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Abstract: The study of random graphs has become very popular for real-life network
modeling, such as social networks or financial networks. Inhomogeneous long-range
percolation (or scale-free percolation) on the lattice Zd, d ≥ 1, is a particular attractive
example of a random graph model because it fulfills several stylized facts of real-life
networks. For this model, various geometric properties, such as the percolation behavior,
the degree distribution and graph distances, have been analyzed. In the present paper,
we complement the picture of graph distances and we prove continuity of the percolation
probability in the phase transition point. We also provide an illustration of the model
connected to financial networks.
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effect; long-range percolation; scale-free percolation; graph distance; phase transition;
continuity of percolation probability; inhomogeneous long-range percolation; infinite
connected component



Risks 2015, 3 2

1. Introduction

Random graph theory has become very popular to model real-life networks. Real-life networks may
be understood as sets of particles that are possibly linked with each other. Such networks appear, for
example, as virtual social networks, see [1], as financial networks such as the banking system, see [2,3],
or the network of interbank transactions, see [4,5]. In the latter example, banks are modeled by particles
and two banks are linked if one bank transacts a payment to the other one. The connectivity of the
network plays a crucial role on the spread of information and the development of default cascades, the
latter being crucial for macroeconomic stability, see [6]. It is, therefore, of major interest to understand
the geometry of such networks. Using empirical data one has observed several stylized facts about large
real-life networks, for a detailed outline we refer to [1,7], and Section 1.3 in [8]:

• Distant particles are typically connected by very few links, i.e., although there are possibly a lot
of particles in the network, any two particles are typically connected through only a few other
particles. This is called the “small-world effect”. For example, there is the observation that most
particles in real-life networks are connected by at most six links, see also [9]. For the Facebook
network with 721 million users, where there is a link between two users if they are “friends” on
Facebook, the average number of minimal links that connect any two users is around 4.5, while
around 99% of all users are connected by at most six links, see [10]. For the movie actor network,
where there is a link between two actors if they appeared in the same film, the average number
of minimal links that connect any two actors is also around 4.5, while the number of actors in the
network is over two hundred thousand. See [7] for more examples.
• Linked particles tend to have common friends, which is called the “clustering property”. For

instance, if x is friend of both y and z, then it is likely that y and z are also friends. As an
example, [10] discovers the following in the Facebook network: given a user with 100 friends,
about 14% of the possible friendships among his friends exist.
• The degree distribution, that is, the distribution of the number of links of a given particle, is

heavy-tailed, i.e., its survival probability has a power law decay. It is observed that in real-life
networks the (power law) tail parameter τ is often between 1 and 2. For instance, for the movie
actor network τ is estimated to be around 1.3. For more explicit examples we refer to [7,8].

Since it is too complicated to model large networks particle by particle, many different random graph
models have been developed and their properties were analyzed. A well studied model in the literature
is the homogeneous long-range percolation model on Zd, d ≥ 1. In this model, the particles are the
vertices of Zd. For fixed λ, α > 0, any two particles x, y ∈ Zd are linked with probability pxy which
behaves as λ|x− y|−α for |x− y| → ∞, i.e., the closer particles are the more likely they are connected.
This model has therefore a local clustering property. Moreover, for values of α not too large, the graph
distance between x, y ∈ Zd, that is, the minimal number of links that connect x and y, behaves roughly
logarithmically as |x − y| tends to infinity, see [11]. This behavior can be interpreted as a version
of the small-world effect in the sense that if two particles are separated by large (Euclidean) distance
|x|, they are connected by only roughly log |x| links. But homogeneous long-range percolation does
not fulfill the stylized fact of having heavy-tailed degree distributions, which makes this model less
attractive for real-life network modeling. Therefore, [12] introduced the inhomogeneous long-range
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percolation model (also known as scale-free percolation model) on Zd which extends the homogeneous
model in such a way that the degree distributions turn out to be heavy-tailed. In this extended model
one assigns to each particle x ∈ Zd a positive random weight Wx whose distribution is heavy-tailed
with tail parameter β > 0. Given the weights (Wx)x∈Zd , two particles x, y ∈ Zd are then linked with
probability pxy being approximately λWxWy|x − y|−α for large |x − y|. Note that pxy is decreasing in
the distance between particles x and y and increasing in their weights. This implies that the weights
make particles more or less attractive, i.e., if a given particle x has a large weight Wx, it plays the role
of a hub in the network. This extension of the homogeneous model is very natural since the existence
of hubs in real-life networks is often observed. For instance, the number of friends of a famous person
on Facebook is typically clearly above average, or large banks do much more transactions than small
banks. Therefore, this model can be used to model real-life networks where the possibility of a link
mainly depends on the “sizes” of particles and their separations. As a concrete example, we illustrate a
financial network in Section 4. The inhomogeneous model has by definition a local clustering property.
Moreover, depending on the values of α and β, the degree distribution is heavy-tailed with tail parameter
τ = τ(α, β) > 1, see Theorem 2.2 in [12]. Hence, in contrast to the homogeneous model, it fulfills
the stylized fact of having heavy-tailed degree distributions. For real-life applications the interesting
case is τ ∈ (1, 2) and in this case the graph distance between two particles is of doubly logarithmical
order as their separation tends to infinity, see [12] and Theorem 8 below. This is again a version of the
small-world effect and it says, for instance, that if we increase the (Euclidean) distance between two
particles by a factor 1000, their graph distance only grows by roughly 2. One goal of this paper is to
complement the picture about graph distances of [12] by providing analogous results to [11,13–15] for
inhomogeneous long-range percolation.

In homogeneous long-range percolation it is known that there is a critical constant λc = λc(α, d) such
that there is an infinite connected component of particles for λ > λc, and there is no such component
for λ < λc, i.e., in the former case there is an infinite connected network in Zd. Such phase transitions
appear in many random graph models and they play an important role in the stability of networks, see
for instance the banking system modeled in [6]. The phase transition picture in homogeneous long-range
percolation can be traced back to the work of [16–18]. Later work concentrated more on the geometrical
properties of percolation like graph distances, see [11,14,15,19,20]. A good overview of the literature
for long-range percolation is provided in [11,21]. For homogeneous long-range percolation it is known
that for α ≤ d there is an infinite connected component for all λ > 0, and therefore λc = 0. This infinite
connected component contains all particles of Zd, a.s., i.e., in that case we have a completely connected
network of all particles of Zd, which is not of interest for real-life network applications. In the case
α ∈ (d, 2d) we have λc > 0 and there is no infinite connected component at criticality λc, see [22]. In
view of the banking system modeled in [6], this means that the banking system is still stable at criticality.
This result combined with Proposition 1.3 of [23] shows continuity of the percolation probability, that
is, the probability that a given particle belongs to an infinite connected component is continuous in the
choice of parameter λ. In particular, given that there exists an infinite connected network, the probability
that a given particle belongs to this network can still be arbitrarily small for appropriate choices of λ. This
is important for network modeling as the following example illustrates. Assume we model a population
where a link between two individuals has the following interpretation: if one of the two individuals has
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a disease, it infects the other individual. Assume that initially none of the individuals have a disease
and choose uniformly at random one individual in a given (arbitrarily large) finite area to have a disease.
Then, the probability that this individual infects infinitely many other individuals is still small for λ > λc

close to λc. For α ≥ 2d, the problem is still open, except in the case d = 1 and α > 2 because in that
latter case there does not exist an infinite connected component for any choice λ > 0.

In inhomogeneous long-range percolation the conditions for the existence of a non-trivial critical
percolation constant λc ∈ (0,∞) were derived in [12], see also Theorems 1 and 2 below. The continuity
of the percolation probability was conjectured in that article. One main goal of the present work
is to prove this conjecture for α ∈ (d, 2d). The crucial technique to prove this conjecture is the
renormalization method presented in [22]. This technique will also allow to complement the picture
of graph distances provided in [12], which in particular allows to analyze the small-world effects for
different networks.

Organization of this article. In Section 2, we describe the model assumptions and notations. We also
state the conditions that are required for a non-trivial phase transition. In Section 3, we state the main
results of the article. Namely, we show the continuity of the percolation function in Theorem 5 which
is based on a finite box estimate stated in Theorem 6. We also complement the picture about graph
distances of [12], see Theorem 8 below. In Section 4, we discuss a concrete financial application of the
model, compare the results to homogeneous long-range percolation model results and we discuss open
problems. Finally, we provide all proofs of our results in Section 5.

2. Model Assumptions and Phase Transition Picture

We define the inhomogeneous long-range percolation model of [12] in a slightly modified version.
The reason for this modification is that the model becomes easier to handle but it keeps the essential
features of inhomogeneous long-range percolation. In particular, all results of [12] only depend on the
asymptotic behavior of survival probabilities. Therefore, we choose an explicit distributional example
which on the one hand has the right asymptotic behavior and on the other hand is easy to handle. This,
of course, does not harm the generality of the results.

Consider the lattice Zd for fixed d ≥ 1 with vertices x ∈ Zd and edges (x, y) for x, y ∈ Zd. Assume
(Wx)x∈Zd are i.i.d. Pareto distributed weights with parameters θ = 1 and β > 0, i.e., the weights Wx

have i.i.d. survival probabilities

P [Wx > w] = w−β, for w ≥ 1

Conditionally given these weights (Wx)x∈Zd , we assume that edges (x, y) are independently from each
other either occupied or vacant. The conditional probability of an occupied edge (or link) between x and
y is chosen as

pxy = 1− exp

(
−λWxWy

|x− y|α

)
, for fixed given parameters α, λ ∈ (0,∞) (1)

For | · | we choose the Euclidean norm. Note that pxy is approximately λWxWy|x − y|−α for large
|x− y|. If there is an occupied edge between x and y we write x⇔ y; if there is a finite connected path
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of occupied edges between x and y we write x ↔ y and we say that x and y are connected. Clearly
{x⇔ y} ⊂ {x↔ y}. We define the cluster of x ∈ Zd to be the connected component

C(x) = {y ∈ Zd; x↔ y}

which denotes all particles y ∈ Zd that can be reached within the network. Our aim is to study the size of
the cluster C(x) and to investigate its percolation properties as a function of λ > 0 and α > 0, that is, as
a function of the edge probabilities (λ, α) 7→ pxy = pxy(λ, α). The percolation probability is defined by

θ(λ, α) = P [|C(0)| =∞]

which is the probability that the connected component of a given particle contains infinitely many
particles. This is non-decreasing in λ and non-increasing in α. For given α > 0, the critical value
λc(α) is defined as

λc = λc(α) = inf {λ > 0; θ(λ, α) > 0}

Note that θ(λ, α) and λc(α) also depend on β, but this parameter will be kept fixed.
Trivial case. For min{α, βα} ≤ d, we have λc = 0. This comes from the fact that for any λ > 0

P
[
|{y ∈ Zd; 0⇔ y}| =∞

]
= 1

see Theorem 2.1 in [12]. This says that the degree distribution of a given vertex is infinite, a.s., and
therefore there is an infinite connected component, a.s. In the trivial case, all particles have infinitely
many links which is, of course, not interesting for real-life network applications. For this reason we only
consider the non-trivial case min{α, βα} > d. In this latter case the degree distribution is heavy-tailed
with tail parameter τ = βα/d > 1, see Theorem 2.2 of [12], which is in line with the stylized facts. In
particular, if α > d and d < βα < 2d, we have that the degree distribution is heavy-tailed with (power
law) tail parameter τ ∈ (1, 2). According to the stylized facts this latter case is of special interest for
real-life network applications. Theorems 1 and 2 give the phase transition pictures for d ≥ 1 in the
non-trivial case min{α, βα} > d, see Figure 1 for an illustration.

Theorem 1 (upper bounds). Fix d ≥ 1. Assume min{α, βα} > d.

(a) If d ≥ 2, then λc <∞.

(b) If d = 1 and α ∈ (1, 2], then λc <∞.

(c) If d = 1 and min{α, βα} > 2, then λc =∞.

SinceWx ≥ 1, a.s., the edge probability stochastically dominates a configuration with independent edges
being occupied with probabilities 1 − exp(−λ|x − y|−α). The latter is the homogeneous long-range
percolation model on Zd and it is well known that this model percolates (for d ≥ 2 see [22]; for d = 1

and α ∈ (1, 2] see [17]). For part (c) of the theorem we refer to Theorem 3.1 of [12]. Note that in
this latter case the network only contains connected components of finite size, a.s., for all λ > 0. This
means that in this case there is no phase transition. The next theorem follows from Theorems 4.2 and
4.4 of [12].
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Theorem 2 (lower bounds). Fix d ≥ 1. Assume min{α, βα} > d.

(a) If τ = βα/d < 2, then λc = 0.

(b) If τ = βα/d > 2, then λc > 0.

The phase transition pictures differ for d = 1 and d ≥ 2 in that the former has a region where
λc = ∞ and the latter does not. Note that τ = βα/d < 2 corresponds to infinite variance of the
degree distribution and τ = βα/d > 2 to finite variance of the degree distribution. In particular, for the
interesting case τ = βα/d ∈ (1, 2) for real-life network applications we have λc = 0. This implies that
there is no phase transition and the network will always have an infinite connected component, a.s., for
any λ > 0.

Figure 1. phase transition picture for d ≥ 1.

3. Main Results

3.1. Continuity of Percolation Probability

We say that there exists an infinite cluster C if there is an infinite connected component C(x) for some
x ∈ Zd. Since the model is translation invariant and ergodic, the event of having an infinite cluster C is a
zero-one event. Thus, for λ > λc there exists an infinite cluster, a.s. Moreover, from Theorem 1.3 in [22]
we know that an infinite cluster is unique, a.s. This justifies the notation C for the infinite cluster in the
case of percolation θ(λ, α) > 0 and implies that we have a unique infinite connected network, a.s. As an
example, the largest connected component in the Facebook network studied by [10] covers 99.91% of
all 721 million users while the second largest component covers only around 2000 users. The following
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theorem shows that there is no infinite connected component at criticality λc whenever min{α, βα} > d

and α ∈ (d, 2d).

Theorem 3. Assume min{α, βα} > d and α ∈ (d, 2d). Choose λ ∈ (0,∞) with θ(λ, α) > 0. There
exist λ′ ∈ (0, λ) and α′ ∈ (α, 2d) such that

θ (λ′, α′) > 0

In particular, {λ ∈ (0,∞); θ(λ, α) > 0} is an open interval in (0,∞), and there does not exist an infinite
cluster C at criticality λc.

Note that for βα < 2d we have λc = 0, hence there is no infinite connected component at criticality.
Theorems 2 and 3 therefore imply the following corollary.

Corollary 4. Assume α ∈ (d, 2d) and τ = βα/d > 2. There is no infinite cluster C at criticality λc > 0.

Next we state continuity of the percolation probability in λ which was conjectured in [12].

Theorem 5. For min{α, βα} > d and α ∈ (d, 2d), the percolation probability λ 7→ θ(λ, α)

is continuous.

This theorem exactly supports the example of spread of disease mentioned in the introduction.

3.2. Percolation on Finite Boxes

For integers n ≥ 1 and x ∈ Zd define the box centered at x with total side length 2n by Λn(x) =

x + [−n, n]d and abbreviate Λn = Λn(0). Let Cn be the largest connected component in box Λn (with a
fixed deterministic rule if there is more than one largest connected component in Λn).

Theorem 6. Assume min{α, βα} > d and α ∈ (d, 2d). Choose λ ∈ (0,∞) with θ(λ, α) > 0. For each
α′ ∈ (α, 2d) there exist ρ > 0 and N0 <∞ such that for all n ≥ N0 we have

P [|Cn| ≥ ρ|Λn|] ≥ 1− e−ρn2d−α′

This is the analog to the statement in homogeneous long-range percolation, see Theorem 3.2 in [11]. It
says that in case of percolation largest connected components in finite boxes cover a positive fraction of
these box sizes with high probability for large n, or in other words, the number of particles belonging to
the largest connected network in Λn is proportional to nd. For instance, assume we model a population
where a link between two individuals has the following interpretation: if one of the two individuals has
a disease, it transmits its disease to the other individual. Assume that initially all individuals in a large
finite area do not have a disease and choose uniformly at random one individual to have a disease. Then,
the above result implies that the probability that a positive fraction of all individuals in this area will get
infected is strictly positive.

Let Cn(x) be the vertices in Λn(x) that are connected with x within box Λn(x). For ` < n and ρ > 0

we denote by
D(ρ,`)
n = {x ∈ Λn; |C`(x)| ≥ ρ|Λ`(x)|}
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the set of vertices x ∈ Λn which are (ρ, `)-dense, i.e., surrounded by sufficiently many connected vertices
in Λ`(x), see also Definition 2 in [11].

Corollary 7. Under the assumptions of Theorem 6 we have the following.

(i) There exists ρ > 0 such that for any x ∈ Zd

lim
n→∞

P
[
|Cn(x)| ≥ ρ|Λn(x)|

∣∣x ∈ C] = 1

(ii) For any α′ ∈ (α, 2d) there exist ρ > 0 and `0 such that for any ` and n with `0 ≤ ` ≤ n/`0

P
[
|D(ρ,`)

n | ≥ ρ|Λn|
]
≥ 1− e−ρn2d−α′

This result can be interpreted as local clustering in that with high probability (for large n) particles
are surrounded by many other particles belonging to the same connected network. In the sense of the
above example this says that an infected individual will transmit its disease to a positive fraction of all
individuals in his (Euclidean) neighborhood. Corollary 7 is the analog to Corollaries 3.3 and 3.4 in [11].
Once the proofs of Theorem 6 and Lemma 10 (a), below, are established it follows from the derivations
in [11].

3.3. Graph Distances

For x, y ∈ Zd we define d(x, y) to be the minimal number of occupied edges which connect x and y,
and we set d(x, y) = ∞ for y /∈ C(x). The value d(x, y) is called graph distance or chemical distance
between x and y, and it denotes the minimal number of occupied edges that need to be crossed from x

to y (and vice versa). If typically d(x, y) is small for distant x and y, then we say that the network has
the small-world effect.

Theorem 8. Assume min{α, βα} > d.

(a) (infinite variance of degree distribution). Assume τ = βα/d < 2. For any λ > λc = 0 there exists
η1 > 0 such that for every ε > 0

lim
|x|→∞

P
[
η1 ≤

d(0, x)

log log |x|
≤ (1 + ε)

2

| log(βα/d− 1)|

∣∣∣∣ 0, x ∈ C] = 1

(b1) (finite variance of degree distribution case 1). Assume τ = βα/d > 2 and α ∈ (d, 2d). For any
λ > λc and any ε > 0

lim
|x|→∞

P
[

1− ε ≤ log d(0, x)

log log |x|
≤ (1 + ε)

log 2

log(2d/α)

∣∣∣∣ 0, x ∈ C] = 1

(b2) (finite variance of degree distribution case 2). Assume min{α, βα} > 2d. There exists η2 > 0

such that

lim
|x|→∞

P
[
η2 <

d(0, x)

|x|

]
= 1
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From Theorem 8 (a) we conclude that in the case τ ∈ (1, 2), which is the interesting one for real-life
network applications due to the stylized facts, we have a small-world effect and the graph distance is of
order log log |x| as |x| → ∞. This, for instance, says that if we increase the (Euclidean) distance between
two particles in the network by a factor 1000, their graph distance only grows by roughly of order 2. In
the case τ > 2 and α ∈ (d, 2d) (for λ > λc) the small-world effect is less pronounced in that the graph
distance is conjectured to be of order (log |x|)∆ for |x| → ∞. Note that this is a conjecture because the
bounds in Theorem 8 (b1) are not sufficiently sharp to obtain the exact power ∆ > 0. Finally, in the
case min{α, βα} > 2d we do not have the small-world effect and graph distance behaves linearly in the
Euclidean distance. In Figure 2 we illustrate Theorem 8 and we complete the conjectured picture about
the graph distances.

Case (a) of Theorem 8 was proved in Theorems 5.1 and 5.3 of [12]. Statement (b1) proves upper
and lower bounds in case 1 of finite variance of the degree distribution. The lower bound was proved in
Theorem 5.5 of [12]. The upper bound will be proved below in Proposition 11. Finally, the lower bound
in (b2) improves the one given in Theorem 5.6 of [12].

Figure 2. picture about the graph distances (partly as conjecture).

4. Example and Discussion

As an application of the inhomogeneous long-range percolation model we consider the interbank
network studied in [4]. This network analyzes the interbank payments transferred between 7584

commercial banks over the Fedwire Funds Service in the United States in the first quarter of 2004.
62 daily networks were studied, where particles represent banks and where there is a link between two
banks if at least one transaction between these banks takes place during the day considered. To model
such a daily network we use inhomogeneous long-range percolation in Z2, where particles and links have
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the above interpretation. The observations of [4] allow to calibrate model parameters and to interpret the
results of Section 3.

In fact, [4] considers directed links, meaning that each link also indicates which of the two connected
banks sends the payment and which bank receives the payment. This leads to two types of degrees of
a given bank: out-degrees (number of banks to which it sends a payment to) and in-degrees (number of
banks from which it receives a payment). [4] observes that the distribution of each type is heavy-tailed
with estimated tail parameters τ̂out = 1.11 and τ̂in = 1.15, respectively. In particular, the degree
distribution is heavy-tailed with a tail parameter τ which can directly be estimated from the data (ignoring
the direction of the links). The estimates of τ̂out and τ̂in suggest that the tail parameter τ = βα/2 is
between 1 and 2, which is in line with the stylized fact of having heavy-tailed degree distributions with
finite mean and infinite variance.

Moreover, [4] observes that the total number of payments sent from a given bank to its business
partners is heavy-tailed with estimated tail parameter β̂out = 0.8. We relate this quantity to the size of a
bank and we assume that the weight of a bank has the same tail behavior as the total number of payments
it sends out. Therefore, we choose β̂ = 0.8 as a calibration of β. Data on the asset sizes of the banks
would allow to calibrate β differently, but the number of transactions can also serve as a good measure
for the size of the bank, and the role of a hub function in the network.

The largest connected component consists of around 6490 banks on average, i.e., the network has a
giant connected component that contains about 86% of the individual banks on average. This observation
supports Theorem 6. Moreover, the average directed graph distance between any two banks is around 2.6

on average, while the maximal directed graph distance is at most 7 in all of the 62 daily networks. Note
that the directed graph distance dominates the graph distance of our model and, therefore, we observe
that the network shares the stylized fact of having a small-world effect. Theorem 8 allows us to calibrate
α in such a way that we get reasonable upper bounds on the graph distances. The theorem states that
the graph distances are at most 3.15/| log(τ − 1)| if we assume that all banks are in a box of side length
88 ≈

√
7584. Observe that this bound is sensitive in the choice of τ = βα/2 ∈ (1, 2) for fixed β = 0.8.

If we choose α = 2.75 such that τ = 1.1, the bound is 1.37, while it is 4.54 for α = 3.75 and τ = 1.5.
Choosing α = 3.25 gives τ = 1.3 and the graph distances are bounded by roughly 2.6, which provides
a calibration that fits to the observations in [4].

Although one might think that the physical distances between banks have no direct influence on
transactions because transactions are done over the Fedwire Funds Service, [5] observes that the
physical separation of banks has an influence on the transactions. Namely, [5] splits the network into
different districts and finds that there are much more (in terms of value) transactions within a district or
transactions between districts that share a common border, compared to transactions between districts
that do not share a common border. It is observed that small banks lend money to regional banks
which then lend money to big banks. In other words, short links are typically the result of short
physical distances, while long links typically arise between large players in the network, and the fact
that big banks play the role of hubs. This is in line with the definition of pxy and its local clustering
property. In particular, this justifies the use of a model where also physical distances between particles
are incorporated.
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We conclude that our model can be calibrated to the network of transactions over the Fedwire Funds
Service. We choose d = 2, β = 0.8 and α = 3.25 which gives tail parameter τ = βα/d = 1.3. These
parameters provide percolation for any λ > 0, i.e., there is a giant connected component that contains a
positive fraction of all banks. Graph distances are then bounded by roughly 2.6 which coincides with the
observations of [4], i.e., we have the small-world effect. Moreover, we have local clustering and power
law degrees with τ ∈ (1, 2).

In this article, we complemented the picture of graph distances provided in [12] and proved continuity
of the percolation probability for α ∈ (d, 2d) which was conjectured in that article. We see that the model
fulfills the stylized fact of having a small-world effect for appropriate model parameters. Moreover, we
proved that in case of percolation, the largest connected components in large finite boxes cover a positive
faction of these box sizes with high probability. This shows that the model, restricted to a finite box, has
a giant connected component. We also showed that the model exhibits a local clustering property in the
sense that with high probability, particles are surrounded by many other particles belonging to the same
connected component. An important difference in the inhomogeneous long-range percolation model
compared to the homogeneous model is that the former fulfills the stylized fact of having heavy-tailed
degree distributions. Therefore, the inhomogeneous model is an appealing framework for real-life
network modeling, in particular for τ ∈ (1, 2) where we obtain an infinite connected network for any
λ > 0 and graph distances in the infinite connected network behave doubly logarithmically. Moreover,
the above example shows how the model can be applied to financial networks.

In percolation theory one important problem is to understand the behavior of the model at criticality
λc. In nearest-neighbor Bernoulli bond percolation on Zd, where nearest-neighbor edges are vacant or
occupied with probability p ∈ (0, 1), it is known that for d = 2 and for d ≥ 19 there is no percolation
at criticality and hence the percolation function is continuous at the critical value (see [24,25] for more
details). In cases 3 ≤ d ≤ 18 this question is still open. In the homogeneous long-range percolation
model it was shown by [22] that there is no percolation at criticality for α ∈ (d, 2d). It is believed that
the long-range percolation model behaves similarly to the nearest-neighbor Bernoulli percolation model
when α > 2d and, thus, showing continuity for such values and d > 1 remains a difficult problem. In
addition, in our model the case min{α, βα} > 2d for d > 1 is still open which is conjectured to behave
as nearest-neighbor Bernoulli percolation, and hence is not of interest for real-life network modeling.

Another problem which remains to be answered in both homogeneous and inhomogeneous long-range
percolation is the continuity of the critical parameter λc(α) as a function of α and also as a function of
parameter β, the exponent of the power law in weights (in case of the inhomogeneous model).

There was quite some work done to understand the geometry of the homogeneous long-range
percolation model. In particular, there are five different behaviors depending on α < d, α = d, α ∈
(d, 2d), α = 2d and α > 2d, for a review of existing results see discussion in [21]. In some of these
cases, like α = 2d (for d ≥ 1) and α > 2d, the results are not yet fully known. The case d = 1 and α = 2

was resolved recently in [26]. It is clear that in the case of inhomogeneous long-range percolation the
complexity even increases due to having more parameters and, hence, degrees of freedom. For instance,
the understanding of the graph distance behavior is still poor for min{α, βα} > 2d, though we believe
that it should behave similarly to nearest-neighbor Bernoulli bond percolation.
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Moreover, for real-life network applications it will be important to (at least) get reasonable bounds on
the percolation probability θ(λ, α) and the optimal constants in Theorem 8. This will allow for model
calibration of real-life networks so that (asymptotic) network properties can be studied.

5. Proofs

5.1. Bounds on Percolation on Finite Boxes

The basis for all the proofs of the previous statements is Lemma 9 below which determines large
connected components on finite boxes. For integers m ≥ 1 and x ∈ Zd we define the box of size md

and lower left corner x by Bm(x) = x + [0,m − 1]d, and we abbreviate Bm = Bm(0). Let Cm be the
largest connected component in box Bm (with a fixed deterministic rule if there is more than one largest
connected component in Bm).

Lemma 9. Assume min{α, βα} > d and α ∈ (d, 2d). Choose λ ∈ (0,∞) with θ(λ, α) > 0 and let
α′ ∈ [α, 2d). For every ε ∈ (0, 1) and ρ > 0 there exists N0 ≥ 1 such that for all m ≥ N0

P
[
|Cm| ≥ ρmα′/2

]
≥ 1− ε

where Cm is the largest connected component in box Bm = [0,m− 1]d.

Sketch of proof of Lemma 9. This lemma corresponds to Lemma 2.3 of [22] in our model. Its proof is
based on renormalization arguments which only depend on the fact that α ∈ (d, 2d) and that the edge
probabilities are bounded from below by 1−exp(−λ|x−y|−α) for any x, y ∈ Zd. Using thatWx ≥ 1 for
all x ∈ Zd, a.s., we see by stochastic dominance that the renormalization holds also true for our model.
Renormalization shows that for m sufficiently large, the probability of {Bm contains at least a positive
fraction of md vertices that are connected within a fixed enlargement of Bm} is bounded by a multiple
of the probability of the same event but on a much smaller scale. To bound the latter probability we then
use the fact that the model is percolating, and from this we can conclude Lemma 9. We skip the details
of the proof of Lemma 9 and refer to the proof of Lemma 2.3 of [27] for the details, in particular, the
bound on ψn in our homogeneous percolation model (see proof of Lemma 2.3 in [27]) also applies to the
inhomogeneous percolation model.

Although the above lemma does not allow the connected component Cm to have size proportional
to the size of box Bm, it is useful because it allows to start a new renormalization scheme to improve
these bounds. This results in our Theorem 6 and is done similar as in Section 3 of [11]. For the proof
of Theorem 6 we use the following lemma which has two parts. The first one gives the initial step of
the renormalization and the second one gives a standard site-bond percolation model result. Once the
lemma is established the proof of Theorem 6 becomes a routine task.

Let Cm(x) denote the largest connected component in box Bm(x) (with a fixed deterministic rule if
there is more than one largest connected component in Bm(x)). For x, y ∈ mZd, we say that boxes
Bm(x) and Bm(y) are pairwise attached, write Bm(x) ⇔ Bm(y), if there is an occupied edge between
a vertex in Cm(x) and a vertex in Cm(y).
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Lemma 10.

(a) Assume min{α, βα} > d and α ∈ (d, 2d). Choose λ ∈ (0,∞) such that θ(λ, α) > 0. For each
ξ <∞ and r ∈ (0, 1) there exist m <∞ and an integer δ > 0 such that

P [|Cm(x)| < δ|Bm(x)|] ≤ 1− r,

P
[
Bm(x)⇔ Bm(y)

∣∣∣∣|Cm(x)| ≥ δ|Bm(x)|, |Cm(y)| ≥ δ|Bm(y)|
]
≥ 1− e−ξ(

|x−y|
m )

−α

,

for all x 6= y ∈ mZd.

(b) [Lemma 3.6, [11]] Let d ≥ 1 and consider the site-bond percolation model on Zd with sites
being alive with probability r ∈ [0, 1] and sites x, y ∈ Zd are attached with probability p̃x,y =

1 − exp(−ξ|x − y|−α) where α ∈ (d, 2d) and ξ ≥ 0. Let |C̃N | be the size of the largest attached
cluster C̃N of living sites in box BN . For each α′ ∈ (α, 2d) there exist N0 ≥ 1, ν > 0 and ξ0 <∞
such that

Pξ,r
[
|C̃N | ≥ ν|BN |

]
≥ 1− e−νξN2d−α′

holds for all N ≥ N0 whenever ξ ≥ ξ0 and r ≥ 1− e−νξ.

Proof of Lemma 10 (a). We adapt the proof of Lemma 3.5 of [11] to our model. Fix r ∈ (0, 1) and
ξ <∞. Choose ρ > 0 such that

λ
(

2
√
d+ 1

)−α
ρ2 = ξ

note that this differs from choice (3.13) in [11]. Lemma 9 then provides that there exists N0 ≥ 1 such
that for all m ≥ N0

P
[
|Cm| < ρmα/2

]
≤ 1− r

For the choice δ = ρmα/2−d the first part of the result follows. For the second part we choose x 6= y ∈
mZd. For x′ ∈ Bm(x) and y′ ∈ Bm(y) we have upper bound, using that Wz ≥ 1 for all z ∈ Zd, a.s.,

1− px′y′ ≤ exp
(
−λ|x′ − y′|−α

)
≤ exp

(
−λ
(

2
√
d+ 1

)−α
|x− y|−α

)
(2)

a.s., where the latter no longer depends on the weights (Wz)z∈Zd . For our choices of δ and ρ,
Equation (2) implies

P
[
Bm(x) 6⇔ Bm(y)

∣∣∣∣|Cm(x)| ≥ δ|Bm(x)|, |Cm(y)| ≥ δ|Bm(y)|
]

= E

 ∏
x′∈Cm(x),y′∈Cm(y)

(1− px′y′)

∣∣∣∣∣∣ |Cm(x)| ≥ δ|Bm(x)|, |Cm(y)| ≥ δ|Bm(y)|


≤ exp

(
−λ
(

2
√
d+ 1

)−α
|x− y|−αρ2mα

)
= exp

(
−ξ
(
|x− y|
m

)−α)

This shows the second inequality of part (a). For part (b) we refer to Lemma 3.6 in [11].
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Proof of Theorem 6. The proof follows as in Theorem 3.2 of [11], we briefly sketch the main argument.
Choose the constants N0 ≥ 1, ν > 0, ξ > ξ0, r ≥ 1 − e−νξ and δ > 0 as in Lemma 10, and note that it
is sufficient to prove the theorem for L = mN , where N ≥ N0 and m is chosen (fixed) as in Lemma 10
(a). In this set upBL can be viewed as a disjoint union ofBm(x) for x ∈ (mZd∩BL). There areNd such
disjoint boxes. We call Bm(x) alive if |Cm(x)| ≥ δ|Bm| and we say that disjoint Bm(x) and Bm(y) are
pairwise attached if their largest connected components Cm(x) and Cm(y) share an occupied edge. Part
(a) of Lemma 10 provides that Bm(x) is alive with probability exceeding r and Bm(x) and Bm(y) are
pairwise attached with probability exceeding p̃x,y for living boxes Bm(x) and Bm(y) with x, y ∈ mZd

(note that in this site-bond percolation model the attachedness property is only considered between living
vertices because these form the clusters). For any N ≥ N0, let AN,m be the event that box BL contains
a connected component formed by attaching at least ν|BN | of the living boxes. On event AN,m we have
for the largest connected component in BL

|CL| ≥ (ν|BN |)(δ|Bm|) = νδ|BL|

thus, the volume of the largest connected component CL in box BL is proportional to the volume of that
box and there remains to show that this occurs with sufficiently large probability. Part (b) of Lemma 10
and stochastic dominance provide (note that we scale x, y ∈ mZd from Lemma 10 (a) to the site-bond
percolation model on Zd in Lemma 10 (b))

P [|CL| ≥ νδ|BL|] ≥ P [AN,m] ≥ Pξ,r
[
|C̃N | ≥ ν|BN |

]
≥ 1− e−νξN2d−α′

= 1− e−νξmα
′−2dL2d−α′

Choosing ρ ≤ min{νδ, νξmα′−2d} provides

P [|CL| ≥ ρ|BL|] ≥ 1− e−ρL2d−α′

This finishes the proof of Theorem 6.

Proof of Corollary 7. The proofs of (i) and (ii) of Corollary 7 follow completely analogous to the
proofs of Corollaries 3.3 and 3.4 in [11] (note that Lemma 10 (a) replaces Lemma 3.5 of [11] and
Theorem 6 replaces Theorem 3.2 of [11]).

5.2. Proof of Continuity of the Percolation Probability

The key to the proofs of the continuity statements is again Lemma 9.

Proof of Theorem 3. Note that min{α, βα} > d and α ∈ (d, 2d) imply that λc < ∞. Therefore, there
exists λ ∈ (λc,∞) with θ = θ(λ, α) > 0. For these choices of λ > 0 we have a unique infinite cluster C,
a.s., and we can apply Lemma 9.

We consider the same site-bond percolation model on Zd as in Lemma 10 (b). Choose α′ ∈ (α, 2d),
0 < χ < 1 − ε < 1 and κ > 0 and define the model as follows: the following events are independent
and every site x ∈ Zd is alive with probability r = 1 − ε − χ ∈ (0, 1) and sites x, y ∈ Zd are attached
with probability p̃xy = 1− exp(−κ(1−χ)|x− y|−α′). For given α′ ∈ (α, 2d) we choose the parameters
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ε, χ, κ such that there exists an infinite attached cluster of living vertices, a.s., which is possible (see
proof of Theorem 2.5 in [22]).

The proof is now similar to the one of Theorem 6. Choose ρ > 0 such that λ
(

2
√
d+ 1

)−α′
ρ2 = κ.

From Lemma 9 we know that for all m sufficiently large and any x ∈ mZd

P
[
|Cm(x)| ≥ ρmα′/2

]
≥ 1− ε > 1− ε− χ = r

whereCm(x) denotes the largest connected component inBm(x). The latter events define alive vertices x
on the lattice mZd (which due to scaling is equivalent to the above aliveness in the site-bond percolation
model on Zd). Note that this aliveness property is independent between different vertices x ∈ mZd.
Attachedness Bm(x) ⇔ Bm(y), for x 6= y ∈ mZd, is then used as in the proof of Theorem 6 and we
obtain in complete analogy to the proof of the latter theorem

P
[
Bm(x)⇔ Bm(y)

∣∣∣|Cm(x)| ≥ ρmα′/2, |Cm(y)| ≥ ρmα′/2
]

≥ 1− exp

(
−λ
(

2
√
d+ 1

)−α
|x− y|−αρ2mα′

)
≥ 1− exp

(
−κ
(
|x− y|
m

)−α′)
where in the last step we used the choice of ρ and the fact that α < α′. Since κ > κ(1 − χ) we get
percolation and there exists an infinite cluster C, a.s., which implies θ(λ, α) > 0. Of course, this is no
surprise because of the choice λ > λc with θ(λ, α) > 0.

Note that the probability of a vertex x ∈ mZd being alive depends only on finitely many edges of
maximal distance

√
dm (they all lie in the box Bm(x)) and therefore this probability is a continuous

function of λ and α. This implies that we can choose δ ∈ (0, χλ) and γ ∈ (0, α′ − α) so small that

Pλ−δ,α+γ

[
|Cm(x)| ≥ ρmα′/2

]
≥ 1− ε− χ = r

where Pλ−δ,α+γ is the measure where for occupied edges we replace parameters λ by λ− δ ∈ (0, λ) and
α by α + γ ∈ (α, α′). As above we obtain, note α + γ < α′,

Pλ−δ,α+γ

[
Bm(x)⇔ Bm(y)

∣∣∣|Cm(x)| ≥ ρmα′/2, |Cm(y)| ≥ ρmα′/2
]

≥ 1− exp

(
−(λ− δ)

(
2
√
d+ 1

)−(α+γ)

|x− y|−(α+γ)ρ2mα′
)

≥ 1− exp

(
−κ (1− δ/λ)

(
|x− y|
m

)−α′)
Since δ/λ < χ we get percolation and there exists an infinite cluster C, a.s., which implies that
θ(λ− δ, α + γ) > 0. This finishes the proof of Theorem 3.

Proof of Theorem 5. We need to modify Proposition 1.3 of [23] because in our model, edges are not
occupied independently induced by the random choices of weights (Wx)x∈Zd .
(i) From Theorem 3 it follows that θ(λ, α) = 0 for all λ ∈ (0, λc], which proves continuity of λ 7→
θ(λ, α) on (0, λc].
(ii) Next we show that λ 7→ θ(λ, α) is left-continuous on λ > λc, that is,

lim
λ′↑λ

θ(λ′, α) = θ(λ, α) (3)
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To prove this we couple all percolation realization as λ varies. This is achieved by randomizing the
percolation constant λ, see [23,28]. Conditionally given the i.i.d. weights (Wx)x∈Zd , define a collection
of independent exponentially distributed random variables φ(x,y), indexed by the edges (x, y), which
have conditional distribution

P
[
φ(x,y) ≤ `

∣∣ (Wx)x∈Zd
]

= 1− exp

(
− `WxWy

|x− y|α

)
, ` ∈ (0,∞) (4)

compare to Equation (1). We denote the probability measure of (φ(x,y))x,y∈Zd by P in order to distinguish
this coupling model. We say that an edge (x, y) is `-open if φ(x,y) < `, and we define the connected
cluster C`(0) of the origin to be the set of all vertices x ∈ Zd which are connected to the origin by an
`-open path. Note that we have a natural ordering in `, i.e., for `1 < `2 we obtain C`1(0) ⊂ C`2(0).
Moreover for ` = λ > 0, the λ-open edges are exactly the occupied edges in this coupling (note that the
exponential distribution Equation (4) is absolutely continuous). This implies for ` = λ

θ(λ, α) = P [|C(0)| =∞] = P [|Cλ(0)| =∞]

By countable subadditivity of P and the increasing property of C`(0) in ` we have

lim
λ′↑λ

θ(λ′, α) = P [|Cλ′(0)| =∞ for some λ′ < λ]

Moreover, the increasing property ofC`(0) in ` provides {|Cλ′(0)| =∞ for some λ′ < λ} ⊂ {|Cλ(0)| =
∞}. Therefore, to prove Equation (3) it suffices to show that

P [{|Cλ′(0)| <∞ for all λ′ < λ} ∩ {|Cλ(0)| =∞}] = 0

Choose λ0 ∈ (λc, λ). Since there is a unique infinite cluster for λ0 > λc, a.s., there exists an infinite
cluster Cλ0 ⊂ Cλ(0) on the set {|Cλ(0)| = ∞}. If the origin belongs to Cλ0 then the proof is done.
Otherwise, because Cλ0 is a subgraph of Cλ(0), there exists a finite path π of λ-open edges connecting
the origin with an edge in Cλ0 . By the definition of λ-open edges we have φ(x,y) < λ for all edges
(x, y) ∈ π. Since π is finite we obtain the strict inequality λ1 = max(x,y)∈π φ(x,y) < λ. Choose
λ′ ∈ (λ0 ∨ λ1, λ) and it follows that |Cλ′(0)| =∞. This completes the proof for the left-continuity in λ.
(iii) Finally, we need to prove right-continuity of λ 7→ θ(λ, α) on λ ≥ λc. For integers n > 1 we
consider boxes Λn = [−n, n]d centered at the origin, see also Theorem 6. We define the events An =

{C(0) ∩ Λc
n 6= ∅}, i.e., the connected component C(0) of the origin leaves box Λn. Note that θ(λ, α)

is the decreasing limit of P[An] as n → ∞. Therefore, it suffices to show that P[An] is a continuous
function in λ. We write Pλ = P to indicate on which parameter λ the probability law depends. We again
denote by Cn(0) the connected component of the origin connected within box Λn, see Corollary 7. Then,
we have

An = {C(0) ∩ Λc
n 6= ∅} = {Cn(0)⇔ Λc

n}

Choose δ0 ∈ (0, λ), then we have for all λ′ ∈ (λ− δ0, λ+ δ0) and all n′ > n

|Pλ [An]− Pλ′ [An]| = |Pλ [Cn(0)⇔ Λc
n]− Pλ′ [Cn(0)⇔ Λc

n]|
≤ |Pλ [Cn(0)⇔ (Λc

n ∩ Λn′)]− Pλ′ [Cn(0)⇔ (Λc
n ∩ Λn′)]|

+2 Pλ+δ0 [Cn(0)⇔ Λc
n′ ]

≤ |Pλ [Cn(0)⇔ (Λc
n ∩ Λn′)]− Pλ′ [Cn(0)⇔ (Λc

n ∩ Λn′)]|
+ 2(2n+ 1)d sup

x∈Λn

Pλ+δ0 [x⇔ Λc
n′ ] (5)
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We bound the two terms on the right-hand side of Equation (5).
(a) First we prove that for all ε > 0 there exists n′ > n such that for all x ∈ Λn

Pλ+δ0 [x⇔ Λc
n′ ] < ε(2n+ 1)−d/4 (6)

This is done as follows. For m > n we define the following events

Lm = {x⇔ ∂Λm+1} = {x⇔ (Λm+1 \ Λm)}

This implies for n′ > n that
En′

def.
= {x⇔ Λc

n′} =
⋃
m≥n′

Lm

Moreover, note that En′ is decreasing in n′,

lim sup
n′→∞

Pλ+δ0 [En′ ] = lim
n′→∞

Pλ+δ0 [En′ ] = Pλ+δ0

[ ⋂
n′>n

En′

]
= Pλ+δ0

[ ⋂
n′>n

( ⋃
m≥n′

Lm

)]

We prove Equation (6) by contradiction. Assume that Equation (6) does not hold true, i.e.,
lim supn′→∞ P [En′ ] > 0. Then the first lemma of Borel-Cantelli implies

∞ =
∑
m>n

Pλ+δ0 [Lm] =
∑
m>n

Pλ+δ0 [x⇔ (Λm+1 \ Λm)] = Eλ+δ0

[∑
m>n

1{x⇔(Λm+1\Λm)}

]

The latter implies that the degree distribution Dx = |{y ∈ Zd;x ⇔ y}| has an infinite mean. This
is a contradiction to Theorem 2.2 of [12] saying that for min{α, βα} > d the survival function of the
degree distribution has a power-law decay with rate αβ/d > 1 which provides a finite mean. Therefore,
Equation (6) holds true.
(b) For all ε > 0 and all n′ > n there exists δ1 ∈ (0, δ0) such that for all λ′ ∈ (λ− δ1, λ+ δ1)

|Pλ [Cn(0)⇔ (Λc
n ∩ Λn′)]− Pλ′ [Cn(0)⇔ (Λc

n ∩ Λn′)]| < ε/2 (7)

Note that Λn′ only contains finitely many edges of finite distance. Therefore, continuity in λ is
straightforward which provides Equation (7).

Combining Equations (6) and (7) provides continuity of Pλ[An] in λ for all n, see also Equation (5).
Therefore, right-continuity of λ 7→ θ(λ, α) follows. This finishes the proof of Theorem 5.

5.3. Proofs of the Graph Distances

In this section, we prove Theorem 8. Statement (a) of Theorem 8 is proved in Theorems 5.1 and 5.3
of [12], the lower bound of statement (b1) is proved in Theorem 5.5 of [12]. Therefore, there remain the
proofs of the upper bound in (b1) and of the lower bound in (b2) of Theorem 8.

The proof of the upper bound in Theorem 8 (b1) follows from the following proposition and the fact
that α 7→ ∆(α, 2d) = log 2/ log(2d/α) is a continuous function. The following proposition corresponds
to Proposition 4.1 in [11] in the homogeneous long-range percolation model.
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Proposition 11. Let α ∈ (d, 2d) and τ = βα/d > 2 and λ > λc. For each ∆′ > ∆ = ∆(α, 2d) =

log 2/ log(2d/α) and each ε > 0, there exists N0 <∞ such that

P
[
d(x, y) ≥ (log |x− y|)∆′ , x, y ∈ C

]
≤ ε

holds for all x, y ∈ Zd with |x− y| ≥ N0.

Sketch of proof of Proposition 11. We only sketch the proof because it is almost identical to the one
in [11]. Definition 1 and Figure 1 of [11] define for x, y ∈ Zd a hierarchy of depth m ∈ N connecting x
and y as the following collection of vertices:

Hm(x, y) =
{
zσ ∈ Zd; σ ∈ {0, 1}k for k = 1, . . . ,m

}
is a hierarchy of depth m ∈ N connecting x and y if

(1) z0 = x and z1 = y,
(2) zσ00 = zσ0 and zσ11 = zσ1 for all k = 0, . . . ,m− 2 and σ ∈ {0, 1}k,
(3) for all k = 0, . . . ,m− 2 and and σ ∈ {0, 1}k such that zσ01 6= zσ10 the edge between zσ01 and zσ10

is occupied,
(4) each bond (zσ01, zσ10) specified in (3) appears only once inHk(x, y).

The pairs of vertices (zσ00, zσ01) and (zσ10, zσ11) are called gaps. The proof is then based on the fact
that for large distances |x − y| the event Bm of the existence of a hierarchy Hm(x, y) of depth m that
connects x and y through points zσ which are dense is very likely (m appropriately chosen), see Lemma
4.3 in [11], in particular formula (4.18) in [11] (where the key is Corollary 7 (ii)). On this likely event
Bm, Lemma 4.2 of [11] then proves that the graph distance cannot be too large, see (4.8) in [11]. We can
now almost literally translate Lemmas 4.2 and 4.3 of [11] to our situation. The only changes are that in
formulas (4.16) and (4.21) of [11] we need to replace β > 0 of [11]’s notation by λ in our notation and
we need to use that the weights Wx are at least one, a.s. We refrain from giving more details.

There remains the proof of the lower bound in (b2) of Theorem 8. We use a renormalization technique
which is based on a scheme introduced by [13]. Choose an integer valued sequence an > 1, n ∈ N0, and
define the box lengths (mn)n∈N0 as follows: set m0 = a0 and for n ∈ N,

mn = anmn−1 = m0

n∏
i=1

ai =
n∏
i=0

ai

Define the n-stage boxes, n ∈ N0, by

Bmn(x) = x+ [0,mn − 1]d, for x ∈ Zd

For n ≥ 1, the children of n-stage box Bmn(x) are the adn disjoint (n− 1)-stage boxes

Bmn−1(x+ ymn−1) = x+ ymn−1 + [0,mn−1 − 1]d ⊂ Zd with y ∈ ([0, an − 1]d ∩ Zd)

We are going to define good n-stage boxes Bmn(·), note that we need a different definition from
Definition 2 of [13].
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Definition 12 (good n-stage boxes). Choose n ∈ N0 and x ∈ Zd fixed.

• 0-stage box Bm0(x) is good under a given edge configuration if there is no occupied edge in
Bm0(x) with size larger than m0/100.

• n-stage box Bmn(x), n ≥ 1, is good under a given edge configuration if for all j ∈ {−1, 0, 1}d

(a) there is no occupied edge in Bmn

(
x+ jmn−1

2

)
with size larger than mn−1/100; and

(b) among the children of Bmn

(
x+ jmn−1

2

)
there are at most 3d that are not good.

Lemma 13. Assume min{α, βα} > d. For all δ ∈ (0, α(β ∧ 1) − d) there exist t0 ≥ 1 and a constant
c1 > 0 such that for all t ≥ t0 and all s ≥ 1,

P
[
there is an occupied edge in [0, s− 1]d with size larger than t

]
≤ c1s

dtd−α(β∧1)+δ

Proof of Lemma 13. Let W1 and W2 be two independent random variables each having a Pareto
distribution with parameters θ = 1 and β > 0. For u ≥ 1 we have, using integration by parts in
the first step,

E
[
W1W2

u
∧ 1

]
=

1

u
+

1

u

∫ u

1

P[W1W2 > v]dv =
1

u
+

1

u

∫ u

1

v−β(1 + β log v)dv

≤ (1 + β log u)

(
u−(β∧1) +

1

u

∫ u

1

v−βdv

)
≤ max{1 + log u, 1 + 1{β 6=1}/|β − 1|} (1 + β log u)u−(β∧1)

where the last step follows by distinguishing between the cases β = 1, β > 1 and β < 1. Choose t0 so
large that λ−1tα0 ≥ 1 which, together with the above calculations, implies that for all t ≥ t0 and x, y ∈ Zd

with |x− y| > t ≥ t0,

E
[
λWxWy

|x− y|α
∧ 1

]
≤ (1 + 1{β 6=1}/|β − 1|)

(
1 + max{1, β} log(λ−1|x− y|α)

)2 (
λ−1|x− y|α

)−(β∧1)

≤ |x− y|−α(β∧1)+δ

where the second inequality holds for all |x − y| > t ≥ t0 with t0 large enough. It follows that for all
t ≥ t0, using 1− e−x ≤ x ∧ 1,

P
[
there is an occupied edge in [0, s− 1]d with size larger than t

]
≤

∑
x,y∈[0,s−1]d:
|x−y|>t

E
[
λWxWy

|x− y|α
∧ 1

]

≤
∑

x,y∈[0,s−1]d:
|x−y|>t

|x− y|−α(β∧1)+δ ≤ sd
∑

y∈Zd: |y|>t

|y|−α(β∧1)+δ

Hence, for an appropriate constant c1 > 0 and for all t ≥ t0 with t0 sufficiently large,

P
[
there is an occupied edge in [0, s− 1]d with size larger than t

]
≤ c1s

dtd−α(β∧1)+δ

which finishes the proof of Lemma 13.
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Lemma 14. Assume min{α, βα} > 2d. For an = n2, n ≥ 1, and a0 sufficiently large we have∑
n≥0

P [Bmn(0) is not good ] <∞

This lemma is the analog in our model to Lemma 1 of [13] and provides a Borel-Cantelli type of result
that eventually the boxes Bmn(0) are good, a.s., for all n sufficiently large.

Proof of Lemma 14. We prove by induction that ψn = P [Bmn(0) is not good] is summable. Choose
δ ∈ (0, α(β ∧ 1) − 2d) and set γ = min{α, βα} − 2d − δ > 0. For m0 sufficiently large we obtain by
Lemma 13,

ψ0 = P [there is an occupied edge in Bm0(0) with size larger than m0/100]

≤ c1m
d
0

(m0

100

)d−α(β∧1)+δ

< 3−d2−4d−1e−2 (8)

where the last step holds true for m0 sufficiently large. Because Bm1(0) has only one child (because
a1 = 1) we get for m0 sufficiently large

ψ1 ≤ 3dψ0 ≤ c13dmd
0

(m0

100

)d−α(β∧1)+δ

< 3−d2−8d−1e−4 (9)

For the induction step we note that n-stage box Bmn(0) is not good if at least one of the 3d translations
Bmn(0 + jmn−1

2
), j ∈ {−1, 0, 1}d, fails to have property (a) or (b) of Definition 12. Using translation

invariance and Lemma 13 we get for all n ≥ 2 and for allm0 sufficiently large, set c2 = c1100α(β∧1)−d−δ,

ψn ≤ 3d
(
c2a

α(β∧1)−d−δ
n m−γn + P

[
there are at least 3d + 1 children of Bmn(0) that are not good

])
Note that the event in the probability above ensures that there are at least two children Bmn−1(y) and
Bmn−1(z) ofBmn(0) that are not good and are separated by at least Euclidean distance 2mn−1. Therefore,
using mi = a0(i!)2, i ≥ 0, the two boxes Bmn−1(y) and Bmn−1(z) are well separated in the sense
that the events {Bmn−1(y) is not good} and {Bmn−1(z) is not good} are independent. Note that for the
latter we need to make sure that Bmn−1(y + jmn−2/2) and Bmn−1(z + lmn−2/2) are disjoint for all
j, l ∈ {−1, 0, 1}d, which is the case because Bmn−1(y) and Bmn−1(z) have at least distance 2mn−1. The
independence implies the following bound

ψn ≤ 3d
(
c2a

α(β∧1)−d−δ
n m−γn +

(
adn
2

)
ψ2
n−1

)
≤ 3d

(
c2a

α(β∧1)−d−δ
n m−γn + a2d

n ψ
2
n−1

)
= 3d

(
c2n

2(γ+d)
(
m0(n!)2

)−γ
+ n4dψ2

n−1

)
= c23dm−γ0 n2(γ+d)(n!)−2γ + 3dn4dψ2

n−1

It follows that there is n0 <∞ such that for all for all n ≥ n0 and m0 large enough

ψn ≤ 3−d2−4d−2e−2(n+ 1)−4de−2n + 3dn4dψ2
n−1 (10)

and we can choose m0 so large that Equation (10) holds true also for all 2 ≤ n < n0. We claim that for
all a0 = m0 sufficiently large and all n ≥ 0,

ψn ≤ 3−d2−4d−1e−2(n+ 1)−4de−2n (11)
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which will imply Lemma 14 because the right-hand side is summable. Indeed, Equation (11) is true for
n ∈ {0, 1} by Equations (8) and (9). Assuming that Equation (11) holds for all n− 1 with n ≥ 2 we get,
using Equation (10),

ψn ≤ 3−d2−4d−2e−2(n+ 1)−4de−2n + 3dn4dψ2
n−1

≤ 3−d2−4d−2e−2(n+ 1)−4de−2n + 3−dn−4d2−8d−2e−4e−4n+4

= 3−d2−4d−1e−2(n+ 1)−4de−2n

(
2−1 +

(
n+ 1

n

)4d

2−4d−1e−2n+2

)
≤ 3−d2−4d−1e−2(n+ 1)−4de−2n

(
2−1 + 2−1

)
where the last step follows since (n+ 1)/n ≤ 2 and e−2n+2 ≤ 1.

The following lemma is the analog of Proposition 3 of [13] and it depends on Lemma 2 of [13] and
Lemma 14. Since its proof is completely similar to the one of Proposition 3 of [13] once Lemma 14 has
been established we skip this proof.

Lemma 15 (Proposition 3 of [13]). Choose an = n2 for n ≥ 1. There exists a constant c3 > 0 such
that for every n sufficiently large, if for every j ∈ {−1, 0, 1}d the n-stage box Bmn

(
0 + jmn

2

)
is good

and for every l > n the l-stage boxes B̂ml centered at Bmn(0) are good, then if x, y ∈ Bmn(0) satisfy
|x− y| > mn/8 then d(x, y) ≥ c3|x− y|.

Proof of Theorem 8 (b2). Lemma 14 says that, a.s., the l-stage boxes B̂ml are eventually good for all
l ≥ n. Moreover, from Lemma 15 we obtain the linearity in the distance for these good boxes which
says that, a.s., for n sufficiently large and |x| > mn/8 we have d(0, x) ≥ c3|x|.
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