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Abstract: We introduce a bivariate Markov chain counting process with contagion for
modelling the clustering arrival of loss claims with delayed settlement for an insurance
company. It is a general continuous-time model framework that also has the potential to
be applicable to modelling the clustering arrival of events, such as jumps, bankruptcies,
crises and catastrophes in finance, insurance and economics with both internal contagion
risk and external common risk. Key distributional properties, such as the moments and
probability generating functions, for this process are derived. Some special cases with
explicit results and numerical examples and the motivation for further actuarial applications
are also discussed. The model can be considered a generalisation of the dynamic contagion
process introduced by Dassios and Zhao (2011).
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1. Introduction

A self-exciting point process introduced earlier by Hawkes [1] and Hawkes [2] and later named as
a Hawkes process, nowadays becomes a viable mathematical tool for modelling contagion risk and
the clustering arrival of events in finance, insurance and economics; see Errais et al. [3], Embrechts et al. [4],
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Chavez-Demoulin and McGill [5], Bacry et al. [6] and Aït-Sahalia et al. [7]. More recently, Dassios
and Zhao [8] introduced a more generalised self-exciting point process, named the dynamic contagion
process (DCP), by extending the Hawkes process and the Cox process with exponentially decaying
shot-noise intensity; the intensity process includes two types of random jumps—the self-excited and
externally-excited jumps—which could be used to model the dynamics of the contagion impact from
both the endogenous and exogenous factors of the underlying system in a single consistent framework.

In this paper, we introduce a new bivariate point process named the discretised dynamic contagion
process (DDCP) for modelling the clustering arrival of loss claims with delayed settlement for an
insurance company. This process in fact generalises the zero-reversion dynamic contagion process
(ZDCP), an important special case of DCP with zero-reversion intensity (see Definition A.1). DDCP is
a piecewise deterministic Markov process, and some key distributional properties, such as the moments
and probability generating functions, have been derived. We also find interesting explicit results for some
special cases. By comparing their infinitesimal generators and distribution functions, the transformation
formulas between DDCP and ZDCP are obtained, and we find that the two processes are analogous and
share some key distributional properties.

This new point process provides a general Markov chain framework. It has the potential to be
applicable to modelling the clustering arrival of events such as jumps, bankruptcies, crises, catastrophes
in finance, insurance and economics with both internal contagion risk and external common risk. Dassios
and Zhao [9] studied the ruin problem for a special case of this model. This was a simple risk model
with delayed claims. The claims arrive following a Poisson process, and each of the claims would be
settled in an exponentially delayed period of time. Our paper extends this risk model to involve multiple
arrivals and delayed settlements of claims with contagion.

The paper is organised as follows. Section 2 describes our model framework and gives a mathematical
definition of the associated risk process. In Section 3, we derive the main results: distributional properties
of the process, such as the moments and the probability generating functions. Some special cases with
explicit results and numerical examples are also discussed in Section 4. The comparison analysis and
transformation formulas between DDCP and ZDCP are presented in Appendix A.

2. Model Framework

For an insurance company at any time t > 0, suppose Nt is the number of cumulative settled claims
within the time interval [0, t] and Mt is the number of cumulative unsettled claims within the same time
interval [0, t]. We assume that the claims arrive in clusters. Multiple claims may arrive simultaneously
at the same time point. The clusters follow a Poisson process of constant rate ρ. They contain a random
number KP of claims with the associated probability function pk. Each of the claims then will be settled
with exponential delay of constant rate δ. We further assume that at each of the settlement times, only one
claim can be settled. In practice, this settlement is partial, as a random number KQ of new claims with
the associated probability qk are revealed and need further to be settled in the future. For a practical point
of view, the assumption that only one claim can be settled appears restrictive, but this can be addressed by
adjusting the rate of settlement and the distribution of new claims revealed. The assumption is common
in the literature; see Yuen et al. [10] and the references therein.
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The joint stochastic process
¶
(Nt,Mt)

©
t≥0

is a bivariate continuous-time Markov chain point process
on state space N0 × N0 with intensity of Nt given by ρpk for a transition from state (i, j) to (i + k, j)

and intensity of Mt given by δjqk for a transition from state (i, j) to (i + k − 1, j + 1), i.e., the joint
increment distribution of this process is specified by:

P {Mt+∆t −Mt = k,Nt+∆t −Nt = 0 | Ft} = ρpk∆t+ o(∆t), k = 1, 2...,

P {Mt+∆t −Mt = k − 1, Nt+∆t −Nt = 1 | Ft} = δMtqk∆t+ o(∆t), k = 0, 1...,

P {Mt+∆t −Mt = 0, Nt+∆t −Nt = 0 | Ft} = 1−
Ä
ρ(1− p0) + δMt

ä
∆t+ o(∆t),

P {Others | Ft} = o(∆t)

where:

• δ, ρ > 0 are constants;
• ∆t is a sufficient, small time interval and o(∆t)/∆t→ 0 when ∆t→ 0;
• KP and KQ follow the probability distributions on N0 by:

pk =: P {KP = k} , qk =: P {KQ = k} , k = 0, 1...

• Ft is the filtration generated by the joint process
¶
(Ns,Ms)

©
0≤s≤t.

KP and KQ are two types of batches of jumps in point process Mt: KP jumps independently of Nt,
whereas KQ jumps simultaneously with Nt. The first moments and probability generating functions of
KP and KQ are denoted respectively by:

µ1P =:
∞∑
k=0

kpk, µ1Q =:
∞∑
k=0

kqk; p̂ (θ) =:
∞∑
k=0

θkpk, q̂ (θ) =:
∞∑
k=0

θkqk

We can find that, by transformation,
¶
(Nt,Mt)

©
t≥0

is the generalisation of a special case of the
dynamic contagion process [8], and hence, we name this process as a discretised dynamic contagion
process. To understand this new process intuitively, a sample path of

¶
(Nt,Mt)

©
t≥0

is provided in
Figure 1.

The process
¶
(Nt,Mt)

©
t≥0

could be a useful risk model for modelling the interim payments (claims)
in insurance, such as cases of IBNR (incurred, but not reported) and IBNS (incurred, but not settled).
This general framework can be also considered as the generalisation of a simpler risk model with delayed
settlement used by Dassios and Zhao [9] where they assume that the arrival of claims follows a Poisson
process of rate ρ, and each of the claims will be settled with an exponential delay of rate δ; however,
there is no cluster arrival of claims nor any new claim revealed. The literature on delayed claims in
insurance can also be found in Yuen et al. [10] for instance.



Risks 2014, 2 437

Figure 1. Point process Ntvs. Point process Mt.
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Note that, the point process
¶
Mt

©
t≥0

is a non-negative process, as ifMt = 0, there is no joint jump and
Mt cannot be brought downward further by one step or more; if Mt = 1, 2, ..., Mt is possible downward
movement with a maximum of one step. The discrete piecewise non-negative process {δMt}t≥0, in fact,
can be considered as the intensity process of the point process Nt (proven later by Equation (4)).

3. Distributional Properties

The infinitesimal generator of a discretised dynamic contagion process (Mt, Nt, t) acting on a function
f(m,n, t) ∈ Ω(A) is given by:

Af(m,n, t) =
∂f

∂t
+ ρ

( ∞∑
k=0

f(m+ k, n, t)pk − f(m,n, t)

)

+δm

( ∞∑
k=0

f(m+ k − 1, n+ 1, t)qk − f(m,n, t)

)
(1)

where Ω(A) is the domain of the generatorA, such that f(m,n, t) is differentiable with respect to t, and
for all m, n and t, ∣∣∣∣∣∣

∞∑
k=0

f(m+ k, n, t)pk − f(m,n, t)

∣∣∣∣∣∣ < ∞∣∣∣∣∣∣
∞∑
k=0

f(m+ k − 1, n+ 1, t)qk − f(m,n, t)

∣∣∣∣∣∣ < ∞

Following the methods adopted by Dassios and Embrechts [11] and later by Dassios and Jang [12]
and Dassios and Zhao [8], we will use this generator Equation (1) with the aid of some properly selected
martingales to find key distributional properties of (Nt,Mt) as below.
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3.1. Moments of Mt and Nt

We derive the first moments ofMt andNt by solving systems of ODEs and also discuss the stationarity
condition for the process Mt.

Theorem 3.1. The expectation of Mt conditional on M0 is given by:

E[Mt |M0] =


µ1P ρ

κ
+
Ä
M0 −

µ1P ρ

κ

ä
e−κt, κ 6= 0

M0 + µ1P ρt, κ = 0
(2)

where κ = δ(1− µ1Q).

Proof. Set f(m,n, t) = m and plug into generator Equation (1); we have:

Am = ρµ1P + δm
Ä
µ1Q − 1

ä
or Am = −κm+ µ1P ρ. Since Mt −M0 −

∫ t
0 AMsds is a martingale, then,

E[Mt|M0] = M0 + E
ñ∫ t

0
AMsds

∣∣∣∣∣M0

ô
= M0 − κ

∫ t

0
E[Ms|M0]ds+ µ1P ρt

and we can derive the expectation via the ODE:

du(t)

dt
= −κu(t) + µ1P ρ

where u(t) = E[Mt|M0] with the initial condition: u(0) = M0

Remark 3.2. The stationarity condition of process Mt is:

µ1Q < 1 (3)

Corollary 3.3. The expectation of Nt conditional on M0 is given by:

E[Nt |M0] =


δ
κ

î
µ1P ρt+

Ä
M0 −

µ1P ρ

κ

ä
(1− e−κt)

ó
, κ 6= 0

δ
Ä
M0t+ 1

2
µ1P ρt

2
ä
, κ = 0

Proof. Set f(m,n, t) = n and plug into generator Equation (1); we have An = δm.
Since Nt −N0 −

∫ t
0 ANsds is a martingale, then,

E[Nt|M0] = N0 + E
ñ∫ t

0
ANsds

∣∣∣∣∣M0

ô
= δ

∫ t

0
E[Ms|M0]ds (4)

where E[Mt|M0] is given by Equation (2).

Higher moments of Mt and Nt can also be obtained similarly by this ODE method, and we omit
them here.
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3.2. Joint Probability Generating Function of (MT , NT )

Theorem 3.4. For constants 0 ≤ θ, ϕ ≤ 1 and time 0 ≤ t ≤ T , we have the joint probability generating
function of (MT , NT ),

E
î
θ(NT−Nt)ϕMT | Ft

ó
= e−(c(T )−c(t))[A(t)]Mt (5)

where A(t) is determined by the non-linear ODE:

A′(t) + δθq̂(A(t))− δA(t) = 0

with boundary condition A(T ) = ϕ; and c(t) is determined by:

c(t) = ρ
∫ t

0
[1− p̂(A(s))] ds

Proof. Assume the exponential affine form:

f(m,n, t) = [A(t)]mθnec(t)

and set Af(m,n, t) = 0 in generator Equation (1); then, we have: A′(t) + δθq̂(A(t))− δA(t) = 0

c′(t) = ρ[1− p̂(A(t))]

Since [A(t)]MtθNtec(t) is a martingale, we have:

E
ñ
[A(T )]MT θNT ec(T )

∣∣∣∣∣Ft
ô

= [A(t)]MtθNtec(t)

with boundary conditions A(T ) = ϕ.

3.3. Probability Generating Function of MT

Theorem 3.5. If µ1Q < 1, the probability generating function of MT conditional on M0 is given by:

E[ϕMT |M0] = exp

(
−
∫ Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]

δq̂(u)− δu
du

)
×
î
Q−1
ϕ,1(T )

óM0

where:
Qϕ,1(L) =:

∫ L

ϕ

du

δq̂(u)− δu
(6)

Proof. Set t = 0, θ = 1 and assume N0 = 0 in Theorem 3.4, and we have:

E
î
ϕMT

∣∣∣M0

ó
= e−c(T )[A(0)]M0 (7)

where A(0) is uniquely determined by the non-linear ODE:

A′(t) + δq̂(A(t))− δA(t) = 0

with boundary condition A(T ) = ϕ. Under the condition µ1Q < 1, it can be solved by the
following steps:
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1. Set A(t) = L(T − t) and τ = T − t; this is equivalent to the initial value problem:

dL(τ)

dτ
= δq̂(L(τ))− δL(τ) =: f1(L)

with initial condition L(0) = ϕ; we define the right-hand side as the function f1(L).
2. Since µ1Q < 1, we have:

df1(L)

dL
= δ

( ∞∑
k=0

kLk−1pk − 1

)
≤ δ

( ∞∑
k=0

kpk − 1

)
= δ

Ä
µ1Q − 1

ä
< 0, 0 < L ≤ 1

then, f1(L) > 0 for 0 < L < 1, since f1(1) = 0.
3. Rewrite as:

dL

δq̂(L)− δL
= dτ

by integrating both sides from time zero to τ with initial condition L(0) = ϕ > 0; we have:∫ L

ϕ

du

δq̂(u)− δu
= τ

where 0 < L ≤ 1. We define the function on left-hand side as:

Qϕ,1(L) =:
∫ L

ϕ

du

δq̂(u)− δu

then, Qϕ,1(L) = τ . Obviously, L→ ϕ when τ → 0; by convergence test,

lim
u→1

1
1−u

1
δq̂(u)−δu

= δ lim
u→1

q̂(u)− u
1− u

= δ lim
u→1

Ä
q̂(u)− u

ä′
(1− u)′

= 1− µ1Q > 0

and we know that
∫ 1
ϕ

1
1−udu =∞; then,∫ 1

ϕ

du

δq̂(u)− δu
=∞

Hence, L → 1 when τ → ∞; the integrand is positive in the domain u ∈ [ϕ, 1) and also Qϕ,1(L)

is a strictly increasing function; therefore,Qϕ,1(L) : [ϕ, 1)→ [0,∞) is a well-defined (monotone)
function, and its inverse function Q−1

ϕ,1(τ) : [0,∞)→ [ϕ, 1) exists.
4. The unique solution is found by:

L(τ) = Q−1
ϕ,1(τ), or, A(t) = Q−1

ϕ,1(T − t)

5. A(0) is obtained,
A(0) = L(T ) = Q−1

ϕ,1(T )

Then, c(T ) is determined by:

c(T ) = ρ
∫ T

0

î
1− p̂

Ä
Q−1
ϕ,1(τ)

äó
dτ

by the change of variable Q−1
ϕ,1(τ) = u; we have τ = Qϕ,1(u), and:∫ T

0

[
1− ĥ

Ä
Q−1
ϕ,1(τ)

ä]
dτ =

∫ Q−1
ϕ,1(T )

Q−1
ϕ,1(0)

[1− p̂(u)]
∂τ

∂u
du =

∫ Q−1
ϕ,1(T )

ϕ

1− p̂(u)

δq̂(u)− δu
du
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Theorem 3.6. If µ1Q < 1, the probability generating function of the asymptotic distribution of MT is
given by:

lim
T→∞

E[ϕMT |M0] = exp

Ç
−
∫ 1

ϕ

ρ[1− p̂(u)]

δq̂(u)− δu
du

å
(8)

and this is also the probability generating function of the stationary distribution of process {Mt}t≥0.

Proof. Since limT→∞Q−1
ϕ,1(T ) = 1, and by Theorem 3.5, we have the probability generating function

of the asymptotic distribution of MT immediately.
To further prove the stationarity, by Proposition 9.2 of Ethier and Kurtz [13], we need to prove that,

for any function f ∈ Ω(A), we have:

∞∑
m=0

Af(m)ℵm = 0 (9)

whereAf(m) is the infinitesimal generator of the discretised dynamic contagion process acting on f(m),
i.e.,

Af(m) = ρ

( ∞∑
k=0

f(m+ k)pk − f(m)

)
+ δm

( ∞∑
k=0

f(m+ k − 1)qk − f(m)

)
(10)

and {ℵm}k=0,1,2,... are the probabilities of m with the probability generating function given by
Equation (8). Now, we try to solve Equation (9).

For the first term of Equation (9), we have:

∞∑
m=0

[
ρ

( ∞∑
k=0

f(m+ k)pk

)]
ℵm

= ρ
∞∑
m=0

ℵm
∞∑
k=0

f(m+ k)pk (j = m+ k)

= ρ
∞∑
j=0

f(j)
j∑

k=0

ℵj−kpk

= ρ
∞∑
m=0

f(m)
m∑
k=0

ℵm−kpk

For the second term of Equation (9), we have:

∞∑
m=0

[
δm

( ∞∑
k=0

f(m+ k − 1)qk

)]
ℵm

= δ
∞∑
m=0

mℵm
∞∑
k=0

f(m+ k − 1)qk

= δ
∞∑

m=−1

(m+ 1)ℵm+1

∞∑
k=0

f(m+ k)qk

= δ
∞∑
m=0

(m+ 1)ℵm+1

∞∑
k=0

f(m+ k)qk (j = m+ k)

= δ
∞∑
j=0

f(j)
j∑

k=0

(j − k + 1)ℵj−k+1qk

= δ
∞∑
m=0

f(m)
m∑
k=0

(m− k + 1)ℵm−k+1qk
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Therefore,
∞∑
m=0

Af(m)ℵm

=
∞∑
m=0

f(m)

[
ρ

(
m∑
k=0

ℵm−kpk − ℵm
)

+ δ

(
m∑
k=0

(m− k + 1)ℵm−k+1qk −mℵm
)]

= 0

for any function f(m) ∈ Ω(A); then, we have recursive equation:

ρ

(
m∑
k=0

ℵm−kpk − ℵm
)

+ δ

(
m∑
k=0

(m− k + 1)ℵm−k+1qk −mℵm
)

= 0

and:
∞∑
m=0

ϕm ×
[
ρ

(
m∑
k=0

ℵm−kpk − ℵm
)

+ δ

(
m∑
k=0

(m− k + 1)ℵm−k+1qk −mℵm
)]

= 0

By the Laplace transform:

ℵ̂(ϕ) =: L{ℵm} =
∞∑
m=0

ℵmϕm

since:
∞∑
m=0

ϕm
m∑
k=0

ℵm−kpk

=
∞∑
k=0

∞∑
m=k

ϕm−kℵm−kϕkpk
( ∞∑
m=k

ϕm−kℵm−k = ℵ̂(ϕ)

)
= ℵ̂(ϕ)p̂(ϕ)

∞∑
m=0

ϕm
m∑
k=0

(m− k + 1)ℵm−k+1qk

=
∞∑
m=0

ϕm
m+1∑
j=1

jℵjqm+1−j (j = m− k + 1)

=
1

ϕ

∞∑
m=0

ϕj
m+1∑
j=1

jℵjqm+1−jϕ
m+1−j (i = m+ 1)

=
1

ϕ

∞∑
j=1

∞∑
i=j

qi−jϕ
i−jϕjjℵj

Ñ
∞∑
i=j

qi−jϕ
i−j = q̂(ϕ)

é
= q̂(ϕ)

∞∑
j=0

jϕj−1ℵj

= q̂(ϕ)ℵ̂′(ϕ)

and:
∞∑
m=0

ϕmmℵm = ϕ
∞∑
m=0

mℵmϕm−1 = ϕℵ̂′(ϕ)

we have the ODE of ℵ̂(ϕ),

ρ

Ç
ℵ̂(ϕ)p̂(ϕ)− ℵ̂(ϕ)

å
+ δ

Ç
q̂(ϕ)ℵ̂′(ϕ)− ϕℵ̂′(ϕ)

å
= 0
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then,

ℵ̂(ϕ) = ℵ̂(1) exp

Ç
−
∫ 1

ϕ

ρ[1− p̂(u)]

δq̂(u)− δu
du

å
with the initial condition ℵ̂(1) = 1; hence, we have the unique solution:

ℵ̂(ϕ) = exp

Ç
−
∫ 1

ϕ

ρ[1− p̂(u)]

δq̂(u)− δu
du

å
which is exactly given by Equation (8).

Since the distribution ℵ is the unique solution to Equation (9), we have the stationarity for the process
{Mt}t≥0.

Remark 3.7. If µ1Q < 1, M0 ∼ ℵ, then MT ∼ ℵ, since by Theorem 3.6 and Theorem 3.5, we have:

E
î
ψMT

ó
= E

[î
ψMT

∣∣∣M0

ó]
= exp

(
−
∫ Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]

δq̂(u)− δu
du

)
× E

[î
Q−1
ϕ,1(T )

óM0
]

= exp

(
−
∫ Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]

δq̂(u)− δu
du

)
× exp

(
−
∫ 1

Q−1
ϕ,1(T )

ρ[1− p̂(u)]

δq̂(u)− δu
du

)
= ℵ̂(ϕ)

which also reflects the stationarity of process {Mt}t≥0.

3.4. Probability Generating Function of NT

Theorem 3.8. Suppose µ1Q < 1 and N0 = 0; the probability generating function of NT conditional on
M0 is given by:

E
î
θNT |M0

ó
= exp

(
−
∫ 1

Q−1
0,θ

(T )

ρ[1− p̂(u)]

δu− δθq̂(u)
du

)
×
î
Q−1

0,θ(T )
óM0

where:
Q0,θ(L) =:

∫ 1

L

du

δu− δθq̂(u)
, 0 ≤ θ < 1 (11)

Proof. By setting t = 0, ϕ = 1 and assuming N0 = 0 in Theorem 3.4, we have:

E
î
θNT |M0

ó
= e−c(T )[A(0)]M0 (12)

where A(0) is uniquely determined by the non-linear ODE:

A′(t) + δθq̂(A(t))− δA(t) = 0

with boundary condition A(T ) = 1. It can be solved, under the condition µ1Q < 1, by the
following steps:



Risks 2014, 2 444

1. Set A(t) = L(T − t) and τ = T − t,

dL(τ)

dτ
= δθq̂(L(τ))− δL(τ) =: f2(L), 0 ≤ θ < 1 (13)

with initial condition L(0) = 1; we define the right-hand side as the function f2(L).
2. There is only one positive singular point in the interval [0, 1], denoted by:

0 ≤ ϕ∗ ≤ 1 (14)

by solving the equation f2(L) = 0. This is because, for the case 0 < θ < 1, the equation f2(L) = 0

is equivalent to:

q̂(u) =
1

θ
u, 0 < θ < 1

note that q̂(·) is a convex function, then it is clear that there is only one positive solution within
[0, 1] to this equation; in particularly when θ → 0, ϕ∗ → 0. Then, we have f2(L) < 0 for
ϕ∗ < L ≤ 1.

3. Rewrite Equation (13) as:
dL

δL− δθq̂(L)
= −dτ

and integrate, ∫ 1

L

du

δu− δθq̂(u)
= τ

where ϕ∗ < L ≤ 1; we define the function on left-hand side as:

Q0,θ(L) =:
∫ 1

L

du

δu− δθq̂(u)

then, Q0,θ(L) = τ , as L → 1 when τ → 0 and L → ϕ∗ when τ → ∞; the integrand is
positive in the domain u ∈ (ϕ∗, 1] and L ≥ 0,Q0,θ(L) is a strictly decreasing function. Therefore,
Q0,θ(L) : (ϕ∗, 1]→ [0,∞) is a well-defined function, and its inverse function Q−1

0,θ(τ) : [0,∞)→
(ϕ∗, 1] exists.

4. The unique solution is found by L(τ) = Q−1
0,θ(τ), or, A(t) = Q−1

0,θ(T − t).
5. A(0) is obtained,

A(0) = L(T ) = Q−1
0,θ(T )

Then, c(T ) is determined by:

c(T ) = ρ
∫ T

0

î
1− p̂

Ä
Q−1

0,θ(τ)
äó

dτ

where, by the change of variable,∫ T

0

î
1− p̂

Ä
Q−1

0,θ(τ)
äó

dτ =
∫ 1

Q−1
0,θ

(T )

1− p̂(u)

δu− δθq̂(u)
du
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4. Special Cases

In this section, we focus on three important special cases where more explicit results for the
distributional properties of the numbers of settled and unsettled claims

¶
(Nt,Mt)

©
t≥0

can be derived,
and the associated numerical examples are also provided.

4.1. Case p1 = 1

Case p1 = 1 is defined as the special case of a discretised dynamic contagion process when:

p1 = 1, {pk}k 6=1 = 0; q0 = 1, {qk}k 6=0 = 0 (15)

This simple case could be applied, for instance, to model the delaying arrival of claims in the ruin
problem for an insurance company; see more details in Dassios and Zhao [9].

Theorem 4.1. For any time t2 > t1 ≥ 0, if Mt1 ∼ Poisson(υ), υ ≥ 0, then,

Mt2 ∼ Poisson

(
υe−δ(t2−t1) + ρ

1− e−δ(t2−t1)

δ

)

Nt2 −Nt1 ∼ Poisson

(
υ
Ä
1− e−δ(t2−t1)

ä
+ ρ

(
(t2 − t1)− 1− e−δ(t2−t1)

δ

))

and they are independent.

Proof. By setting T = t2, t = t1 in Theorem 3.4, we have:

E
î
ϕMt2θNt2−Nt1 |Mt1

ó
= [A(t1)]Mt1e−

Ä
c(t2)−c(t1)

ä
where A(t) and c(t) can be solved explicitly as:

A(t) = (ϕ− θ)e−δ(t2−t) + θ,

c(t2)− c(t1) = ρ

(
(1− θ)(t2 − t1)− (ϕ− θ)1− e−δ(t2−t1)

δ

)

The joint probability generating function of Mt2 and Nt2 −Nt1 is given by:

E
î
ϕMt2θNt2−Nt1

ó
= E

î
E
î
ϕMt2θNt2−Nt1 |Mt1

óó
= E

î
[A(t1)]Mt1

ó
e−
Ä
c(t2)−c(t1)

ä
= e−υ(1−A(t1))e−

Ä
c(t2)−c(t1)

ä
= exp

(
−υ
î
(1− θ)− (ϕ− θ)e−δ(t2−t1)

ó
− ρ

[
(1− θ)(t2 − t1)− (ϕ− θ)1− e−δ(t2−t1)

δ

])

Set θ = 1 and ϕ = 1, respectively; we have Poisson marginal distributions of Mt2 and Nt2 −Nt1 , since:

E
î
ϕMt2

ó
= exp

(
−(1− ϕ)

[
υe−δ(t2−t1) + ρ

1− e−δ(t2−t1)

δ

])
,

E
î
θNt2−Nt1

ó
= exp

(
−(1− θ)

[
υ
Ä
1− e−δ(t2−t1)

ä
+ ρ

(
(t2 − t1)− 1− e−δ(t2−t1)

δ

)])
(16)
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Obviously, they are also independent as:

E
î
ϕMt2 × θNt2−Nt1

ó
= E

î
ϕMt2

ó
× E

î
θNt2−Nt1

ó
Corollary 4.2. If M0 ∼ Poisson(ζ), ζ ≥ 0, then:

Mt ∼ Poisson

(
ζe−δt + ρ

1− e−δt

δ

)

Nt ∼ Poisson

(
ζ
Ä
1− e−δt

ä
+ ρ

(
t− 1− e−δt

δ

))

and they are independent.

Proof. Set t1 = 0, t2 = t > 0 and υ = ζ in Theorem 4.1; the results follow immediately.

Corollary 4.3. If M0 ∼ Poisson(ζ), then Nt is a non-homogeneous Poisson process of rate
ρ+ (ζδ − ρ) e−δt.

Proof. For any time t2 > t1 ≥ 0, by Corollary 4.2, we have:

Mt1 ∼ Poisson

(
ζe−δt1 + ρ

1− e−δt1
δ

)

By Theorem 4.1, set υ = ζe−δt1 + ρ1−e−δt1
δ

in Equation (16), then,

E
î
θNt2−Nt1

ó
= exp

Ç
−(1− θ)

∫ t2

t1

î
ζδe−δs + ρ

Ä
1− e−δs

äó
ds

å
hence, the increments of Nt follow a Poisson distribution,

Nt2 −Nt1 ∼ Poisson

Ç∫ t2

t1

î
ζδe−δs + ρ

Ä
1− e−δs

äó
ds

å
Based on Theorem 4.1 and Corollary 4.2, we observe thatMt2 andNt2−Nt1 are both Poisson distributed
and independent. Because of the Markov property, all of the future increments after Nt2 only depend on
Mt2; they are independent of Nt2 − Nt1 , as well, i.e., for any random variable X ∈ σ

¶
Ns : Ns − Nt2 ,

s ≥ t2
©

, we have:

E
î
XθNt2−Nt1

ó
= E

[
E
[
XθNt2−Nt1

∣∣∣Mt2

]]
= E

[
E
[
X
∣∣∣Mt2

]
× E

[
θNt2−Nt1

∣∣∣Mt2

]]
= E

[
E
[
X
∣∣∣Mt2

]]
× E

[
E
[
θNt2−Nt1

∣∣∣Mt2

]]
= E [X] θNt2−Nt1

The increments of the point process Nt follow a Poisson distribution and also they are independent;
therefore, Nt is a non-homogeneous Poisson process of rate ζδe−δt + ρ

Ä
1− e−δt

ä
.

In particular, if and only if ζ = ρ
δ
, Nt is a Poisson process with a rate of ρ. Corollary 4.3, in fact,

recovers the result obtained earlier by Mirasol [14], i.e., a delayed (or displaced) Poisson process is still
a (non-homogeneous) Poisson process; see also Newell [15] and Lawrance and Lewis [16].
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4.2. Case q1 = q

Case q1 = q is defined as the special case of a discretised dynamic contagion process when:

p1 = 1, {pk}k 6=1 = 0; q0 = 1− q, q1 = q, {qk}k=2,3,... = 0; 0 ≤ q < 1 (17)

Corollary 4.4. The stationary distribution of Mt is a Poisson distribution specified by:¶
Mt

©
t≥0
∼ Poisson

Ç
ρ

δ(1− q)

å
Proof. The stationarity condition holds as µ1Q = q < 1; then, by Theorem 3.6, we have:

ℵ̂(ϕ) = e−
ρ

δ(1−q) (1−ϕ)

which is the probability generating function of a Poisson distribution with constant intensity ρ
δ(1−q) .

Corollary 4.5. The probability generating function of NT is given by:

E
î
θNT |M0

ó
= exp

(
−ρ
δ

1− θ
1− θq

[
δT − 1− e−(1−θq)δT

1− θq

]) [
θ(1− q) + (1− θ)e−(1−θq)δT

1− θq

]M0

(18)

if M0 ∼ Poisson
(

ρ
δ(1−q)

)
, then,

E
î
θNT
ó

= exp

Ç
−ρT

Ç
1− 1− q

1− θq
θ

åå
exp

(
−ρ
δ

q

1− q

Ç
1− 1− q

1− θq
θ

å2 Ä
1− e−(1−θq)δT ä) (19)

Proof. The stationarity condition holds as µ1Q = q < 1. By Theorem 3.8, the results follow, since:

Q−1
0,θ(T ) =

θ(1− q) + (1− θ)e−(1−θq)δT

1− θq
, 0 ≤ θ < 1

Note that the first term of E[θNT ] of Equation (19) is the probability generating
function of a compound Poisson distribution N1 with point N̊T ∼ Poisson(ρT ) and underlying
X1 ∼ Geometric(1− q) where:

P{X1 = j} = qj−1(1− q), j = 1, 2, ..., E[θX1 ] =
1− q
1− θq

θ

The second term is the the probability generating function of a proper random variable Õ. Hence,
NT = N1 + Õ, and NT is stochastically larger than N1, i.e., NT � N1.

Given the probability generating function of NT in Corollary 4.5, the probability distribution of the
number of the cumulative settled claims at time T can be obtained explicitly by the basic property:

P{NT = n |M0} =
∂n

∂θn
E
î
θNT |M0

ó∣∣∣∣∣
θ=0

Numerical examples with the specified parameters (ρ, δ, q) = (1, 1, 0.5) are provided in Table 1.
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Table 1. Numerical examples for case q1 = q based on Corollary 4.5: the probability
distribution of the number of cumulative settled claims at time T with parameters (ρ, δ, q) =

(1, 1, 0.5).

P{NT = n|M0 = 0} (%) P{NT = n|M0 = 5} (%)

n T = 1 T = 2 T = 5 T = 1 T = 2 T = 5

0 69.2201 32.1314 1.8193 0.4664 0.0015 0.0000
1 21.8777 27.7829 4.5175 3.3169 0.0319 0.0000
2 6.6404 18.9572 7.3929 10.3724 0.2956 0.0000
3 1.7365 10.9172 9.7336 18.9468 1.5260 0.0001
4 0.4113 5.6055 11.1254 22.8201 4.8543 0.0047
5 0.0906 2.6432 11.4776 19.6109 10.1416 0.0852
6 0.0188 1.1655 10.9392 12.8517 14.9512 0.3778
7 0.0037 0.4865 9.7807 6.8021 17.0146 1.0198
8 0.0007 0.1939 8.2921 3.0379 15.9371 2.0730
9 0.0001 0.0742 6.7191 1.1825 12.8316 3.4803
10 0.0000 0.0275 5.2352 0.4109 9.1512 5.0745

Sum 100.0000 99.9850 87.0325 99.8186 86.7366 12.1154

4.3. Case q0 = 1

Case q0 = 1 is defined as the special case of a discretised dynamic contagion process when:

q0 = 1, {qk}k 6=0 = 0 (20)

Indeed, this is a special case which corresponds to a Cox process with shot-noise intensity via
transformation, as given by Appendix A.

Corollary 4.6. If {pk}k=0,1,2,... ∼ Geometric(p), 0 ≤ p < 1, then, the stationary distribution of Mt

is given: ¶
Mt

©
t≥0
∼ NegBin

Åρ
δ
, 1− p

ã
Proof. If {pk}k=0,1,2,... ∼ Geometric(p), then,

p̂(u) =
p

1− (1− p)u
(21)

The stationarity condition holds as µ1Q = 0 < 1; then, by Theorem 3.6, we have:

ℵ̂(ϕ) =

Ç
p

1− (1− p)ϕ

å ρ
δ

which is the probability generating function of a negative binomial distribution with the parametersÄ
ρ
δ
, 1− p

ä
.

Corollary 4.7. If {pk}k=0,1,2,... ∼ Geometric(p), then,

E
î
θNT |M0

ó
= e−ρT (1−p̂(θ))

Ç
pT

1− (1− pT θ)

å− ρ
δ
p̂(θ) î

(1− θ)e−δT + θ
óM0
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where p̂(u) is specified by Equation (21) and

pT =:
p

1− (1− p)e−δT

if M0 ∼ NegBin
Ä
ρ
δ
, 1− p

ä
, then,

E
î
θNT
ó

= e−ρT (1−p̂(θ))
Ç

pT
1− (1− pT θ)

å ρ
δ

(1−p̂(θ))
(22)

Proof. By Theorem 3.8, the results follow, since:

Q−1
0,θ(T ) = (1− θ)e−δT + θ, 0 ≤ θ < 1 (23)

Note that the first term of E[θNT ] of Equation (22) is the probability generating function of
a compound Poisson distribution N2 with point N̊T ∼ Poisson (ρT ) and underlying X2 ∼
Geometric (p), where:

P{X2 = j} = (1− p)jp, j = 0, 1, 2, ..., E[θX2 ] =
p

1− (1− p)θ

the second term of Equation (22) is the probability generating function of a proper random variable Õ.
Hence, we have NT = N2 + Õ, and NT is stochastically larger than N2, i.e., NT � N2.

Given the probability generating function of NT in Corollary 4.7, the probability distribution of the
number of the cumulative settled claims at time T can be obtained explicitly by expansion, and numerical
examples with the specified parameters (ρ, δ, p) = (1, 0.5, 0.5) are provided in Table 2.

Table 2. Numerical examples for case q0 = 1 based on Corollary 4.7: the probability
distribution of the number of cumulative settled claims at time T with parameters (ρ, δ, p) =

(1, 0.5, 0.5)

.

P{NT = n|M0 = 0} (%) P{NT = n|M0 = 5} (%)

n T = 1 T = 2 T = 5 T = 1 T = 2 T = 5

0 84.5182 60.0424 15.7432 6.9377 0.4046 0.0001
1 11.2858 21.4735 17.2706 23.4295 3.6204 0.0033
2 3.0271 10.0735 16.3053 32.4498 13.2556 0.0770
3 0.8397 4.6412 13.8000 23.7139 25.4106 0.9043
4 0.2360 2.1013 10.8740 9.9613 27.2604 5.5660
5 0.0668 0.9376 8.1400 2.6542 16.8608 16.2074
6 0.0189 0.4134 5.8596 0.6155 7.1872 16.7767
7 0.0054 0.1805 4.0889 0.1710 3.3097 15.2520
8 0.0015 0.0781 2.7816 0.0481 1.4993 12.6134
9 0.0004 0.0336 1.8522 0.0136 0.6694 9.7828
10 0.0001 0.0143 1.2111 0.0039 0.2953 7.2381

Sum 100.0000 99.9895 97.9265 99.9985 99.7733 84.4212
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A. Comparison with the Zero-Reversion Dynamic Contagion Process

A.1. Zero-Reversion Dynamic Contagion Process

This section is to demonstrate an alternative representation of the dynamic contagion process [8] with
zero-reversion intensity (as defined by Definition A.1). We find later in Theorem A.6 that this process is
the special case of a discretised dynamic contagion process when bothKP andKQ follow mixed Poisson
distributions.

Definition A.1 (Zero-reversion dynamic contagion process). The zero-reversion dynamic contagion
process is a point process N∗t ≡

{
T

(2)
k

}
k≥1

with non-negative Ft−stochastic intensity process:

λt = λ0e
−δt +

∑
0≤T (1)

i <t

Y
(1)
i e

−δ
Ä
t−T (1)

i

ä
+

∑
0≤T (2)

k
<t

Y
(2)
k e

−δ
Ä
t−T (2)

k

ä
(24)

where:

• {Ft}t≥0 is a history of the process N∗t , with respect to which {λt}t≥0 is adapted;
• λ0 > 0 is a constant as the initial value of λt at time t = 0;
• δ > 0 is the constant rate of exponential decay;
•
{
Y

(1)
i

}
i=1,2,...

is a sequence of i.i.d. positive (externally-excited) jumps with distribution function

H(y), y > 0, at the corresponding random times
{
T

(1)
i

}
i=1,2,...

following a Poisson process of rate
ρ > 0;
•
{
Y

(2)
k

}
k=1,2,...

is a sequence of i.i.d. positive (self-excited) jumps with distribution function

G(y), y > 0, at the corresponding random times
{
T

(2)
k

}
k=1,2,...

;

• the sequences
{
Y

(1)
i

}
i=1,2,...

,
{
T

(1)
i

}
i=1,2,...

and
{
Y

(2)
k

}
k=1,2,...

are assumed to be independent of
each other.

The first moments and Laplace transforms of two types of jumps Y
(1)
i and Y

(2)
i are denoted

respectively by:

µ1H =:
∫ ∞

0
ydH(y), µ1G =:

∫ ∞
0

ydG(y); ĥ(u) =:
∫ ∞

0
e−uydH(y), ĝ(u) =:

∫ ∞
0

e−uydG(y)
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The generator of a zero-reversion dynamic contagion process (λt, N
∗
t , t) acting on a function

f(m,n, t) is given by:

Af(λ, n, t) =
∂f

∂t
− δλ∂f

∂λ
+ ρ
Å∫ ∞

0
f(λ+ y, n, t)dH(y)− f(λ, n, t)

ã
+λ

Ç ∫ ∞
0

f(λ+ y, n+ 1, t)dG(y)− f(λ, n, t)

å
(25)

Key distributional properties, which will be used later, are listed as below; see the proofs in Dassios
and Zhao [8].

Proposition A.2. The stationarity condition of intensity process λt is δ > µ1G .

Theorem A.3. If δ > µ1G , the Laplace transform λT conditional λ0 for a fixed time T is given by:

E
î
e−vλT | λ0

ó
= exp

(
−
∫ v

G−1
v,1(T )

ρ[1− ĥ(u)]

δu+ ĝ(u)− 1
du

)
× e−G

−1
v,1(T )λ0 (26)

where:
Gv,1(L) =:

∫ v

L

du

δu+ ĝ(u)− 1

Theorem A.4. If δ > µ1G , the Laplace transform of the asymptotic distribution of λt is given by:

Π̂(v) =: lim
t→∞

E
î
e−vλt | λ0

ó
= exp

(
−
∫ v

0

ρ[1− ĥ(u)]

δu+ ĝ(u)− 1
du

)
(27)

and Equation (27) is also the Laplace transform of the stationary distribution of process {λt}t≥0.

Dassios and Zhao [17] further apply the counting process N∗t to model the arrival of insurance claims
for the ruin problem via efficient Monte Carlo simulation. One of the advantages of the model using the
discretised dynamic contagion process in this paper is that we would be able to investigate the properties
of the unsettled number of claims (i.e., Mt) itself explicitly, whereas this quantity is not explicit in
Dassios and Zhao [17].

A.2. Transformations between Two Processes

We explore the analogy between (N∗t , λt) and (Nt,Mt) via distributional transformations.

Lemma A.5. If:

p̂ (u) = ĥ

Ç
1− u
δ

å
, q̂ (u) = ĝ

Ç
1− u
δ

å
(28)

then, the joint Laplace transform probability generating function of (N∗T , λT ) is given by:

E
î
θ(N∗T−N

∗
t )e−vλT | Ft

ó
= e−(D(T )−D(t))e−B(t)λt , v ≥ 0 (29)

where:

B(t) =
1− A(t)

δ
, D(t) = c(t) (30)

with boundary condition B(T ) = v, and A(t), c(t) are given by Equation (5).
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Proof. Similar to the proof for Theorem 3.4, for a zero-reversion dynamic contagion process (N∗t , λt),
assume the form f(λ, n, t) = e−B(t)λθneD(t), and set Af(λ, n, t) = 0 in generator Equation (25); we
have martingale e−B(t)λtθN

∗
t eD(t) where: B′(t) = θĝ(B(t)) + δB(t)− 1

D′(t) = ρ[1− ĥ(B(t))]
(31)

With boundary condition B(T ) = v, and by the martingale property, we have Equation (29).
On the other hand, for the joint probability generating function of a discretised dynamic contagion

process (Mt, Nt) as given by Theorem 3.4, we have: A′(t) = −δθq̂(A(t)) + δA(t)

c′(t) = ρ[1− p̂(A(t))]
(32)

The analogy between (N∗t , λt) and (Nt,Mt) is linked by Equation (32) and Equation (31): without
solving the equations explicitly, if we set Equation (28) and Equation (30), then Equations (31) and (32)
are equivalent.

We can prove in Theorem A.6 that, via distributional transformations, the increments of Nt and N∗t
have the same distribution, and the finite-dimensional distributions of Nt and N∗t are the same.

Theorem A.6. If M0 ∼ Poisson
Ä
λ0
δ

ä
and:

KP ∼ Mixed Poisson
Ç
Y

δ

∣∣∣∣∣ Y ∼ H

å
, KQ ∼ Mixed Poisson

Ç
Y

δ

∣∣∣∣∣ Y ∼ G

å
(33)

i.e.,

pk =
∫ ∞

0

e−
y
δ

k!

Åy
δ

ãk
dH(y), qk =

∫ ∞
0

e−
y
δ

k!

Åy
δ

ãk
dG(y)

then,
E
î
θN
∗
T | λ0

ó
= E

î
θNT
ó

Proof. If M0 ∼ Poisson
Ä
λ0
δ

ä
, then E[ψM0 ] = e−

1−ψ
δ
λ0 . The condition Equation (28) is equivalent to

Equation (33) since:
∞∑
k=0

ukpk = p̂ (u) = ĥ

Ç
1− u
δ

å
= E

[
e−

Y
δ

(1−u)
]

= E
ñ
E
ñ
uKP

∣∣∣∣∣KP ∼ Poisson

Ç
Y

δ

åôô
=

∞∑
k=0

ukE
ñ
P

®
KP = k

∣∣∣∣∣KP ∼ Poisson

Ç
Y

δ

å´ô
=

∞∑
k=0

ukP {KP = k}

and similarly, for KQ.
Set t = 0, ϕ = 1 in Equation (5) and t = 0, v = 0 in Equation (29); then, by Equation (30)

of Lemma A.5, we have:

E
î
θN
∗
T | λ0

ó
= e−(D(T )−D(0))e−B(0)λ0 = e−(c(T )−c(0))e−B(0)λ0 ,

E
î
θNT
ó

= E
î
E[θNT |M0]

ó
= e−(c(T )−c(0))e−

1−A(0)
δ

λ0 = e−(c(T )−c(0))e−B(0)λ0
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Corollary A.7. If H ∼ Exp (α) and G ∼ Exp (β), α, β > 0, then the transformations are given by:

{pk}k=0,1,2... ∼ Geometric (p) , p =:
δα

δα + 1

{qk}k=0,1,2... ∼ Geometric (q́) , q́ =:
δβ

δβ + 1

Proof. If H ∼ Exp (α), then, by Equation (33) or Equation (28), we have:

p̂(u) = ĥ

Ç
1− u
δ

å
=

α

α + 1−u
δ

=
p

1− (1− p)u

and similarly, for G ∼ Exp (β).

Remark A.8. The stationarity condition of process Mt given by Equation (3) can be alternatively
derived via the transformation by Theorem A.6 from the stationarity condition δ > µ1G for process
λt by Proposition A.2, i.e.,

µ1Q = E [KQ] = E
ñ
Y

δ

∣∣∣∣∣ Y ∼ G

ô
=
µ1G

δ
< 1

In particular, if KQ ∼ Geometric (q́), then the stationarity condition is q́ > 1
2
.

Corollary A.9. If M0 ∼ Poisson
Ä
λ0
δ

ä
and:

KP ∼ Mixed Poisson
Ç
Y

δ

∣∣∣∣∣ Y ∼ H

å
, KQ ∼ Mixed Poisson

Ç
Y

δ

∣∣∣∣∣ Y ∼ G

å
then,

E[ϕMT ] = E
î
e−vλT | λ0

ó
Proof. By transformation Equation (30) of Lemma A.5, we have:

v =
1− ϕ
δ

, G−1
v,1(T ) =

1−Q−1
ϕ,1(T )

δ
, A(0) = 1− δB(0)

and:
G−1
v,1(T ) = B(0), Q−1

ϕ,1(T ) = A(0)

Then, by comparing Theorem 3.4 and Theorem A.3, we have:

E[ϕMT ]

= E
î
E[ϕMT |M0]

ó
= exp

(
−
∫ Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]

δq̂(u)− δu
du

)
E
[î
Q−1
ϕ,1(T )

óM0
]

= exp

Ñ
−
∫ Q−1

ϕ,1(T )

ϕ

ρ
[
1− ĥ

Ä
1−u
δ

ä]
δĝ
Ä

1−u
δ

ä
− δu

du

é
e−

1−Q−1
ϕ,1

(T )

δ
λ0

Ç
s =

1− u
δ

å
= exp

(
−
∫ 1−ϕ

δ

1−Q−1
ϕ,1

(T )

δ

ρ[1− ĥ(s)]

δs+ ĝ(s)− 1
ds

)
e−

1−Q−1
ϕ,1

(T )

δ
λ0

= E
î
e−vλT | λ0

ó
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Corollary A.10. If KP ∼ Mixed Poisson
Ä
Y
δ
| Y ∼ H

ä
, KQ ∼ Mixed Poisson

Ä
Y
δ
| Y ∼ G

ä
, then,

ℵ̂(ϕ) = Π̂(v)

Proof. By Theorem 3.6 and Theorem A.4, we have:

Π̂(v) = exp

Ç
−
∫ v

0

ρ[1− p̂(1− δu)]

δu+ q̂(1− δu)− 1
du

å
(s = 1− δu)

= ℵ̂(1− δv) = ℵ̂(ϕ)

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Hawkes, A.G. Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B
1971, 33, 438–443.

2. Hawkes, A.G. Spectra of some self-exciting and mutually exciting point processes. Biometrika
1971, 58, 83–90.

3. Errais, E.; Giesecke, K.; Goldberg, L.R. Affine point processes and portfolio credit risk. SIAM J.
Financ. Math. 2010, 1, 642–665.

4. Embrechts, P.; Liniger, T.; Lin, L. Multivariate Hawkes processes: An application to financial data.
J. Appl. Probab. 2011, 48A, 367–378.

5. Chavez-Demoulin, V.; McGill, J. High-frequency financial data modeling using Hawkes processes.
J. Bank. Financ. 2012, 36, 3415–3426.

6. Bacry, E.; Delattre, S.; Hoffmann, M.; Muzy, J.F. Modelling microstructure noise with mutually
exciting point processes. Quant. Financ. 2013, 13, 65–77.

7. Aït-Sahalia, Y.; Cacho-Diaz, J.; Laeven, R.J. Modeling financial contagion using mutually exciting
jump processes. J. Financ. Econ. 2014, doi:10.3386/w15850.

8. Dassios, A.; Zhao, H. A dynamic contagion process. Adv. Appl. Probab. 2011, 43, 814–846.
9. Dassios, A.; Zhao, H. A risk model with delayed claims. J. Appl. Probab. 2013, 50, 686–702.

10. Yuen, K.C.; Guo, J.; Ng, K.W. On ultimate ruin in a delayed-claims risk model. J. Appl. Probab.
2005, 42, 163–174.

11. Dassios, A.; Embrechts, P. Martingales and insurance risk. Stoch. Models 1989, 5, 181–217.
12. Dassios, A.; Jang, J. Pricing of catastrophe reinsurance and derivatives using the Cox process with

shot noise intensity. Financ. Stoch. 2003, 7, 73–95.
13. Ethier, S.N.; Kurtz, T.G. Markov Processes: Characterization and Convergence; Wiley: Hoboken,

NJ, USA, 1986.
14. Mirasol, N.M. The output of an M/G/∞ queuing system is poisson. Oper. Res. 1963, 11, 282–284.
15. Newell, G. The M/G/∞ Queue. SIAM J. Appl. Math. 1966, 14, 86–88.



Risks 2014, 2 455

16. Lawrance, A.; Lewis, P.A. Properties of the bivariate delayed Poisson process. J. Appl. Probab.
1975, 12, 257–268.

17. Dassios, A.; Zhao, H. Ruin by dynamic contagion claims. Insur. Math. Econ. 2012, 51, 93–106.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Model Framework
	Distributional Properties
	Moments of Mt and Nt
	Joint Probability Generating Function of (MT, NT)
	Probability Generating Function of MT
	Probability Generating Function of NT

	Special Cases
	Case p1=1
	Case q1=q
	Case q0=1

	Comparison with the Zero-Reversion Dynamic Contagion Process-12pt
	Zero-Reversion Dynamic Contagion Process
	Transformations between Two Processes


