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Abstract: In unrestricted combinatorial auctions, we put forward a mechanism that guarantees
a meaningful revenue benchmark based on the possibilistic beliefs that the players have about each
other’s valuations. In essence, the mechanism guarantees, within a factor of two, the maximum
revenue that the “best informed player” would be sure to obtain if he/she were to sell the goods to
his/her opponents via take-it-or-leave-it offers. Our mechanism is probabilistic and of an extensive
form. It relies on a new solution concept, for analyzing extensive-form games of incomplete
information, which assumes only mutual belief of rationality. Moreover, our mechanism enjoys
several novel properties with respect to privacy, computation and collusion.

Keywords: possibilistic beliefs; unrestricted combinatorial auctions; mutual belief of rationality;
incomplete information; extensive-form games; distinguishable dominance

1. Introduction

In this paper, we study the problem of generating revenue in unrestricted combinatorial auctions,
solely relying on the players’ possibilistic beliefs about each others’ valuations. Let us explain.

In a combinatorial auction, there are multiple indivisible goods for sale and multiple players who
are interested in buying. A valuation of a player is a function specifying a non-negative value for
each subset of the goods. Many constraints on the players’ valuations have been considered in the
literature for combinatorial auctions1. We instead focus on combinatorial auctions that are unrestricted.
That is, in our auctions, a player’s value for one subset of the goods may be totally unrelated to
his/her value for another subset and to another player’s value for any subset. This is the most general
class of auctions. It is well known that, for such auctions, the famous Vickrey-Clarke-Groves (VCG)
mechanism [4–6] maximizes social welfare in dominant strategies, but offers no guarantee about the
amount of revenue it generates. In fact, for unrestricted combinatorial auctions, no known mechanism
guarantees any significant revenue benchmark in settings of incomplete information2.

In our setting, the seller has no information about the players’ valuations, and each player
knows his/her own valuation, but not necessarily the valuations of his/her opponents. Our players,
however, have beliefs about the valuations of their opponents. Typically, beliefs are modeled as
probability distributions: for instance, it is often assumed that the valuation profile, θ, is drawn from
a common prior. Our setting is instead non-Bayesian: the players’ beliefs are possibilistic and can

1 Such as monotonicity, single-mindedness and additivity [1–3].
2 In complete information settings (where the players have common knowledge about their valuations), assuming common

knowledge of rationality, [7–9] have designed mechanisms that guarantee revenue arbitrarily close to the maximum
social welfare.
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be arbitrary. That is, a player i’s belief consists of a set of valuation profiles, Bi, to which he/she
believes θ belongs. We impose no restriction on Bi except that, since i knows his/her own valuation,
for every profile v ∈ Bi, we have vi = θi. In a sense, therefore, such possibilistic beliefs are not assumed
to exist, but always exist. For instance, if a player i has no information about his/her opponents, then
Bi consists of the set of all valuation profiles v, such that vi = θi; if i has complete information about
his/her opponents, then Bi = {θ}; and if θ is indeed drawn from a common prior D, then Bi consists
of the support of D conditioned on θi.

Possibilistic beliefs are much less structured than Bayesian ones. Therefore, it should be harder
for an auction mechanism to generate revenue solely based on the players’ possibilistic beliefs. Yet, in
single-good auctions, the authors of [10] have constructed a mechanism that guarantees revenue
at least as high as the second-highest valuation and, sometimes, much higher. In this paper, for
unrestricted combinatorial auctions, we construct a mechanism that guarantees, within a factor of two,
another interesting revenue benchmark, BB, solely based on the players’ possibilistic beliefs.

The benchmark BB is formally defined in Section 3, following the framework put forward
by Harsanyi [11] and Aumann [12]. However, it can be intuitively described as follows. Let BBi
(for “best belief”) be the maximum social welfare player i can guarantee, based on his/her beliefs, by
assigning the goods to his/her opponents. Then, BB = maxi BBi, and the revenue guaranteed by our
main mechanism is virtually BB/2. Notice that each BBi does not depend on θi at all, a property that,
as we shall see, gives our mechanism some advantage in protecting the players’ privacy.

To ease the discussion of our main mechanism, in Section 4, we construct a first
mechanism, of normal form, that guarantees revenue virtually equal to BB/2 under two-step
elimination of weakly-dominated strategies. The analysis of our first mechanism is very intuitive.
However, elimination of weakly-dominated strategies is order-dependent and does not yet have a
well-understood epistemic characterization. Moreover, our first mechanism suffers from two problems
shared by most normal-form mechanisms. Namely, (1) it reveals all players’ true valuations, and (2)
it requires an amount of communication that is exponential in the number of goods. Both problems
may not be an issue from a pure game-theoretic point of view3, but are quite serious in several realistic
applications, where privacy and communication are, together with collusion and computational
complexity, legitimate concerns [14].

Our main mechanism, the best-belief mechanism, significantly decreases the magnitude of the
above problems. This second mechanism is designed and analyzed in Section 6 and is of extensive
form. In order to analyze it in settings where the players have possibilistic beliefs, we propose a new
and compelling solution concept that only assumes mutual belief of rationality, where the notion of
rationality is the one considered by Aumann [15].

The Resiliency of the Best-Belief Mechanism.

Besides guaranteeing revenue virtually equal to BB/2 under a strong solution concept,
the best-belief mechanism enjoys several novel properties with respect to privacy, computation,
communication and collusion.

1. Privacy: People value privacy. Thus, “by definition”, a privacy-valuing player i de facto receives
some “negative utility” if, in an auction, he/she reveals his/her true valuation θi in its entirety,
but does not win any goods. Even if he/she wins some goods, his/her traditional utility (namely,
his/her value for the goods he/she receives minus the price he/she pays) should be discounted
by the loss he/she suffers from having revealed θi. One advantage of our best-belief mechanism
is that it elicits little information from a player, which presumably diminishes the likelihood that
privacy may substantially distort a player’s incentives.

3 Indeed, the revelation principle [13] explicitly asks the players to directly reveal all of their private information.
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2. Computation: Typically, unrestricted combinatorial auctions require the evaluation of complex
functions, such as the maximum social welfare. In principle, one may resort to approximating
such functions, but approximation may distort incentives4. By contrast, our mechanism delegates
all difficult computation to the players and ensures that the use of approximation is properly
aligned with their incentives.

3. Communication: By eliciting little information from the players, our mechanism also has low
communication complexity; quadratic in the number of players and the number of goods.

4. Collusion: Collusion can totally disrupt many mechanisms. In particular, the efficiency of the
VCG mechanism can be destroyed by just two collusive players [14]. By contrast, collusion
can somewhat degrade the performance of our mechanism, but not totally disrupt it, unless all
players are collusive. As long as collusive players are also rational, at least in a very mild sense,
the revenue guaranteed by our mechanism is at least half of that obtainable by “the best informed
independent player”.

For a detailed discussion about these properties of our mechanism, see Section 6.2.

2. Related Work

Generating revenue is one of the most important objectives in auction design; see [16,17] for
thorough introductions about this area. Following the seminal result of [13], there has been a huge
literature on Bayesian auctions [18]. Since we do not assume the existence of a common prior and
we focus on the players’ possibilistic rather than probabilistic beliefs, our study is different from
Bayesian auctions. Spectrum auctions have been widely studied both in theory and in practice, and
several interesting auction forms have been proposed recently; see, e.g., [19–23]. Most existing works
consider auctions of restricted forms, such as auctions with multiple identical goods and single-demand
valuations [24], valuations with free disposal [25], auctions with additive valuations [26], auctions with
unlimited supply [27], etc. Revenue in unrestricted combinatorial auctions has been considered by [28],
which generalizes the second-price revenue benchmark to such auctions and provides a mechanism
guaranteeing a logarithmic fraction of their benchmark in dominant strategies.

The solution concept developed in this paper refines the notion of implementation in undominated
strategies [29] and considers a two-round elimination of dominated strategies. In particular, we
extend the notion of distinguishably-dominated strategies [30] from extensive-form games of complete
information to extensive-form games of incomplete information and possibilistic beliefs. As shown
in [30], iterated elimination of distinguishably-dominated strategies is order independent with
respect to histories and characterizes extensive-form rationalizability [31,32]. In [10,33], elimination
of strictly-dominated strategies has been extended to deal with possibilistic beliefs, but only for
normal-form games. Moreover, [34] leverages the players’ beliefs for increasing the sum of social
welfare and revenue in unrestricted combinatorial auctions.

Preserving the privacy of the players’ valuations, or types in general, in the execution of
a mechanism has been studied by [35]. The authors present a general method using some elementary
physical equipment (i.e., envelopes and an envelope randomizer) so as to execute any given
normal-form mechanism, without trusting any one and without revealing any information about the
players’ true types, beyond what is unavoidably revealed in the final outcome. An alternative way
to protect the privacy of the players that has often been considered for auctions is to use encryption
and zero-knowledge proofs. In particular, the authors of [36] make efficient use of cryptography to
implement single-good auctions so that, after learning all bids, an untrusted auctioneer can prove who
won the good and what price he/she should pay, without having any player learn any information

4 For instance, the outcome function of the VCG mechanism is NP-hard to compute even when each player only values
a single subset of the goods for $1 and all other subsets for $0. Moreover, if one replaces this outcome function with
an approximation, then VCG would no longer be dominant-strategy truthful.
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about the bid of another player. Moreover, in differential privacy [37], the mechanisms or databases
inject noise to the final outcome to preserve the participants’ privacy. By contrast, our main mechanism
does not rely on envelopes or any other form of physical equipment, nor on cryptography or noise.
It preserves the players’ privacy because, despite the fact that all actions are public, a player is asked to
reveal little information about herself/himself.

Strong notions of collusion-resilient implementation have been studied in the literature, such
as coalition incentive compatibility [38] and bribe proofness [39]. However, the authors prove
that many social choice functions cannot be implemented under these solution concepts. The
collusive dominant-strategy truthful implementation is defined in [40], together with a mechanism
maximizing social welfare in multi-unit auctions under this notion. Other forms of collusion resiliency
have also been investigated, in particular by [41–46]. Their mechanisms, however, are not applicable
to unrestricted combinatorial auctions in non-Bayesian settings. Moreover, the collusion models
there assume various restrictions (e.g., collusive players cannot make side-payments to one another
or enter binding agreements, there is a single coalition, no coalition can have more than a given
number of players, etc.). By contrast, in unrestricted combinatorial auctions, our main mechanism
does not assume any such restrictions. The resiliency of our mechanism is similar to that of [28],
where the guaranteed revenue benchmark is defined only on independent players’ valuations when
collusion exists.

3. Preliminaries and the Best-Belief Revenue Benchmark

A combinatorial auction context is specified by a triple (n, m, θ): the set of players is {1, . . . , n};
the set of goods is {1, . . . , m}; and the true valuation profile is θ. Adopting a discrete perspective, we
assume that a player’s value for a set of goods is always an integer. Thus, each θi, the true valuation of i,
is a function from the powerset 2{1,...,m} to the set of non-negative integers Z+, with θi(∅) = 0. The set
of possible valuations of i, Θi, consists of all such functions, and Θ = Θ1× · · · ×Θn. After constructing
and analyzing our mechanisms, we will discuss the scenarios where values are real numbers.

An outcome of a combinatorial auction is a pair of profiles (A, P). Here, A is the allocation, with
Ai ⊆ {1, . . . , m} being the set of goods each player i gets, and Ai ∩ Aj = ∅ for each player j 6= i; and P
is the price profile, with Pi ∈ R denoting how much each player i pays; if Pi < 0, then i receives −Pi
from the seller. The set of all possible outcomes is denoted by Ω.

The utility function of i, ui, maps each valuation ti ∈ Θi and each outcome ω = (A, P) to
a real: ui(ti, ω) = ti(Ai)− Pi. The social welfare of ω is SW(ω) , ∑i θi(Ai), and the revenue of ω is
REV(ω) , ∑i Pi. If ω is a probability distribution over outcomes, then ui(ti, ω), SW(ω) and REV(ω)

denote the corresponding expectations.

Definition 1. An augmented combinatorial auction context is a four-tuple (n, m, θ,B), where (n, m, θ) is
a combinatorial auction context and B is the belief profile: for each player i, Bi, the belief of i, is a set of valuation
profiles, such that ti = θi for all t ∈ Bi.

In an augmented combinatorial auction context, Bi is the set of candidate valuation profiles in i’s
mind for θ. The restriction that ti = θi for all t ∈ Bi corresponds to the fact that player i knows his/her
own valuation. Player i’s belief is correct if θ ∈ Bi and incorrect otherwise. As we shall see, our result
holds whether or not the players’ beliefs are correct. From now on, since we do not consider any other
type of auctions, we use the terms “augmented” and “combinatorial” for emphasis only.

A revenue benchmark f is a function that maps each auction context C to a real number f (C),
denoting the amount of revenue that is desired under this context.

Definition 2. The best-belief revenue benchmark, BB, is defined as follows. For each auction context
C = (n, m, θ,B),

BB(C) , max
i

BBi,
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where for each player i,

BBi , max
(A,P)∈Ω: Ai=∅ and Pj≤tj(Aj) ∀j 6=i, t∈Bi

REV(A, P).

Note that BBi represents the maximum revenue that player i would be sure to obtain if he/she
were to sell the goods to his/her opponents via take-it-or-leave-it offers, which is also the maximum
social welfare player i can guarantee, based on his/her beliefs, by assigning the goods to his/her
opponents. As an example, consider a combinatorial auction with two items and three players.
Player 1 only wants Item 1, and θ1({1}) = 100; Player 2 only wants Item 2, and θ2({2}) = 100;
and Player 3 only wants the two items together, and θ3({1, 2}) = 50. All the unspecified values
are zero. Moreover, Player 1 believes that Player 2’s value for Item 2 is at least 25, and Player 3’s value
for the two items together is at least 10: that is, B1 = {v | v1 = θ1, v2({2}) ≥ 25, v3({1, 2}) ≥ 10}.
Accordingly, BB1 = 25: the best Player 1 can do in selling to others is to offer Item 2 to Player 2
at price 25. Furthermore, B2 = {v | v2 = θ2, v1({1}) ≥ 80, v3({2}) ≥ 20}, which implies
BB2 = 100, achieved by offering Item 1 to Player 1 at price 80 and Item 2 to Player 3 at price 20.
Finally, B3 = {v | v3 = θ3, v1({1}) ≥ 80, v2({2}) ≥ 70}, which implies BB3 = 150, achieved by
offering Item 1 to Player 1 at price 80 and Item 2 to Player 2 at price 70. Therefore, BB = 150 in
this example. Note that Player 1’s and Player 3’s beliefs are correct, but Player 2’s beliefs are incorrect
because θ3({2}) = 0.

Furthermore, note that, if there is really a common prior from which the players’ valuations are
drawn, then the players’ possibilistic beliefs consist of the support of the distribution. In this case, it is
expected that the optimal Bayesian mechanism generates more revenue than the best-belief benchmark.
However, this is a totally different ball game, because Bayesian mechanisms assume that the seller has
much knowledge about the players. Besides, little is known in the literature about the structure of the
optimal Bayesian mechanism for unrestricted combinatorial auctions or even a good approximation
to it.

Finally, the best-belief benchmark is measured based on the players’ beliefs about each other,
not on their true valuations. If the players all know nothing about each other and believe that the
others’ values can be anything from close to zero to close to infinity (or a huge finite number), then the
benchmark is low. The power of the benchmark comes from the class of contexts where the players
know each other well (e.g., as long-time competitors in the same market) and can effectively narrow
down the range of the others’ values. In this case, our mechanism generates good revenue without
assuming a common prior.

4. A Normal-Form Mechanism

As a warm up, in this section, we construct a normal-form mechanism that implements
the best-belief revenue benchmark within a factor of two, under two-step elimination of
weakly-dominated strategies. Indeed, weakly-dominant/dominated strategies have been widely
used in analyzing combinatorial auctions where the players only report their valuations: that is, it
is weakly dominant for each player to report his/her true valuation. When each player reports both
his/her own valuation and his/her beliefs about the other players, it is intuitive that a player i first
reasons about what the other players report for their valuations and then reasons about what to report
for his/her beliefs about them given their reported valuations: that is, an iterated elimination of
dominated strategies. However, in our mechanism, there is no need to go all the way to the end of the
iterated procedure, and two steps are sufficient.

Roughly speaking, all players first simultaneously remove all of their weakly-dominated
strategies; and then, each player further removes all of his/her strategies that now become weakly
dominated, based on all players’ surviving strategies. However, care must be taken when defining this
solution concept in our setting. Indeed, since a player does not know the other players’ true valuations,
he/she cannot compute their strategies surviving the first round of elimination, which are needed for
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him to carry out his/her second round of elimination. To be “on the safe side”, we require that the
players eliminate their strategies conservatively: that is, a player eliminates a strategy in the second
round only if it is dominated by the same alternative strategy with respect to all valuation profiles
that he/she believes to be possible. This notion of elimination is the same as the one used by Aumann
in [15], except that in the latter, it is strict instead of weak domination. In [33], the authors provide an
epistemic characterization for iterated elimination based on the notion of [15].

More precisely, given a normal-form auction mechanism M, let Si be the set of strategies of each
player i and S = S1 × · · · × Sn. For any strategy profile s, M(s) is the outcome when each player i uses
strategy si. If T = Ti × T−i is a subset of strategy profiles, ti ∈ Θi, si ∈ Ti, and σi ∈ ∆(Ti)

5, then we say
that si is weakly dominated by σi with respect to ti and T, in symbols si ≤

ti
T σi, if:

• ui(ti, M(si, s−i)) ≤ ui(ti, M(σi, s−i)) for all s−i ∈ T−i and
• ui(ti, M(si, s−i)) < ui(ti, M(σi, s−i)) for some s−i ∈ T−i.

That is, si is weakly dominated by σi when the valuation of player i is ti and the set of strategy
sub-profiles of the other players is T−i. The set of strategies in Ti that are not weakly dominated with
respect to ti and T is denoted by Ui(ti, T). For simplicity, we use Ui to denote Ui(θi, S), the set of
undominated strategies of player i.

Definition 3. Given an auction context C = (n, m, θ,B) and a mechanism M, the set of conservatively
weakly-rational strategies of player i is:

Ci , Ui \ {si : ∃σi ∈ ∆(Ui) s.t. ∀t ∈ Bi, si ≤
θi
U(t) σi},

where U(t) , ×jUj(tj, S) for any t ∈ Θ. The set of conservatively weakly-rational strategy profiles is
C = C1 × · · · × Cn.

Mechanism M conservatively weakly implements a revenue benchmark f if, for any auction context C and
any strategy profile s ∈ C,

REV(M(s)) ≥ f (C).

Now, we provide and analyze our normal-form mechanism MNormal . Intuitively, the players
compete for the right to sell to others, and the mechanism generates revenue by delegating this right to
the player who offers the most revenue. Besides the number of players n and the number of goods m,
the mechanism takes as input a constant ε ∈ (0, 1]. The players act only in Step 1, and Steps a through
f are “steps taken by the mechanism”. The expression “X := x” sets or resets variable X to value x.
Moreover, [m] = {1, 2, . . . , m}.

Mechanism MNormal :

1: Each player i, publicly and simultaneously with the other players, announces:

– a valuation vi and
– an outcome ωi = (αi, πi), such that: αi

i = ∅, and for each player j, πi
j is zero whenever

αi
j = ∅; and is a positive integer otherwise.

After the players simultaneously execute Step 1, the mechanism chooses the outcome (A, P) by
means of the following six steps.

a: Set Ai := ∅, and Pi := 0 for each player i.

5 As usual, for a set T, ∆(T) is the set of probability distributions over T.
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b: Set Ri := REV(ωi) for each player i, and w := argmaxi Ri with ties broken lexicographically.
c: Publicly flip a fair coin and denote the result by r.
d: If r = Heads, then Aw := argmaxa⊆[m] vw(a), with ties broken lexicographically, and halt.
e: (Note that r = Tails when this step is reached.)

For each player i, such that αw
i 6= ∅:

– If vi(α
w
i ) < πw

i , then Pw := Pw + πw
i .

– Otherwise, Ai := αw
i and Pi := πw

i −
ε
n .

f: For each player i, Pi := Pi − δi with δi =
ε
n ·

Ri
1+Ri

.

The final outcome is (A, P).

In the analysis, we refer to player w as the winner and each δi as player i’s reward. Furthermore,
given a context (n, m, θ,B) and an outcome ω, for succinctness, we use ui(ω) instead of ui(θi, ω) for
player i’s utility under ω. We have the following.

Theorem 1. For any context (n, m, θ,B) and constant ε ∈ (0, 1], mechanism MNormal conservatively weakly
implements the revenue benchmark BB

2 − ε.

As we will see in the proof of Theorem 1, the mechanism incentivizes each player i to report
his/her true valuation and an outcome whose revenue is at least BBi. In particular, the latter is
achieved by the fair coin toss: when r = Heads, the winner is given his/her favorite subset of goods
for free, which is better than any offer he/she can possibly get if somebody else becomes the winner.
Moreover, the rewards are strictly increasing with the revenue of the reported outcomes. Accordingly,
the players do not have incentives to underbid; that is, to report an outcome whose revenue is lower
than the corresponding BBi. Thus, the winner’s reported outcome has a revenue of at least maxi BBi.
When r = Tails, the mechanism tries to sell the goods as suggested by the winner to the other
players, as a take-it-or-leave-it offer. If a player accepts the offer, then he/she pays the suggested price;
otherwise, this price is charged to the winner as a fine. Accordingly, with probability 1/2 (that is, when
r = Tails), the mechanism generates revenue maxi BBi. Formally, we show the following two lemmas.

Lemma 1. For any context (n, m, θ,B), constant ε, player i and strategy si = (vi, ωi), if si ∈ Ui, then vi = θi.

Proof. Notice that vi is used in two places in the mechanism: to select player i’s “favorite subset” in
Step d when he/she is the winner and to decide whether he/she gets the set αw

i in Step e when he/she
is not the winner. Intuitively, it is i’s best strategy to announce his/her true valuation so as to select
his/her “truly favorite subset” and to take the allocated set if and only of its price is less than or equal
to his/her true value for it.

More precisely, arbitrarily fix a strategy si = (vi, ωi) with vi 6= θi, and let s′i = (θi, ωi). We show
that si ≤

θi
S s′i, where S is the set of all strategy profiles of MNormal . To do so, arbitrarily fix a strategy

sub-profile s−i of the other players; let (A, P) be the outcome of s = (si, s−i), and let (A′, P′) be the
outcome of s′ = (s′i, s−i). Since si and s′i announce the same outcome ωi, i is the winner under s if and
only if he/she is the winner under s′. We discuss these two cases separately.

Case 1: i is the winner under both s and s′.

In this case, conditioned on r = Heads, we have Ai = argmaxa⊆[m] vi(a),
A′i = argmaxa⊆[m] θi(a) and Pi = P′i = 0. Accordingly, θi(A′i|r = Heads) ≥ θi(Ai|r = Heads)
and ui(A′, P′|r = Heads) ≥ ui(A, P|r = Heads).
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Conditioned on r = Tails, we have Ai = A′i = ∅ and:

Pi = P′i = ∑
j:αi

j 6=∅ and vj(α
i
j)<πi

j

πi
j − δi,

where δi = ε
n ·

REV(ωi)
1+REV(ωi)

is player i’s reward under both strategy profiles.

Accordingly, ui(A′, P′|r = Tails) = ui(A, P|r = Tails).

In sum, ui(A, P) ≤ ui(A′, P′) in Case 1.

Case 2: i is the winner under neither s nor s′.

In this case, the winner w is the same under both s and s′. Conditioned on r = Heads, we have
Ai = A′i = ∅ and Pi = P′i = 0; thus, ui(A, P|r = Heads) = ui(A′, P′|r = Heads).

Conditioned on r = Tails, if vi(α
w
i ) < πw

i and θi(α
w
i ) < πw

i , or if both inequalities are
reversed, then (Ai, Pi) = (A′i, P′i ) and ui(A, P|r = Tails) = ui(A′, P′|r = Tails). Otherwise, if
vi(α

w
i ) < πw

i and θi(α
w
i ) ≥ πw

i , then:

ui(A′, P′|r = Tails) = θi(α
w
i )− πw

i +
ε

n
+ δi > δi = ui(A, P|r = Tails), (1)

where again δi is i’s reward under both strategy profiles. Otherwise, we have vi(α
w
i ) ≥ πw

i and
θi(α

w
i ) < πw

i ; thus:

ui(A, P|r = Tails) = θi(α
w
i )− πw

i +
ε

n
+ δi ≤ −1 +

ε

n
+ δi < δi = ui(A′, P′|r = Tails). (2)

In sum, ui(A, P) ≤ ui(A′, P′) in Case 2, as well.

It remains to show there exists a strategy sub-profile s−i, such that ui(A, P) < ui(A′, P′), and such
an s−i has actually appeared in Case 2 above. Indeed, since vi 6= θi, there exists a ⊆ [m], such that
vi(a) 6= θi(a). When vi(a) < θi(a), arbitrarily fix a player j 6= i, and choose strategy sj, such that:

α
j
i = a, π

j
i = θi(a), and REV(ω j) > max{π j

i , REV(ωi)}.

Notice that such a strategy exists in Sj: player j can set π
j
k to be arbitrarily high for any

player k 6∈ {i, j}. Moreover, for any player k 6∈ {i, j}, choose sk to be such that REV(ωk) = 0.
By construction, w = j under both s and s′, vi(α

w
i ) < πw

i and θi(α
w
i ) ≥ πw

i . Following Case 2 above,
ui(A, P|r = Heads) = ui(A′, P′|r = Heads) and ui(A, P|r = Tails) < ui(A′, P′|r = Tails) by
Inequality 1. Thus, ui(A, P) < ui(A′, P′).

When vi(a) > θi(a), similarly, choose strategy sj, such that:

α
j
i = a, π

j
i = vi(a), and REV(ω j) > max{π j

i , REV(ωi)},

and choose strategy sk the same as above for any k 6∈ {i, j}. The analysis again follows from Case 2
above (in particular, Inequality 2); thus, ui(A, P) < ui(A′, P′).

Combining everything together, si ≤
θi
S s′i, and Lemma 1 holds.

Lemma 2. For any context (n, m, θ,B), constant ε, player i and strategy si = (vi, ωi), if si ∈ Ci, then
REV(ωi) ≥ BBi.
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Proof. By Lemma 1, we only need to consider strategies, such that vi = θi. Arbitrarily fix a strategy
si = (θi, ωi) ∈ Ui with REV(ωi) < BBi. Consider a strategy ŝi = (θi, ω̂i), such that ω̂i = (α̂i, π̂i)

satisfies the following conditions:

ω̂i ∈ argmax
(A,P)∈Ω: Ai=∅ and Pj≤tj(Aj) ∀j 6=i, t∈Bi

REV(A, P)

and
π̂i

j > 0 whenever α̂i
j 6= ∅.

Notice that REV(ω̂i) = BBi > REV(ωi). We show that for all t ∈ Bi, si ≤
θi
U(t) ŝi.

To do so, arbitrarily fix a valuation profile t ∈ Bi and a strategy sub-profile s−i, such that
sj ∈ Uj(tj, S) for each player j. Note that ti = θi by the definition of Bi. Moreover, by Lemma 1, each sj
is of the form (tj, ω j): that is, the valuation it announces is tj. Let (A, P) be the outcome of the strategy
profile s = (si, s−i) and (Â, P̂) that of the strategy profile ŝ = (ŝi, s−i). There are three possibilities for
the winners under s and ŝ: (1) player i is the winner under both of them; (2) player i is the winner
under neither of them; and (3) player i is the winner under ŝ, but not under s. Below, we consider them
one by one.

Case 1: i is the winner under both s and ŝ.

In this case, conditioned on r = Heads, (Ai, Pi) = (Âi, P̂i) and ui(A, P|r = Heads) =

ui(Â, P̂|r = Heads), since under both s and ŝ, player i gets his/her favorite subset for free.

Conditioned on r = Tails, Ai = Âi = ∅, P̂i = ∑j:α̂i
j 6=∅ and tj(α̂

i
j)<π̂i

j
π̂i

j − δ̂i, and

Pi = ∑j:αi
j 6=∅ and tj(α

i
j)<πi

j
πi

j − δi, where δ̂i is player i’s reward under ŝ and δi is that under s.

By the definition of ω̂i, the set {j : α̂i
j 6= ∅ and tj(α̂

i
j) < π̂i

j} is empty, so P̂i = −δ̂i.

As REV(ω̂i) > REV(ωi), by definition we have δ̂i > δi, which implies P̂i < −δi ≤ Pi.
Accordingly, ui(Â, P̂|r = Tails) > ui(A, P|r = Tails).

In sum, we have ui(Â, P̂) > ui(A, P) in Case 1.

Case 2: i is the winner under neither s nor ŝ.

In this case, the winner w is the same under both strategy profiles. Conditioned on r = Heads,
Ai = Âi = ∅ and Pi = P̂i = 0, thus ui(A, P|r = Heads) = ui(Â, P̂|r = Heads).

Conditioned on r = Tails, i gets the set αw
i under s if and only if he/she gets it under ŝ, as

he/she announces valuation θi under both strategy profiles. That is, Ai = Âi. Moreover, the
only difference in player i’s prices is the rewards he/she gets, and Pi − P̂i = −δi + δ̂i > 0.
Accordingly, ui(Â, P̂|r = Tails) > ui(A, P|r = Tails).

In sum, we have ui(Â, P̂) > ui(A, P) in Case 2.

Case 3: i is the winner under ŝ, but not under s.

In this case, letting w be the winner under s, we have REV(ωi) ≤ REV(ωw) ≤ REV(ω̂i),
and at least one of the inequalities is strict. We compare player i’s utilities under s and ŝ, but
conditioned on different outcomes of the random coin. More specifically, we use r to denote
the outcome of the coin under s and r̂ that under ŝ.

First, conditioned on r̂ = Heads, Âi = argmaxa⊆[m] θi(a) and P̂i = 0; thus:

ui(Â, P̂|r̂ = Heads) = θi(Âi).
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While conditioned on r = Tails, we have either Ai = ∅ and Pi = −δi, or Ai = αw
i 6= ∅ and

Pi = πw
i −

ε
n − δi; thus:

ui(A, P|r = Tails) ≤ max{δi, θi(α
w
i )− πw

i +
ε

n
+ δi} ≤ max{δi, θi(Âi)− 1 +

ε

n
+ δi}

≤ θi(Âi) + δi,

where the second inequality is because θi(α
w
i ) ≤ θi(Âi) and πw

i ≥ 1, and the third inequality
is because both terms in max{·} are less than or equal to θi(Âi) + δi. Accordingly,

ui(Â, P̂|r̂ = Heads)− ui(A, P|r = Tails) ≥ −δi. (3)

Second, conditioned on r̂ = Tails, Âi = ∅ and P̂i = −δ̂i, similar to Case 1 above. Thus:

ui(Â, P̂|r̂ = Tails) = δ̂i.

While conditioned on r = Heads, Ai = ∅ and Pi = 0; thus:

ui(A, P|r = Heads) = 0.

Accordingly,
ui(Â, P̂|r̂ = Tails)− ui(A, P|r = Heads) ≥ δ̂i. (4)

Combining Inequalities 3 and 4 and given that r and r̂ are both fair coins, we have:

ui(Â, P̂)− ui(A, P) ≥ δ̂i − δi
2

> 0,

thus ui(Â, P̂) > ui(A, P) in Case 3, as well.

In sum, si ≤
θi
U(t) ŝi for all t ∈ Bi, which implies si 6∈ Ci. Thus, Lemma 2 holds.

We now analyze the revenue of MNormal .

Proof of Theorem 1. Arbitrarily fix an auction context C = (n, m, θ,B) and a strategy profile s ∈ C.
By Lemma 1, we can write si = (θi, ωi) for each player i. Let (A, P) be the outcome of MNormal under s.
By Lemma 2, REV(ωi) ≥ BBi for each i, so:

Rw = max
i

REV(ωi) ≥ max
i

BBi = BB(C).

Note that REV(A, P|r = Heads) = 0, while:

REV(A, P|r = Tails) = ∑
i

Pi

= Pw + ∑
i:αw

i 6=∅,θi(α
w
i )≥πw

i

(πw
i −

ε
n − δi) + ∑

i:αw
i 6=∅,θi(α

w
i )<πw

i

(−δi) + ∑
i:αw

i =∅,i 6=w
(−δi)

=

(
∑

i:αw
i 6=∅,θi(α

w
i )<πw

i

πw
i

)
− δw + ∑

i:αw
i 6=∅,θi(α

w
i )≥πw

i

(πw
i −

ε
n − δi)

+ ∑
i:αw

i 6=∅,θi(α
w
i )<πw

i

(−δi) + ∑
i:αw

i =∅,i 6=w
(−δi)

≥ ∑
i:αw

i 6=∅
πw

i −∑
i

ε
n −∑

i
δi = Rw − ε−∑

i
δi > Rw − ε−∑

i

ε
n = Rw − 2ε ≥ BB(C)− 2ε.

Combining the two cases together, we have REV(A, P) > BB(C)
2 − ε, and Theorem 1 holds.
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5. Conservative Distinguishable Implementation

Our main mechanism, together with an auction context, specifies an extensive game with perfect
information, chance moves and simultaneous moves [47]6. For such a mechanism M, we denote the set
of all pure strategy profiles by S = S1 × · · · × Sn, the history of a strategy profile s by H(s) and, again,
the outcome of s by M(s). If σ is a mixed strategy profile, then H(σ) and M(σ) are the corresponding
distributions.

Even for extensive games of complete information, the literature has several notions of rationality,
with different epistemic foundations and predictions about the players’ strategies. Since our setting
is of incomplete information without Bayesian beliefs, it is important to define a proper solution
concept in order to analyze mechanisms in such settings. Iterated eliminations of dominated strategies
and their epistemic characterizations have been the focus of many studies in epistemic game theory.
In [30], the authors define distinguishable dominance, prove that it is order independent with respect
to surviving histories and characterize it with extensive-form rationalizability [31,32,48]. In some
sense, distinguishable dominance is the counterpart of strict dominance in extensive-form games.
We incorporate this solution concept with the players’ possibilistic beliefs.

Definition 4. Let C = (n, m, θ,B) be an auction context, M an extensive-form mechanism, i a player, ti a
valuation of i and T = Ti × T−i a set of pure strategy profiles. A strategy si ∈ Ti is distinguishably-dominated
by another strategy σi ∈ ∆(Ti) with respect to ti and T, in symbols si ≺

ti
T σi, if:

1. ∃s−i ∈ T−i distinguishing si and σi: that is, H(si, s−i) 6= H(σi, s−i); and
2. ui(ti, M(si, s−i)) < ui(ti, M(σi, s−i)) ∀s−i ∈ T−i distinguishing si and σi.

Intuitively, si is distinguishably dominated by σi if it leads to a smaller utility for i than σi, when
played against any s−i, except those s−i that produce the same history with si and with σi: when such
an s−i is used, not only player i has the same utility under si and σi, but also nobody can distinguish
whether i is using si or σi by observing the history of the game.

For each player i, we denote by DUi(ti, T) the set of strategies in Ti that are not distinguishably
dominated with respect to ti and T and by DUi the set DUi(θi, S). Having seen how to incorporate
the iterated elimination of weakly-dominated strategies into our setting, the readers should find the
following definition a natural analog.

Definition 5. Let C = (n, m, θ,B) be an auction context, M a mechanism and i a player. The set of
conservatively distinguishably-rational strategies of player i is:

CDi , DUi \ {si : ∃σi ∈ ∆(DUi) s.t. ∀t ∈ Bi, si ≺
θi
DU(t) σi},

where DU(t) , ×jDUj(tj, S) for any t ∈ Θ. The set of conservatively distinguishably-rational strategy profiles
is CD = CD1 × · · · × CDn.

Mechanism M conservatively distinguishably implements a revenue benchmark f if, for any auction
context C and any strategy profile s ∈ CD, REV(M(s)) ≥ f (C).

A player i may further refine CDi, but doing so requires more than mutual belief of rationality.
We thus do not consider any further refinements.

6 Section 6.3 of [47] defines extensive games with perfect information and chance moves, as well as extensive games
with perfect information and simultaneous moves. It is easy to combine the two to define extensive games with all
three characteristics. Such a game can be described by a “game tree”. A decision node is an internal node, where the players
take actions or chance moves. A terminal node is a leaf, where an outcome is specified. The history of a strategy profile is
the probability distribution over paths from the root to the leaves determined by this profile. The outcome of a strategy
profile is the probability distribution over outcomes at the leaves determined by this profile.
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6. The Best-Belief Mechanism

Now, we construct and analyze our best-belief mechanism MBB. Similar to the normal-form
mechanism, it is parameterized by n, m and a constant ε ∈ (0, 1]. In the description below, Steps 1–3
correspond to decision nodes, while Steps a–e are again “steps taken by the mechanism”.

The best-belief mechanism, MBB:

a: Set Ai := ∅ and Pi := 0 for each player i.
1: Each player i, publicly and simultaneously with the other players, announces:

(1) a subset ξi of the goods; and
(2) an outcome ωi = (αi, πi), such that: αi

i = ∅, and for each player j, πi
j is zero whenever

αi
j = ∅ and is a positive integer otherwise.

b: Set Ri := REV(ωi) for each player i and w := argmaxi Ri with ties broken lexicographically.
2: Publicly flip a fair coin, and denote the result by r.
c: If r = Heads, then Aw := ξw, and halt.
3: (Note that r = Tails when this step is reached.)

Each player i, such that αw
i 6= ∅ publicly and simultaneously announces YES or NO.

d: For each player i announcing NO, Pw := Pw + πw
i .

For each player i announcing YES, Ai := αw
i and Pi := πw

i −
ε
n .

For each player i, Pi := Pi − δi with δi =
ε
n ·

Ri
1+Ri

.
e: The final outcome is (A, P).

6.1. Analysis of Our Mechanism

As before, given a context (n, m, θ,B) and an outcome ω, we use ui(ω) instead of ui(θi, ω) for
player i’s utility under ω. We have the following.

Theorem 2. For any context (n, m, θ,B) and constant ε ∈ (0, 1], mechanism MBB conservatively
distinguishably implements the revenue benchmark BB

2 − ε.

Different from the normal-form mechanism, here, a player does not report his/her true valuation.
Instead, the use of his/her valuation is divided into two parts: a subset of the goods, which will
be his/her favorite subset as we will see in the proof; and a simple “yes or no” answer to the
take-it-or-leave-it offer suggested by the winner. All of the other information about his/her true
valuation is redundant and has been removed from the player’s report. This can be done because the
mechanism is extensive and the players give their answers directly after seeing the offers; thus, the
seller does not need to deduce their answers from their reported valuations. We again start by proving
the following two lemmas. Some ideas are similar to those for Lemmas 1 and 2; thus, the details have
been omitted.

Lemma 3. For any context (n, m, θ,B), constant ε, player i and strategy si, if si ∈ DUi, then, according to si,
in Step 3 ofMBB, i announces YES if and only if θi(α

w
i ) ≥ πw

i
7.

7 That is, i will announce YES or NO as above at every decision node corresponding to Step 3, which is reachable (with
positive probability) by si together with some strategy sub-profile s−i , where i is an acting player.
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Proof. We only prove the “if” direction, as the “only if” direction is totally symmetric. Assume that,
according to si, i announces NO at some reachable decision node d of i where θi(α

w
i ) ≥ πw

i . We refer to
such a node d as a deviating node. Consider the following strategy s′i:

• s′i announces the same ξi and ωi as si in Step 1; and
• according to s′i, in Step 3, i announces YES if and only if θi(α

w
i ) ≥ πw

i .

Below, we show that si ≺
θi
S s′i, where S is the set of all strategy profiles of MBB.

For any deviating node d, since d is reachable by si, there exists a strategy sub-profile s−i ∈ S−i,
such that the history H(si, s−i) reaches d with positive probability. In fact, by the construction of the
mechanism, the probability is exactly 1/2: when r = Tails. For any such s−i, by the construction of s′i,
the history H(s′i, s−i) also reaches d with probability 1/2. By definition, i announces YES at d under s′i
and NO under si; thus, H(si, s−i|r = Tails) 6= H(s′i, s−i|r = Tails) and s−i distinguishes si and s′i.

Indeed, for any strategy sub-profile s−i, it distinguishes si and s′i if and only if H(si, s−i) reaches
a deviating node d (with probability 1/2). Arbitrarily fixing such an s−i and the corresponding
deviating node d, it suffices to show:

ui(MBB(si, s−i)) < ui(MBB(s′i, s−i)). (5)

Because i 6= w under (si, s−i) when r = Tails (that is, when d is reached), i 6= w under (si, s−i)

when r = Heads, as well, since w is the same in the two cases. Moreover, because s′i announces
the same ξi and ωi as si in Step 1, we have H(si, s−i|r = Heads) = H(s′i, s−i|r = Heads) and
ui(MBB(si, s−i)|r = Heads) = ui(MBB(s′i, s−i)|r = Heads) = 0.

Similar to Lemma 1, ui(MBB(si, s−i)|r = Tails) = δi, as i announces NO at d under si.
Furthermore, ui(MBB(s′i, s−i)|r = Tails) = θi(α

w
i ) − Pi = θi(α

w
i ) − πw

i + ε
n + δi ≥ ε

n + δi > δi, as
θi(α

w
i ) ≥ πw

i at d, and i announces YES at d under s′i. Therefore, ui(MBB(s′i, s−i)|r = Tails) >

ui(MBB(si, s−i)|r = Tails), which implies Equation (5). Accordingly, si ≺
θi
S s′i, si /∈ DUi, and

Lemma 3 holds.

Lemma 4. For any context (n, m, θ,B), constant ε, player i and strategy si, if si ∈ CDi, then, according to si,
player i announces ωi in Step 1 with REV(ωi) ≥ BBi.

Proof. Arbitrarily fix a strategy si ∈ DUi according to which, in Step 1, i announces ξi, and ωi = (αi, πi)

with REV(ωi) < BBi. By Lemma 3, according to si, in Step 3, i announces YES if and only if
θi(α

w
i ) ≥ πw

i . Consider the following strategy ŝi:

• In Step 1, i announces ξ̂i, and ω̂i = (α̂i, π̂i), such that:

- θi(ξ̂i) = maxA⊆{1,...,m} θi(A);
- REV(ω̂i) = max

(A,P)∈Ω: Ai=∅ and Pj≤tj(Aj) ∀j 6=i,∀t∈Bi

REV(A, P); and

- π̂i
j > 0 whenever α̂i

j 6= ∅.

• In Step 3, i announces YES if and only if θi(α
w
i ) ≥ πw

i .

By definition, REV(ω̂i) = BBi > REV(ωi), which implies that ŝi and si differ in Step 1: the
root of the game tree. Thus, any strategy sub-profile s−i distinguishes them. We show that for all
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t ∈ Bi, si ≺
θi
DU(t) ŝi

8. To do so, arbitrarily fixing a valuation profile t ∈ Bi and a strategy sub-profile
s−i ∈ ×j 6=iDUj(tj, S), it suffices to show:

ui(MBB(si, s−i)) < ui(MBB(ŝi, s−i)). (6)

Let δi and δ̂i be the rewards of player i in Step d, under (si, s−i) and (ŝi, s−i), respectively.
Because REV(ω̂i) > REV(ωi), we have:

δi < δ̂i. (7)

Similar to Lemma 2, we distinguish three cases.

Case 1. i is the winner under both (si, s−i) and (ŝi, s−i).

In this case, on the one hand,

ui(MBB(si, s−i)|r = Heads) = θi(ξi) ≤ θi(ξ̂i) = ui(MBB(ŝi, s−i)|r = Heads),

where the inequality is by the definition of ξ̂i.

On the other hand, ui(MBB(si, s−i)|r = Tails) = −(∑j:j announces NO in (si ,s−i)
πi

j − δi) ≤ δi and

ui(MBB(ŝi, s−i)|r = Tails) = −(∑j:j announces NO in (ŝi ,s−i)
π̂i

j − δ̂i). For any player j, such that

α̂i
j 6= ∅, because t ∈ Bi, by the construction of ω̂i, we have π̂i

j ≤ tj(α̂
i
j).

Because ŝj ∈ DUj(tj, S), by Lemma 3, j announces YES in Step 3 under (ŝi, s−i).
Accordingly, ∑j:j announces NO in (ŝi ,s−i)

π̂i
j = 0 and:

ui(MBB(ŝi, s−i)|r = Tails) = δ̂i > δi = ui(MBB(si, s−i)|r = Tails),

where the inequality is by Equation (7). In sum, Equation (6) holds in Case 1.

Case 2. i is the winner under neither (si, s−i) nor (ŝi, s−i).

Letting w be the winner under both strategy profiles, we have ui(MBB(si, s−i)|r = Heads) =
ui(MBB(ŝi, s−i)|r = Heads) = 0. Moreover, conditioned on r = Tails, by the construction of
ŝi, player i announces the same thing under (si, s−i) and (ŝi, s−i). Thus, the only difference
between i’s allocation and price under the two strategy profiles is the rewards: one is δi, and the
other is δ̂i. Accordingly, ui(MBB(si, s−i)|r = Tails)− ui(MBB(ŝi, s−i)|r = Tails) = δi − δ̂i < 0,
where the inequality is by Equation (7). In sum, Equation (6) holds in Case 2.

Case 3. i is the winner under (ŝi, s−i), but not under (si, s−i).

In this case, let w be the winner under (si, s−i) and r and r̂ be the outcomes of the coins under
(si, s−i) and (ŝi, s−i), respectively. Similar to Lemma 2, we have:

ui(MBB(si, s−i)|r = Tails) ≤ max{δi, θi(α
w
i )− πw

i +
ε

n
+ δi} ≤ θi(α

w
i ) + δi,

ui(MBB(si, s−i)|r = Heads) = 0,

ui(MBB(ŝi, s−i)|r̂ = Heads) = θi(ξ̂i),

8 Without loss of generality, we can assume ŝi ∈ CDi . Otherwise, by the well-studied properties of distinguishable
dominance [30], there exists σi ∈ ∆(CDi), such that ŝi ≺

θi
DU(t) σi for all t ∈ Bi , and we can prove si ≺

θi
DU(t) σi .
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and:

ui(MBB(ŝi, s−i)|r̂ = Tails) = −

 ∑
j:j announces NO in (ŝi ,s−i)

π̂i
j − δ̂i

 = δ̂i.

Accordingly,

ui(MBB(ŝi, s−i)) =
θi(ξ̂i) + δ̂i

2
>

θi(α
w
i ) + δi

2
≥ ui(MBB(si, s−i)),

and Equation (6) holds in Case 3.

Therefore, si /∈ CDi, and Lemma 4 holds.

Proof of Theorem 2. Given Lemmas 3 and 4, the proof of Theorem 2 is almost the same as that of
Theorem 1, except that, rather than distinguishing players with θi(α

w
i ) ≥ πw

i or θi(α
w
i ) < πw

i , here, we
distinguish players announcing YES or NO in Step 3. The details have been omitted.

Note that the revenue guarantee of the mechanism holds no matter whether the players’ beliefs
about each other are correct or not. If a player i has low values for the goods and believes the others’
values to be high and if the others’ true values and beliefs are all low, then player i may end up being
the winner and getting a negative utility. However, according to player i’s beliefs, his/her utility will
always be positive, and it is individually rational for him to participate. This is not too dissimilar to the
stock market, where not everybody makes money, but everybody believes he/she will make money
when entering. Indeed, the final outcome implemented may not be an ex-post Nash equilibrium and
instead is supported by the two-step elimination of dominated strategies.

Furthermore, note that the idea of asking players to report their beliefs about each other has been
explored in the Nash implementation literature (see, e.g., [49,50]). However, our mechanism does not
assume complete information or common beliefs. Moreover, our mechanism does not try to utilize the
winner’s true valuations for generating revenue: indeed, the focus here is how to generate revenue by
leveraging the players’ beliefs. Simply choosing at random this mechanism or the VCG mechanism
(or any other mechanism for unrestricted combinatorial auctions that may achieve better revenue in
some contexts), one can achieve a good approximation to the best of the two.

Finally, it suffices for the players’ values to be numbers within certain precisions, say two decimal
digits, so that there is a gap between any two different values. If the values are real numbers, then the
rewards in our mechanisms are set to zero, and our results hold under a weaker notion of dominance:
that is, the desired strategies are still at least as good as any deviation, but may not be strictly better.

6.2. Privacy, Complexity and Collusion in Our Mechanism

Finally, we discuss the resiliency of our mechanism with respect to privacy, complexity and
collusion concerns.

6.2.1. Privacy

Our main mechanism achieves our revenue benchmark by eliciting from the players much less
information than they possess. In Step 1, a player does not reveal anything about his/her own
valuation except a subset of goods, which is supposed to be his/her favorite subset. Nor does he/she
reveal his/her full beliefs about the valuations of his/her opponents: he/she only reveals a maximum
guaranteed-revenue outcome, according to his/her beliefs.

This is all of the information that is revealed if the coin flipped by the mechanism ends up as
heads. If it ends up as tails, then a player i reveals at most a modest amount of information about
his/her own true valuation in Step 3. Namely, only if he/she is offered a subset A of goods for a price
p, he/she reveals that his/her true value for that specific subset is ≥p if he/she answers YES and <p
otherwise. In particular, therefore, in our mechanism, a player who is not offered any goods does not
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reveal any information about his/her own valuation. This is very far from what may happen in many
other auction mechanisms: that is, fully revealing your valuation and receiving no goods.

Because privacy is important to many strategic agents, we hope that trying to preserve it will
become a standard goal in mechanism design. Achieving this goal will require putting a greater
emphasis on extensive mechanisms, where the players and the mechanism may interact over time9.
The power of “interaction” for privacy preservation is very well documented in cryptography10.
This power extends to mechanism design, as well: as we have seen in our case, even
three sequential moves can save a considerable amount of privacy compared with the previous
normal-form mechanism.

6.2.2. Computation and Communication Efficiency

Our mechanism is highly efficient in both computation and communication. Essentially, it only
needs to sum up the prices in each reported outcome ωi and figure out which reported outcome has the
highest revenue. Moreover, each player only reports a subset of goods and an outcome and perhaps
announces YES or NO in Step 3. One might object, however, that our mechanism transfers all of the
hard computation to the players themselves. This is indeed true, but our mechanism also gives them
the incentives to approximate this hard computation.

As we have recalled in our Introduction, approximation (1) may be necessary to compute
a reasonable outcome when finding “the best one” is computationally hard, but (2) may also
distort incentives. Our mechanism instead ensures that approximation is aligned with incentives.
Indeed, our mechanism entrusts the players to propose outcomes, but ensures, as per Lemma 4,
that each player wishes to become the winner. Thus, our mechanism makes it in a player’s
own interest to use the best computationally-efficient approximation algorithm he/she knows, in
order to propose a high-revenue outcome. Of course, the best algorithm known by a player may
not be the best in the literature, in terms of its approximation ratio to the optimal outcome. In
this case, the mechanism’s revenue is at least half of the highest revenue the players are capable
of computing. To our best knowledge, this is the first mechanism that gives the buyers incentives to
perform computationally-efficient approximations. Incentive-compatible and computationally-efficient
approximation on the seller’s side has also been studied, but again for valuations of restricted forms,
such as single-minded players [1], single-value players [2], auctions of multiple copies of the same
good [53], etc. By contrast, we do not impose any such restrictions.

6.2.3. Collusion

Collusion is traditionally prohibited (e.g., by using solution concepts that only consider individual
deviations in game theory) and punished (e.g., by laws). However, it continues to exist. We thus wish
to point out that our mechanism offers a reasonable form of protection against collusion. Namely, when
at least some players are independent, denoting by I the set of independent player, it guarantees at
least half of the revenue benchmark BB′ , maxi∈I BBi.

Thus, our mechanism is not responsible for generating any revenue if all players are collusive,
but must generate revenue at least half of BB′ otherwise. This guarantee holds in a strong collusion
model: that is, even when collusive players are capable of making side payments and coordinating
their actions via secret and enforceable agreements, and the independent players have no idea that
collusion is afoot. The only constraint is that every coalition is rational, that is, its members act so

9 It is well known that every extensive mechanism can be transformed to an “equivalent” normal-form game, but this
equivalence does not extend to privacy. Indeed, in an extensive mechanism M, a player i reveals information only if
a decision node of i is reached, and in an execution of M, only some of these nodes are reached. Transforming M into the
normal form instead asks i to reveal how he/she would like to act at any possible decision node involving him.

10 Interaction is indeed at the base of zero-knowledge proofs [51,52], where a mistrusted prover can convince a skeptical
verifier that a theorem statement is true without revealing any additional information.
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to maximize the sum of their individual utilities. In this case, an independent player i, reporting in
Step 1 an outcome ω offering a player j a subset of the goods X for a price p, need not worry whether
j is independent or collusive. If i becomes the winner and the coin toss of the mechanism is tails,
then j will answer YES if and only if his/her individual true value for X is greater than or equal to p.
Accordingly, i will report in Step 1 an outcome whose revenue is at least BBi. If an independent player
becomes the winner, then the mechanism will generate at least BB′/2 revenue. Else, some collusive
player has become the winner; but then, such a player must have reported an outcome with revenue
R ≥ BB′, and the mechanism will generate at least R/2 revenue.

Let us point out that the BB′ benchmark is actually guaranteed under a weaker requirement of
coalition rationality11.

6.2.4. Social Welfare

Note that each player i has a “truthful” strategy: to report θi and the outcome ω̂i as defined in the
proof of Lemma 4, whose revenue is exactly BBi. Since the price suggested by ω̂i for each player i′ 6= i
is no more than the true value of i′ for the suggested subset of goods for him/her, the players all say
YES when i is the winner, and player i’s utility is non-negative. Under the truthful strategy profile, the
social welfare of the final outcome is at least BB

2 . When the players overbid and report outcomes whose
revenue is higher than the corresponding BBi’s, the social welfare may be smaller than the revenue.

6.3. Variants of Our Mechanism

Our mechanism sets aside a “budget” of ε > 0 for rewarding the players and achieves the
benchmark BB/2− ε. We note that our analysis also holds if the mechanism chooses his/her reward
budget to be not an absolute value ε, but an ε fraction of the revenue it collects. In such a case, however,
its guaranteed revenue will be (1− ε)BB/2.

Furthermore, for simplicity, we have assumed that the seller/designer knows nothing about the
players. However, it is easy to accommodate the case in which he/she too has some beliefs about the
players’ valuations. For instance, in keeping with our overall approach, let ω′ be the highest revenue
outcome among all of the outcomes (A, P) for which he/she is sure that θi(Ai) ≥ Pi for all i. Then,
he/she can use ω′ as a “reserve outcome” as follows. If, in Step 1, the revenue of the outcome reported
by the winner is at least that of ω′, then he/she keeps on running our mechanism; otherwise, roughly
speaking, he/she makes himself the “winner” and continues with ω′ being the outcome reported by
the winner.
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11 That is, when the members of a coalition act so as to maximize a different function of their individual utilities. All we need
is a mild “monotonicity” condition, informally described as follows. Consider a coalition C and two outcomes ω and ω′,
such that (1) a member i of C is offered a set Ai for a price Pi in outcome ω and no goods for price P′i in ω′; and (2) every
other member j of C is offered the same set of goods Aj for the same price Pj in both outcomes. Then, the only rationality
condition that we require from C is that it prefers ω to ω′ if and only if θi(Ai)− Pi ≥ −P′i . Under this model, in Step 3 of
our mechanism, each coalition can delegate the YES or NO decisions to its members as if they were independent. Thus,
again, an independent player need not worry whether another player is independent or collusive.
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