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Abstract: This paper features an analysis of major currency exchange rate movements in relation to
the US dollar, as constituted in US dollar terms. Euro, British pound, Chinese yuan, and Japanese
yen are modelled using a variety of non-linear models, including smooth transition regression
models, logistic smooth transition regressions models, threshold autoregressive models, nonlinear
autoregressive models, and additive nonlinear autoregressive models, plus Neural Network
models. The models are evaluated on the basis of error metrics for twenty day out-of-sample
forecasts using the mean average percentage errors (MAPE). The results suggest that there is no
dominating class of time series models, and the different currency pairs relationships with the US
dollar are captured best by neural net regression models, over the ten year sample of daily exchange
rate returns data, from August 2005 to August 2015.

Keywords: non linear models; time series; non-parametric; smooth-transition regression models;
neural networks; GMDH shell

JEL: C45; C53; F3; G15

1. Introduction

The Global Financial Crisis (GFC) had a major and sustained impact on the world’s financial
markets. This paper examines whether the exchange rate behaviour of four major currencies;
namely the Euro, British pound, Chinese Yuan, and Japanese yen, in the context of their paired
relationships with the US dollar, is better captured using a variety of nonlinear autoregressive
models or by a machine learning approach. The models examined include the following nonlinear
regression models: smooth transition regression model (STAR), Logistic smooth transition regressions
models (LSTAR), self-exciting threshold autoregressive models (SETAR), neural network nonlinear
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autoregressive model (NNET), and additive nonlinear autoregressive model (AAR), and further
models based on the application of various regression specifications of neural network models.
The relative performance of the various models is evaluated via the use of twenty day out of
sample forecasts.

Franses and van Dijk (2000) [1] mention that nonlinear time series models have become
fashionable tools to describe and forecast economic time series. They have been applied to
macro-economic and financial variables such as unemployment, industrial production, and exchange
rates. Economic and financial systems are known to frequently exhibit both structural and behavioral
changes, it follows that it may be neccessary to adopt different time series models to explain the
empirical data at different points in time. This is apparent in modelling exchange rate behaviour.
To model nonlinear behavior in economic and financial time series, it seems natural to allow for the
existence of different states of the world or regimes and to allow the dynamics to be different in
different regimes.

A popular set of models assumed to apply in different regimes used to capture the dynamic
behavior of the time series are autoregressive (AR) models. These might be threshold AR, self-exciting
threshold AR and smooth transition AR models. This is because simple AR models are arguably the
most popular time series model and are easily estimated using regression methods. By extending
AR models to allow for nonlinear behavior, the resulting nonlinear models are easy to understand
and interpret.

A stationary time series model is called a linear time series model if it is equivalent (for example
in the mean-square sense) to:

xt =
∞

∑
s=−∞

βsεt−s, (1)

where {εt} is a white noise andd the summation is assumed to exist in some sense. Simple linear
models do not appear to be successful in capturing the complexities of exchange rate movements.
This might be because of the possible existence of regimes within which returns and volatility display
different dynamic behaviour.

The modelling and forecasting of exchange rate behaviour remains a troublesome issue.
Rogoff (1996) [2] chronicled some of the difficulties, particularly in relation to purchasing power
parity (PPP). This embodies the simple empirical proposition that once converted to a single currency;
national price levels should be equal. He mentions the paradoxical contrast between the extremely
slow rate at which currencies appear to converge to long-run equilibrium, and the enormous volatility
of short-run real exchange rate movements.

The general difficulties encountered in exchange rate modelling are discussed in Taylor and
Sarno (2003) [3], and more specifically, nonlinear modelling dynamics in Taylor et al. (2001) [4] and
Sarno et al. (2004) [5]. Baillie and Bollerslev (1989) [6], suggest that foreign currency rates are
best characterized as pure unit-root (random walk or martingale) processes, which implies it is
impossible to predict exchange rate movements. Engel and Hamilton (1990) [7] applied a Markov
switching model for exchange rate changes, while Diebold and Nason (1990) [8] and Meese and Rose
(1990) [9] used variants of local regression. Morana and Beltratti (2004) [10] examine long memory
and structural breaks in the realized variance process for the DM/US$ and Yen/US$ exchange rates.
Chang et al. (2012) [11] have analysed the hedging of major currencies using fututres contracts in a
multivariate GARCH framework.

The use of neural networks to forecast exchange rate movements was initiated by studies
such as Kuan and Liu (1995) [12], who used feedforward and recurrent artificial neural networks
(ANN) to produce conditional mean forecasts. In recent years the argument in favour of the
martingale hypothesis has been queried because of the possibility of long memory (fractional)
dynamic behaviour in the foreign currency market, an approach which is adopted in this paper.
Other applications of the non-linear time series models applied in this paper include Matias et al.
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(2012) [13] and Reboredo et al. (2012) [14], who model the behaviour of high frequency returns on
the S&P 500 index using intra-day data. Gradojevic and Yang (2006) [15] compare high frequency
US dollar Canadian dollar exchange rate behaviour and report that ANN models outperform linear
time series models. The current paper can be viewed as an extension of the models used to non-linear
time series models applied across a wider range of currency pairs. We similarly confine ourselvs to
the application of ANNs and do not consider other types of machine learning techniques, such as
support vector machines, in this paper.

The paper is divided into four sections; Section 2 follows the introduction and introduces the
data set and econometric and data mining methods used, Section 3 presents the results, followed by
a conclusion in Section 4.

2. Research Methods

2.1. Data Set and Econometric Models

Data Sets

The data set includes daily data for each currency, in US dollar terms, of the exchange rates
paired with the Euro, British pound, Chinese yuan, and Japanese yen, taken from a ten-year period
drawn from 29 August 2005 to 28 August 2015. These daily US dollar-denominated exchange rate
series are sourced from the FRED database (Federal Reserve Bank of St. Louis Economic Data).
Unit root tests, based on KPSS tests, and fractional integration tests, indicated that the levels series
of these exchange rates are non-stationary, as shown in Table 1. Therefore we chose to work with the
logarithms of the first difference, that is, log differences, of our base series, for the purposes of the
modelling of these exchange rate movements and forecasts, as shown below:

yit = ln(ERit)− ln(ERit−1), (2)

where ERit indicates the US dollar denominated exchange rate i, and i indexes the four series, on day
t. We scaled the returns by 100 to make them easier to manage for the purposes of statistical analysis.
Thus, the results are in percentage terms.

The data sets used are shown in Table 2. The tests of stationarity, featuring KPSS tests, with null
hypothesis of stationarity, and tests of fractional integration, using a local Whittle approximation,
are reported in Table 1. The KPSS tests strongly reject the null hypothesis of stationarity for the
levels series of all four exchange rates, and the fractional integration tests all suggest values above 1.
Hence, we use the logarithm of first differences of our base series.

Table 1. Tests of Stationarity

KPSS Test Probability Fractional Integration (Whittle Estimator) Z Statistic Probability

EURO - US Dollar exchange rate 4.1066 0.01 * 1.01789 21.156 0.0000
CHINESE Yuan - US Dollar exchange rate 25.1896 0.01 * 1.101 22.865 0.0000
JAPANESE YEN - US Dollar exchange rate 8.4585 0.01 * 1.0163 13.985 0.0000

UK Pound - US Dollar exchange rate 13.8446 0.01 * 1.032 21.463 0.0000
*Indicates significant at the 1% level.

Table 2. List of countries and exchange rates.

Country Symbol Abbreviations

EURO EURET EURO exchange rate return
CHINA CHRET CHINESE exchange rate return
JAPAN JPRET JAPANESE exchange rate return

UK UKRET UK exchange rate return
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A set of graphs of the base series are shown in Figure 1.

(a) (b)

(c) (d)

Figure 1. Time series plots of the base series and their logarithmic differences. (a) US -EURO; (b)
US-CHINA; (c) US-JAPAN; (d) US-UK.

2.2. Data Characteristics

The characteristics of the basic index series used in our data set presented in Table 3 suggest
substantial departures from normal distributions.



Risks 2016, 4, 7 5 of 14

Table 3. Descriptive statistics

Statistics EURET CHRET JPRET UKRET

Mean −0.0037 −0.0094 0.0037 −0.0063
Median 0.000 −0.0024 0.0084 0.0065

Maximum 4.621 1.816 3.342 4.4348
Minimum −3.003 −0.998 −5.216 −4.9662
Skewness 0.188 1.637 −0.326 −0.3404

Excess Kurtosis 3.028 33.897 5.159 6.57086
Standard Deviation 0.638 0.119 0.664 0.6194

Coefficient of Variation 173.97 12.615 178.89 97.827

The summary statistics presented in Table 3 show that these exchange rate return series, have
means and medians that are close to zero, and they are not particularly skewed. All series have
excess kurtosis, which is very evident in the cases of China, and to a lesser degree in the other three.

The QQ plots, as shown in Figure 2, show that all the exchange rate return series have too many
extreme observations in their tails to conform to normal distributions.

(a)

(b)

Figure 2. QQ Plots. (a) EEU and China; (b) Japan and UK.



Risks 2016, 4, 7 6 of 14

2.3. Econometric Methods

We use nonlinear autoregressive time series models in the analysis. Consider a discrete time
stochastic process {Xt}t∈T that is generated by:

Xt+s = f (Xt, Xt−d, ......, Xt−(m−1)d; θ) + εt+s, (3)

with {ε}t∈T white noise, εt+s independent with respect Xt+s, and with f a generic function from Rm

to R. This class of models is frequently referred to as being nonlinear autoregressive of order m.
In Equation (2) there is an implicit definition of the embedding dimension m, the time delay d,

and the forecasting steps s. The generic vector, θ, indicates the vector of parameters determining the
shape of θ, which will be estimated on the basis of empirical evidence in the form of an observed
time series.

A classical AR(m) model can be written as:

Xt+s = φ + φ0Xt + φ1Xt−d + .... + φmXt−(m−1)d + εt+s. (4)

The model in equation (3) can be estimated using conditional least squares.
A Self-Exciting Threshold Autoregressive Model (SETAR) can be written as:

Xt+s =

{
φ1 + φ10Xt + φ11Xt−d + φ1LXt−(L−1)d + εt+s, Zt ≤ th

φ2 + φ20Xt + φ21Xt−d + φ2LXt−(H−1)d + εt+s, Zt > th
(5)

with Zt being a threshold variable. This can be variously defined for estimation purposes (see the
discussion in the R package tsDyn available on Cran, https://cran.r-project.org/). A Logistic Smooth
Transition Autoregressive Model (LSTAR) can be viewed as a generalisation of a SETAR model [16],
and can be written as:

Xφt+s = (φ1 + φ10Xt + φ11Xt−d + φ1LXt−(L−1)d(1− G(Zt, γ, th))
+(φ2 + φ20Xt + φ21Xt−d + φ2LXt−(H−1)d(1− G(Zt, γ, th) + εt+s

(6)

with G the logistic function, and Zt the threshold variable.
A non-parametric generalised additive autoregressive model (GAM) can be written as:

xt+s = µ +
m

∑
i=1

si(xt−(i−1)d), (7)

where si are smooth functions represented by penalized cubic regression splines.
In the empirical analysis, we used two approaches to the empirical estimation of neural network

models. One was a linear approach, which is available in the R package TsDyn. A neural network
model with linear input, D hidden units and activation function g, can be written as:

xt+s = β0 +
D

∑
j=1

β jg(γ0j +
m

∑
i=1

γijxt−(i−1)d). (8)

We also apply some nonlinear neural net modelling, using the GMDH shell program
(http:www.gmdhshell.com). This program is built around an approximation called the “Group
Method of Data Handling”. This approach is used in such fields as data mining, prediction, complex
systems modelling, optimization and pattern recognition. The algorithms feature an inductive
procedure that performs a sifting and ordering of gradually complicated polynomial models, and
the selection of the best solution by external criterion.
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A GMDH model with multiple inputs and one output is a subset of components of the
base function:

Y(xi1, ....., xn) = a0 +
m

∑
i=1

ai fi, (9)

where f are elementary functions dependent on different inputs, a are unknown coefficients, and m
is the number of base function components.

In general, the connection between input-output variables can be approximated by Volterra
functional series, the discrete analague of which is the Kolmogorov-Gabor polynomial:

y = a0 +
m

∑
i=1

aixi +
m

∑
i=1

m

∑
j=1

aijxixj +
m

∑
i=1

m

∑
j=1

m

∑
k=1

aijkxixjxk + ......, (10)

where, x = (xi, x2, ...., xm), the input variables vector, and A = (a0, a1, a2, ...., am) the vector of
weights. The Kolmogorov-Gabor polynomial can approximate any stationary random sequence of
observations, and can be computed by either adaptive methods or a system of Gaussian normal
equations. Ivakhnenko (1968) [17] developed a new algorithm, ’The Group Method of Data Handling
(GMDH)’ by using a heuristic and peceptron type of approach. He demonstrated that a second-order
polynomial (Ivakhnenko polynomial: y = a0 + a1xi + a2xj + a3xixj + a4x2

i + a5x2
j ) can reconstruct the

entire Kolmorogorov-Gabor polynomial using an iterative peceptron-type procedure. This approach
is featured in the second stage of the empirical analysis, as given below, which uses the GMDH
shell software.

3. Empirical Results

3.1. Nonlinear Time Series Analysis

A summary of the results of applying the various nonlinear models to the US dollar to Euro
exchange rate returns is shown in Table 4. It can be seen that none of the models is particularly
effective. The additive autoregressive model for the US dollar Euro exchange rate returns, the results
for which are shown in the top row of Table 4, produced an AIC value of −2444, a Mean Average
Percentage error (MAPE) of 104.5% and an adjusted R-squared value of less than 1%. The MAPE
values are based on 20 day out of sample forecasts.

Table 4. Non-linear models-Euro

Euro Intercept F Smooth Terms V1 F Smooth Terms V10 AIC MAPE R-sq.(adj)

AAR −0.00394 1.7249 2.4575* −2244 104.5% 0.00629
SETAR model ( 2 regimes) Constant L phiL.1 phiL.2

Low regime −0.00972614 0.02389115
Constant H phiH.1 phiH.2

High regime 0.2307366 ** −0.0153295 −0.2220478**
Threshold Value Propn. in high Propn. in low

Z(t) = + (0) X(t)+ (1)X(t-1) 0.5448 15.6% 84.4% −2258 106.1%
NNET time series model 2-3-1 network with 13 weights −2317 102.9%

LSTAR model Constant L phiL.1 phiL.2
Low regime −2.39025525 −0.02832705 −0.87307328

Constant H phiH.1 phiH.2
High regime 4.08892959 0.07937599 0.23125994

smoothing parameter gamma = 0.8042
Threshold Value

Z(t) = + (0) X(t) + (1) X(t-1) -0.4226 −2259 106%
Random Walk(1) Constant slope coefficient

−0.00387743 0.0176781 118% −0.000087
Random Walk (20) lags 108%

* Indicates Significant at 0.05%; ** Indicates Singnificant at 0.01%.

The two-regime SETAR model for the Euro fared slightly better in terms of AIC, with a value
of −2258, but had a worse MAPE of 106.1%. Two coefficients in the high regime, which accounted
for 15.6% of the total values were significant. The neural net 2-3-1 network with 13 weights faired
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the best with an AIC of −2317, and the lowest MAPE of 102.9%. The LSTAR model for the Euro also
performed relatively poorly, with an AIC of −2259 and a MAPE of 106%.

We also report the results of running the forecast of the exchange rate change as a strict simple
random walk with no drift. In this model, the prediction of the next return is the current return,
which produces a MAPE for the EURO of 118% when using a one-step ahead forecast. When it was
fitted as a simple linear regression, yit = ait + byit−1 + eit, the coefficients are insignificant, and the
adjusted R squared is zero. However, the time series models were used to make 20-period forecasts,
which based on the random walk model, produces a MAPE of 108%, which is worse than for the time
series models.

(a)

(b)

(c)

Figure 3. SETAR analysis of US$ - Euro returns; (a) Euro SETAR Residuals and ACF; (b) MI Euro and
lag −1, 0; (c) lag 1 −1 SETAR Euro and Regime Switching.

We examined various graphical analyses. Some of the results relating to the SETAR model are
shown in Figure 3. In Sub-Figure 3a, we plot the original US$ Euro exchange rate return series and
the residuals from the SETAR analysis, in the top of the panel, and below it in Sub-Figure 3a, we plot



Risks 2016, 4, 7 9 of 14

the autocorrelation function of the original series and that of the residuals. In Sub-Figure 3b, we plot
the mutual information (MI) series and one of the lag relationships (lag −1, 0). In Sub-Figure 3c we
plot lag (−1,1) plus a regime switching plot.

The results for the Chinese exchange rate with the US $ returns are shown in Table 5. The plots
of the exchange rate series in Figure 1, Sub-Figure 1b, reveal that the Chinese exchange rate with the
US $ behaves differently, is smoother, and shows evidence of exchange rate management.

Table 5. Non-linear models-China.

China Intercept F Smooth Terms V1.0 F Smooth Terms V1.1 AIC MAPE R-sq.(adj)

AAR −0.0094677 33.4181 *** 3.4645 *** −10854 122.6% 0.078
SETAR model ( 2 regimes) Constant L phiL.1 phiL.2

Low regime −0.00972614 0.02389115
Constant H phiH.1 phiH.2

High regime 0.2307366 ** −0.0153295 −0.2220478 **
Threshold Value Propn. in high Propn. in low

Z(t) = + (0) X(t)+ (1)X(t-1) −0.04467 73.3% 26.7% −10695.75 116.9%
NNET time series model 2-3-1 network with 13 weights −10870.93 121.8%

LSTAR model Constant L phiL.1 phiL.2
Low regime −0.1336682 −0.2158839 −0.4292838

Constant H phiH.1 phiH.2
High regime 0.1294817 0.1725717 0.3706611

smoothing parameter gamma = 23.85
Threshold Value

Z(t) = + (0) X(t) + (1) X(t-1) −0.4226 −10691.80 117.8%
Random walk (1)) Constant Slope coefficient

−0.0100210 *** −0.0591522 *** 100.2% 0.003095
Random walk (20) 121.38%

*** Denotes Significant at 0.001%; ** Denotes Significant at 0.01%.

However, this has not translated into a greater ease of forecasting Chinese currency exchange rate
return changes. The Mean Average Percentage Errors (MAPE) range from 116% to 122%. The AIC
again suggests the NNET approach is preferred, though this approach has a relatively high MAPE
of 121.8%. A regression of the current return on the previous return, as discussed above, produces a
statistically significant slope coefficent. However, the use of a strict random walk model to forecast
the series, in a one-step ahead process, produces the lowest MAPE of 100.2%, but a 20-period forecast
has a MAPE of 121.38%, which is worse than some of the time series models, for 20-period forecasts.

Table 6. Non-linear models-JAPAN.

Japan Intercept F Smooth Terms V1.0 F Smooth Terms V1.1 AIC MAPE R-sq.(adj)

AAR 0.0038522 5.4933 ** 4.0491 −2048 104.5% 0.00859
SETAR model ( 2 regimes) Constant L phiL.1 phiL.2

Low regime −0.00972614 0.02389115
Constant H phiH.1 phiH.2

High regime 0.2307366 ** −0.0153295 −0.2220478 **
Threshold Value Propn. in high Propn. in low

Z(t) = + (0) X(t)+ (1)X(t-1) −0.04467 73.3% 26.7% −10695.75 116.9%
NNET time series model 2-3-1 network with 13 weights −2081.341 101.9 %

LSTAR model Constant L phiL.1 phiL.2
Low regime −0.1092538 −0.1124170 −0.0582778

Constant H phiH.1 phiH.2
High regime 0.12426792 0.11504397 0.01657785

smoothing parameter gamma = 100
Threshold Value

Z(t) = + (0) X(t) + (1) X(t-1) −0.7085 −2048 104.9%
Random walk(1) Constant Slope coefficient

0.00366027 −0.0170771 88.92% −0.000108
Random walk (20) 104.44%

** Denotes Significant at 0.01%.

The results for Japan are quite clear cut. The NNET model has the highest AIC score (in absolute)
terms, and the lowest MAPE, shown in Table 6, of the nonlinear methods. The results of the random
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walk regression are insignificant, but use of the random walk model for forecasting purposes, with
one lag, produces the lowest MAPE of 88.92%, but 20 lags produce a MAPE of 104.44%. This is
comparable with the time series models.

Table 7. Non-linear models-UK.

UK Intercept F Smooth Terms V1.0 F Smooth Terms V1.1 AIC MAPE R-sq.(adj)

AAR −0.0069404 3.6884 ** 1.0387 −2382 103.6% 0.00687
SETAR model ( 2 regimes) Constant L phiL.1 phiL.2

Low regime 0.14175779 * −0.04871131 0.14579643 *
Constant H phiH.1 phiH.2

High regime −0.02411116 ** 0.02448354 0.04441084
Threshold Value Propn. in high Propn. in low

Z(t) = + (0) X(t)+ (1)X(t-1) −0.3935 78.09% 21.91% −2406.445 109.06 %
NNET time series model 2-3-1 network with 13 weights −2415.012 106.2 %

LSTAR model Constant L phiL.1 phiL.2
Low regime 0.135255* −0.048852 0.141031 *

Constant H phiH.1 phiH.2
High regime −0.157804 ** 0.073844 −0.099545

smoothing parameter gamma = 100
Threshold Value

Z(t) = + (0) X(t) + (1) X(t-1) −0.397965 −2403.007 106.8%

Random walk(1) Constant Slope coefficient
−0.00630317 0.00808887 89.29% −0.000334

Random walk (20) 110.28%

* Indicates Significant at 0.05%; ** Denotes Significant at 0.01%.

The UK results, shown in Table 7, are similar. The NNET model produces the highest absolute
value of AIC, but its MAPE is 106.2%. All the other nonlinear models produce inferior results. The
UK random walk regression is insignificant, with a slope coefficient close to zero, but use of a strict
random walk model, or naive no change model, for forecasting purposes, for one lag, yields the
lowest MAPE of 89.29%. In order to be strictly comparable with the time series models, which used
20 period forecasts, the MAPE is 110.28%, which is inferior to the time series results.

Given that neural network analysis seemed to perform relatively well in these analyses, it
was decided to extend the analysis applying non-linear neural net estimation procedures in a
regression context.

3.2. Further Analysis Using Neural Nets

Regression analyses using higher order polynomials produced the models shown in Table 8.
In all cases where one individul currency exchange rate return was the dependent variable in the
regression analysis, only lagged terms of the other exchange rates were used. The neural network
analysis produced quite complex models, with higher order terms and new variables that were
complex weights of existing variables. For example, in Euro model 2, the new variable N9 is
a combination of lagged observations of the Euro exchange rate return, combined with lagged
observations of the Chinese exchange rate return. The neural nets were trained on 80% of the available
time series observations, and the forecasts were run on the remaining 20% of observations.

Table 8. Neural Network Regression Analysis.

Euro (model 1)

Y1[t] = 0.0848635 + EURET[t-2]×"EURET[t-2], cubert"×(-0.0136538) + EURET[t-2]×EURET[t-3]×(−0.0357626)
+ EURET[t-3]×"EURET[t-6], cubert"×0.0464996 + time×"EURET[t-8], cubert"×2.72731e-05 +
EURET[t-4]×EURET[t-11]×(−0.0678379) + cycle×0.0028167 + "EURET[t-8], cubert"×"EURET[t-10],
cubert"×0.0583482

Euro (model 2)

Y1 = 0.000426977 – LUKRET×N9×0.694354 + N9×1.15686

N9 = 0.0127939 – LEURET×LCHRET×0.237853 – LEURET^2×0.0444379

China (model 1)

China Model 1 Y1 = 0.00936077 + N76×1.02217 + N118×1.0439N118 = −0.00973411 + LJPRET×0.0164911 –
LJPRET×"LEURET, cubert"×0.00848911 - "LEURET, cubert"×0.0206867

N118 = −0.00973411 + LJPRET*0.0164911 – LJPRET×"LEURET, cubert"×0.00848911 - "LEURET,
cubert"×0.0206867

N76 = 0.00455715 - LCHRET×0.202939 + LCHRET^2×0.446615 + "LCHRET, cubert"×0.0261334 – "LCHRET,
cubert"^2×0.142591
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Plots of the neural net model forecasts are shown in Figure 4. It is apparent that the neural
net based regression models capture only a small proportion of the volatile changes in currency rate
of return movements. The results for fluctuations in China appear to be better than for the other
three currencies.

(a)

(b)

(c)

(d)

Figure 4. Model forecasts; (a) Euro; (b) China; (c) Japan; (d) UK.
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(a)

(b)

(c)

(d)

Figure 5. Residual plots Neural Network Regression Analysis; (a) Euro; (b) China; (c) Japan; (d) UK.

Plots of the residuals are shown in Figure 5. These reveal that the models behave reasonably
well, in that the autocorrelation of residuals is of a low order, and the histograms of the residuals are
unimodal. There is a clustering of observations in excess of two standard errors from the model fit,
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in the case of both the training and forecast periods.This is consistent with the existence of volatility
clustering, and will be explored further in a subsequent paper.

The error metrics from the neural net regressions are shown in Table 9. The most successful
model is for China, which has the lowest mean absolute errors of 0.067 and 0.07 for model fit and
predictions, respectively, and similarly root mean square errors of 0.11 and 0.11 for model fit and
predictions. The coefficient of determination is 0.10 for model fit and 0.11 for predictions, respectively.
The next best model is that for the UK, with a mean absolute error of 0.44, a root mean square error
of 0.62, and a coefficient of determination of 0.0011 for model fit. Its errors are lower than those for
the Euro, but its coefficient of determination for model fit is lower than for the Euro 0.0068. However,
the metrics for the UK predictions are better than those for the Euro. The metrics for Japan for both
model fit and for predictions are relatively weak. Clearly, the managed nature of the Chinese currency
makes it much easier to forecast than the other three more freely floating currencies. It appears that
the neural network regression techniques, particularly in the case of China, work better than the
non-linear time series regression models.

Table 9. Neural network regression error metrics.

Euro China Japan UK

Model fit 2006 observations 2006 observations 2006 observations 2006 observations
Mean absolute error 0.4578 0.0676 0.4666 0.4465

Root mean square error 0.6319 0.1167 0.6597 0.6245
Coefficient of Determination (R2) 0.0068 0.1000 0.0045 0.0011

Predictions 501 observations 501 observations 501 observations 501 observations
Mean absolute error 0.4818 0.0712 0.5036 0.4311

Root mean square error 0.6649 0.1167 0.6751 0.5945
Coefficient of Determination (R2) −0.0383 0.1125 0.0003 0.0039

4. Conclusions

In this paper we have modelled exchange rate return series for four currencies, namely the
Euro, Chinese Yuan, Japanese Yen, and UK pound, when paired with the US dollar, in US dollar
terms. We used a variety of non-linear time series models which included the following: smooth
transition regression models, logistic smooth transition regressions models, threshold autoregressive
models, nonlinear autoregressive models, and additive nonlinear autoregressive models, plus linear
and nonlinear Neural Network based regression models. We used the various models to produce
20 period out of sample forecasts. The resultant error metrics were then compared across models.
These models were also contrasted with a random walk model with no drift, used for both one and
twenty lags, to provide a naive, no-change benchmark model for purposes of comparison.

The neural network based models clearly dominated, and the non-linear regression Neural
Network models appeared to be the most effective, in terms of error metrics, for forecasting purposes.
The Chinese yuan exchange rate return series appeared to be the most amenable to prediction, but all
series produced large errors and low coefficients of determination.
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