative in period i and the agent plays the

biased action with positive probability. Therefore, the biased agent will play the biased action with

probability one in period i +1. Working in this manner recursively, we find that the agent will play the

biased action with probability one in each period j > i , i.e., q j = p j .

We now argue that assessment σ∗ entails strictly lower cost than σ. The cost under σ is at least

C P (σ) ≥ p(
1

4
+b2).
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In contrast, the cost in assessment σ∗ is at most

C P (σ∗) ≤ q(b2 + 1

4
)+ (1−q)((1−δ)

1

4
+δp −q

1−q
b2),

where p−q
1−q = q̄ . Hence,

p(
1

4
+b2)−C P (σ∗) ≥ (p −q)(b2 + 1

4
)− (1−q)((1−δ)

1

4
+δp −q

1−q
b2)

= (p −q)
1

4
+ (p −q)b2(1−δ)− (1−q)(1−δ)

1

4

= (p −q)
1

4
+ q̄(1−q)b2(1−δ)− (1−q)(1−δ)

1

4

≥ (p −q)
1

4
+ (

b

2
− 1

4
)(1−q)(1−δ) > 0.

Step 2. Suppose that the assessment σ is an equilibrium in which the principal communicates

truthfully in period N , then this assessment is principal optimal only if the miscommunication costs

are equal to zero in every period. Alternatively, suppose that σ is an equilibrium in which the agent

plays the biased action with probability qN−1 = q̄ in period N −1 and p > q̄ , then this assessment is

principal optimal only if the miscommunication costs are equal to zero in every period i < N .

Proof of Step 2. By step 1 we can assume that qi ≤ q̄ in every period i < N . On the way to a contra-

diction, suppose that there are information costs x j > 0 in some period j < N in a principal-optimal

assessment σ which satisfies Property 1 and 2. Under this hypothesis, we show that there is an as-

sessment σ′, which satisfies Property 1 and 2 and has strictly lower costs for both the principal and

the agent than assessment σ.

We will use the assessment σ, posited to exist, to construct an assessment with no miscommuni-

cation costs, i.e., one in which the principal communicates truthfully in each period except possibly

period N . We will show that this new assessment decreases the principal’s cost. Note that we can

assume that qi ≤ q̄ for all i < N because of step 1. Therefore, truthful communication is incentive

compatible for the principal.

If the principal communicates truthfully in every period, then we have

δi
1

4
> (1−δi · · ·δ2)b2

in any period i > j , i.e., playing the unbiased action is strictly preferred by the agent in each period.

Let j be such that there are miscommunication costs in this period and no information costs in

any period i ∈ { j −1, ...,1}. In any period i > j the following inequality holds

δi
1

4
≥ (1−δi · · ·δz+1)b2 +

i−1∑
k=z

(
∏i

l=k+1δl )(1−δk )xk +
1

4
δz .

where z < i is any period in which the agent plays the biased action with positive probability. Note

that such a period must exist because the agent will play the biased action with probability one in
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the last period of the game. The sum
∑i−1

k=z (
∏i

l=k+1δl )(1−δk )xk ≥ 0 is the total miscommunication

costs that the agent incurs in the posited equilibrium in the periods {i −1, ..., z}. The inequality holds

because the agent must prefer to play the unbiased action until period z and then switch to the biased

action in period z. Moreover, note that in any period i > j where the agent plays a mixed strategy the

inequality holds with equality.

In the equilibrium that we construct, we leave the δi ’s unchanged in any period i ≤ j and in any

period in which the agent plays the unbiased action with probability one.

Let i > j be the first period where the agent plays a mixed strategy and choose δ̂i such that

δ̂i
1

4
= (1− δ̂iδi−1 · · ·δ2)b2.

Note that δ̂i < δi . We will now show that for any period k > i , the agent strictly prefers to play the

unbiased action. For any period k > i , the agent would weakly prefer to play the unbiased action with

probability 1 until period i , then play the biased action in period i under the posited equilibrium σ.

More precisely,

δk
1

4
≥ (1−δk · · ·δk−1δi+1)b2 +X +δi

1

4

where X denotes the total miscommunication costs in periods {k −1, ..., i }. Therefore, in the equilib-

rium without miscommunication costs we find that,

δk
1

4
> (1−δk · · ·δk−1δi+1)b2 + δ̂i

1

4

Suppose that k is a period where the agent plays a mixed strategy. Suppose that δ’s are unchanged

in any period i < k where the agent plays the unbiased action with probability one, further suppose

that δ̂i < δi in any period i < k where the agent plays a mixed strategy and suppose that the agent is

indifferent in period i given the new choice of δ’s. Note that the above argument implies that

δk
1

4
> (1−δk · · ·δk−1δi+1)b2 + δ̂i

1

4
.

Pick δ̂k such that

δ̂k
1

4
= (1− δ̂k · · ·δk−1δi+1)b2 + δ̂i

1

4

and note that δ̂k < δk . Choosing δ’s in this manner ensures that the agent is indifferent in any pe-

riod that he plays a mixed strategy and prefers the unbiased action in any period where he plays the

unbiased action with probability one. Also note that δ̂i ≤ δi in any period i .

If we leave everything else the same in the assessment σ, decreasing the δ’s in the way described

above, and have the principal communicate truthfully in each period, then we obtain a new equi-

librium where all miscommunication costs have been eliminated and which satisfies Property 1 and

2. In this new assessment, the principal’s costs have strictly decreased. To see this first note that

eliminating miscommunication costs without changing the δi ’s strictly decreases the principal’s cost.

Moreover, in any period where there are no miscommunication costs, the principal’s continuation

cost is strictly increasing in δ. This is because the principal’s continuation cost in any period i < N

is given by qi
[
(1−δi )b2 +δi (b2 +1/4)

]+ (1− qi )δi C (hi |σ) and the fact that C (hi |σ) ≥ 0 implies that

this expression is strictly increasing in δ. If the principal communicates truthfully in period N , then
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this argument is also true for period N . If on the other hand, the principal does not communicate

truthfully in period N but qi−1 = q̄ , then C (hN−1|σ) > 1/4 and the principal’s cost in period N is again

strictly increasing in δ. Therefore, the original σ could not have been a principal-optimal equilib-

rium.

Step 3. If p j = 1 for all j < i , then γ j = 0 for all j < i .

Proof of Step 3. Let i be the smallest period where pi < 1. Fix a candidate principal optimal assess-

ment σ and assume that γ j > 0 for some j < i . By the above argument, we know that there are no

miscommunication costs.

In any period where the agent is mixing we have the following:

(1−δkδk−1 · · ·δi+1)b2 +δkδk−1 · · ·δi+1δi
1

4
= 1

4
δk .

Note that setting δi to equal zero is equivalent to deleting miscommunication costs. Therefore, the

algorithm outlined in the step above can be applied to improve upon this equilibrium.

Step 4. We now complete the argument that the assessment we construct is principal optimal

by showing that any principal optimal assessment must solve an optimization problem which we

construct below and by showing that the assessment σ∗ indeed solves this optimization problem.

Proof of Step 4. Any assessment σ that satisfies steps 1-3 is feasible for the following minimization

problem.

min
q,γ

q1

N∏
j=2

(1−q j )b2 +
N∑

i=2
(qi

N∏
j=i+1

(1−q j ))(b2(
i∑

j=1
γ j )+ 1

4
(

i−1∑
j=1

γ j ))+1{qN>q̄}γN
1

4

Subject to

4b2
i∑

j=2
γ j ≤ ∑i−1

j=1γ j for all i > 1 (7.1)

(4b2
i∑

j=2
γ j −

i−1∑
j=1

γ j )qi = 0 for all i > 1 (7.2)

qi ≤ q̄ for all i < N (7.3)
N∑

i=1
(qi

N∏
j=i+1

(1−q j )) ≥ p (7.4)

N∑
j=1

γ j = 1 (7.5)

γ j ≥ 0 (7.6)

q j ≥ 0 (7.7)

In the optimization above γi =∏N
j=i+1δ j+1(1−δi ) and qi is the total probability of playing the biased

action in periods i and 1{qN>q̄} is the indicator function which is equal to one if qN > q̄ and zero

otherwise. The objective function is the total cost of the principal under the assumption that the

principal communicates truthfully in every period except possibly period N .
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Constraint (7.1) states that playing the biased action is at least as costly as the unbiased action in

every period except the last, i.e., ∑i
j=2γ j∑i
j=1γ j

b2 ≤
∑i−1

j=1γ j∑i
j=1γ j

1

4

cancelling
∑i

j=1γ j from both sides we obtain the constraint. This constraint must hold, because if

it did not, then the agent would play the biased action with probability one in that period. How-

ever, then the probability of playing the unbiased action would exceed q̄ in that period. This would

however contradict step 2.

Constraint (7.2) says that Constraint (7.1) can only hold strictly in periods where the agent plays

the biased action with probability zero. Constraint (7.3) says that the agent must play the biased

action with probability at most q̄ . This follows from step 1. Constraint (7.4) says that the biased type

eventually plays the biased action. Therefore, the total probability of the biased action is at least equal

to the prior probability that the principal faces a biased agent.

The optimization problem above is feasible because the assessment that we constructed satisfies

all of the constraints. Moreover, the constraint set is compact. Therefore, the optimization problem

admits a solution. Below we argue that our assessment solves the problem and therefore if principal

optimal.

We argue that Constraint (7.1) holds with equality for all i > 1 in any solution to the optimization

problem. Suppose that 4b2 ∑i
j=2γ j < ∑i−1

j=1γ j for some i < N and suppose that i is the largest index

where this constraint does not hold with equality. This implies that qi = 0 because of the second

constraint.

We show that if we increaseγi by∆ to γ̂i so that the i th constraint binds, decreaseγi+1 by∆ to γ̂i+1,

set q̂i = qi+1, and q̂i+1 = 0 and leave all other variables unchanged, then all the constraints continue

to hold. However, we show that this new feasible choice has strictly lower cost and dominates the old

plan.

Let

∆= (
i−1∑
j=1

γ j )
1

4b2 − (
i∑

j=2
γ j ).

This choice of ∆ ensures that the i th constraint binds with equality. Note that

γi+1 = γi

4b2 + (
i−1∑
j=1

γ j )
1

4b2 − (
i∑

j=2
γ j )

= γi

4b2 +∆> 0.
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Hence, γ̂i+1 > 0. Also, note that the i +1st constraint still holds strictly. This is because

(γ̂i+1 + γ̂i )b2 +b2
i−1∑
j=2

γ j = b2
i+1∑
j=2

γ j

≤ 1

4

i∑
j=1

γ j

= 1

4
γi + 1

4

i−1∑
j=1

γ j

< 1

4
γi + 1

4
∆+ 1

4

i−1∑
j=1

γ j

= γ̂i
1

4
+ (

i−1∑
j=1

γ j )
1

4

Also, all constraints j > i +1 continue to hold with equality:

b2
j∑

k=i+2
γk + (γ̂i+1 + γ̂i )b2 +b2

i−1∑
k=2

γk = b2
j∑

k=2
γk

= 1

4

j−1∑
k=1

γk

= 1

4

j−1∑
k=i+2

γk +
1

4
(γ̂i+1 + γ̂i )+ 1

4

i−1∑
j=1

γ j

Note that this new strategy entails strictly less cost for the principal. This is because we have de-

creased δi and the principal’s cost is decreasing in δi . See the proof of Step 2 for an argument. How-

ever, this contradicts the assertion that the initial plan solved the optimization problem. Therefore

this line of reasoning establishes that all the such constraints must hold with equality in the optimal

solution.

In period N if the Constraint (7.1) holds as an inequality, then qN = 0 and therefore the mis-

communication cost in period N is equal to zero. However, in this case the principal’s cost is again

decreasing δN and therefore it is possible to decrease δN to decrease cost. Moreover, decreasing δN

does not affect any of the subsequent such constraints.

If all such constraints hold with equality, then we have γi = ∏N
j=i+1δ

∗
j+1(1−δ∗i ) in the optimal

solution. This follows immediately from the construction of the sequence {δ∗i }.

Given that we haveγ=∏N
j=i+1δ

∗
j+1(1−δ∗i ), we now show that qi = q∗

i . Note that we can move mass

from any period i to any other period j because the Constraints (7.1) hold with equality. First note

that
∑N

i=1(qi
∏N

j=i+1(1− q j )) = p = ∑N
i=1(q∗

i

∏N
j=i+1(1− q∗

j )), i.e., constraint (7.4) holds with equality,

because otherwise the total cost can be reduced by decreasing the probability qi in some period i .

Suppose that there exists a period i such that qi > q∗
i and let i be the largest such period. Then,

by the construction of the sequence of q∗
i , there must exist a period j < i where q j < q∗

j = q̄ . However,

then the principal’s cost can be reduced by decreasing qi and increasing q j by ε> 0 sufficiently small.

Suppose that there is a period i such that 0 ≤ qi < q∗
i and let i be the smallest such period. Note

that i < N by construction because otherwise we would have
∑N

i=1(qi
∏N

j=i+1(1−q j )) < p which would

violate constraint 4. This implies by construction that 1) q∗
i > 0 and 2) q∗

j = q̄ for all j < i . However,

25



q j ≤ q̄ for all j < N because of Constraint (7.3) of the optimization problem. Therefore, q j = q∗
j for all

j < i . Also we know that
∑N

i=1(qi
∏N

j=i+1(1− q j )) = p. This implies that, there must be a period k > i

such that qk > q∗
k . However, then the principal’s cost can be reduced by decreasing qk and increasing

qi by ε> 0 sufficiently small.

Steps 1-4 show that the assessment σ∗ is principal optimal concluding the proof of Lemma 4.

Lemma 5. If p > 1− (1− q̄)N−1, then the assessment σ∗ is agent optimal.

Proof. Assume that the assessment σ∗ is agent optimal for all reputation levels p > 1− (1− q̄)i−1 in

the i stage communication game. Under this induction hypothesis, we show that σ∗ is agent optimal

in the i +1 stage communication game for all reputation levels p > 1− (1− q̄)i .

Fix an assessment σ. We will show that the cost under assessment σ∗ is smaller than the cost

under assessment σ given the induction hypothesis.

Suppose that the agent plays the biased action with probability zero in period i +1. The assump-

tion on p implies that the agent must play the biased action with probability strictly greater than q̄ in

some period j < i +1. However, the unravelling argument presented in Lemma 4 (Step 1) implies that

the agent will play the biased action with probability one also in period i+1 leading to a contradiction.

Suppose that the agent plays the biased action with total probability qi+1 > q̄ in period i +1. This

implies that the agent’s cost is 1/4 since the principal cannot communicate in period i +1 given that

qi+1 > q̄ . However, the agent’s cost under σ∗ is at most 1/4.

Suppose that the agent plays the biased action with total probability qi+1 ≤ q̄ in period i +1. In

this case the agent’s reputation following the unbiased action is pi = 1− 1−p
1−qi+1

. Note that qi+1 ≤ q̄

implies that pi > 1− (1− q̄)i−1. There are two cases to consider: (i) If q∗
i+1 > q̄ , then qi+1 ≤ q̄ implies

that q j > q̄ for some j < i +1. However, then an unravelling argument (see Lemma 4 Step 1) implies

that qi+1 = p > q̄ leading to a contradiction. (ii) If q∗
i+1 ≤ q̄ , then the cost under σ∗ is equal to δ∗i+1/4.

The cost under σ is δi+1/4 because the agent must play the biased action with positive probability

in period i +1. (Otherwise p > 1− (1− q̄)i implies that q j > q̄ for some j < i +1. However, then the

unravelling argument shows that qi+1 = p > q̄ leading to a contradiction.) The fact that the agent is

indifferent between the biased and the unbiased action implies the following equalities:

1

4
δ = (1−δ)b2 +δC A(i |σ)

1

4
δ∗ = (1−δ∗)b2 +δ∗C A(i |σ∗)

where C A(i |σ) is the agent’s cost in the continuation game under the strategyσ. The fact that C A(i |σ∗) ≤
C A(i |σ) implies that

δ
1

4
≥ (1−δ)b2 +δC A(i |σ).

Therefore

(δ−δ∗)(
1

4
+b2 −C A(i |σ)) ≥ 0

However, because C A(i |σ) < 1
4 +b2 we have δ ≥ δ∗ showing that the cost under σ exceeds the cost

under σ∗.
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We now complete the inductive argument by showing that σ∗ is agent optimal for i = 2 if p >
1−(1− q̄)2−1 = q̄ . This conclusion follows immediately from the argument above because for any two

strategy profilesσ andσ∗we have C A(1|σ) =C A(1|σ) = 1/4 if the reputation p1 > q̄ in period i = 1 and

C A(1|σ) ≥C A(1|σ∗) = 0, otherwise.

Lemmata 2-5 conclude the proof of Theorem 1.

Proof. [Proof of Proposition 1] Define D1 = 1, let a = 4b2 and note that δ∗i , i = 2, . . . , N , is defined by

the following system of equations:

δ∗i = a

1+aDi−1
(7.8)

Di = δ∗i Di−1 (7.9)

for all i = 2, . . . , N . This, in turn, can be reduced to the following difference equation with initial con-

dition D1 = 1:

Di = aDi−1

1+aDi−1
, i = 2, . . . , N . (7.10)

Claim 1. Unique solution to the difference equation given in (7.10) is given by

Di = ai−1∑i−1
j=0 a j

(7.11)

Proof. [Proof of Claim 1] Proof is by induction. D2 = a/(1+a), so it is true for i = 2. Suppose now that

it is true for 2 ≤ k ≤ N −1. Then

Dk+1 =
aDk

1+aDk
=

a ak−1∑k−1
j=0 a j

1+a ak−1∑k−1
j=0 a j

= ak∑k
j=0 a j

which establishes the claim.

Substituting (7.11) into (7.8), we obtain

δ∗i = a

1+a ai−2∑i−2
j=0 a j

=
∑i−1

j=1 a j∑i−1
j=0 a j

. (7.12)

Claim 2.

γN−i = ai∑N−1
j=0 a j

, i = 0,1, . . . , N −1. (7.13)

Proof. [Proof of Claim 2] First, note that

γN = 1−δ∗N = 1−
∑N−1

j=1 a j∑N−1
j=0 a j

= 1∑N−1
j=0 a j

Second, by definition γN−i = δ∗Nδ
∗
N−1 . . .δ∗N−i+1(1−δ∗N−i ) for any i = 1, . . . , N −1. Again by definition
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Di = δ∗i δ∗i−1 . . .δ∗2 , which implies that

δ∗Nδ
∗
N−1 . . .δ∗N−i+1 =

δ∗Nδ
∗
N−1 . . .δ∗2

δ∗N−iδ
∗
N−i−1 . . .δ∗2

= DN

DN−i

Therefore,

γN−i = DN

DN−i
(1−δ∗N−i )

=
aN−1∑N−1
j=0 a j

aN−i−1∑N−i−1
j=0 a j

(
1−

∑N−i−1
j=1 a j∑N−i−1
j=0 a j

)

= ai∑N−1
j=0 a j

for any i = 1, . . . , N −1. This proves the claim.

It is now easy to show that growth rate of the importance parameter γ is ln a and that γN decreases

in a.

Proof. [Proof of Proposition 2] Let the prior be p > q̄ and k the largest integer such that p > 1− (1−
q̄)k−1. Assume that k ≥ 2. Theorem 1 and the discussion that follows it implies that, if N ≥ k, the total

cost is equal to

TC = (γ1 +·· ·+γk−1)q̄b2 +γk qk b2 < q̄b2

since qk ≤ q̄ . Total cost when N < k, on the other hand, is at least q̄b2, because the total probability

of the biased action is greater than or equal to q̄ in period N . This implies that it is strictly better to

choose N ≥ k rather than N < k. Let Wi = γ1 +·· ·+γi and note that Wk = DN /Dk by definition. Since

γk =Wk −Wk−1, total cost can be written as

TC = [Wk−1(q̄ −qk )+Wk qk ]b2

= [δ∗k (q̄ −qk )+qk ]
DN

Dk
b2.

If k = 1 or p ≤ q̄ , then the total cost is equal to γ1pb2 = DN pb2. Equation (7.11) implies that DN

is strictly decreasing in N , which implies that the total cost is decreasing N . Furthermore, if b > 1/2,

then limN→∞ DN = 1−1/a > 0, which implies that the lower bound on the total cost is strictly positive.

If b < 1/2, then limN→∞ DN = 0.
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