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Abstract
We empirically demonstrate a practical approach of efficiency evaluation with limited data

availability in some regulated industries. We apply PCA-DEA for radial efficiency measurement
to U.S. natural gas transmission companies in 2007. PCA-DEA reduces dimensions of the
optimization problem while maintaining most of the variation in the original data. Our results
suggest that the methodology reduces the probability of over-estimation of individual firm-specific
performance.
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1 INTRODUCTION 

Natural gas transmission is a typical network industry. Theoretical (Sharkey 1982) 
and empirical evidence (Gordon et al. 2003) underline the subadditivity in the cost 
structure and therefore gas transmission companies remain highly regulated. The 
purpose of this paper is to provide empirical evidence of a robust benchmarking 
technique for regulation when the number of regulated companies and/or data 
observations is small.  

Since the late 1980s a substantial reform process was undertaken with the 
objectives of cost reductions and efficiency increases in regulated network 
industries. The transition from cost-plus regulation, where companies recover 
their costs with a fixed rate of return (Joskow 2006; Farsi et al. 2007) to incentive-
based regulation is the latest development towards more efficient production and 
cost reduction. In an incentive-based regulatory framework, price and revenue 
caps are set based on the RPI-X formula (Littlechild 1983; Beesley and Littlechild 
1989) where the determination of the expected efficiency savings (X) is usually 
based on empirical results obtained from sophisticated efficiency analysis 
approaches (also called benchmarking analyses). This framework, where the 
efficiency performance of the companies is evaluated against a reference 
performance (Farsi et al. 2005), has mainly been favored by European regulators 
and played a crucial role in the regulatory processes in the UK and the Nordic 
countries.  

Using benchmarking methods in regulatory practice has been widely 
criticized (Shuttleworth 2005, 2003). One of the major criticisms is the low 
number of observations in this sector, for a robust and consistent benchmarking. 
As shown in Table 1 the low number of observations is caused by strong 
concentration and absence of competition in natural gas transmission (for 
Germany see e.g. Hirschhausen et al. 2007). In fact, in most of the European 
countries, e.g., Finland and Belgium, a single transmission company is operating. 
In others, e.g., Spain, Sweden and Austria, several independent companies are 
operating. In Germany, for the first round of determining efficiency scores data on 
only 8 companies (due to legislation) are considered in the benchmarking 
procedure. Moreover, the regulator often collects data on a yearly basis, thus 
additionally restricting sample size. Hence, both the low number of companies 
and the yearly data basis severely limit sample size for an application of 
traditional benchmarking methods. Regulators of natural gas transmission system 
operators require guidance in adapting their models to the empirical challenges.  

A possible solution to expand the number of observations is to use data 
from other countries found in international benchmarking exercises. The study 
CEER (2006) analyzes relative efficiencies of European natural gas transmission 
operators. Its sample consists of four European countries (one company each, 
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covering different time spans (3-5 years)) and 43 US companies over 9 years. 
However, two major problems with international comparisons are the strong 
heterogeneity of firms and the differences in data definitions across countries. 
Europe has the added problems that data collection still remains a responsibility of 
national regulators and a harmonized consistent European data pool is not yet 
implemented. Hence, efforts are predominantly undertaken to establish national 
efficiency standards with a limited data sample that consolidate theoretical 
requirements and practical applicability.  

Table 1: European regulated TSO natural gas companies (COM(2009) 115, 
Technical Annex) 

Country Number Country Number 
Austria 7 Latvia 1 
Belgium 1 Lithuania 1 
Czech Republic 1 Luxembourg 1 
Denmark 1 Netherlands 1 
Estonia 1 Poland 1 
Finland 1 Portugal 1 
France 2 Romania 1 
Germany 20 Slovakia 1 
Greece 1 Slovenia 1 
Hungary 1 Spain 8 
Ireland 1 Sweden 3 
Iceland 2 UK 1 

A wide range of benchmarking approaches and frameworks exist in the 
literature (Jamasb and Pollitt 2001, 2003; Farsi et al. 2007) and the approaches 
can be separated into two main streams: nonparametric and parametric methods. 
Data Envelopment Analysis (DEA) as a nonparametric approach and Stochastic 
Frontier Analysis (SFA) as a parametric framework are the most commonly used. 
The nonparametric methods determine the reference technology by means of 
linear programming methods whereas the parametric SFA assumes a functional 
relationship for the production process and determines the reference technology 
based on econometric methods. From a practical regulatory point of view both 
approaches have been useful to regulators: directly as part of the regulation 
process or as an additional control instrument for decision-making (Farsi et al. 
2007). Both methods differ in their requirements for the underlying data volume 
in order to derive meaningful results.1 Even if DEA, in terms of statistical 

                                                
1 Simar and Wilson (2008) prove that the theoretical foundations of DEA are based on large 
datasets to produce meaningful results. By contrast, parametric approaches reveal a desirable 
feature in terms of consistency of the estimator, i.e. its convergence to the unknown parameter at a 
certain rate when sample size increases to infinity. 
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properties, is more inefficient practical experience shows that DEA is used more 
frequently than SFA in the practical applications of efficiency analysis in the 
energy sectors, see Haney and Pollitt (2009); CEER (2006).  

A further empirical challenge is that in regulatory practice a detailed 
benchmarking model, describing the production process by means of exact input 
and output variables of the firms is indispensable. Hence, the model should 
include as much relevant information as possible. This requires a reasonable 
number of observations to distinguish companies and derive meaningful results. 
However, given a pre-determined sample size, an increase in dimensions (i.e. 
more explanatory variables)—which might contribute to more appropriate 
modeling of reality—leads to more observations determining the efficiency 
frontier. This subsequently affects efficiency scores in nonparametric efficiency 
analysis. For example, utility regulation is often conducted on a yearly basis, 
making it impossible to increase sample size when all possible installations are 
already included in the sample. Hence, this practical obstacle often constrains the 
regulator’s ability to meet the statistical requirements. However, reducing 
dimensions and conserving all available information at the same time improves 
the estimation of technical efficiency in a DEA framework.  

A feasible solution is the application of principal components analysis 
(PCA) in DEA that reduces dimensions of the original set of variables whilst 
maintaining the information on variation of data (Haerdle and Simar 2003). The 
combination of DEA and PCA was proposed by Ueda and Hoshiai (1997), and 
Adler and Golany (2001, 2002) who aim to overcome the issue of over-estimation 
of relative efficiency due to large numbers of variables in DEA. They show that 
PCA can improve discriminatory power in DEA and give more reliable efficiency 
measurement in small samples. Fields of application refer mainly to network 
industries. Whereas Ueda and Hoshiai (1997) apply their approach to the 
telecommunication sector, Adler and Golany (2001) and Adler and Berechman 
(2001) refer to the airline industry, and Adler and Golany (2002) to university 
departments. Adler and Yazhemsky (2009) provide further theoretical 
developments and show the applicability of PCA to radial DEA models when only 
additive DEA models2 were previously considered.  

There are also other discrimination-improving approaches related to DEA. 
For example, Adler and Yazhemsky (2009) compare PCA with the approach of 
variable reduction based on partial covariance and find better performance of 
PCA. Podinovski and Thanassoulis (2007) controvert simple approaches, i.e. 
increasing the number of units and reducing the number of variables by means of 
aggregation or reduction, and more sophisticated approaches, where the latter can 
be grouped using additional information and additional measurements 
                                                
2 For the difference between radial and additive models see Cooper et al. (2007).  
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respectively. Additional measurements obtained by means of further treatment of 
data have an advantage over additional information. They do not require 
information that is not directly given by the data and that is often difficult to 
determine. Frequently, regulators are unable to identify more realistic profiles of 
an optimal mix of inputs and outputs that could be implemented in DEA by 
weight restrictions (Podinovski and Thanassoulis 2007). Weight restrictions based 
on trade-offs modify the efficient boundary of the production possibility set such 
that unrealistic input-output-compositions are no longer used as reference. 
However, the PCA-DEA formulation causes similar effects without the need of 
additional information (Adler and Yazhemsky 2009). Although the weights 
imposed by PCA-DEA may not necessarily reflect those economic weights 
proposed by DEA, Ueda and Hoshiai (1997) prefer summarizing the variables 
parsimoniously. Alternatively, the presence of correlated variables selection 
requires (industry) expertise. In contrast, PCA based weights are objective based 
constraints (Adler and Golany 2002). 

This paper provides the first PCA-DEA (in terms of radial efficiency 
measurement) in the context of natural gas transmission regulation. Since 
European natural gas companies are not easily comparable, we use the US natural 
gas market as our reference model. The US natural gas market often serves as a 
reference model given the long and good record of regulatory experience and 
publicly available company data over the last three decades. Rather than 
potentially including US data in a European benchmarking exercise we use data 
on US natural gas transmission companies to illustrate how data limitations affect 
radial efficiency measurement and how PCA-DEA improves it. For a discussion 
comparing the US and European natural gas market see Jamasb et al. (2008). Our 
contribution to the literature and practical application is to support a pragmatic 
approach for European regulators who predominantly undertake efforts for 
national benchmarking and therefore face problems of limited data.  

The remainder of the paper is structured as follows. Section 2 introduces 
traditional DEA methodology and describes the issue of small samples in 
nonparametric benchmarking. DEA is extended by means of PCA following 
Adler and Yazhemsky (2009). The model specifications are outlined in Section 3, 
which also presents the data we use. Within this section outlier detection is 
reviewed. Our results are presented in Section 4 and Section 5 concludes.  

2 METHODOLOGY 

DEA is a nonparametric method frequently used in regulatory practice to evaluate 
relative efficiency and to set company-individual efficiency targets subsequently. 
The reference technology is not determined by imposing a functional form that 
describes the production process or cost structure, but by piecewise linear 
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programming assuming a transformation of inputs into outputs. However, basic 
DEA models consider two types of technology: constant returns to scale (CRS) 
proposed by Charnes et al. (1978), and variable returns to scale (VRS) suggested 
by Banker et al. (1984). The first translates into strict regulation practice assuming 
one optimal firm size whereas the latter allows for scale inefficiencies. We limit 
ourselves to assume VRS technology because it seems to be more reasonable in 
small samples (Adler and Yazhemsky 2009). We also impose input-orientation, 
meaning that input is minimized while output remains fixed. This is a reasonable 
and common assumption in network industries because firms are generally 
required to supply service to a fixed geographical area, and hence, the output 
vector is essentially fixed (Coelli and Walding 2006, p. 59).3  

The standard radial DEA environment incorporating VRS technology and 
minimizing individual relative efficiency θ can be written as the following linear 
program: 

,
min

. .

1
, , , 0

θ λ
θ

λ

λ θ

λ
θ λ

− =

− − =

=
≥

Y j

X j

Y X

s t Y s Y

X s X

e
s s

     (1) 

where θ represents the relative efficiency (that is the absolute efficiency of the 
unit under consideration relative to a maximum value of obtained efficiency by 
any of the units considered) of each company contained in the set J = {1, 2,...,n}. 
Xj and Yj are column vectors of k inputs and l outputs of unit j. Collecting the 
column vectors yields in a k × n matrix for inputs X and a l × n matrix for outputs 
Y respectively. The input and output weights are given by the column vector λ. 
The constraint eλ = 1 ensures that the VRS restriction is taken into account.4 The 
slack variables sX and sY allow the constraints to be stated as equalities. 
Furthermore, sX , sY , λ, and θ are supposed to be nonnegative.  

To obtain meaningful results with DEA the number of relevant input and 
output variables should be in proportion to the number of observations. 
Regulatory practice demands a sophisticated model with a high number of inputs 
and outputs to describe the production process or cost structure realistically. How 
well the method is able to sufficiently discriminate between utilities becomes an 
issue particularly when the data are limited, which is a known issue in real 
                                                
3 Input-orientation can be implemented in parametric and nonparametric approaches. For a 
parametric application see for example Farsi et al. (2005).  
4 Relaxing this constraint yields CRS technology, i.e. λ ≥ 0. 
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regulatory practice. This is addressed by principal components analysis (PCA), 
which can be used to reduce dimensions (number of variables) of the optimization 
problem by means of constructing linear combinations of the original data (Adler 
and Golany 2001, 2002). This conversion alters the original coordinate system 
(Adler and Yazhemsky 2009). Selecting the number of linear combinations then 
can reduce the dimensions of the new coordinate system. The number of 
dimensions comprising this new coordinate system depends on satisfying a 
selection criterion, e.g., the Kaiser-Guttmann-criterion or the Joliffe-criterion. We 
follow the study by Adler and Golany (2002) who select two as the number of 
principal components that satisfy discrimination purposes. However, we 
exclusively consider the limitation of dimensions in terms of outputs since there is 
no problem with a single input. Thus, for the purpose of translating output data, 
the correlation matrix C is obtained from the output matrix Y with Y 
=[Y1,Y2,...,Yl]. The (normalized) eigenvectors v1, v2,…, vl given by C are used to 
create linear combinations of the form PCYi =vt

iY= v1i*Y1 + v2i*Y2 + … + vli*Yl
where superscript t denotes the transpose operator and i represents the i-th element 
of the eigenvectors. These linear combinations are also known as principal 
components (PC) each of which explains a certain ratio of the original variables’ 
variance, whereby this ratio corresponds to the eigenvalues η1 ≥ η2 ≥ … ≥ ηl of C. 
Commonly, eigenvalues are in descending order, and so are therefore principal 
components, i.e. PC1 covers most of the variation in the data, PC2 covers less of 
it, and PCl covers the lowest proportion.  

Here we consider the combination of PCA and radial DEA models 
according to Adler and Yazhemsky (2009). However, one drawback of PCA-DEA 
is its requirement of data transformation. In PCA-DEA data are transformed 
initially by PCA and have to be remodeled to the original form after optimization. 
It appears that only some radial DEA settings are tolerant towards data 
transformation. Pastor (1996) proves output translation invariance for input-
oriented DEA models under VRS assumption. Hence, in general, the optimal 
solution using original data does not change when data are transformed. Although, 
translation invariance is not supported by all DEA models, their general properties 
are not affected by PCA-DEA, see Adler and Yazhemsky (2009).  

For one unmodified input and all outputs to be transformed into principal 
components, the dual linear program under VRS assumption can be written as 
follows:  
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where Y =[y1,y2, ..., yp] is the matrix of p outputs and x the single input vector we 
use. LY is the matrix collecting the output weights obtained by PCA. The original 
data are weighted and enter through principal components YPC where YPC = li

tY = 
l1iy1 + l2iy2 + l3iy3 +l4iy4 and li are the normalized eigenvectors from the correlation 
matrix of Y. Because all outputs are transformed into principal components, the 
minimization problem does not include separate output vectors. Both the slack 
variable sPC and the original output data are weighted by the linear coefficients 
obtained by PCA.5 As stated in formulation (1) VRS technology and non-
negativity of parameters and slack variables are assumed. If and only if all PCs 
are included, i.e. PCs explain 100% of the original data variation, the solutions of 
formulation (1) and (2) are equivalent (Adler and Yazhemsky 2009).  

3 MODEL SPECIFICATION AND DATA 

3.1 Model specification 

We want to determine the pipelines’ relative ability (pipelines refer to companies 
operating such facilities) to provide services at least cost where we consider the 
demand as fixed in the short-term. Hence, the model set up is based on the idea of 
a cost driver analysis, meaning that costs are explained by output variables that 
are relevant to costs of the pipelines under consideration. This approach deviates 
from the purely technical representation of the production process by physical 
data but is often applied in regulatory practice, see e.g., CEER (2006) and 
Bundesnetzagentur (2006). An important issue that arises almost immediately 
when applying benchmarking in regulatory practice, is cost comparability. There 
are essentially two ways of constructing the benchmarking basis, i.e. the short-run 
maintenance model and the long-run service model. For a broad discussion see 
Burns et al. (2005). The first model incorporates operating expenditures while the 

                                                
5 Due to data transformation a new constraint enters the linear problem which ensures the slack 
variable to be equal or smaller than the product of inverse weighting matrix and weighted output 
data.  
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second model incorporates total expenditures (operating expenditures plus capital 
costs). Although the total cost approach offers some advantages, the evaluation of 
capital costs still must be conducted carefully and in a reliable manner. However, 
in practice regulators more often rely on the first model (Haney and Pollitt 2009), 
and therefore, we conduct our analysis of efficiency on the basis of the short-run 
maintenance model. The determination of variables to be included is discussed 
broadly in the literature. A comprehensive investigation of the variables to use as 
cost measures and cost drivers for international benchmarking and regulation 
purposes is presented by CEER (2006); Jamasb et al. (2008) examine the 
productivity development of US natural gas transmission companies and review 
the literature with respect to variables. We note that most of the studies presented 
in the latter paper rely exclusively on parametric approaches.  

We develop two model settings (Model 1 and Model 2), each containing 
the same cost measurement but differ in their number of cost drivers. We select 
total operating and maintenance expenses (OPEX) as the input to be minimized.6 
Although there are arguments in favor of total expenses including capital costs, 
we do not consider them here. However, CEER (2006) shows high correlation 
between these two measurements. The basic model (Model 1) treats total amount 
of natural gas delivered (TotDeliv), transmission system (TransSys), peak 
deliveries (PeakDeliv), and total installed horsepower of compressor stations 
(HorPow) as OPEX determinants and therefore outputs. The second model 
(Model 2) adds transmission system losses (TransLos), which is an undesired 
output7 and therefore must be treated differently. It is not our aim to present the 
particular effect of this undesired output itself; rather, we wish to demonstrate 
how an additional output will affect the empirical analysis and therefore 
regulatory consequences.  

For the purpose of demonstration and comparison, each of the two models 
is specified under traditional DEA and PCA-DEA methodology, both assuming 
VRS technology. The resulting four model specifications are listed in Table 2.  

Table 2: Model specification 

Model 1 Model 2 
 DEA PCA-DEA DEA PCA-DEA 
DEA x  x  
PCA-DEA  x  x 
VRS x x x x 
Note: x denotes the presence of the assumption in each model specification. 

                                                
6 This is known as OPEX-benchmarking. Haney and Pollitt (2009) list international regulators who 
in fact conduct OPEX regulation. 
7 All resources devoted to the production of natural gas lost in the system are captured by OPEX. 
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3.2 Data 

We use data on US American natural gas transmission companies. The US natural 
gas industry offers a comprehensive record of publicly available data and 
regulatory history, making it ideal for our analysis. We compile data from the US 
Federal Energy Regulatory Commission’s (FERC) database of the major interstate 
natural gas pipelines. This covers each natural gas company whose combined gas 
transported or stored for a fee exceed 50 million Dekatherms (Dth) in each of the 
previous three calendar years (FERC 2008, p. i). In total our original sample 
contains 37 US American natural gas transmission companies in 2007 operating 
only onshore pipelines.8 However, these companies are either stand alone units or 
units covering a broader business portfolio (holdings). Table 3 summarizes all 
variables we use. 

Table 3: Descriptive statistics of US natural gas transmission companies, onshore 
(2007) (FERC Form No. 2) 

Variable Opex Total 
Deliveries 

Transmission 
System 

Peak 
Deliveries 

Installed 
Horsepower 

Transmission 
System Losses 

Unit mn USD mn Dth Miles mn Dth thou Hp thou Dth 
Sum 2,860.32  34,191.24 127,783.20 86.81 11,003.22  38,677.68 
Min. 1.25  49.93 59.00 0.19 9.00  0.00 
Max. 402.67  6,046.71 14,463.20 8.44 1,434.27  6,684 
Mean 77.31  924.09 3,453.60 2.35 125.95  1,045.34 
Median 31.50  403.89 1,680.40 1.68 297.38  615.66 
Std. 
Dev. 99.61  1,255.53 3,703.33 2.12 371.72  1,399.32 

The sample includes natural gas transmission pipelines that spend about 
2,860 million USD on operating and maintenance for approximately 127,783 
miles of onshore facilities. This covers about 66.5% of total US interstate pipeline 
mileage. Pipelines differ in transmission system9 and total deliveries10, ranging 
from 49.93 million Dth to over 6,046 million Dth. The data indicates that some 
deliver low amounts of gas in peak times11 with a minimum of 0.19 million Dth, 
while others deliver up to the maximum 8.44 million Dth. Another output is 
compressor stations’ total installed horsepower, an important characteristic of gas 
transmission. Installed horsepower (Hp) is calculated as the product of the number 
                                                
8 We omit companies which also operate offshore pipelines since the technology differs.  
9 Petal Gas Storage, L.L.C. operates the smallest pipeline system, 59 miles, and Tennessee Gas 
Pipeline Company operates the largest, 14,463 miles. 
10 Natural gas delivered does not only account for own sales but also for interactions with others. 
11 Natural gas delivered in peak times refers to single day peak deliveries summing deliveries to 
interstate pipelines and “others”.  
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of stations and their certified horsepower. This enables us to incorporate a 
capacity measurement. In fact, the data show significant differences in installed 
horsepower ranging from a minimum of 9 million Hp to a maximum of nearly 
1,435 million Hp. The standard deviation of 371.72 million Hp indicates the 
strong variation in the data.  

An additional output variable is transmission system losses. In total nearly 
39.7 million Dth of natural gas are lost that would not occur in total deliveries. 
Pipelines report data ranging from no losses to 6,685 thousand Dth. A record of 
zero losses is technically very unlikely. Therefore, we suspect measurement 
errors, which we try to overcome with the subsequent outlier detection. TransLos 
must be treated differently from the others because of the inverse interpretation of 
undesirable outputs. To ensure a correct representation, we translate this variable 
such that more losses are disadvantageous to companies’ performance. Thus, we 
subtract from a large number12 and choose 10,000,000 as the large number.13  

3.3 Outlier detection based on super-efficiency 

Because nonparametric methods are sensitive to outliers (Simar 2003), we 
conduct an outlier detection based on the concept of super-efficiency. Following 
Banker and Chang (2006), we choose the selection criterion of 1.2: companies 
achieving an efficiency score equal to or smaller than 1.2 are accepted for the 
sample and those exceeding this criterion are excluded from further analysis. We 
find that three of the 37 utilities are super-efficient: Columbia Gas Transmission 
Corporation with 5.42, Petal Gas Storage, L.L.C. with 2.97, and Vector Pipeline 
L.P. with 2.02. In addition, this outlier detection confirms doubts from reporting 
non-transmission system losses for two of the three.14 Hence, our final sample size 
is 34 pipelines.  

4 RESULTS 

This section presents our results.15 First, we deal with the results of the PCA, 
followed by the efficiency estimation for the two models (Model 1 without 
TransLos and Model 2 with TransLos) and methodologies (DEA and PCA-DEA). 

                                                
12 Other ways to implement undesirable outputs in the DEA framework are discussed in Dyson et 
al.  (2001). 
13 The results are insensitive to a variation of the large number to 8,000,000 instead.  
14 The other two of the four pipelines which report zero transmission losses do not determine the 
frontier in the super-efficiency analysis.  
15 For calculations we use the PCA-DEA Program developed by Adler 
(http://pluto.huji.ac.il/~msnic/PCADEA.htm).  
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We then discuss the results for our model specifications for a particular pipeline to 
illustrate the relevance of PCA-DEA for real-world regulatory practice.  

4.1 Principal components analysis  

The principal components analysis enables us to reduce the dimensions of the 
linear program and thus to increase discrimination between the pipelines of 
interest. Table 4 shows the results of our separate PCA analysis for both models. 
In terms of output, the fist principal component (PC1) captures at least 82% of 
data variation in both models. Taking also PC2 into account results in a 
cumulative explanation of more than 95% in Model 1 and 90% in Model 2 of total 
data variation. Using only these two output PCs does not cause much loss of 
information for either Model 1 (4.73%) or Model 2 (9.47%). Since we consider 
only one input principle component, we capture all information. Hence, it exactly 
represents the single input and does not affect efficiency measurement.  

Table 4: Principal components analysis for Models 1 and 2 

Variance explained by principal component in % 
Model 1 Model 2 

PC Input Output Input Output 
1 100  87.76  100 82.19  
2  7.52   8.34  
3  3.35   5.71  
4  1.38   2.68  
5    1.08  

4.2 Efficiency of pipelines  

Descriptive statistics of the pipelines’ individual efficiencies (by percentage) 
given by DEA and PCA-DEA for each model are shown in Table 5. A company is 
radially efficient if it achieves 100%. The lower the efficiency score the worse the 
company has performed relative to its peers. We find two general results. First, 
compared to the traditional DEA approach, PCA-DEA yields lower efficiency 
across both model specifications. For example, pipelines in Model 1 (without 
TransLos) achieve 66.89% on average but 46.54% under the PCA-DEA 
specification. This empirically reflects the argument of Adler and Yazhemsky 
(2009, p. 3) by which PCA-DEA has effects similar to the imposition of weight 
restrictions, which renders parts of the efficient boundary of the production 
possibility set no longer efficient. In other words, companies that are really 
specialists in one of the original dimensions would be considered efficient 
performers due to linear programming. In fact, only specialization in this 

11

Nieswand et al.: Application of PCA-DEA to Natural Gas Transmission

Bereitgestellt von | Deutsches Institut für
Angemeldet

Heruntergeladen am | 20.06.17 16:12



particular dimension would lead to efficiency, whereas the overall performance of 
the affected company does not. The single feature criterion (specialist in one 
dimension) is a particular problem for nonparametric approaches, while the 
weights of the variables by the coefficients attenuate the empirical problem in 
parametric SFA frameworks (Riechmann and Rodgarkia-Dara 2006). This over-
estimation of efficiency occurs especially when only a few observations are 
present relative to the number of variables. By means of PCA-DEA we reduce the 
space to only two dimensions and thus improve the efficiency determination.  

Second, comparing the particular specifications of Model 1 with their 
counterparts in Model 2 (including TransLos), we observe higher efficiency in the 
latter model. This observation is almost true for every statistic except for the 
minimum values, e.g., DEA specification in Model 1 reveals a mean of 66.89% 
and 77.55% in Model 2, and PCA-DEA specification reveals a mean of 46.54% in 
Model 1 and 60.04% in Model 2.16 So far, both models appear to differ in some 
respects, e.g., to median or 75%-quantile scores, which is highly relevant to 
regulatory practice. However, the robustness of PCA-DEA analysis is supported 
when considering pipeline-specific efficiency scores.  

Table 5: Efficiency of US American natural gas transmission companies in % 

Model 1 (without TransLos) Model 2 (with TransLos) 
Statistic DEA PCA-DEA DEA PCA-DEA 
Minimum 27.02 19.23 30.65 19.10 
25%-quantile 44.78 31.46 53.83 39.52 
Mean 66.89 46.54 77.55 60.04 
Median 63.86 39.51 93.45 48.39 
75%-quantile 95.53 57.08 100 98.50 
Maximum 100 100 100 100 

Figure 1 shows how company-specific efficiency scores change with DEA 
and PCA-DEA, and with our two model specifications. In addition to the findings 
already discussed—also retraceable here—other noticeable findings occur. In both 
graphs the pipelines are arranged in increasing order of total deliveries (TotDeliv), 
indicating their size.  

For DEA specification, none of the plots suggests an identifiable trend of 
better performance depending on pipelines’ size. This can be explained by the 
VRS approach. However, for PCA-DEA specification, the larger pipelines seem 
to be better performers. Intuitively, the impact of single features, which make 
companies efficient in the range of smaller companies when VRS technology is 
assumed, is attenuated. 
                                                
16 Again, DEA estimates are lower due to the substantially reduced number of outputs included in 
Model 2. 
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Figure 1: Pipeline-individual efficiency of US American natural gas transmission 
pipelines 

The number of pipelines that are part of the efficiency frontier is clearly 
higher when DEA applies. In this case, Model 1 depicts seven efficient utilities, 
and Model 2 even defines half of the sample as efficient due to the additional 
output variable TransLos. It is for technical reasons that the more variables are 
included in traditional DEA, the more units are considered to be efficient. This 
has particular importance in small samples. Moreover, Adler and Yazhemsky 
(2009) show by means of Monte Carlo simulation, that a trade-off occurs between 
incorrect classification of (in)efficient decision-making units under traditional 
DEA and PCA-DEA. If technology and salient variables are correctly specified, 
traditional DEA never defines truly efficient units incorrectly as inefficient, i.e. 
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the probability of error type 1 is zero. But at the same time, the probability of 
incorrectly defining inefficient units as efficient (error type 2) is high in DEA 
under VRS. Thus, we can expect a remarkable proportion of pipelines to be over-
estimated in terms of efficiency, and potential cost reduction would remain 
uncovered. Therefore, the aim of regulation is not achieved.  

Even though PCA-DEA can improve benchmarking activities while 
notably lowering the level of over-estimation, there is a cost. PCA-DEA causes a 
certain level of under-estimation. However, in radial efficiency measurement, this 
effect is minor. Adler and Yazhemsky (2009) demonstrate that with PCA-DEA 
the probability of under-estimation (error type 1) is very small while the 
probability of over-estimation (error type 2) significantly improves. Empirically 
PCA-DEA in our analysis defines three (Model 1) and nine (Model 2) pipelines as 
efficient. Note that in both cases only two PCs are included in the analysis and 
thus, the ratio of variables and observations is acceptable. Hence, PCA-DEA 
offers methodological features that are preferable to those of traditional DEA.  

However, for both models we observe that most of the pipelines suffer 
from introducing PCA-DEA. In Model 1, the second-smallest pipeline delivering 
about 53 million Dth of natural gas (MIGC, LLC) achieves 50.79% under the 
DEA specification and decreases to 37.66% under PCA-DEA; a larger pipeline 
delivering 1,360 million Dth of natural gas (Dominion Transmission, Inc.) 
achieves 69.84% under DEA and decreases to 58.22% under PCA-DEA. But in 
Model 1 there are also companies that do not suffer from introducing PCA-DEA, 
i.e. those delivering 50 (Guardian Pipeline, LLC), 421 (IPOC as Agent/Iroquois 
Gas Trans. Sys. LP), and 3,270 (Transcontinental Gas Pipe Line Corporation) 
million Dth. We note that only peers (fully efficient companies) remain at the 
same level as before. It seems that their respective efficiency score is not distorted 
from unique characteristics17 and full efficiency is justified. 

According to Adler and Yazhemsky (2009, p. 10) it is preferable to avoid 
the omission of relevant variables because it leads to under-estimation of the mean 
efficiency. For regulatory practice including operating characteristics, quality 
variables, etc., in a sophisticated model can be important. However, the request 
for a realistic representation of company structures easily increases the number of 
variables substantially and hence, harms the ratio between observations and 
variables. The known consequence is a deteriorated discrimination capability of 
DEA. In fact, including TransLos in place of the mentioned variables yields 
significantly changed efficiency scores in both model specifications of Model 2, 
i.e. DEA and PCA-DEA. Still, the methodological difference induces a reduction 
of dimensions when PCA-DEA is applied; thus, using PCA-DEA does not affect 
the discriminatory capability although more variables are considered before. 
                                                
17 Riechmann and Rodgarkia-Dara (2006) point out that statistical fuzziness and unique 
characteristics are sources of distortion.  
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When we compare the PCA-DEA results of Model 1 (without TransLos) and 
Model 2, 29% of the companies (10 out of 34) exhibit lower efficiency under 
Model 2. Other companies improve or remain as good as before. The maximum 
individual worsening of 3.93% is experienced by the company delivering 100 
million Dth in total (Equitrans LP). Note that because dimensions are equal in 
both models, changes seem to be associated with new information. At the same 
time, the PCA-DEA specification in Model 2 discloses the ability of PCA to 
account for specialists which we explain by one specific pipeline in more detail in 
the following section. 

4.3 Case study: Northern Border Pipeline Company  

Northern Border Pipeline Company delivers 907 million Dth in total and achieves 
very low efficiency scores in Model 1 (27.02% with DEA and 19.23% with PCA-
DEA), but the efficiency scores increase significantly when including TransLos in 
Model 2. Under traditional DEA, the pipeline achieves 100% efficiency. This 
indicates specialization in the particular variable TransLos which accounts for 
roughly 78 thousand Dth (so it seems unlikely to be an error in reporting). In 
contrast, when applying PCA-DEA, the efficiency score falls to 80.72%. What 
cannot be seen from this graph directly is how the reference set of Northern 
Border Pipeline Company changes between Model 1 and Model 2 with respect to 
PCA-DEA specification.  

Table 6: Peers of Northern Border Pipeline Company in PCA-DEA model 
specifications (FERC Form No. 2) 

Variable Opex TotDeliv TransSys PeakDeliv HorPow TransLos 
Unit mn USD mn Dth Miles mn Dth thou Hp thou Dth 
NBPC 165.3 907.0 1,399 2.6 536.6 77.9 

Peers in Model 1 
I/I 9.3 420.6 414 1.4 78.3 489.4 
TGPC 117.3 3,270.0 10,325 8.4 1,434.3 6,684.6 

Peers in Model 2 
DTI 70.7 1,360.1 3,344 4.0 350.2 398.5 
EPNGC 373.4 6,046.7 10,240 5.1 1,136.4 3,038.8 

Notes: NBPC = Northern Border Pipeline Company, I/I = IPOC as Agent/Iroquois Gas Trans Sys. LP., TGPC = 
Transcontinental Gas Pipeline Corporation, DTI = Dominion Transmission, Inc., EPNGC = El Paso Natural Gas 
Comapny 

Table 6 provides more insight on the relevance of this reference set (peers) on 
the efficiency of our example. In Model 1 Northern Border Pipeline Company is 
compared to the efficient utilities IPOC as Agent/Iroquois Gas Trans. Sys. LP and 
Transcontinental Gas Pipeline Corporation, whereas in Model 2 Dominion 
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Transmission, Inc. and El Paso Natural Gas Company appear to be its peers.18 
Obviously, IPOC as Agent/Iroquois Gas Trans. Sys. LP is a much smaller 
company, e.g., OPEX are only 9.3 mn USD, and total deliveries account for 420.6 
mn Dth. Peers in the reference set of Model 2 are structurally more alike than the 
peers in Model 1. This can also be observed in Figure 1, where in Model 1 (PCA-
DEA specification) the peers of Northern Border Pipeline Company are the 
efficient companies delivering 421 and 3,270 mn Dth, and in Model 2 the peers 
are those efficient pipelines delivering 1,360 and 6,047 mn Dth. This finding 
confirms the idea of DEA in the regulatory context. Burns et al. (2005, p. 304) 
relate benchmarking techniques to yardstick competition and point out that one 
key feature of DEA is that it identifies “local” conditions, i.e. analyzes the 
efficiency of a firm with reference to other firms that are similar in their 
combinations of outputs, for example. If regulators want benchmarking to fulfill 
this prerequisite, our results support its fulfillment when relevant variables are 
part of the analysis and discrimination power is given by applying PCA-DEA.  

5 CONCLUSION  

The purpose of this paper is to empirically demonstrate how improving 
discriminatory power in nonparametric efficiency analysis affects the efficiency 
scores of natural gas transmission companies. Moreover, we desire to support a 
pragmatic approach of efficiency evaluation for (European) regulatory authorities 
that accounts for a poor ratio between the number of variables and the number of 
observations.  

Over the last decades network industries with natural monopoly character 
have experienced extensive restructuring towards incentive-based regulation 
schemes. Restructuring aims to motivate more efficient production and cost 
structures. Benchmarking has become an established tool in regulatory practice to 
identify company-individual targets for achieving these goals. Although there is 
an increasing interest in parametric benchmarking methods, e.g., SFA, practical 
experience show frequent application of nonparametric approaches such as DEA. 
For meaningful efficiency measurement, DEA requires a sufficient amount of 
data. However, due to the former monopolistic market structures and yearly 
conducted efficiency evaluation, this cannot always be guaranteed in reality. 
Limited data negatively affects DEA’s discriminatory power, and thus increases 
the probability of efficiency over-estimation. This issue amplifies when a large 
number of variables are considered to describe the production process or cost 

                                                
18 The peers in Model 1 with DEA specification are Transcontinental Gas Pipeline Corporation 
and Guardian Pipeline, L.L.C. In Model 2 with DEA specification Northern Border Pipeline 
Company serves as the peer, because of its specialization. 
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structure of companies. To address this issue, DEA can be combined with PCA. 
By means of linear combinations of the original variables PCA reduces the 
dimensions while maintaining a large proportion of the variation in the original 
data. Consequently, discriminatory power in PCA-DEA improves and results in 
more robust efficiency scores. If regulators want benchmarking to fulfill this 
prerequisite, our results support its fulfillment when relevant variables are part of 
the analysis and discrimination power is given, i.e. by applying PCA-DEA. We 
test our hypotheses by applying PCA-DEA to a large sample of US natural gas 
transmission pipelines. We chose to employ US data because it is publicly 
available and the industry has a significant regulatory record. We defined two 
models, one with four output variables and a second with five; both models had a 
single input.  

Our results suggest that PCA-DEA improves nonparametric efficiency 
analysis. Models applying traditional DEA display a high proportion of fully 
efficient pipelines (up to 50%), where we can suspect many are over-estimated. 
Because over-estimation decreases, pipelines on average perform less well under 
PCA-DEA than under DEA, which we trace back to more realistic efficiency 
measurement. We then show that additional outputs significantly change the 
results and, in PCA-DEA models, improve the evaluation of pipelines. Efficiency 
score changes between the different PCA-DEA model specifications appear to be 
not due to higher model dimensions, but due to worthwhile information and 
structurally similar reference companies. We conclude that these findings support 
current regulatory practice by mitigating the conflict between too few 
observations, and the demand for many variables to produce an appropriate 
representation of the relevant structures.  
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