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Vulnerable Funds?

February 28, 2017

Abstract

There is an active debate on whether asset managers contribute to financial instability. In
this paper, we perform a macro-prudential stress test in order to quantify systemic risks in
the mutual fund sector. For this purpose we include the well-documented flow-performance
relationship as an additional funding shock in the model of Greenwood, Landier, and Thes-
mar (2015), where systemic risks can arise due to funds’ fire sales of commonly held assets.
Using data on U.S. equity mutual funds for the period 2003-14, we quantify both fund-specific
and aggregate vulnerabilities over time. Our main finding is that the system’s aggregate
vulnerability is generally small and its time dynamics strongly depend on the choice of price
impact parameters. This suggests that systemic risks among mutual funds are unlikely to
be a major concern, at least when looking at this part of the financial system in isolation.
Finally, we explore the determinants of individual funds’ vulnerability to systemic asset liq-
uidations. Here, we highlight the importance of fund size, diversification levels, and portfolio
illiquidity.

Keywords: asset management; mutual funds; systemic risk; fire sales; liquidity
JEL classification: G10; G11; G23

1. Introduction

Ever since the global financial crisis of 2007-09, the shadow banking system (or more ac-

curately non-bank non-insurer financial intermediaries) has been under close scrutiny with

regard to its potential contribution to financial instability (FSB (2011,2015); OFR (2013);

ECB (2014); IMF (2015)). This is particularly true of the global asset management industry

which has grown tremendously both in terms of size and importance over the last decades.

Figure 1, which is reproduced from BIS (2014, p. 115), illustrates this growth for the period

2002-12 by showing the total assets held by the 500 largest global asset managers over this

period. This growth highlights the increasing importance of market-based financial inter-

mediation, which might be beneficial in the sense that it provides businesses and households

with additional funding channels (BIS (2014)). However, this growth might also entail some

risks. For example, Figure 1 illustrates an increasing trend towards a more concentrated

industry: the share of assets held by the 20 largest institutions has grown steadily over time
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(see also ECB (2014)).1 Thus, the behavior of a relatively small number of asset managers

might have a strong impact on market dynamics and ultimately on funding costs for the

real economy.2

Figure 1: Growth and concentration in the asset management industry. The plot is taken from (2014,
p. 115) and shows both the total assets under management for 500 global asset managers and the share of
assets held by the 20 largest institutions.

So far, there is no clear consensus whether the investment fund industry, which is by

far the most important subset of asset managers, contributes to financial instability. On

the one hand, empirical evidence suggests that significant portfolio overlap and correlated

trading strategies in the fund industry can indeed have major systemic repercussions. Two

prominent examples are the role of portfolio insurers in the market crash of October 1987

and the systemic repercussions of the hedge fund Long Term Capital Management in 1998.

On the other hand, leading industry figures argue that investment funds are not a source

of systemic risk, mainly because investment funds are subject to tight leverage constraints

(see, for example, ICI (2016)). Therefore, there is a general need for regulators and policy

makers to understand whether this sector is vulnerable to systemic crises. How to quantify

systemicness of funds or the asset management industry is an ongoing debate. The FSB

(2015) defines asset liquidation and exposure risk as channels through which stress in the

1We will see below that we do not necessarily observe a similar trend for the subset of U.S. equity funds
that are the main focus of this study.

2Portfolio managers are typically evaluated on the basis of short-term performance, and fund revenues
are linked to fluctuations in customer fund flows. These arrangements can exacerbate the procyclicality
of asset prices, and greater concentration in the sector could in fact strengthen this effect, see Feroli et
al. (2014), and Morris and Shin (2014).
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fund sector might be propagated. Therefore, the FSB proposed size and leverage as indica-

tors of systemicness in the fund sector. However, Danielsson and Zigrand (2015) advocate

focusing on the negative externalities stemming from funds in order to gauge their impact

on financial instability.

This paper is the first to quantify the vulnerability of and externalities stemming from

the U.S. mutual fund sector to systemic asset liquidations. Specifically, we focus on the

economically important set of domestic equity funds. In 2016, this fund type accounted for

more than 52% of the sector’s asset (see ICI (2016)). The main advantage of restricting

ourselves to this particular subset of funds is that we have both detailed data on these

funds’ stock portfolios for the period 2003-14, and we can also match the holdings data with

stock-specific information (most importantly, price impact parameters).

We perform a macro-prudential stress test which accounts for both funding liquidity

shocks and fire-sale price dynamics, thus including the two key components of stress-tests

identified by Greenwood and Thesmar (2011), and Tarullo (2016). The stress test is based

on an extension of the model by Greenwood, Landier, and Thesmar (2015), who proposed

a simple model to assess systemic vulnerabilities due to fire sales in the banking sector. In

our model, systemic risks can arise due to significant overlap in funds’ investment portfolios,

coupled with imperfectly illiquid asset markets and funding liquidity being driven by funds’

past performances.

The underlying idea of the here developed macroprudential asset manager stress test is

rather straightforward: suppose that a leveraged investor experiences a negative asset price

shock to his asset portfolio. Assuming that the investor has a fixed leverage target, he will

have to liquidate some of his asset holdings in response to a negative shock. This selling

pressure will have a negative impact on asset prices, thereby affecting other funds holding

similar assets in their portfolios. This can have further knock-on effects on market prices if

these funds have to liquidate some of their own asset holdings.

In the Greenwood, Landier, and Thesmar (2015) model, systemic risks are largely driven

by leverage - something that makes sense for highly leveraged financial institutions like

banks. However, directly applying this model to the mutual fund sector is not likely to be

informative, mainly because mutual funds generally make very little use of leverage and rely

instead on short-term funding by promising daily redeemable fund shares (e.g., Pozen and

Hamacher (2011)). Therefore, we extend the model by including the well-documented flow-

performance relationship (Sirri and Tufano (1998); Berk and Green (2004)), which means

that negative returns will be followed by additional (net)outflows. Hence, in the extended
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model, the original fire-sale mechanism could be relevant even in the absence of leverage,

and a small initial shock could potentially wipe out significant parts of the fund industry’s

asset holdings.

The extended model allows us to quantify the vulnerabilities of both the aggregate mutual

fund sector and those of individual funds over time. Our main finding is that the system’s

aggregate vulnerability is generally small and its time dynamics strongly depend on the

choice of price impact parameters. For example, despite the strong growth of the system

over our sample period, we find that aggregate vulnerability only increases when we keep

the price impact parameters constant over time and identical across stocks. Even in this

case, however, aggregate vulnerabilities are small: in response to a negative shock of -5% on

all stocks, the maximum value of aggregate vulnerability (i.e., the fraction of equity wiped

out due to the fire-sale mechanism, relative to initial equity) is in the order of less than

0.0001%. We identify three reasons for these very small numbers: (1) mutual funds use

little leverage; (2) the flow-performance relationship is weak; and (3) the typical overlap

between funds’ stock portfolios is strong but relatively far from its maximum value. In

particular, the fact that mutual funds are subject to tight leverage constraints leaves us

with tiny vulnerabilities in comparison with those reported by Greenwood, Landier, and

Thesmar (2015) for the largest European banks. In summary, these results suggest that

systemic risks among mutual funds are unlikely to be a major concern, at least when looking

at this part of the financial system in isolation. We discuss the implications of these findings

below. Finally, we explore the determinants of individual funds’ contribution to systemic

asset liquidations. Here, we highlight the importance of fund size, diversification levels, and

portfolio illiquidity.

Our paper mainly adds to the literature on systemic risks in financial networks, first by

developing a macroprudential stress-test to gauge systemic risk in the mututal fund sector,

and second, by exploring fund characteristics that contribute to systemic risk. To the best

of our knowledge, this is the first paper that developes a macro-prudential stress-test for

the mutual fund industry.3 Dunne and Shaw (2017) are closest to our work as they relate

fund-specific characteristics, such as leverage or usage of derivatives, to their exposure to a

tail event in the fund sector (Marginal Expected Shortfall). By contrast, the vast majority of

existing work tends to concentrate on systemic risks in the banking system (Allen and Gale

(2000); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015); Glasserman and Young (2016)).

3We are only aware of a blogpost published by the New York Fed (see Cetorelli, Duarte, and Eisenbach
(2016)).
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Note that this literature is mainly concerned with default contagion in interbank markets,

where banks can be connected either directly (e.g., via borrowing and lending relationships

on the interbank market) or indirectly (e.g., via holding similar assets in their portfolios).

Glasserman and Young (2015) showed that direct connections between banks are unlikely

to be a major source of systemic risk, but contagion can be dramatically amplified when

allowing for indirect connections between banks as well. In line with mounting empirical

literature on the existence of fire-sales in various asset markets (e.g., Pulvino (1998) for real

assets, Coval and Stafford (2007) for equities, and Ellul, Jotikasthira, and Lundblad (2011)

for corporate bonds), a growing literature is thus looking at the importance of overlapping

portfolios as a source of systemic risk (Cifuentes, Ferrucci, and Shin (2005); Wagner (2011);

Caccioli et al. (2014); Greenwood, Landier, and Thesmar (2015)). We add to this literature

by using actual data on mutual funds’ stock portfolios in order to quantify the sector’s

vulnerability to systemic asset liquidations over a relatively long sample period.

The remainder of this paper is organized as follows: in section 2, we introduce an ex-

tended version of the model developed by Greenwood, Landier, and Thesmar (2015) that

is more relevant for the mutual fund sector. In section 3, we describe our dataset, explain

in detail how we calibrate the model parameters, and calculate fund-specific and aggregate

vulnerabilities. In section 6, we discuss our main findings, and section 7 concludes.

2. Model

In this section we present an extended version of the model introduced by Greenwood,

Landier, and Thesmar (2015). There are N funds (investors) and K assets (investments).

Let M{N×K} denote the matrix of portfolio weights, where each element 0 ≤ Mi,k ≤ 1 is

the market-value-weighted share of asset k in investor i’s portfolio, and
∑

k Mi,k = 1 by

definition. Each fund i is financed with a mix of debt, Di, and equity, Ei. A{N×N} is the

diagonal matrix of funds’ assets with Ai,i = Ei +Di ∀i. B{N×N} is the diagonal matrix of

leverage ratios with Bi,i = Di/Ei ∀i. Finally, F1 denotes a (K × 1) vector of asset-specific

returns (this is the initial shock). All pre-shock variables have a time index of 0.

The main steps are as follows:

1. We impose an initial shock on the value of funds’ asset holdings.

2. The initial shock will lead investors in mutual funds to withdraw some of their money

(flow-performance relationship).

3. Funds have fixed leverage targets and aim to keep their portfolio weights constant.

4. Asset liquidations have price impact.
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In the following, we describe these steps in detail.

2.1. Step 1: Initial Shock

In matrix notation, we obtain funds’ portfolio returns as

R1 = MF1, (1)

with R1 being a (N × 1) vector. This gives us funds’ updated total assets

A1 = A0(1 +R1), (2)

which yields to an equivalent change in the net asset value of funds’ equity

E1 = E0 + A0R1,
4 (3)

and debt (assuming that the initial shock does not wipe out all of the funds’ equity)

D1 = D0. (4)

2.2. Step 2: Response on the Funding Side

In line with a vast existing literature (e.g., Sirri and Tufano (1998); Berk and Green

(2004)), we assume a positive linear relationship between fund performance and net inflows.

Hence, negative (positive) fund performance is followed by an outflow (inflow) of money. To

allow for different responses for different types of funding, we derive the equations for the

general case where equity and debt may have different flow-performance sensitivities, γE

and γD, as introduced below.5

The most simple scenario is that net equity inflows (in absolute terms) are a linear

function of a fund’s realized portfolio return from step 1. This can be written as

∆E2

E1
= γER1, (5)

4If the initial shock is large enough, equity could become negative. To avoid this from happening, we
could write E1 as max(E0 + A0R1, 0) and D1 as D0 +min(E0 + A0R1, 0). For simplicity, we assume that
the initial shock is small enough to not wipe out the entire equity.

5In the case of investment funds, investors can redeem their equity shares, while in the case of banks, some
short-term borrowing may dry up. In the general case, equity and debt may be redeemed simultaneously.
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where γE is the flow-performance sensitivity parameter of equity, and ∆E2 is the net inflow

in dollars. Note that the assumed linearity implies that positive and negative returns are

treated symmetrically, whereas empirically there appears to be an asymmetry in the flow-

performance relationship (see Sirri and Tufano (1998) for equity funds, and Goldstein, Jiang,

and Ng (2016) for bond funds).6 Similarly, we can write the change in refinancing power as

∆D2 = γDR1D1 = γDR1D0, (6)

where γD is the flow-performance sensitivity parameter of debt, and ∆D2 is the net inflow

in dollars.7

With these additional adjustments on the liability side of the balance sheet, updated

equity and debt can be written as

E2 = E1(1 + γER1), (7)

and

D2 = D1(1 + γDR1). (8)

Using the above definitions for D1 and E1, we can write total assets as

A2 = A1 +∆E2 +∆D2

= A0

(

1 +R1

(

1 + γE

(

R1 +
1

1 +B

)

+ γD B

1 +B

))

,
(9)

where we have used the fact that E0/A0 = 1/(1 + B). The fund has to liquidate assets in

order to make the payments, which will affect demand in step 3 below.

Note that the additional funding shock can be seen as an amplifier of the original shock.

6In order to keep the model as simple as possible, we stick to the linear relationship in the following.
The model can also be written down for more general nonlinear relationships, but this comes at the cost of
having to estimate additional model parameters.

7 Eq. (6) seems most reasonable for institutions with very short-term debt financing. In fact, we would
achieve similar results to those presented here if we distinguish between short- and long-term debt financing,
respectively, D0 = DL

0 +DS
0 . That would allow us to assume more realistically that only short-term creditors

would be prone to withdraw their funds (not roll over the loans), while long-term debt is much more slow-
moving, see Gorton and Metrick (2012).
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More precisely, we can write the adjusted portfolio return (before asset liquidation) as

R̃2 =
A2 − A0

A0

= R1

(

1 + γE

(

R1 +
1

1 +B

)

+ γD B

1 +B

)

.8
(10)

Hence, all other things equal, R̃2 will be closer to R1 for more leveraged firms (higher B),

with a weaker flow-performance sensitivity (lower γE and γD).

For the case of no withdrawal of debt, we would impose γD = 0 and γE 6= 0, whereby

γE > 0 would . In this case, the adjusted fund return reads as

R̃2 = R1

(

1 + γE

(

R1 +
1

1 +B

))

. (11)

The relationship between R̃2 and the parameters γE and B is nonlinear and can have

a substantial impact on the resulting portfolio returns in the model. For example, a fund

without leverage (B = 0) and γE = 2.5 will have a R̃2 that is amplified by a factor of 3

compared to the original R1. Note that the flow-performance relationship will be somewhat

milder for less levered funds (higher B amplifies R1 less strongly) since their equity tranche

is relatively small. As we will see below, highly levered fund will, however, liquidate more

assets in order to achieve their leverage target (next step).

Finally, note that in the case where equity and debt have the same flow-performance

sensitivity, i.e., where γ = γE = γD, Eq. (10) reduces to

R̃2 = R1 (1 + γ(1 +R1)) . (12)

2.3. Step 3: Leverage Targeting with Fixed Portfolio Weights

In line with Greenwood, Landier, and Thesmar (2015), we assume that funds target

their leverage and aim their portfolio weights constant when liquidating (or buying) assets.

These two assumptions are quite realistic given that funds need to specify the composition

of both their asset and liability side in their sales prospectuses. Given that funds will have

to liquidate an amount ∆E2 + ∆D2 due to the withdrawal of short-term funding (equity

and debt) after a negative shock, we need to add this component to the total amount to be

liquidated

φ̃ = γEM′E1R1
︸ ︷︷ ︸

Net inflow of equity

+ γDM′D1R1
︸ ︷︷ ︸

Net inflow of debt

+ M′A0BR̃2
︸ ︷︷ ︸

Leverage targeting

, (13)
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which gives (K × 1) vector of net asset purchases by all funds in period 3. The last term

in Eq. (13) corresponds to the φ in the Greenwood, Landier, and Thesmar (2015) model,

which we recover when we set γD = γE = 0. Eq. (13) assumes that both γD and γE are the

same across funds. We can easily account for a more general case by setting up two diagonal

matrices ΓE
{N×N} and ΓD

{N×N}, where each element γE
i,i and γD

i,i can be fund specific.9 With

this formulation, we end up with

φ̃ = M′
(
ΓEE1 + ΓDD1

)
R1 +M′A0BR̃2, (14)

where the vectorized version of Eq. (10) can be written as

R̃2 = R1 ◦
[
1N + ΓE(R1 + (1 +B)−11N) + ΓDB(1 +B)−11N

]
, (15)

where 1N is an (N × 1) vector of ones, and ◦ denotes element-wise multiplication.

2.4. Step 4: Fire-Sales Generate Price Impact

Asset sales generate a linear price impact

F3 = Lφ̃, (16)

where L is the matrix of price impact ratios, expressed in units of returns per dollar of net

sales. This gives a final return of

R3 =MF3 = MLφ̃ · · ·

=MLM′
([

ΓEE1 + ΓDD1

]
R1 +A0BR̃2

)

.
(17)

Note that, if anything, the linearity assumption made here likely overestimates the actual

price impacts and thus the vulnerability of the system. Empirically, it has been documented

that price impact appears to follow a square-root law, i.e., is a concave function (see XXX).

Hence, liquidating twice as many assets should lead to a price impact that is less than twice

the original one.

2.5. Measuring Vulnerability Exposures

Consider what happens after a negative shock, F1 = (−f1,−f2, · · · ,−fK), to asset prices:

it translates into dollar shocks to funds’ assets given by A1MF1. The aggregate direct effect

9Assuming that the Γ matrices are diagonal implies that we ignore cross-fund correlations in the net
inflows.
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on all funds’ assets is the sum of these values: 1′NA1MF1. This shock will have additional

knock-on effects for individual funds due to investors’ fund share redemptions. Funds’ net-

inflows are equal to (ΓEE1 + ΓDD1)MF1, which we can aggregate as before by multiplying

with 1N . Note that these direct effects do not involve any contagion between funds. The

model suggests, however, that funds with similar asset holdings should have similar outflows

and similar sensitivities to fund returns.

Using Eq. (17), we can compute the aggregate dollar effect of shock F1 on fund assets

through fire-sales. To do so, we pre-multiply by 1′NA0, and normalize by the initial total

equity, E0,

ÃV =
1′NR3

E0
=

1′NA0MLM′
([

ΓEE1 + ΓDD1

]
R1 +A0BR̃2

)

E0
. (18)

ÃV measures the percentage of aggregate fund equity that would be wiped out by funds’

asset liquidation in case of a shock of F1 to asset returns. Similar to Greenwood, Landier,

and Thesmar (2015), we can decompose aggregate vulnerability into each fund’s individual

contribution

Si =
1′NA0MLM′δiδ

′
i

([
ΓEE1 + ΓDD1

]
R1 +A0BR̃2

)

E0

, (19)

where δi is a (N × 1) vector with all zeros except for the ith element, which is equal to one,

and
∑N

i Si = ÃV .

Finally, we also define a fund’s indirect vulnerability with respect to shock F1 as the

impact of the shock on its equity through the deleveraging of other funds:

IVi =
δ′iA0MLM′

([
ΓEE1 + ΓDD1

]
R1 +A0BR̃2

)

Ei,i

. (20)

To the best of our knowledge, there is no documented evidence on a flow-performance

relationship with regard to debt financing for mutual funds; therefore, we set γD = 0 in

everything that follows. In summary, the model relies on five crucial inputs: (1) fund size;

(2) fund leverage; (3) portfolio weights; (4) flow-performance relationship; (5) price impact

parameters.
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3. Model Application: Vulnerable U.S. Equity Funds?

In this section, we apply the model to the set of U.S. domestic equity funds. We restrict

ourselves to this particular fund type since we have accurate information on their asset

portfolios over a relatively long sample period. Moreover, we can match these portfolio

holdings with stock-specific information from CRSP, which allows us to estimate the price

impact parameters separately for each stock over time. In the following, we will explain in

detail how we calibrated the model parameters and show how the aggregate vulnerabilities

depend on different parameter choices.

3.1. Data

The data used here come from two different sources. First, we obtain mutual funds’

portfolio holdings and additional fund-specific information from the CRSP Survivor-Bias-

Free Mutual Fund Database (following the literature, we aggregate different share classes

to the fund level). Portfolio holdings are available at the quarterly level from March 2003

onwards and our final sample comprises 48 quarters between 2003-Q1 and 2014-Q4.10 In

everything that follows, we disregard short positions. Second, we obtain daily stock-specific

information from the merged CRSP-Compustat data. The merged dataset gives us detailed

information on the domestic equity holdings of U.S. mutual funds and we therefore restrict

ourselves to equity funds with a focus on domestic stocks (we only kept funds with CRSP

objective codes starting ’ED’). Note that we do not exclude index funds from our analysis;

while this is standard practice in other strands of literature (e.g., in performance analysis

only actively managed funds are considered), index funds are subject to the same fire-sale

mechanism described above.

The final sample contains 7,914 unique funds and 98,054 fund-quarter observations.

3.2. Estimation of Model Parameters

In the following, we describe in detail how we estimated the necessary model parameters

from our dataset.

3.2.1. Fund Size

Fund size is defined as the dollar value of a fund’s portfolio as reported in the matched

holdings data. The left panel of Figure 2 shows the total dollar volume of the system over

10Note that there is a structural break in the fund identifiers in CRSP: all fund ID’s were replaced with
new ones from 2010-Q3 to 2010-Q4. Moreover, there are no holdings data available for 2010-Q4 and, for
the sake of simplicity, for this particular quarter we take the portfolio holdings from 2010-Q3 in the analysis
below (alternatively we could set the 2010-Q4 results to missing).
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Figure 2: System size. Left: total dollar value of mutual funds’ equity holdings over time in 2014 US$
(trillion). The solid line shows the values when including all funds that report their holdings in the CRSP
Mutual Fund Database, and the dashed line shows the values for domestic equity (DE) funds only which
will be the main focus of this study. Right: number of DE funds and stocks in our sample over time.

time in trillion dollars, adjusted for inflation (indexed to 2014-Q4 based on the CPI available

from the St. Louis Fed) to make them comparable over time.11 The solid line shows the total

volume when including all reported holdings, and the dashed-dotted line shows the values

for domestic equity funds (DE) only. Clearly, the system has grown over the sample period,

partly because the market value of the asset holdings depends on market prices, which also

explains the strong effect of the global financial crisis in Figure 2. The right panel of Figure

2 shows the number of DE funds and the number of active stocks.12 We see that the number

of active funds has increased quite significantly over our sample period, while the number

of stocks has been shrinking over time.

As discussed by Greenwood, Landier, and Thesmar (2015), a more concentrated system

might be more vulnerable to systemic asset liquidations. Figure 1 above shows that the asset

holdings of the 500 largest global asset managers have become increasingly concentrated over

the last decade. An obvious question is whether there is a similar trend for the set of DE

11In the following, we adjusted all nominal dollar volumes for inflation.
12Active funds are defined as those DE funds that report their holdings in CRSP in a given quarter.

Active stocks are defined as those stocks that are held by at least one fund and for which we have additional
information in CRSP/Compustat.
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Figure 3: Concentration. Fraction of total holdings held by the largest 1, 5, and 20 fund(s), respectively.

funds considered in this study. Figure 3 shows the size of the largest fund(s) relative to

the total size of the system over time. More precisely, we calculate the fraction of total

assets held by the largest fund, the 5 largest funds, and the 20 largest funds, respectively.

Somewhat surprisingly, we find that the fraction of assets held by the largest and the 5

largest funds has been relatively stable, while the share of the largest 20 funds has actually

decreased over time. This might be driven by the steady growth in Exchange Traded Funds

over our sample period. Overall, based on these dynamics alone, we would not expect

aggregate vulnerabilities to increase over time.

3.2.2. Leverage

It is well known that mutual funds in the U.S. are subject to tight leverage constraints.

According to the Investment Company Act of 1940, ”[b]y law, the value of its borrowings

may not exceed one-third of the value of its assets” (see Pozen and Hamacher (2011, p. 28)).

In terms of our model, this means that the maximum value of D
A

is 0.33, or equivalently,

the maximum value of leverage is B̄ = 0.5. Unfortunately, our dataset does not include
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the funding side of funds’ balance sheets. Given that we are ultimately interested in the

maximum vulnerability of the system, we assume that all funds are using maximum leverage

of B̄. We see this as the most conservative choice, but one should keep in mind that

Greenwood, Landier, and Thesmar (2015) report leverage values exceeding 30 for the largest

European banks. Therefore, we expect the mutual fund sector to be much less vulnerable

to systemic asset liquidations than banks.

3.2.3. Portfolio Weights

In our dataset, we observe the actual equity holdings of U.S. mutual funds. The most

granular holdings matrix is M{N×K}, where N is the number of active funds and K the

number of active stocks.13 Recall that an element Mi,k ≥ 0 gives the weight of stock k in

fund i’s portfolio (share of market value), with
∑

k Mi,k = 1 ∀i.

Since we observe additional information on the stocks, we also run our model based on

more coarse-grained portfolios, sayMa
{N×Ka} withKa < K. In the following, we focus on SIC

industry codes (4-digits, 2-digits, and 1-digit).14 For example, the 4-digit SIC classification

defines 1,353 unique industry codes, and each element Ma
i,k shows the portfolio weight of

stocks from industry k in fund i’s portfolio. The 2- and 1-digit classifications are defined in

a similar fashion and contain 84 and 10 industries, respectively. Clearly, with fewer asset

classes, the average overlap between any pair of investors will be higher (see below), meaning

that the system’s vulnerability for the more granular portfolios Ma will always exceed that

of the most granular portfolios M.

In Greenwood, Landier, and Thesmar (2015), aggregate vulnerability depends on the

typical overlap of investors’ portfolios. One obvious question, therefore, is whether we

observe an increasing trend in portfolio overlap. In order to answer this question, we define

the overlap of two funds’ portfolios as

Overlapi,j =

∑K

k=1Mi,kMj,k
√
∑K

k=1(Mi,k)2 ×
√

∑K

k=1(Mj,k)2
, (21)

where i 6= j.15 Technically, Overlap is defined as the angle between the vectors of portfolio

weights between fund i and fund j. Overlap ranges between 0 and 1, with higher values

13Note that only active stocks are of interest in the following, since stocks need to be held by at least one
mutual fund to be subject to any kind of fire-sale cascades.

14We also classified stocks into different size deciles (based on market capitalization). In terms of aggregate
vulnerability, the results are comparable to those reported below for the SIC classification.

15Other measures of portfolio overlap yield similar results (available upon request from the author).
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Figure 4: Portfolio overlap. For each quarter we show the cross-sectional average value of Eq. (21) for
different aggregation levels. ’Stocks’ corresponds to the original holdings reported in the CRSP Mutual
Fund Database.

indicating more similar portfolios. If two funds have no assets in common, their overlap is

0; if they hold the exact same portfolios, their overlap is 1.

Figure 4 shows the cross-sectional average overlap over time for different levels of port-

folio aggregation.16 The solid line shows the typical overlap based on the most granular

stock-specific portfolios; the other cases show the results for the aggregated industry-specific

portfolios. As expected, portfolio overlap increases with fewer asset classes. In all cases,

the values are significantly larger than the minimum value of zero, but similarly the values

are also always substantially below its maximum possible value of one. With regard to

the evolution over time, we do not observe any clear trends in portfolio overlap for either

aggregation level. In fact, the values appear to be remarkably stable for all aggregation

levels. Hence, an increasing number of active funds and a decreasing number of securities do

not necessarily translate into an increasing portfolio overlap. Again, from these figures one

16The results are largely comparable for other definitions of portfolio overlap.
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would not expect an increasing trend in aggregate vulnerability purely due to the dynamics

of portfolio overlap.

3.2.4. Price Impact

We apply a a data-driven approach for quantifying asset fire-sale price impacts and

estimate stocks’ price impacts based on the daily CRSP data. For this purpose, we use the

standard Amihud-ratio as our measure of price impact (Amihud (2002). Goyenko, Holden,

and Trzcinka (2009) have shown that the Amihud-ratio is indeed an adequate proxy for

monthly illiquidity conditions.

The Amihud-ratio is simply defined as the daily absolute return over the total dollar

volume,

Amihudk,d =
|Returnk,d|

DVolumek,d
. (22)

For each stock separately, we then take the quarterly average of these daily observations and

define the price impact of that stock in quarter t as

PriceImpactk,t =
1

Dk,t

∑

Amihudk,d, (23)

where Dk,t is the number of daily observations for stock k in quarter t. As for the value of

the total holdings above, we adjust the price impacts for inflation (the denominator is based

on nominal dollar volumes). This adjustment allows us to compare price impacts over time.

As an illustration of the overall dynamics, Figure 5 shows the cross-sectional average

(equal-weighted and value-weighted) price impact over time, as defined in Eq. (23), on a

semi-logarithmic scale. Not surprisingly, the value-weighted average is much smaller since

larger stocks are substantially more liquid than smaller stocks. In the Figure, we see that

the value-weighted price impact is two orders of magnitude smaller than the equal-weighted

price impacts. Due to the dependence of the Amihud-ratio on volatility, it also comes as

no surprise that there is a clear peak in price impacts during the global financial crisis.17

Finally, it is worth noting that the typical price impact is several orders of magnitude larger

than the values determined by Greenwood, Landier, and Thesmar (2015): the average values

in Figure 5 are 4.77× 10−6 and 1.11× 10−8, respectively.18

17In Appendix A we show the typical price impacts for very active trading days.
18For the set of large European banks, Greenwood, Landier, and Thesmar (2015) assume a price impact

of 10−13 for most of their asset classes. The main reason is that Greenwood, Landier, and Thesmar (2015)
compute the implied price impact of the complete stock market by aggregating the individual ratios according
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Figure 5: Price impact. For each stock, we calculate the daily Amihud-ratio as |Returnk,t|/DVolumek,t,
where |Returnk,t| and DVolumek,t are the absolute return and the dollar volume of stock k on day t,
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We should note that whenever we aggregate funds’ stock portfolios to the SIC industry

level, we calculate the price impact of each industry bucket as the weighted average of the

individual stocks in that particular bucket.

3.2.5. Flow-Performance Relationship

The existence of a flow-performance relationship has become something of a ’stylized

fact’ in the mutual fund literature. The basic idea is that there is a positive relationship

between funds’ past performance and their future net inflows.19 The estimation equation is

Flowsi,t = α+ β × Controlsi,t + γE × Returni,t−1 + ǫi,t, (24)

where Flowsi,t is the net inflow of fund i in month t, which we calculate as

Flowsi,t =
TNAi,t − TNAi,t−1(1 + Returni,t)

TNAi,t−1
, (25)

where TNA are total (net) assets. There are many different ways to estimate parameter γE :

first, one has to decide on the time dimension, i.e., do we estimate parameters for the full

sample (γE is constant over time) or based on rolling window regressions? Secondly, one has

to decide whether the parameter should be estimated separately for each fund (in which case

γE would have a fund-specific index i), or whether one wants to pool data for different funds

(e.g., across all funds or by fund type). Since there are no obvious answers to these questions,

we use the most simple approach in the following, namely we pool observations for all funds

over time and estimate one γE for all funds.20 This way, the estimated vulnerabilities in the

next section will not be driven by any time dynamics in the flow-performance relationship.

Table 1 shows the results of this exercise, using different control variables and estimation

approaches. Columns (1) to (5) show the results using simple pooled OLS: the first column

only includes the lagged (1-month) return and flow as control variables. The other columns

then add further lags, fund age, fund size, and fund-/time-FEs to the regressions. Overall,

we find that the parameter on Return(t-1) is always strongly positively significant, but

to
∑

k(wk)
2(Amihudk)

2 (see footnote 12 in the working paper version of their article). It is not clear why
one should use squared price impacts in the first place, and we rather stick to the raw Amihud value in
everything that follows.

19The literature has, however, also documented an asymmetry in the relationship: positive returns are
followed by different net flows than negative returns (in absolute terms).

20We add further data filters for these regressions: we exclude funds that are less than one year old, and
we also drop extreme flow/return observations (above/below +200%/-50%).
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Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3) (4) (5) (6)

Return(t-1) 0.0512** 0.0633** 0.0738** 0.1343** 0.1573** 0.3011**
(0.0042) (0.0039) (0.0038) (0.0097) (0.0097) (0.0289)

Return(t-2) - 0.0135** 0.0316** 0.0618** 0.0980** 0.1621**
(0.0037) (0.0035) (0.0086) (0.0087) (0.0186)

Return(t-3) - 0.0139** 0.0307** 0.0260** 0.0631** 0.0703**
(0.0039) (0.0038) (0.0096) (0.0094) (0.0235)

Return(t-4) - 0.0170** 0.0360** 0.0388** 0.0761** 0.0800**
(0.0039) (0.0038) (0.0092) (0.0091) (0.0177)

Return(t-5) - 0.0016 0.0227** 0.0146 0.0560** 0.0426 *
(0.0038) (0.0037) (0.0086) (0.0086) (0.0191)

Return(t-6) - 0.0017 0.0219** 0.0064 0.0481** 0.0506 *
(0.0039) (0.0039) (0.0093) (0.0095) (0.0254)

Return(t-7) - 0.0021 0.0166** 0.0223 * 0.0618** 0.0620**
(0.0038) (0.0037) (0.0091) (0.0090) (0.0147)

Return(t-8) - -0.0023 0.0096** 0.0023 0.0421** 0.0515**
(0.0038) (0.0037) (0.0089) (0.0089) (0.0162)

Return(t-9) - 0.0119** 0.0278** 0.0231 * 0.0622** 0.0350**
(0.0040) (0.0039) (0.0093) (0.0093) (0.0131)

Return(t-10) - -0.0148** 0.0023 -0.0214 * 0.0196 * 0.0595
(0.0039) (0.0038) (0.0093) (0.0090) (0.0409)

Return(t-11) - 0.0221** 0.0396** 0.0474** 0.0863** 0.0336 *
(0.0037) (0.0036) (0.0088) (0.0088) (0.0158)

Return(t-12) - 0.0081 * 0.0306** 0.0106 0.0541** 0.0879
(0.0035) (0.0035) (0.0085) (0.0086) (0.0561)

Flows(t-1) 0.0774** 0.0654** 0.0183** 0.0633** 0.0154** 0.0775**
(0.0045) (0.0057) (0.0057) (0.0057) (0.0057) (0.0110)

Flows(t-2) - 0.0767** 0.0355** 0.0762** 0.0343** 0.0753**
(0.0050) (0.0048) (0.0050) (0.0048) (0.0068)

Flows(t-3) - 0.0563** 0.0215** 0.0563** 0.0206** 0.0152
(0.0048) (0.0047) (0.0048) (0.0047) (0.0442)

Flows(t-4) - 0.0286** -0.0024 0.0288** -0.0029 0.0358**
(0.0048) (0.0047) (0.0048) (0.0048) (0.0071)

Flows(t-5) - 0.0484** 0.0204** 0.0483** 0.0198** 0.0364 *
(0.0047) (0.0046) (0.0047) (0.0046) (0.0168)

Flows(t-6) - 0.0376** 0.0129** 0.0376** 0.0127** 0.0148
(0.0047) (0.0046) (0.0047) (0.0046) (0.0185)

Flows(t-7) - 0.0207** -0.0014 0.0213** -0.0012 -0.0077
(0.0044) (0.0043) (0.0044) (0.0043) (0.0304)

Flows(t-8) - 0.0284** 0.0062 0.0287** 0.0064 0.0619
(0.0044) (0.0044) (0.0044) (0.0043) (0.0344)

Flows(t-9) - 0.0277** 0.0086 * 0.0279** 0.0089 * 0.0458 *
(0.0044) (0.0043) (0.0044) (0.0043) (0.0194)

Flows(t-10) - 0.0234** 0.0061 0.0240** 0.0068 0.0714
(0.0042) (0.0041) (0.0042) (0.0041) (0.0406)

Flows(t-11) - 0.0159** -0.0008 0.0165** -0.0001 0.0181**
(0.0038) (0.0038) (0.0039) (0.0038) (0.0050)

Flows(t-12) - 0.0240** 0.0089 * 0.0242** 0.0093 * 0.0256**
(0.0040) (0.0039) (0.0040) (0.0039) (0.0057)

log(1+Age(t-1)) -0.0124** -0.0030** -0.0060** -0.0032** -0.0050** 0.0034
(0.0002) (0.0002) (0.0010) (0.0002) (0.0017) (0.0041)

log(TNA(t-1)) -0.0010** -0.0012** -0.0236** -0.0012** -0.0253** -0.0009
(0.0001) (0.0001) (0.0006) (0.0001) (0.0006) (0.0007)

Fund FE No No Yes No Yes -
Time FE No No No Yes Yes -
Fama-MacBeth - - - - - Yes
adj. R2 0.024 0.047 0.088 0.052 0.093 0.1573
Obs. 454,570 329,930 329,930 329,930 329,930 329,930

∗ p<0.05; ∗∗ p<0.01

Table 1: This table shows the results of the flow-performance regressions, with γE being the parameter
on Return(t-1). All regressions based on monthly data using standard OLS (robust standard errors in
parentheses). The last column shows the results when using Fama-MacBeth regressions, in which case we
report the time-series average of cross-sectional regression coefficients and the adjusted R2. Age represents
the fund age measured in months, TNA is a fund’s total net assets, and Flow is defined in Eq. (25).



generally small.21 In fact, the maximum value for γE is 0.1573 when using pooled OLS.

The last column shows the results when using Fama-MacBeth regressions, which yields

γE = 0.3011. Also the R2 is highest in this case. In order to be conservative in the model

application, we stick to this value of γE in everything that follows.22

We should stress that this is still a small value: a return of -1% would translate into

additional net outflows of only −1% × .3011 ≈ -0.30%, suggesting that the vulnerability of

the system is likely to be small even when including the flow-performance relationship.23

4. Results: Aggregate Vulnerabilities Over Time

In the following, we consider a shock scenario where we impose an initial shock of -5% on

all assets and calculate the aggregate vulnerabilities (AV) separately for each quarter. The

model parameters are calibrated as defined above, but we will differentiate three scenarios

with regard to our choice of the price impact parameters:

1. Price impact time-varying and asset-specific.

2. Price impact asset-specific but constant over time.

3. Homogeneous price impact of 4.77×10−6 for all assets in all quarters (the typical value

of the equal-weighted average price impact).

We will see that the first two scenarios generate AVs of similar orders of magnitude, and

somewhat higher values in the last scenario. Interestingly, we will also see that the time

dynamics of the AVs are rather different for the three scenarios.

4.1. Scenario 1: Price Impact Time-Varying and Asset-Specific

The top left panel of Figure 6 shows the results for the first scenario: the solid line

shows the AV for the most granular portfolios, and the other lines show the results for more

aggregated SIC industry portfolios. (Note that the plot is in semi-logarithmic scale.) Not

21As a robustness check, we split the sample into two subperiods of equal length and find that the
parameters on Return(t-1) are largely comparable to the values shown in Table 1.

22Appendix B contains several robustness checks on the baseline specification in the last column of Table
1. In summary, our estimate of γE is robust to these alternative specifications.

23In the technical Appendix to their blogpost, Cetorelli, Duarte, and Eisenbach (2016) describe a slightly
different approach to estimating γE : in the first stage, they estimate a 12-month rolling window regression
of fund returns on the market return separately for each fund. This gives them an estimate of each fund’s
excess return (’alpha’) over time. In the second stage, they regress each fund’s flows against the estimated
alpha. We experimented with this approach, finding that it yields a negative flow-performance relationship
in many cases - this clearly does not make sense. We therefore decided to stick to our approach.
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Figure 6: Aggregate vulnerability for the three different price impact scenarios. Top left: scenario 1 (price
impact time-dependent and asset-specific). Top right: scenario 2 (price impact asset-specific but constant
over time). Bottom: scenario 3 (price impact = 4.77× 10−6 for all assets/quarters). In all cases, the solid
line shows the aggregate vulnerability for the granular stock portfolios; the other lines show the results
for the aggregated portfolios (based on SIC industry classifications). Note that the y-axis is displayed in
logarithmic scale.



surprisingly, the AVs are significantly smaller for the most granular stock portfolios, since

the average portfolio overlap is relatively small in this case (Figure 4). However, the order

of magnitude of the AVs is very small in all cases: in response to a negative shock of -5%,

we expect a tiny maximum knock-on effect in the order of 0.00001%. When looking at the

dynamics over time, we clearly see that in this scenario the AVs are almost purely driven by

the dynamics of the price impact (see Figure 5). Indeed, the Pearson correlation between

the value-weighted price impacts shown in Figure 5 and the AV is 0.89 for the most granular

portfolios and above 0.95 for the industry portfolios.

4.2. Scenario 2: Price Impact Asset-Specific (No Time Dynamics)

In order to explore how the AVs look without time variation in the estimated price

impacts, the top right panel of Figure 6 shows the AVs for the case when we set each stock’s

price impact to its average value over time. The order of magnitude of the estimated AVs is

comparable to the ones shown in the left panel for scenario (1). However, in this case, the

AVs are rather flat. In other words, despite the growth of the system, there is no increasing

trend in the AVs.

4.3. Scenario 3: Homogeneous Price Impact (No Time Dynamics)

Finally, we set the same price impact for all assets, thereby ignoring both cross-sectional

and dynamic variation in the price impacts. The results are shown in the bottom panel of

Figure 6. In this case, the estimated AVs are somewhat larger than the first two scenarios,

largely because the assumed price impact is the equal-weighted average over the sample

period. Moreover, we find that the AVs have increased over time, but are still small: the

maximum AV for this scenario is in the order of 0.001%.

Overall, the results shown in Figure 6 indicate that the aggregate vulnerability of the

system is small. Hence, systemic asset liquidations are unlikely to be a major issue for the

set of U.S. equity mutual funds. We will discuss this finding in more detail below.

5. A Closer Look at Fund-Specific Vulnerabilities

This section turns to an in-depth analysis of fund-specific vulnerabilities, namely sys-

temicness and indirect vulnerability (see Eqs. (19) and (20)). In particular, we are interested

in exploring the determinants of these measures, something that is of utmost importance for

regulators and supervisors in formulating a macroprudential framework on asset managers

(FSB (2016)).
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Generally speaking, we are interested in the following cross-sectional regressions

log(yi,t) = at + bt × log(Xi,t−1) + ǫi,t, (26)

where yi,t is the fund-specific vulnerability indicator of interest (systemicness or indirect vul-

nerability, respectively), X contains our set of control variables (always using the first lag to

alleviate the endogeneity problem), and b is the corresponding parameter vector. Note that

we take the logarithm for all variables to adjust for skewness and mitigate the effect of ex-

treme observations. In everything that follows, we estimate regression parameters following

the Fama-MacBeth (1973) methodology, and explore different sets of control variables that

allow us to predict fund-specific vulnerabilities. Table 2 reports the correlations between

the variables that will be of interest in the following; interestingly, multicollinearity does not

appear to be an issue here, since most correlations are relatively small in absolute terms.

More precisely, the analysis proceeds in three steps: first, we explore to what extent the

lagged fund-specific characteristics that appear in the model equations (namely fund size,

portfolio illiquidity, and interconnectedness) are able to predict future values of the vulner-

ability measures. In a way, this can be seen as a simple model validation step. However,

although considering lagged exogenous variables in the regressions this analysis comes at the

cost of an endogeneity bias which hampers infering any causal relationship between vulner-

abilities and these fund-specific characteristics. Second, we aim at mitigating the potential

endogeneity issue even further, and therefore replace the model-inherent characteristics from

the first step with alternative measures. For example, we approximate fund size by fund age

and percentage net-inflows. We find that the regression results are qualitatively very similar

to the ones from the first step, such that our analysis indeed uncovers the determinants of

fund-specific vulnerabilities. Third, we adress concerns on a potential outlier bias related to

the market liquidity aggravation around the financial crisis (see Figure 5) and explore the

robustness of our findings by conducting a subsample analysis that excludes observations

from the 2008-09 period. In line with this three-step analysis, the following regression tables

will consist of three panels each (Panel A, B, and C).
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Variables IV1 S1 IV2 S2 IV3 S3 Age Flows6M TNA HHI MeanOverlap IlliqAmihud IlliqSpread

Vulnerabilities

IV1 1.000
S1 -0.162** 1.000
IV2 0.601** -0.141** 1.000
S2 -0.153** 0.599** -0.081** 1.000
IV3 0.484** -0.184** 0.233** -0.164** 1.000
S3 -0.159** 0.493** -0.132** 0.207** -0.133** 1.000
Size

Age -0.195** 0.200** -0.140** 0.155** -0.143** 0.249** 1.000
Flows6M 0.003 -0.003 0.003 -0.001 0.015** -0.002 -0.006 1.000
TNA -0.075** 0.270** -0.049** 0.252** -0.052** 0.273** 0.252** 0.004 1.000
Interconnectedness

HHI 0.103** -0.103** 0.058** -0.124** 0.178** -0.019** 0.014** 0.010** -0.021** 1.000
MeanOverlap -0.162** -0.028** -0.198** -0.110** 0.113** 0.328** 0.109** -0.001 0.095** -0.149** 1.000
Illiquidity

IlliqAmihud 0.169** 0.098** 0.054** 0.019** -0.013** -0.030** -0.021** -0.001 -0.012** 0.009** -0.078** 1.000
IlliqSpread 0.196** 0.157** 0.123** 0.079** -0.081** -0.117** -0.098** -0.005 -0.043** -0.029** -0.336** 0.614** 1.000

* p<0.05, ** p<0.01

Table 2: Correlation matrix. This table shows the correlation structure of vulnerability measures and fund specific variables. IVi (Si) measures
funds’ indirect vulnerability to asset fire-sales (systemicness) according to the three different price impact scenarios. Age represents the fund age
measured in month; Flows6M is the average net flow over the last 6 months; TNA are the total net assets; HHI is the Hirschmann-Herfindahl-
Index of portfolio concentration; MeanOverlap is fund’s average portfolio overlap with other fund portfolios; and IlliqAmihud and IlliqSpread

is the portfolio-weighted average illiquidity measure of a given fund’s portfolio, based on the Amihud-ratio and the quoted relative spread,
respectively.



5.1. Towards Understanding Funds’ Vulnerabilities (Scenario 1)

In the previous section we calculated aggregate vulnerabilities for three different price

impact scenarios. It should be clear that the most relevant case is Scenario 1, since it allows

for asset- and time-specific price impacts. Hence, we use the results from Scenario 1 as our

baseline scenario and explore the two other cases as a kind of robustness check below.

5.1.1. Step 1: Model-Inherent Measures

The first step is to explore to what extent the fund-specific characteristics which go into

the model are able to predict future vulnerabilities. According to the model, we expect the

following relationship: systemicness increases with a larger fund size or interconnectedness

since larger funds should fire-sale more assets, and a higher interconnectedness means that

those funds sell assets that are held by many other funds as well.

The reverse should be true for indirect vulnerability, since larger and more diversified

funds should be less vulnerable to other funds’ asset liquidations (see Greenwood, Landier,

and Thesmar (2015)). The correlations in Table 2 are in line with this reasoning. More

illiquid funds should be both more systemic and vulnerable in general, since illiquid funds

have to fire-sale a larger share of their portfolios to meet investors’ redemptions and are also

likely to suffer more from other funds’ asset liquidations.

The first set of regressions, therefore, uses only three control variables, namely fund size

(defined as TNA), interconnectedness (defined as a fund’s average portfolio overlap with

all other funds, MeanOverlap)24, and illiquidity (defined as the portfolio-weighted average

Amihud-ratio of a fund, IlliqAmihud)25:

log(yi,t) = at + b1,t × log(TNAi(t-1)) + b2,t × log(MeanOverlapi(t-1))+

+b3,t × log(IlliqAmihud
i (t-1)) + ǫi,t.

(27)

Table 3 Panel A reports the results which are generally as expected: larger funds are less

vulnerable to other funds’ asset liquidations (lower IV), but contribute more to aggregate

vulnerability (higher S) and are more systemically important, therefore. Second, more con-

nected funds exhibit lower IV (likely due to the benefits of diversification) but contribute to

a larger extent to the sector’s asset fire-sales (higher S). Finally, illiquid funds are both more

24To be precise, for each quarter we calculate this fund-specific portfolio overlap as follows: for each pair
of funds, we calculate their portfolio overlap according to Eq. (21). At each point in time, MeanOverlap of
fund i is then defined as the average Overlap of this particular fund with all other funds.

25We calculate the illiquidity of fund i in quarter t as
∑

k Mi,kPriceImpactk,t, where PriceImpactk,t is
defined in Eq. (23). See Yan (2008) for a similar approach.
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Determinants of Fund-Specific Vulnerabilities – Scenario (1)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV1) log(S1) log(IV1) log(S1) log(IV1) log(S1)
Model-inherent measures
log(TNA(t-1)) -0.5832** 0.5898**

(0.0541) (0.0548)
log(MeanOverlap(t-1)) -0.3409** 0.1676**

(0.0606) (0.0564)
log(IlliqAmihud(t-1)) 0.0772** 0.3245**

(0.0133) (0.0143)
Alternative measures
log(1+Age(t-1)) -0.9402** 0.9657** -0.9320** 0.9577**

(0.0197) (0.0160) (0.0237) (0.0191)
Flows6M(t-1) -0.6697** 0.4111 * -0.5889 * 0.3447

(0.2204) (0.2000) (0.2582) (0.2338)
log(HHI(t-1)) 0.4674** -0.4995** 0.4818** -0.5074**

(0.0210) (0.0132) (0.0242) (0.0149)
log(IlliqSpread(t-1)) 1.0425** 0.6690** 0.9868** 0.5858**

(0.0370) (0.0444) (0.0365) (0.0413)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.561 0.536 0.281 0.254 0.282 0.255
Obs. 72,872 72,872 59,430 59,430 46,440 46,440

∗ p<0.05; ∗∗ p<0.01

Table 3: The determinants of fund-specific indirect vulnerability (IV1) and systemicness (S1), respectively,
for scenario 1. Results are based on quarterly data using Fama-MacBeth regressions (robust standard errors
in parentheses), including a constant that is omitted from the output. All variables are defined in the main
text and in Table 2. Panels A and B cover the full sample period from 2003-14 and Panel C reports results
of the subsample without the financial crisis period 2008-09.

vulnerable and more systemic.26 Overall, these results confirm our model predictions and

those of Greenwood, Landier, and Thesmar (2015). We should stress that our measure of

interconnectedness, MeanOverlap, appears to capture portfolio diversification: funds have

high MeanOverlap only if they hold a large number of stocks, and over-weigh widely held

stocks at the same time.

5.1.2. Step 2: Alternative Measures

In order to overcome endogeneity concerns, the second step is to regress vulnerabilities

on variables that are not directly included in the model (“alternative measures”). Let us

26We performed several robustness checks. First, we obtain qualitatively similar results when using pooled
OLS with time- and fund-FEs (unreported result). Second, we ran the regressions without taking logs of
the dependent variables and winsorized the top and bottom 1% of observations, which does not alter our
results either.

26



briefly explain how we substitute each of the measures from Section 5.1.1.

Size: Fund age turns out as a natural proxy of fund size since older funds tend to be

larger (Yan (2008)). The economic intuition behind this link is that older funds were able

to expand their assets under management over a longer period of time compared to younger

funds. However, fund age might not capture size in general. Therefore, we also include

funds’ average net inflows over the last 6 months, Flows6M, as an additional size proxy.

Flows are less deterministic (compared to age) and are likely to capture growth dynamics

in the recent past.27

Interconnectedness : Portfolio concentration is considered as an inverse proxy for intercon-

nectedness as a highly diversified fund might have at least some common asset holdings

with other funds. Portfolio concentration is defined as the standard Hirschmann-Herfindahl

Index, or HHI.28 Not surprisingly, HHI and MeanOverlap are negatively correlated (Pearson

correlation of -0.15, see Table 2), such that both measures appear to capture some aspects

of diversification or interconnectedness, respectively.

Illiquidity : An asset’s relative spread tends to better capture asset illiquidity, while the

Amihud-ratio is more related to price impact (see Goyenko, Holden, and Trzcinka (2009)).

Therefore, we consider the portfolio-weighted relative spread, IlliqSpread, as an alternative

liquidity measure.29

With these alternative measures we then run the following regression

log(yi,t) = at + b1,tlog(Agei(t-1)) + b2,tFlows
6M
i (t-1) + b3,tlog(HHIi(t-1))+

b4,tlog(Illiq
Spread
i (t-1)) + ǫi,t.

(28)

Table 3 Panel B shows the results when using these alternative measures. The results

are consistent with those shown in Panel A: older funds, with larger percentage flows in

the recent past have lower indirect vulnerabilities (IV) and higher systemicness (S). More

concentrated funds (higher HHI) have higher IVs and lower systemicness. Finally, more

illiquid funds have both higher IVs and higher systemicness.

5.1.3. Step 3: Subsample analysis

Table 3 Panel C adresses concerns that the effect of liquidity on funds’ vulnerabilities

is due to market liquidity aggravation around the financial crisis (see Figure 5). In order

27Given that flows can take negative values, we do not take logarithms in this case.
28Note that the HHI is based on the most granular portfolios, with HHIi =

∑

k(Mi,k)
2. We checked that

the results are qualitatively similar when using the vulnerabilities from the SIC industry portfolios.
29To be precise, we define the relative spread of stock k in quarter t as Spreadk,t =

1
Dk,t

∑ Bidk,d−Askk,d

(Bidk,d+Askk,d)/2
.
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to test whether the fund-specific vulnerabilities are mainly driven by this period, we run

the same Fama-MacBeth regressions as in the previous step but exclude all observations

during the crisis years 2008-09. This subsample analysis delivers nearly identical regression

parameters and suggests that our findings are not driven by the financial crisis. In sum, this

test does not indicate any potential outlier bias of our sample.

5.2. Additional Robustness Checks

For robustness and in order to expand our examination, we additionally analyse funds’

vulnerabilites for the other two price impact scenarios. Specifically, we will look at Scenario 3

(time-fixed, asset-specific price impacts) and Scenario 3 (equally-weighted average price

impact for all assets) in the following.

5.2.1. Results for Scenario 2 – Price Impact Asset-Specific (No Time Dynamics)

Table 4 shows the same regression results for Scenario 2. The results are largely consis-

tent with those in Table 3 both in terms of parameter signs and significance levels. Overall,

these results suggest that the first two scenarios tend to give very similar results in terms

of which fund-specific characteristics are able to explain funds’ vulnerabilities. The only

differences are for the systemicness regressions, namely that MeanOverlap is insignificant in

Panel A, and Flows are insignificant in Panels B and C. Below we will see that this is not

the case for Scenario 3.

5.2.2. Results for Scenario 3 – Homogeneous Price Impact (No Time Dynamics)

In this case we analyze vulnerability dynamics if the same price impact parameter is

assumed for all securities and all time points. As our analysis solely focuses on funds’ equity

portfolios, Scenario 3 is comparable to the one proposed by both Greenwood, Landier, and

Thesmar (2015), and Cetorelli, Duarte, and Eisenbach (2016) who assign a specific value for

the price impact parameter for each asset class. This seems like a reasonable approach in the

absence of detailed information on asset liquidity and price impact parameters are derived

from regulatory guidelines, such as Basel III. However, it turns out that this approach can

be problematic in the sense that it predicts very different vulnerabilities at the micro-level.

Comparing Table 5 with our previous findings reveals that some of the parameter coeffi-

cients switch signs. Most importantly, under Scenario 3, illiquid funds tend to be both less

vulnerable and less systemic which stands in sharp contrast to model predictions.

How does a homogeneous price impact for all assets affect the estimation of vulnerabilites

in the fund sector? One would expect that funds with very liquid (illiquid) portfolios will
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Determinants of Fund-Specific Vulnerabilities – Scenario (2)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV2) log(S2) log(IV2) log(S2) log(IV2) log(S2)
Model-inherent measures
log(TNA(t-1)) -0.5678** 0.6004**

(0.0544) (0.0543)
log(MeanOverlap(t-1)) -0.4484** 0.1180

(0.0540) (0.0624)
log(IlliqAmihud(t-1)) 0.2670** 0.5438**

(0.0124) (0.0193)
Alternative measures
log(1+Age(t-1)) -0.9306** 0.9679** -0.9265** 0.9557**

(0.0261) (0.0142) (0.0318) (0.0165)
Flows6M(t-1) -0.8073** 0.2868 -0.7911** 0.1453

(0.2271) (0.2310) (0.2747) (0.2580)
log(HHI(t-1)) 0.2895** -0.6805** 0.3091** -0.6838**

(0.0253) (0.0173) (0.0280) (0.0206)
log(IlliqSpread(t-1)) 1.7760** 1.3971** 1.7743** 1.3788**

(0.0473) (0.0754) (0.0491) (0.0834)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.551 0.492 0.292 0.279 0.300 0.284
Obs. 72,872 72,872 59,430 59,430 46,440 46,440

∗ p<0.05; ∗∗ p<0.01

Table 4: The determinants of fund-specific indirect vulnerability (IV2) and systemicness (S2), respectively,
for scenario 2. Results are based on quarterly data using Fama-MacBeth regressions (robust standard errors
in parentheses), including a constant that is omitted from the output. All variables are defined in the main
text and in Table 2. Panels A and B cover the full sample period from 2003-14 and Panel C reports results
of the subsample without the financial crisis period 2008-09.



30

Determinants of Fund-Specific Vulnerabilities – Scenario (3)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV3) log(S3) log(IV3) log(S3) log(IV3) log(S3)
Model-inherent measures
log(TNA(t-1)) -0.6095** 0.5823**

(0.0584) (0.0530)
log(MeanOverlap(t-1)) 0.6314** 1.0331**

(0.0779) (0.0428)
log(IlliqAmihud(t-1)) -0.3138** -0.1613**

(0.0202) (0.0091)
Alternative measures
log(1+Age(t-1)) -0.9214** 1.0051** -0.9108** 0.9975**

(0.0160) (0.0210) (0.0189) (0.0255)
Flows6M(t-1) -0.4422 0.6450** -0.3481 0.5832 *

(0.2397) (0.2104) (0.2805) (0.2496)
log(HHI(t-1)) 0.8120** -0.2502** 0.8070** -0.2745**

(0.0152) (0.0258) (0.0173) (0.0285)
log(IlliqSpread(t-1)) -1.8492** -2.3996** -1.8034** -2.3682**

(0.0844) (0.0491) (0.0981) (0.0551)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.531 0.655 0.362 0.415 0.366 0.423
Obs. 72,872 72,872 59,430 59,430 46,440 46,440

∗ p<0.05; ∗∗ p<0.01

Table 5: The determinants of fund-specific indirect vulnerability (IV3) and systemicness (S3), respectively,
for scenario 3. Results are based on quarterly data using Fama-MacBeth regressions (robust standard errors
in parentheses), including a constant that is omitted from the output. All variables are defined in the main
text and in Table 2. Panels A and B cover the full sample period from 2003-14 and Panel C reports results
of the subsample without the financial crisis period 2008-09.



Decile (IlliqAmihud)
1 2 3 4 5 6 7 8 9 10

Corr(IV1,IV3) 0.900 0.900 0.895 0.887 0.849 0.791 0.738 0.688 0.636 0.298
Corr(S1,S3) 0.908 0.908 0.910 0.906 0.893 0.843 0.771 0.717 0.643 0.378

Table 6: Correlations between indirect vulnerabilities and systemicness from scenarios 1 and 3, respectively,
for different liquidity categories. Decile 1 (10) corresponds to the most liquid (illiquid) funds. All correlations
are significant at the 1%-level.

be falsely treated as more illiquid (liquid) than what is observed in the data. We adress

this question by directly comparing the fund-specific vulnerability measures IV and S of sce-

nario 1 and scenario 3. Table 6 reports the correlations between fund-specific vulnerabilities

of scenarios 1 and 3 for different liquidity deciles (based on the Amihud-ratio as a illiquidity

indicator). Vulnerabilities of relatively liquid funds (Decile 1-5) seem to be largely unaf-

fected by considering a homogeneous price impact. For those funds the correlation lies in a

narrow band around 0.90. However, the effect of a homogeneous price impact materializes

for the most illiquid funds, namely decile 10, where the correlations are 0.298 and 0.378,

respectively.

Figure 7 provides additional evidence that the most illiquid funds turn out to be both less

vulnerable and less systemic if a homogeneous price impact instead of a time-varying asset-

specific price impact is assumed (Scenario 3 instead of Scenario 1 ). Specifically, the Figure

plots each fund’s rank in terms of its indirect vulnerability (left panel) and systemicness

(right panel) in Scenarios 1 and 3 against each other, where the ranking is between 0 and

1, where a value of 1 corresponds to the highest vulnerability. We show the results for both

the most liquid funds (Decile 1) and the least liquid funds (Decile 10), based on IlliqAmihud

(see Table 6). If a homogeneous price impact did not affect fund-specific vulnerabilities, the

two scenarios should yield similar rankings and all observations lie on the main diagonal

(solid black line). It turns out that the rankings are quite different for the two sets of funds

under study here: liquid funds (blue dots) tend to be slightly more vulnerable and systemic,

since most observations tend to be below the main diagonal. On the other hand, illiquid

funds (red crosses) reveal an opposite pattern, since most observations tend to be widespread

above the main diagonal. Hence, Scenario 3 underestimates the vulnerabilities for the least

liquid funds and slightly overestimates those for the most liquid funds.

In summary, we suggest that the results from Scenario 3 should be treated with care and,

whenever possible, our model should ideally be applied using time-varying and asset-specific

price impacts.
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Figure 7: Vulnerability rankings in scenario 1 plotted against those from scenario 3. Left panel: indirect
vulnerability. Right panel: systemicness. Both panels show the relative ranking for funds in liquidity Decile
1 (most liquid) and Decile 10 (least liquid), respectively, based on IlliqAmihud. For the sake of reference, the
solid line shows the 45 degree line. Note: ranks are between 0 and 1, with higher values corresponding to
higher vulnerabilities.

6. Discussion

Implications for future stress tests. Do our findings suggest that the mutual fund

sector is robust to systemic crises? The answer would be ‘yes’ if one were interested in the

set of domestic equity funds in isolation. However, it is important to keep in mind the main

reason why we restricted ourselves to this fund type in this paper, namely that we have

accurate information on their stock holdings via the CRSP Mutual Fund Database. An

obvious extension of our analysis would include additional fund types and explore to what

extent this might increase the system’s vulnerability.30 This seems particularly relevant

30In this case, we would have to approximate funds’ portfolio holdings in other asset categories (e.g.,
corporate bonds) because these are not directly observed. For this purpose, one could use standard Sharpe-
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because other fund types have been growing in importance over time; for example Goldstein,

Jiang, and Ng (2016) report that the assets under management of corporate bond mutual

funds grew by more than 500% from 2000 to 2013. Fixed income funds held roughly 22% of

the system’s assets at the end of 2015 and, together with ETFs, accounted for nearly 60%

of net flows into the U.S. asset management sector between January 2014 and September

2016 (see ICI (2016)). Assuming that a typical fixed income fund holds at least some stocks

in its portfolio (and vice versa for equity funds), shocks that originate in one asset class

would spread to other asset classes. Therefore, we would expect higher vulnerabilities when

including these additional fund types. These spill-over effects might be even larger when

market liquidity worsens and bond fund flows become more sensitive to fund performance

(Goldstein, Jiang, and Ng (2016)).

Nevertheless, even when including these other fund types in our analysis we do not

expect dramatically larger aggregate vulnerabilities for at least two reasons: (1) the results

of Goldstein, Jiang, and Ng (2016) suggest that the flow-performance relationship is even

weaker for bond funds; and (2) bond funds are subject to the same leverage constraints as

all other mutual funds. Hence, the order of magnitude of the system’s AVs are likely to be

comparable to those reported here.

Policy implications. Our paper contributes to the ongoing discussion about systemic

risk in the asset management sector, especially to the SIFI designation of Non-Bank Non-

Insurer entities (FSB (2015)). One indicator for assigning systemic relevance is fund size,

which is readily available and accessible for supervisors in a timely manner (FSB (2015)).

Besides size, IMF (2015) suggests considering funds’ investment style as a further indicator,

which might be proxied by a fund’s investment objective (e.g., emerging markets).

Our analysis reveals ambiguous effects of fund size and investment style on vulnerabili-

ties in the fund sector. In fact, micro- and macroprudential regulators might draw opposite

conclusions from our results. On the one hand, microprudential supervisors are mainly con-

cerned with the resilience of individual funds to market-wide shocks, which we capture to

a certain extent with our indirect vulnerability (IV) measure. It turns out that larger and

more diversified funds appear to be more robust to other funds’ deleveraging on average.

On the other hand, macroprudential regulators are more concerned with the negative exter-

nalities imposed by funds, as proposed for example by Danielsson and Zigrand (2015). In

this case, the systemicness (S) measure is the variable of interest. We find that larger, more

diversified funds (with higher portfolio overlap) strongly contribute to the vulnerabilities

style regressions, see Kim, White, and Stone (2005). We leave this extension for future research.
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of the overall fund sector. This finding relates to the model of diversification disasters by

Ibragimov, Jaffee, and Walden (2011), where financial intermediaries increase systemic risks

by attempting to reduce their exposure to idiosyncratic risks.

Lastly, fund illiquidity tends to contribute to both funds’ own vulnerability and their

impact on other funds. Therefore, both micro- and macroprudential regulators should closely

monitor the liquidity profile of individual funds. In fact, the SEC released a new set of rules in

September 2015 for enhancing liquidity risk management by open-ended funds (see Hanouna

et al. (2015)), which was followed by FSB recommendations to address the liquidity mismatch

in the fund sector in June 2016 (FSB (2016)). Other regulators have already recognised the

need to monitor the liquidity profiles of individual institutions; for example, the Liquidity

Coverage Ratio (LCR) has become an important metric for banking regulators, and there is

an active academic debate on how to measure the liquidity profile of individual institutions

(Brunnermeier, Gorton, and Krishnamurthy (2012); Krishnamurthy, Bai, and Weymuller

(2016)).

7. Conclusions

Our paper offers a first attempt to quantify systemic risk in the mutual fund industry.

We extended the model of Greenwood, Landier, and Thesmar (2015) by incorporating the

well-documented flow-performance relationship for mutual funds. Hence, in response to

negative fund returns, investors will withdraw some of their funds, and mutual funds will

need to finance these redemptions by liquidating assets. Overall, despite choosing the model

parameters in a conservative way, we generally find the system to be robust to systemic

shocks. This result is driven by three factors: (1) mutual funds use little leverage; (2)

the flow-performance relationship is weak; and (3) the typical overlap between funds’ stock

portfolios can be quite strong but is generally below the maximum value. In particular

the fact that mutual funds are subject to tight leverage constraints makes our estimated

vulnerabilities tiny in comparison with those of Greenwood, Landier, and Thesmar (2015)

for the largest European banks. Overall, these findings suggest that systemic risks among

mutual funds are unlikely to be a major concern, at least when looking at this part of the

financial system in isolation.

Systemic risk in the mutual fund sector tends to increase with more illiquid fund port-

folios. Thus, a clear understanding of funds’ liquidity profile is essential for enhancing the

corresponding micro- and macroprudential policy tools.
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Appendix A. Robustness: Price Impacts

The price impacts shown in Figure 5 are likely to be representative of the typical market

conditions in a given quarter. More precisely, in the baseline scenario, we calculate the price

impacts as the average values of the daily Amihud ratio for each stock. In order to explore to

what extent one would expect even larger price impacts during very active periods, Figure

A.8 shows the results for: (1) trading days with above-median volatility for each stock within

a given quarter; and (2) the same for trading days with above-median trading volumes for

each stock within a given quarter.

2002 2004 2006 2008 2010 2012 2014 2016

Year (Quarterly)

10
-8

10
-7

10
-6

10
-5

10
-4

M
e

a
n

(A
m

ih
u

d
)

High volatility

All days

High volume

Figure A.8: Price impact for very active periods. In the baseline scenario, we calculate the price impacts
as the average values of the daily Amihud ratio for each stock (All Days, as in the main text). We also
calculated price impacts using only the most active trading days for each stock: (1) based on daily trading
volumes in a quarter; (2) based on absolute returns in a given quarter. We then take the quarterly average
of these daily values separately for each stock. Dollar-trading volumes are adjusted for inflation. For each
quarter, we show the cross-sectional equal-weighted average values. Note that the y-axis is displayed in
logarithmic scale.

Interestingly, the results go in opposite directions: price impacts are slightly larger

(smaller) for high volatility (trading volume) days. This indicates that high-volume days do
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not coincide with high-volatility days in general. Overall, however, the typical price impacts

are comparable to those we used in our main analysis in scenario 1 in the main text.

Appendix B. Robustness: Flow-Performance Relationship

Table 1 in the main text shows several different specifications for the estimation of the

flow-performance relationship. In order to explore the robustness of the baseline specification

(i.e., the last column in Table 1), we performed numerous alternative specifications which

generally yield very similar results in terms of the estimated γE.

In this regard, Table B.7 shows the most important robustness checks (all regressions

based on the Fama-MacBeth methodology):

1. Column (1) shows results when using category-adjusted returns. In this case, we take

a fund’s return and subtract the average return of each fund category (based on CRSP

obective codes) separately for each month.

2. Column (2) shows results when using fund family-adjusted returns. In this case, we

take a fund’s return and subtract the average return of funds’ from the same fund

family (CRSP management company code) separately for each month, if the fund is

member of a fund family.

3. Columns (3-4) show results for large and small funds, respectively. In this case, we

use funds’ TNA to divide them into above- and below-median size groups.

4. Finally, columns (5-6) show results for high- and low-risk funds, respectively. In this

case, we calculate the 6-month rolling-window return standard deviations and divide

funds into above- and below-median risk groups.

In summary, the estimates of γE for these alternative specifications are always very close

to the actual value we used (γE = 0.3011). Hence, the aggregate vulnerabilities will be

comparable to the ones presented in the main text.

38



Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3) (4) (5) (6)

Cat.-adj. Fam.-adj. Large Small High-Risk Low-Risk
Returns Returns Funds Funds Funds Funds

Return(t-1) 0.2736** 0.2883 ** 0.2678** 0.2944** 0.2763 ** 0.3418 **
(0.0292) (0.0234) (0.0195) (0.0270) (0.0231) (0.0275)

Return(t-2) 0.1734** 0.1450 ** 0.1704** 0.1469** 0.1266 ** 0.2585 **
(0.0190) (0.0218) (0.0185) (0.0213) (0.0190) (0.0301)

Return(t-3) 0.0979** 0.0740 ** 0.1025** 0.1042** 0.0851 ** 0.1789 **
(0.0264) (0.0162) (0.0209) (0.0200) (0.0175) (0.0240)

Return(t-4) 0.1039** 0.0503 * 0.0909** 0.0737** 0.0732 ** 0.1351 **
(0.0178) (0.0222) (0.0176) (0.0215) (0.0203) (0.0226)

Return(t-5) 0.0710** 0.0402 * 0.0565** 0.0532 * 0.0392 0.1293 **
(0.0191) (0.0196) (0.0202) (0.0217) (0.0204) (0.0251)

Return(t-6) 0.0751** 0.0328 0.0584** 0.0720** 0.0696 ** 0.1140 **
(0.0252) (0.0212) (0.0171) (0.0213) (0.0212) (0.0231)

Return(t-7) 0.1301 * 0.0593 ** 0.0753** 0.0597** 0.0337 * 0.1349 **
(0.0574) (0.0180) (0.0162) (0.0188) (0.0155) (0.0233)

Return(t-8) 0.0756** 0.0458 * 0.0390 * 0.0672** 0.0435 * 0.1074 **
(0.0167) (0.0182) (0.0157) (0.0211) (0.0181) (0.0231)

Return(t-9) 0.0779 * 0.0315 * 0.0623** 0.0259 0.0270 0.0707 **
(0.0308) (0.0146) (0.0153) (0.0191) (0.0163) (0.0223)

Return(t-10) 0.0601 * 0.0231 0.0158 0.0278 0.0148 0.0493
(0.0296) (0.0177) (0.0174) (0.0209) (0.0184) (0.0265)

Return(t-11) 0.0523** 0.0219 0.0299 0.0362 0.0264 0.0552 *
(0.0150) (0.0172) (0.0174) (0.0222) (0.0183) (0.0212)

Return(t-12) 0.1230 * 0.0722 0.0238 0.0444 * 0.0471 * 0.0010
(0.0616) (0.0448) (0.0167) (0.0206) (0.0183) (0.0190)

Flows(t-1) 0.0666** 0.0666 ** 0.0995** 0.0620** 0.0595 ** 0.0968 **
(0.0084) (0.0080) (0.0196) (0.0097) (0.0172) (0.0106)

Flows(t-2) 0.0682** 0.0697 ** 0.0855** 0.0716** 0.0715 ** 0.0869 **
(0.0085) (0.0099) (0.0086) (0.0079) (0.0124) (0.0091)

Flows(t-3) 0.0198 0.0441 ** 0.0620** 0.0237 0.0347 0.0710 **
(0.0277) (0.0145) (0.0172) (0.0263) (0.0176) (0.0102)

Flows(t-4) 0.0549** 0.0538 ** 0.0425** 0.0338** 0.0346 ** 0.0482 **
(0.0198) (0.0174) (0.0079) (0.0083) (0.0080) (0.0079)

Flows(t-5) 0.0573** 0.0610 ** 0.0519** 0.0562** 0.0460 ** 0.0480 **
(0.0103) (0.0122) (0.0088) (0.0097) (0.0081) (0.0073)

Flows(t-6) 0.0122 0.0086 0.0153 0.0300** 0.0181 0.0287 **
(0.0209) (0.0240) (0.0215) (0.0069) (0.0187) (0.0064)

Flows(t-7) 0.0151 0.0076 0.0292** 0.0142 0.0254 * 0.0178 **
(0.0095) (0.0155) (0.0059) (0.0075) (0.0102) (0.0058)

Flows(t-8) 0.0420 * 0.0357 * 0.0276** 0.0268** 0.0240 ** 0.0354 **
(0.0162) (0.0179) (0.0063) (0.0061) (0.0068) (0.0080)

Flows(t-9) 0.0077 0.0411 ** 0.0313** -0.0034 0.0225 ** 0.0360 **
(0.0301) (0.0144) (0.0099) (0.0291) (0.0067) (0.0101)

Flows(t-10) 0.0482 0.0502 0.0148 * 0.0611 * 0.0326 ** 0.0262 **
(0.0292) (0.0281) (0.0074) (0.0291) (0.0124) (0.0070)

Flows(t-11) 0.0166** 0.0161 ** 0.0204** 0.0186** 0.0167 * 0.0164 *
(0.0048) (0.0048) (0.0065) (0.0067) (0.0066) (0.0063)

Flows(t-12) 0.0241** 0.0226 ** 0.0360** 0.0283** 0.0335 ** 0.0158 *
(0.0065) (0.0065) (0.0078) (0.0080) (0.0081) (0.0063)

log(Age(t-1)) -0.0018 0.0040 -0.0026** -0.0011 -0.0077 0.0021
(0.0010) (0.0047) (0.0004) (0.0015) (0.0055) (0.0046)

log(TNA(t-1)) -0.0028 * -0.0015 ** -0.0020** -0.0061** -0.0092 -0.0051
(0.0011) (0.0003) (0.0002) (0.0012) (0.0072) (0.0047)

FundFamilySize – 0.0002 – – – –
(0.0001)

Fama-MacBeth Yes Yes Yes Yes Yes Yes
adj. R2 0.149 0.151 0.208 0.171 0.182 0.204
Obs. 343,488 343,488 184,177 159,266 171,172 170,307

∗ p<0.05; ∗∗ p<0.01

Table B.7: Robustness checks, flow-performance relationship. This table shows the results of the flow-
performance regressions, with γE being the parameter on Return(t-1). All regressions based on monthly
data using Fama-MacBeth regressions (robust standard errors in parentheses), as in the main text. Note:
FundFamilySize counts the number of funds in a given fund-family.
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