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Abstract: Recently, the emergent dynamics in multiplex networks, composed of layers of multiple
networks, has been discussed extensively in network sciences. However, little is still known about
whether and how the evolution of strategy for selecting a layer to participate in can contribute to the
emergence of cooperative behaviors in multiplex networks of social interactions. To investigate these
issues, we constructed a coevolutionary model of cooperation and layer selection strategies in which
each an individual selects one layer from multiple layers of social networks and plays the Prisoner’s
Dilemma with neighbors in the selected layer. We found that the proportion of cooperative strategies
increased with increasing the number of layers regardless of the degree of dilemma, and this increase
occurred due to a cyclic coevolution process of game strategies and layer selection strategies. We also
showed that the heterogeneity of links among layers is a key factor for multiplex networks to facilitate
the evolution of cooperation, and such positive effects on cooperation were observed regardless of
the difference in the stochastic properties of network topologies.

Keywords: multiplex networks; cooperation; layer selection; coevolution; agent-based model

1. Introduction

The recent progress in network sciences revealed that structures of interactions among individuals
could affect the emergence and evolution of cooperative behaviors significantly [1,2]. This phenomenon
is because local interactions allow cooperative clusters to grow in the population of defectors in
general [1]. While most of the previous studies assumed that all individuals interact in a network of
a single social relationship or context, there exist different networks of social interactions in a real world,
and they are affecting each other directly or indirectly in various ways. Such a situation of interactions
among networks is known as a kind of multiplex network, multilayer network, interdependent
network, interconnected network, and a network of a network, which have recently been discussed
extensively in network sciences [3,4]. A pioneering study showed that properties of cascading failures
on interdependent networks differ significantly from those of single-network systems, in that the
existence of inter-connecting links between networks changes the threshold and the order of transition
for cascading failures [5].

According to the seminal review paper on evolutionary games on multilayer networks [4], there are
various models involving several networks, and they are called multilayer networks. When we focus
on networks of social interactions, there are two types of multilayer networks, which are called
interdependent networks and multiplex networks.

One is a situation called an interdependent network. It is assumed that there are several networks
of social interactions, termed layers, in each of which individuals play games with neighbors. Then,
a factor of interdependence is further assumed to allow the evolution process of behaviors in a layer
to affect that of another [6–11]. Wang et al. constructed a model of such interdependent networks in
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which two layers are stochastically interconnected [6]. Each individual on a square lattice is connected
to the corresponding individual on the other lattice with a fixed probability of interconnection and
plays a public good game (PGG) with neighbors including the long-range neighbor if connected.
They showed that the proportion of cooperation reached the maximum value when the probability
of interconnection was intermediate. Wang et al. also discussed the evolution process of cooperative
behaviors in a different type of interdependent network [9]. In addition to the total payoff obtained
from the Prisoner’s Dilemma game (PDG) with its neighbors in a two-dimensional regular network,
each individual may obtain an additional payoff. It is the payoff received by another individual at
the corresponding position in the other network, reflecting indirect and interdependent effects of
one network on the other. They showed that the intermediate degree of interdependence contributed to
the evolution of cooperation. Interestingly, they also demonstrated that the degree of interdependence
could self-organize to the optimal value [10] through the individual-level adaptation of it. Santos et al.
assumed that individuals play different types of games (PDG or Snow Drift Game (SDG)) in the
two layers. They discussed effects of a biased imitation, defined as the probability of imitating
a neighbor in the same layer or a neighbor in the other [11]. They demonstrated that the imitation of
a neighbor in the other network could promote the evolution of cooperation.

The other is a situation in which each individual participates in multiple networks with different
topologies simultaneously [12–14], called a multiplex network. For instance, Wang et al. assumed
the two layers of scale-free networks that had different roles: the layer in which players played
the evolutionary game to obtain their payoffs, and the layer in which players look for neighbors to
potentially update their strategy [12]. They showed that breaking the symmetry through assortative
mixing (i.e., the tendency for nodes with similar degrees to become directly connected in each layer) in
one layer and/or disassortative mixing in the other layer impedes the evolution of cooperation.

Gomez-Gardenes et al. assumed that each individual belongs to multiple random networks
(layers) and has a strategy of PDG (cooperate or defect) for each layer. The population evolves
according to the fitness determined by the accumulated payoff of the games with neighbors in all of the
layers [13]. They found that the multiplex structures could facilitate the evolution of cooperation only
when the temptation to defect was large. Zhang et al. also constructed a model of multiplex network
by assuming two layers [14]. Each layer is composed of several groups of interactions, which creates
a sub-network of groups by connecting groups with links. Each individual belongs to two groups in
different layers simultaneously and plays games with others in these groups using unrelated strategies
(cooperation or defection) across layers. The strategy of an individual evolves according to the total
payoff from games in both layers, and an individual can move to a new group within each layer.
They showed that the optimal migration range for promoting cooperation could vary depending on
both mutation and migration probabilities.

While the latter two studies clarified the effects of participation of an individual in interactions in
multiple networks on cooperation, it might be strong to assume that individuals always play games in
all of the layers because there exist physical, social and temporal constraints in a real-life situation.
Instead, we can assume that each individual actively selects not only a game strategy but also a layer
to participate in depending on the state of interactions, as a coevolutionary game approach [15]
in which properties characterizing either individual attributes or their environment coevolve with
game strategies.

Our purpose is to clarify whether and how the evolution of layer selection strategy can contribute
to the emergence of cooperation in a multiplex network of social interactions. We assume multiple
layers composed of random networks. Each individual belongs to all of the layers but selects one layer
and plays games with neighbors in the selected layer. Both the layer selection strategy and the strategy
for PDG for each layer coevolve according to the fitness based on the payoff from the games. We show
that the larger the number of layers, the larger the proportion of cooperators increases, implying that
multiplex networks can contribute to the evolution of cooperative behaviors. It is caused by the
dynamic coevolution process of strategies through which a burst of the proportion of individuals
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occurred in different layers repeatedly. We also discuss effects of the heterogeneity of layers and
network types on the evolution of cooperation.

2. Model

2.1. Multiplex Network

Figure 1 shows a schematic image of our model. There are M layers that abstract different channels
or contexts of social interactions among individuals. For example, each layer might correspond to
a friendship network or a network in a social networking service (SNS) on the Internet. Each layer
is composed of a network of interactions among individuals in the corresponding relationship.
An individual i is represented as a node nl

i (i = 0, 1, ..., N − 1) in each layer l (l = 0, 1, ..., M− 1),
and thus the individual is represented as a set of nodes {n0

i , · · · , nM−1
i }. The existence of a link

between the individual i and j in the layer l means that i and j are neighboring individuals who
can interact with each other in the layer l. In this study, the topology of each layer is defined as
an Erdös–Rényi (ER) random graph with the average degree k. It is known that cooperative behavior
is not easy to evolve in ER random graphs in comparison with networks that have regular structures
(e.g., [1,16]). We adopt this structure to see if increasing the number of layers can contribute to the
evolution of cooperation, despite such a hard situation. The evolution process of strategies at each
time step is composed of two phases: playing games and updating strategies, as explained below.

0

1

2

layer

layer

layer
i

i

i

j

Cooperate

Defect

neighborsi
2

sli = 2

spi
2 = C

Figure 1. A schematic image of our model (M = 3). Each individual selects a layer, and plays games
with its neighbors in the focal layer who selected the same layer. In other words, a game is played
between neighboring individuals in the same layer.

2.2. Playing Games

Algorithm 1 shows a pseudo-code of interaction and evolution processes in a generation.
We assume that each individual can participate in interactions in only one layer at every time step,
reflecting the physical, temporal and cognitive constraints. Thus, each individual i has a layer selection
strategy sli ∈ {0, 1, · · · , M− 1}. It determines the layer in which the individual i plays PDG with its
neighbors. Hereafter, we describe that an individual i is in the layer l if it selects the layer l (sli = l),
in that it participates in interactions in the social network represented by layer l.
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Algorithm 1 A pseudo-code of interaction and evolution processes in a generation. payoff(a, b)
represents the payoff value obtained by an individual who plays a strategy a with an opponent
playing a strategy b. neighborsl

i represents the set of the neighbors of the individual i in the layer l.
rnd(s) represents a function that returns a randomly selected element from the set s. rnddist() also
represents a function that returns a random value from the uniform distribution [0, 1].

for i = 0 to N − 1 do

(playing games)
Pi ← 0
for each individual j in neighborssli

i do

if sli = slj then

Pi ← Pi + payoff(spsli
i , sp

slj
j )

end if
end for

end for
(updating strategies)
for i = 0 to N − 1 do

(updating a PDG strategy)
j← rnd(neighborssli

i )
if Pi < Pj then

if rnddist() < | Pj−Pi
Pj−Pmin

| then

nspsli
i ← sp

slj
j

else

nspsli
i ← spsli

i
end if

end if
(updating a layer selection strategy)
j← rnd(neighborssli

i )
if Pi < Pj then

nsli ← slj
else

nsli ← sli
end if

end for
(mutation)
for i = 0 to N − 1 do

if rnddist() < µ then

nspsli
i ← rnd({C, D})

end if
if rnddist() < ν then

nsli ← rnd({0, 1...M− 1})
end if

end for
for i = 0 to N − 1 do

spsli
i ← nspsli

i
sli ← nsli

end for

Each individual i also has a strategy for PDG spl
i (cooperate (C) or defect (D)) for each layer l.

The payoff matrix of the PDG is defined in Table 1. It plays a PDG using the strategy spsli
i with

each neighboring individual j, in its selected layer sli, who is in the same layer (slj = sli) and plays

sp
slj
j . The total payoff Pi is regarded as the fitness of the individual i. For example, in Figure 1,

the individual i chooses the layer 2, and there is a neighbor in its selected layer. It obtains the payoff−1
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by cooperating with a defector in the same layer. Note that if there exist no neighbors in the selected
layer of an individual, its fitness becomes 0.

Table 1. A payoff matrix of Prisoner’s Dilemma game (PDG). b represents the temptation to defect.

Cooperate (C) Defect (D)

Cooperate (C) 1 −1
Defect (D) b −1

2.3. Updating Strategies

Each individual i updates its PDG strategy in the selected layer spsli
i and its layer selection

strategy sli according to the fitness after playing games. We assume that individuals can obtain the
information about the fitness and PDG strategies of neighboring individuals in the selected layer
before updating strategies. The value of PDG strategy spl

i in the next time step nspl
i is determined by

the following procedure:

i One individual j is randomly selected from its neighboring individuals in the layer sli (neighborssli
i )

regardless of slj.
ii If the fitness of the individual j (Pj) is higher than its own fitness Pi, nspsli

i will be spsli
j

(nspsli
i ← spsli

j ) with the following probability:

probabilityi←j =


Pj−Pi

Pj−Pmin
, if Pj > Pi,

0, otherwise,
(1)

where Pmin represents the minimum fitness among all individuals. This equation means that
each individual imitates the strategy of j with a certain probability if the fitness of the neighbor
j is higher than its own fitness. The individual i imitates the strategy of j with the highest
probability 1.0 when its fitness (Pi) is the minimum and the fitness of j (Pj) is the maximum.
This probability linearly decreases as the difference between their fitness values decreases.
Otherwise, if the fitness of the neighbor j is equal to or smaller than that of the individual i,
it does not change the strategy (nspsli

i ← spsli
i ).

iii nspl
i is replaced with C or D randomly with a mutation probability µ.

The layer selection strategy sli in the next time step nsli is determined by the following procedures:

i One individual j is randomly selected from its neighboring individuals in its selected layer sli
(neighborssli

i ) regardless of slj.
ii If the fitness of the individual j (Pj) is higher than its own fitness Pi, nsli will be slj (sli ← slj).

Otherwise, it does not change the strategy (nsli ← sli).
iii nsli is replaced with a random value from {0, 1, ..., M− 1} with the mutation probability ν.

These procedures mean that it can imitate a layer selection strategy of a better neighbor in its
selected layer, which allows an individual to move to a different layer.

Finally, all the strategies are updated simultaneously (spsli
i ← nspsli

i and sli ← nsli, for all i).
In some situations, it might be plausible to assume that changing a group or network to which

an individual belongs (i.e., its layer selection strategy) is easier than changing the strategy related
to its personality (i.e., its game strategy). The processes described above reflect such a situation
in which changes in the layer selection strategies can happen more frequently than changes in the
game strategies.

These procedures are repeated for G steps.
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3. Experiments

We conducted experiments of this model for the purpose of revealing the co-evolution dynamics
between the layer selection strategy and the cooperative behavior in multiplex networks. We used
the following values as the experimental parameters: N = 100, M = {1, 3, ..., 19}, k = 10.0,
b = {1.1, ..., 2.1}, G = 10,000, µ = ν = 0.02. spl

i and sli were initialized with random values from
their domains in the initial population. The experimental results are the average of five trials for each
combination of the parameter settings of M and b.

We aim to understand how the proportion of cooperative behaviors can change due to the
increase in the number of layers M. First, we focus on the quantitative effects M on the proportion of
cooperation among the selected strategies (spsli

i ) of all the individuals including those who have not
played games, as all the neighbors have not selected the layer, which we call PC.

We plot the average of PC over all generations with different combinations of M and b, as a heat
chart, in Figure 2. The horizontal axis shows the number of layers M, and the vertical axis shows the
temptation to defect b.

Figure 2. The proportion of cooperative behaviors among the selected strategies spsli
i (PC). The increase

in PC with increasing M and decreasing b showed that the multiplex network facilitated the evolution
of cooperation in any conditions of the Prisoner’s Dilemma.

PC increased with increasing M and decreasing b. Thus, the multiplex network facilitated the
evolution of cooperation in any conditions of the Prisoner’s Dilemma. Specifically, PC decreased
with increasing b in all of the cases of M, but the amount of decrease in PC was slightly smaller as
M increased from three. Thus, the negative effect of b on cooperative strategies could be reduced by
increasing the number of layers M. Additional experiments showed that PC increased as the average
degree k decreased.

Next, we plot the normalized entropy of the probability distribution of sli, as a measure of the
degree of dispersion of individuals over the networks in Figure 3. Because there is a difference in
the maximum values of the entropy among different cases of M, we adopted the normalized entropy
that was divided by the maximum value (log 1/M). The entropy was the smallest (0) when M = 0 by
definition. However, it almost reached the highest value when M = 2, meaning that the individuals
were uniformly distributed between two layers. As M increased and b decreased, the entropy slightly
decreased and reached around 0.8 when M = 20. This tendency implies that the uneven distribution of
individuals could contribute to the evolution of cooperation.

Then, we focus on the evolution process of the proportion of individuals and the proportion of
cooperation in the selected strategies in each layer.
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Figure 3. The normalized entropy of the probability distribution of layer selection strategies sli.
The slight decrease in the entropy with increasing M from 2 implies that the uneven distribution of
individuals could contribute to the evolution of cooperation.

We plot the transition of these indices from the 2000th to the 3000th step in typical trials when
b = 1.7 and M = 1 (Figure 4), 3 (Figure 5) and 9 (Figure 6). We focus on this period to observe
the typical transitions after the transient process from the initial population. There are M panels,
each corresponding to a layer. The horizontal axis represents step, and the red line represents the
proportion of cooperation among selected strategies (spsli

i ) of individuals in the corresponding layer l
(PC(l)). The blue line represents the proportion of individuals in the corresponding layer l ((PI(l))).
In addition, there is an additional panel on the bottom, which shows the average proportion of
cooperation in the selected strategies over all of the layers (PC), except for Figure 4.

step

Figure 4. The transition of the proportion of cooperative behaviors (red) among the selected strategies
spsli

i (PC = PC(0)) and the proportion of individuals (blue) (PI(0)) in the layer 0 when M = 1.
The proportion of cooperators slightly fluctuated at small values around 0.15. This is the baseline
behavior of a standard model for the evolution of cooperation in a single and random network.

When M = 1 (Figure 4), all individuals exist in a single layer (PI(0) = 1). The proportion of
cooperators slightly fluctuated at small values around 0.15. This is the baseline behavior of a standard
model for the evolution of cooperation in a single and random network.

On the other hand, when M = 3 (Figure 5), the average proportion of cooperators (PC) was higher
than that when M = 1. It fluctuated at around 0.25. We also see that the proportion of individuals in
each layer (PI(l)) largely fluctuated and often reached very high values. This trend means that the
individuals were distributed all over the layers, but they often got together in a layer.

Furthermore, when M = 9 (Figure 6), the average proportion of cooperators became around 0.3,
which was higher than that when M = 3. The occurrence of a burst-like rise and fall of the proportion
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of individuals (PI(l)) in a layer was more pronounced, and it often reached its peak around 0.8,
meaning that most of the individuals selected the same layer. On the other hand, the proportion of
individuals in the other layers tended to be much smaller than 0.2. We also see the gradual increase
and the rapid decrease in the proportion of cooperators before and after the burst of the proportion of
individuals, respectively.

step

Figure 5. The transition of the proportion of cooperative behaviors (red) among the selected strategies
(PC) and the proportion of individuals (blue) (PI(l)) in the layer l when M = 3. The bottom panel
shows the proportion of cooperation among all the selected layers (PC). PC fluctuated at around 0.25,
and PI(l) largely fluctuated and often reached very high values. This trend means that the individuals
were distributed all over the layers, but they often got together in a layer.

The reason for this evolutionary dynamics that facilitated the cooperation can be summarized as
follows. In this model, there are no games between individuals in different layers. Thus, the smaller
the proportion of individuals in a layer is, the higher the locality of interactions is because it decreases
the number of links used for playing games in effect. It has been pointed out that the higher locality
for the smaller number of links can facilitate the evolution of cooperation [2], and it has also been
pointed out that the existence of a certain fraction of vacant nodes may favor the resolution of social
dilemmas [17]. Thus, cooperators can invade into a layer with the smaller number of individuals
gradually. Such cooperative relationships in the layer make individuals in other less-cooperative layers
(after a burst of the number of individuals) select the focal layer, which brings about a rapid increase
in the proportion of individuals in the layer. However, this further allows defectors to invade into the
focal layer, and thus the proportion of cooperators decreases rapidly. In such a population of defectors,
individuals select other cooperative layers because it is better not to play games with neighbors than
to play games with many defectors. This process causes another burst of the proportion of individuals
in another cooperative layer.

It should also be noted that this cyclic coevolutionary process was observed more clearly when M
was larger. However, we expect that the similar dynamics, at least in part, contributed to the evolution
of cooperation even when M was smaller in which the evolutionary dynamics was more stochastic.
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step

Figure 6. The transition of the proportion of cooperative behaviors (red) among the selected strategies
(PC) and the proportion of individuals (blue) (PI(l)) in the layer l when M = 9. The bottom panel
shows the proportion of cooperation among all of the selected layers (PC). The occurrence of a burst-like
rise and fall of the proportion of individuals (PI(l)) in a layer was more pronounced, and it often
reached its peak around 0.8, meaning that most of the individuals selected the same layer.
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In Figure 7, we plot the trajectory of these two indices in the layer (0) of the top panel in Figure 6
from the 2000th to the 4000th step. The horizontal axis represents the proportion of individuals in
the layer, and the vertical axis represents the proportion of cooperative strategies among the selected
strategies in the layer. We see that the cyclic coevolution process of these indices occurred repeatedly.

Overall, repeated occurrences of this dynamic coevolution process of game strategies and layer
selection strategies are expected to maintain the high proportion of cooperators in the whole population.

Figure 7. The trajectory of the proportion of cooperative behaviors (PC) and the proportion of
individuals (PI) in the layer (0) of the top panel in Figure 6. The cyclic coevolution process of these
indices occurred repeatedly.

4. Effects of the Heterogeneity among Layers on Cooperation

In the previous experiments, we used an ER random graph as the network of each layer.
Thus, all of the layers shared the homogeneous stochastic properties of the random network
(e.g., degree distribution), but their actual topologies (i.e., node-to-node connections) were heterogeneous
because we generated each network stochastically. In other words, each individual has a different
neighborhood in each layer. We discuss the effect of this heterogeneity among layers on the evolution
of cooperation.

We conducted experiments with an additional parameter λ for adjusting the heterogeneity among
layers in the above sense. Specifically, we generated the networks of layers as follows:

i We create a single ER random graph, and assume its topology as the initial structure of all
the layers.

ii For each link in each layer, with probability λ, we rewired both ends of the link to randomly
selected nodes that have no connections between them.

This procedure ensures that all of the layers have the same node-to-node connections when
λ = 0.0, and there is no relationships among the topologies of all of the layers when λ = 1.0. Thus,
the larger λ means the larger heterogeneity among layers, and the previous results correspond to the
cases when λ = 1.0.
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Figure 8 shows the average of PC over all the generations with different combinations of M and λ.
We used the following values as the experimental parameters: N = 100, M = {1, 3, ..., 19}, k = 3.0,
b = 1.7, G = 10, 000, µ = 0.02, and λ = {0.0, 0.05, 0.1, 0.2, ..., 1.0}. The experimental results are the
average of three trials for each combination of the parameter settings of M and λ. The horizontal axis
represents the number of layer M and the vertical axis shows the average of PC over trials. Each line
corresponds to the results with different λ.

1 3 5 7 9 11 13 15 17 19

M

0.0

0.1

0.2

0.3

0.4

0.5

C
r
a
t
e

b= 1.7

λ= 0.0

λ= 0.05

λ= 0.1

λ= 0.2

λ= 0.3

λ= 0.4

λ= 0.5

λ= 1.0

Figure 8. The proportion of cooperative behaviors among the selected strategies with the different
heterogeneity among layers λ. The heterogeneity significantly contributed to the evolution of cooperation
especially as M increased.

This heterogeneity significantly contributed to the evolution of cooperation. When λ was 0, PC did
not increase at all with increasing M. On the other hand, as λ increased, PC gradually increased with
increasing M, which shows that the heterogeneity among layers is a key factor for the evolution
of cooperation.

This phenomenon is expected to be due to the reasons as follows: when λ is small, an individual
tends to have the same individuals as its neighbors in all layers. In this case, it tends to play with the
same neighbors even after it selected different layers by imitating a more adaptive neighbor. However,
such a neighbor, being imitated by the focal individual, is expected to be a defector due to its high
fitness. Thus, the focal neighbors tend to play with defectors in the case of the low heterogeneity
among layers. On the contrary, when λ is large, changing the layer selection strategy can make the
individuals have different or no neighbors in the newly selected layer, which can give more chances
for cooperative strategies to grow their clusters.

5. Effects of Network Types on Cooperation

Finally, to see the robustness of our findings discussed above, we conducted experiments with
different types of networks. Instead of using ER random graphs, we adopted a one-dimensional
Watts–Strogatz (WS) model [18] or a Barabási–Albert (BA) model [19] to generate networks in
each layer. We show the average PC when M = 1 and M = 19 with the three cases of network
topologies ER, WS and BA in Table 2. We used the following values as the experimental parameters:
N = 100, b = 1.2, G = 10,000, µ = 0.02. We used the same average degree k = 4 to generate networks
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in all the cases. PC when M = 19 was higher than PC when M = 1 in all cases. Thus, the multiplex
networks contribute to the promotion of cooperation allowing for the difference in network topologies.

Table 2. The proportion of cooperation in the selected strategies (PC) when M = 1 and M = 19 in
different types of networks. The multiplex networks contribute to the promotion of cooperation
allowing for the difference in network topologies.

Network Topology ER WS (p = 0.1) BA

PC (M = 1) 0.177 0.0286 0.241
PC (M = 19) 0.365 0.318 0.424

PC: the proportion of cooperation in the selected strategies.
ER: Erdös–Rényi, WS: Watts–Strogatz, BA: Barabási–Albert.

6. Conclusions

We discussed whether and how the evolution of layer selection strategy can contribute to the
emergence of cooperative behaviors in multiplex networks of social interactions. We constructed
a coevolutionary model of cooperation and layer selection strategies in which each individual selects
one layer from multiple layers and plays the Prisoner’s Dilemma with neighbors in the selected layer.

From the results of experiments, we found that the proportion of cooperative strategies increased
with increasing the number of layers regardless of the degree of the dilemma, and this increase occurred
due to the cyclic coevolution processes of game strategies and layer selection strategies. The emergence
of such a cyclic process has been pointed out by the study of coevolution between cooperative behavior
and network structure interaction in which the network rewiring strategies can coevolve with the
game strategies [20,21]. This suggests that such a dynamic process could be a common phenomenon
in the real world.

We also showed that the heterogeneity among layers is a key factor for multiplex networks
to facilitate the evolution of cooperation, and such positive effects on cooperation were observed
regardless of the difference in stochastic properties of network topologies. Future work includes
experiments with a multiplex network composed of different types of complex networks.
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