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distances in the gravity model∗

Julian Hinz†

February 2017

Abstract

I compute distances used in the gravity model of international trade that improve
the existing measures along multiple lines and help remedy the border puzzle. I
derive a trade cost aggregation that is agnostic to the underlying gravity framework
while taking into account the economic geography of countries. The key parameter
of the aggregation turns out to be the elasticity of trade to the respective trade cost,
which, conveniently, can be estimated in the gravity model. Based on this method
I then compute aggregate bilateral and internal country distances, making use of
nightlight satellite imagery for information on the economic geography of countries.
With around 60 million illuminated locations on earth, the data exhibits very fine detail
on the location of economic activity and is available annually since 1992, allowing
me to take into account changes over time. Employing these computed distances in a
standard gravity equation yields a number of noteworthy results. Exploiting the time-
variation of the distances, I can estimate the distance coefficient while controlling for
unobserved country-pair characteristics. Trade elasticity estimates are in the vicinity of
−1. Further, their use yields important consequences for other gravity variables: the
border coefficient, i.e. the often puzzlingly large relative difference between internal
and external trade, is reduced by between 30 % and 50 %. Regressions using simulated
data confirm the theoretical and empirical findings and support the magnitude of the
estimated effects.
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1 Introduction

When concerned with the determinants of the volume of flows of goods, trade economists

often have to resort to aggregate trade figures, by country, or sometimes state and province.

This makes an aggregation of its determinants equally necessary. This article, building on

earlier work by Head and Mayer (2009), sets out to provide an aggregation of trade costs

that is derived from a very general representation of the gravity equation, while remaining

agnostic to its micro-foundation. I apply the method to compute time-varying distances

using nighttime satellite imagery. Using these theory-consistent distances, the elasticity

of trade with respect to distance can be estimated in the within-dimension of a panel,

allowing to control for time-invariant unobserved country pair characteristics. Further, the

use of these distances produces the noteworthy results of significantly lower estimates of

coefficients for variables that are correlated with distance. Most notable is an up to 50 %

decrease in the estimated effect of borders on trade, i.e. the net cost of crossing a border.

In its earliest and simplest form, Tinbergen et al. (1962) described the volume of trade

flows between countries as a function of the size of the two economies and their distance,

borrowing an analogy from physics that has since named the relation: gravity. While

the theoretical underpinnings of gravity of international trade have since received drastic

improvements with Anderson (1979), Anderson and van Wincoop (2003) and others, the

employed distance measures have seen surprisingly little attention.

The initial ad-hoc choice for bilateral country distances was the so-called great circle

distance between the capitals or large cities of the respective countries. Helliwell and

Verdier (2001) and Head and Mayer (2009) first noted the choice’s possible influence on

other gravity variables, showing that a mismeasurement, particularly that of the internal

distance of a country, could have an impact on the estimated border effect. Mayer and

Zignago (2011) then computed and made publicly available the current de-facto standard

of bilateral and internal country distances, an arithmetic mean of great circle distances

between population centers, weighted by time-invariant data on city sizes. The contribution

of this present paper is to improve the existing measures along multiple lines. First, I derive

a trade cost aggregation that is agnostic to the underlying gravity framework, but yields

concrete instructions on the method of computation and data to be used; Second, I turn

to satellite imagery that provides information on exact location and intensity of economic

activity, whether urban or rural region. This eliminates the possibility of measurement

error in human-collected population figures and drastically increases the coverage to

virtually all inhabited and economically active areas in very fine detail. Furthermore it

moves away from a population-weighted measure towards a GDP-based measure, which

is more consistent with the theoretical gravity frameworks. Third, the used data has an

annual periodicity, allowing me to compute a time series of distances for each country pair
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and year since 1992.

The paper yields two important results. In the theoretical part I show that the estimated

trade cost coefficient from a gravity equation serves also as a parameter in the respective

trade cost aggregation itself. In the empirical part I then estimate the distance coefficient

iteratively while, exploiting the data’s time-variation, controlling for unobserved country-

pair characteristics. The preferred distance elasticity estimate is in the vicinity of -1,

in line with traditional results found in the gravity model literature.1 The estimated

coefficient calls for the use of harmonic mean distances, as opposed to the customary use

of arithmetic mean distances. This in turn yields the second important, empirical, result of

the paper. Using harmonic mean distances has consequences on the estimated coefficients

of other distance-correlated gravity variables. The border effect, i.e. the often puzzlingly

large relative difference between internal and external trade, is reduced by up to 63 %.

Additionally the coefficient on trade with a directly adjacent country is affected by a similar

reduction, depending on the estimation method.

The paper is structured as follows: section 2 reviews the existing literature on distances

and border effects in the gravity model. In section 3 I turn to theory to derive a simple

trade cost aggregation that is agnostic to the underlying gravity framework. In section 4 I

describe the data and computation method, and discuss some features of the distances.

Section 5 then introduces a simple framework for evaluating the results. Finally in section 6

I estimate the distance coefficient and evaluate the border effect and that of other common

gravity co-variates using the newly computed distance measure. Section 7 concludes.

2 Distances and borders in the literature

The present paper is of course related to a long literature on the effect of distance on

trade, arguably one of the most persistent relations in economics (Head and Mayer, 2014).

While it has been somewhat fashioned to declare it “dead” as the result of globalization,

trade economists have come to the rescue and shown that it indeed is “alive and well”

(Disdier and Head, 2008). Distance itself is however only the proxy for various trade

barriers: transportation costs, language barriers that tend to be correlated with distance,

cultural, informational and even genetic distance. Some of these can be accounted for in

estimations of the gravity equation with control variables, while others are more difficult

to identify or yet “unexplored”. Head and Mayer (2013) develop a helpful framework to

conceptualize these trade barriers and facilitators as light and dark matter of trade costs.2

1See Disdier and Head (2008) and Head and Mayer (2014) for a survey.
2See also section 5.
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Disdier and Head (2008) and Head and Mayer (2014) provide a meta analysis for the

effect of distance on trade and its somewhat puzzling persistence. The effect is pronounced

puzzling, because the estimated coefficient has been shown to increase over time, depend-

ing on regression technique and data used. Conventional wisdom on the other hand has it

that the world is currently experiencing a “Death of Distance”.3 A number of approaches

have aimed to reconcile the believe that in “our time of globalization” the effect of distance

on the volume of traded goods should decrease rather than increase. First, as Head and

Mayer (2014) show, the puzzle is prevalent mostly when using an OLS estimator. Using

Santos Silva and Tenreyro (2006)’s proposed PPML estimator leads to much lower and

mostly non-rising coefficients. Additionally Head and Mayer show that the increase in the

coefficient is largely due to new entrants to the trade matrix. This result is confirmed by

Larch et al. (2015) who show that the presence of zeros leads the OLS estimator to be

biased, unlike the estimation technique proposed by Helpman et al. (2008) that explicitly

accounts for zeros. Others emphasize that we may be asking the wrong questions: Yotov

(2012) e.g. argues that the distance puzzle of international trade can be explained by

comparing the distance coefficient of international to intranational trade and shows that

this has been indeed the case.

One difficulty in properly estimating the “true” effect of distance is that it is likely correlated

with unobserved bilateral country pair characteristics. To isolate the unbiased effect of

distance on trade, two recent papers exploit the variation of maritime distances in quasi-

natural experiments due to exogenous events. This strategy allows them to include

country-pair fixed effects that capture these correlated and unobserved characteristics.

Feyrer (2009) uses the closing of the Suez canal starting in 1967 with the Six Day War

and ending with the Yom Kippur War eight years later as the treatment. He estimates a

coefficient between -0.15 and -0.5. These estimates however suffer from what Baldwin

and Taglioni (2006) term the gold medal mistake, omitting multilateral resistance terms.

Hugot and Dajud (2014) perform a similar analysis, estimating the effect of the initial

openings of the Suez canal in 1869 as well as that of the Panama canal in 1914 in a

structural gravity model. Their estimates range between -0.38 and -0.54 for the Suez

canal and -1.23 and -2.33 for the Panama canal. Both papers assume that the economic

geography of the trading countries is static, but that optimal routes between countries

change due to the exogenous event.

The present paper also contributes to the literature concerned with the effect of borders

on trade. As will be shown below, the choice of the distance measure is consequential for

estimates of the effect on a trade flow of crossing the origin country’s border to another

country. The border effect first received widespread attention after McCallum (1995),

who noticed an apparent puzzle: average trade flows between Canadian provinces were a

3See e.g. Friedman (2005)’s book “The World is Flat”.
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staggering 22 times larger than the average trade flow from a Canadian province to a US

state. The sheer magnitude of the effect attracted further scrutiny. A big piece to resolve

the puzzle was contributed by Anderson and van Wincoop (2003). The paper provided

the micro-foundations to the previous naive specification that related trade flows to the

two countries’ GDPs, various trade barriers and, importantly, physical distance. Anderson

and van Wincoop showed that the omittance of what they coined multilateral resistance

term, the barriers to trade affecting all trading partners equally, resulted in a bias of the

estimation of gravity. Accounting for these multilateral resistance terms brought down the

factor of internal over external trade flows to a factor of about 5.

The literature has since further evolved and investigated the issue at different levels of

aggregation of the data and on numerous geographical entities. Chen (2004) shows the

existence of a strong border effect for one of the most integrated regions in the world, the

European Union. Even intranational subdivisions appear to result in border effects: Ishise

and Matsuo (2015) find an effect along Democratic and Republican-leaning states in the

US, Felbermayr and Gröschl (2014) along the former US American South and North, while

Wolf (2009) and Nitsch and Wolf (2013) find a persistent border effect along Germany’s

former East-West divide. Coughlin and Novy (2013) combine data on trade flows between

and within individual US states from the Commodity Flow Survey with state-level export

and import data and find that, surprisingly, the intranational border effect appears to be

even larger than the international border effect. Poncet (2003) finds a similar pattern for

China.

A number of authors have linked the puzzlingly large border effect with the choice of the

distance measure. Helliwell and Verdier (2001) first noted the importance of measuring

internal distance correctly for the estimation of the border effect. In an endeavour most

related to this present paper, Head and Mayer (2009) suggest the harmonic mean as an

“effective” measure of distance and are the first to show the potential bias of using other

measures on the estimated border effect in simulations. Hillberry and Hummels (2008),

using micro-data from the Commodity Flow Survey, show that approximated distances

within states and between neighboring states are often far overstated. Using accurate

distances at the 5-digit zip code level reveals that the state-level border effect is in fact

an artifact of geographic aggregation.4 Coughlin and Novy (2016) also investigate the

effects of spatial aggregation on the estimation of the border effect, arguing with the help

of a model that larger countries mechanically report lower border effects than smaller

countries.
4Interestingly, perhaps ironically, they do find a zip code-level border effect that they consider a “reductio

ad absurdum”. They compute the distance between two 3-digit zip code regions as the arithmetic mean
distance between all the 5-digit pairs within those 3-digit zip code regions. As will be seen below, this may be
the culprit of said zip code-level border effect.
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In the following section I turn to theory and build on earlier work from Head and Mayer

(2009) to derive a theory-based trade cost aggregation.

3 Theory-based trade cost aggregation

Following Head and Mayer (2014) the gravity equation of international trade usually

comes in a form that can be reduced to

xkl = Gskmlφ
θ
kl

where xkl are exports from a location k to another location l, sk are exporter-specific

terms, ml importer-specific terms.5 φkl is the bilateral resistance term, trade barriers and

facilitators, between the two locations, θ being the trade elasticity. G can be thought of as

a “gravitational constant”.6

Bringing the model to the data can be considered very easy, but bears one caveat. Unfor-

tunately most available trade data is aggregated to some degree and usually unavailable

at fine-grained geographic detail.7 Instead it is usually aggregated to geographic entities

like country, state or region. This aggregation of the left-hand side variable makes an

aggregation for right-hand side variables necessary as well. In the following I derive an

aggregation of trade costs that builds on Head and Mayer (2009)’s “effective”, yet rarely

used, distance measure.

Let k now be a location inside the geographic entity i and l inside j. Then

xij =
∑
k∈i

∑
l∈j

xkl

= G
∑
k∈i

sk
∑
l∈j

mlφ
θ
kl

Calling mj =
∑

l∈jml,

xij = G
∑
k∈i

skmj

∑
l∈j

ml

mj
φθkl

5See appendix A.1 for the following derivation with a more explicit structural gravity setup. The resulting
aggregation is isomorphic to the one below.

6See Head and Mayer (2014) for a detailed survey over the different underlying micro foundations. sk and
ml usually embody a term that has been coined multilateral resistance term, accounting for country-specific
factors determining its trade with all other locations. Similarly, the parameter θ has a range of different of
interpretations, as briefly outlined in section 5.

7There are some notable exceptions in recent years, using micro-level data, as briefly discussed in section 2.
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Further calling φkj =
(∑

l∈j
ml
mj
φθkl

)1/θ
and si =

∑
k∈i sk,

xij = Gsimj

∑
k∈i

sk
si
φθkj

Again, calling φij =
(∑

k∈i
sk
si
φθkj

)1/θ
finally yields the gravity equation for geographic

entities:

xij = Gsimjφ
θ
ij

where trade costs are aggregated as

φij =

∑
k∈i

∑
l∈j

sk
si

ml

mj
φθkl

1/θ

(1)

So far trade costs have been generic. Let now φ be described by the function

φkl = ψεijχ
δ
kl

where φ consists of a location-specific component χkl, like the distance between the two

locations, and an entity-specific component ψkl = ψij ∀ k ∈ i, l ∈ j, such as a common

legal system or official language of the two entities. δ is then the elasticity of trade costs to

the location-specific trade costs and ε the elasticity to entity-specific ones. Following (1),

country-level trade costs can then be rewritten as

φij = ψεijχ
δ
ij

where location-specific trade costs are aggregated as

χij =

∑
k∈i

∑
l∈j

sk
si

ml

mj
χθδkl

1/θδ

(2)

so that finally

xij = Gsimjψ
θε
ij χ

θδ
ij (3)

The exports of a geographic entity i to an entity j are therefore governed by the exporter-

and importer specific terms si and mj , entity-specific trade costs ψθεij , and the weighted

generalized mean of location-specific trade costs χθδij .

As Head and Mayer (2009) point out, the generalized mean has the convenient properties

of reducing to the arithmetic mean for θδ = 1 and the harmonic mean for θδ = −1. It can
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be shown that it also nests the geometric mean for θδ = 0.

Importantly though, equation (2) asserts that the elasticity of trade with respect to location-

specific trade costs θδ is also the exponent in this generalized mean.

In the discussion below I focus on distance as a generally acknowledged proxy for location-

specific trade costs. Other common trade cost components include the existence of a RTA,

a common currency, as well as shared language, common legal system, or colonial legacy.

It is safe to assume that under most circumstances these can be classified as entity-specific

trade costs. For most gravity aficionados the weighted arithmetic mean of great circle

distances between the two countries’ largest cities, readily provided by Mayer and Zignago

(2011) as distw, has been the go-to choice of a distance measure. Using these distances

implicitly sets θδ = 1. Although rarely used, Mayer and Zignago also provide the harmonic

mean of city distances, distwces.

Equations (2) and (3) however yield specific instructions on how to compute distances

between trading entities consistently with theory. The weights in the general mean should

incorporate information for all exporting and importing locations. Most importantly, the

coefficient θδ should equal the (estimated) distance coefficient in the gravity equation. The

remainder of the paper is concerned with calculating distances following these instructions

and its implications for estimations of the gravity equation. In the following section I

describe the data and process used to compute the distances.

4 Accurate distances using satellite imagery

The great circle distance—“as the crow flies”—between two locations is generally assumed

to be a good proxy for transport costs, but also for cultural and informational separation.

Citing concerns with previous ad-hoc measures such as the distance between capitals or

largest cities for international distances and area-based measures for internal distances,

Head and Mayer (2009) propose to use population data as the weights for their distance

aggregation, so that (2) becomes:

dij =

∑
k∈i

(popk/popi)
∑
l∈j

(
popl/popj

)
dθδkl

1/θδ

(4)

where dkl is the great-circle distance between the geographic centers of two cities k and

l, and popk/popi the share of city k’s population in the total population of all cities in

country i. Their population data comes originally from UN statistics. Aside from usual data

collection issues that may lead to inaccuracies, there are three important caveats. First, the
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Figure 1: Nighttime light emissions in 2012 (Source: NOAA)

data is limited to a maximum of 25 cities, while economic activity is likely not limited to

only those. This is a particular limitation for geographically large and populous countries

like the US or China. Second, there exists only one data point for several geographically

small countries, like Luxembourg and Singapore. Here the authors resort to previously

discredited area-based measures. Third, the data is only available for the year 2004. This

assumes a static economic geography. This may be particularly questionable in developing

and emerging economies.

4.1 Nighttime light emissions data

In trying to improve upon the existing measure, I am opting to use a different source

of information on the sprawl of economic activity: nighttime satellite imagery. Figure 1

shows the fascinating picture of light visible from space, displaying the extent of human

activity – and their exact geographic location. The National Oceanic and Atmospheric

Administration (NOAA) provides the imagery since 1992 on a yearly basis. Each image is

a composite of average light emission over the course of the year. The image is recorded

on cloud-free evenings between 8:30pm and 10pm local time by the United States Air

Force Defense Meteorological Satellite Program. The satellite’s sensor’s received radiance

is coded as a so-called digital number (DN) on a scale from 0 to 63. The resolution is 30

arc-seconds, which translates into about 860m at the equator. Each yearly image then has

a total of 725,820,001 pixels. Of these, roughly 60 million are on land and illuminated at

some point in the time span between 1992 and 2012.

Using this data has a number of advantages. First, not only urban centers but also
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Figure 2: Light emissions and GDP or population by NUTS3 region.

rural areas are present in the data. Second, even the smallest countries cover at least

hundreds of pixels. Luxembourg has around 4800 illuminated pixels and even the city-state

Singapore has around 900. Third, the annual periodicity of the data allows me to calculate

distances for each year, reflecting changes in the economic geography of countries. As an

additional bonus, data collection issues, that are likely to affect city population figures,

are sidestepped. All of these features significantly improve upon existing data, as shown

below in section 5.

Nighttime satellite imagery has been discovered as intriguing data for economic research

before. Most prominent is Henderson et al. (2011)’s paper on the estimation of growth

rates, comparing year-on-year changes of light intensities. Others, like Alesina et al.

(2012) and Hodler and Raschky (2014) investigate economic inequality and favoritism, by

delineating changes in light intensity along ethnic and regional lines. To my knowledge, I

am the first to explicitly make use of the geographic information embedded in the data for

economic research.

The use of light emissions data however also presents some challenges. To handle the size

of the matrix of distances between all illuminated locations on Earth while maintaining

general validity, I compute a reduced matrix composed of data from a sample of illuminated

cells. The sample is constructed by drawing randomly 100 times 1 % and a minimum of

1000 from each country’s illuminated cells. This reduces the total number of elements in

the distance matrix to about 3.6 · 1012. Next to managing these computational limitations

and other technical issues such as the comparability of radiance figures over time,8 a

8See appendix B for a description of the data processing.
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Figure 3: Distribution of (a) light emissions in France in 2000 and (b) its year on year
changes.

number of issues warrant attention. First, do light emission proxy well for the share of

importer and exporter-specific terms, as required by equation (1)? In order to validate this,

I aggregate light emission of European countries to NUTS3 region level. This allows me to

compare total light emissions of each region with statistics that are usually assumed to have

a close connection to importer- and exporter specific terms: economic output as measure

by GDP and total population. Figures 2a and 2b show that total light emissions and these

measures appear to be highly correlated within each country. Second, light emissions

maybe be erratic over time and not reflect true changes in the economic geography of a

country. Figures 3a shows the distribution of light emissions in France, a country where

little variation over time can be expected, in 2000 and figure 3b its year-on-year changes.

The bulk of light emissions are of low intensity and the year-on-year variation is very

limited, signaling no drastic movements.

4.2 Computing theory-consistent distances

After some initial pre-processing of the data, I can proceed to computing the aggregate

distance between each country pair for all years between 1992 and 2012. As Head and

Mayer (2009), I assume that importer and exporter-specific terms in a location have the

same share in their entity-aggregated importer and exporter-specific terms. Calling this
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share wk = sk
si

= mk
mi

, equation (2) can be rewritten in matrix form as:

dij =
(
wT
i D

θδ
ijwj

)1/θδ
(5)

where

wi =
1∑

k∈iwk


w1

...

wk

 (6)

and wj accordingly, and

Dij =


d1,1 · · · d1,l

...
. . .

...

dk,1 · · · dk,l

 k ∈ i, l ∈ j (7)

where dk,l is the great circle distance between locations k and l. The great circle distance

between any two points is approximated by the spherical law of cosines. Using the

described nighttime light emissions data, wi is then proxied by the vector of each location

k’s share in the total light emissions of country i.

4.3 Distance variation over time and by exponent

As derived above, the exponent in the generalized mean is supposed to be equal to the

elasticity of trade with respect to distance.

In the literature the exponent θδ is usually implicitly set at 1 by the use of arithmetic mean

distances, although traditionally estimation place the distance elasticity somewhere in the

broader neighborhood of −1, calling for the use of harmonic mean distances.

Figure 4 displays the computed bilateral distances as a function of the exponent θδ for four

exemplary country pairs, including the distances provided by Mayer and Zignago (2011)

for comparison. The results highlight the importance of picking the correct exponent.

The difference between commonly used arithmetic distances and harmonic distances is

particularly large for developing countries and internal distances. Figure 4a shows a

difference for the internal distance of Democratic Republic of Congo between harmonic

and arithmetic mean of factor 21. Yet even for a developed economy such as Germany the

factor remains at 1.6. Figure 4c shows the schedule for the country pair of the Democratic

Republic of Congo and Rwanda. The ratio between arithmetic and harmonic mean stands

at 1.7. For the distance between Germany and France the ratio is lower but still at 1.2.
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(d) Distance DEU - FRA

Figure 4: Aggregate distances depending on the exponent in generalized mean in 2000.
Commonly used distances from Mayer and Zignago (2011) for comparison.

With respect to estimations of the gravity equation this entails an important effect that

will be shown empirically in section 6: Assuming that the true aggregate distance is a

harmonic mean, using arithmetic mean distances biases the estimation, as short distances

are overstated. Figure 5a plots the ratio of arithmetic over harmonic mean distances

against harmonic mean distances.9 Again it becomes clear that internal distances are more

affected than external distances and shorter distances are more affected than larger ones.

In a gravity estimation this effect will be mainly picked up by the border coefficient. As

9It can be shown that in a hypothetical setting in which distance were the only trade cost, this ratio of
arithmetic to harmonic mean is equal to the bias of the border effect, i.e. the exponent of the border coefficient,
in an OLS estimation.
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(a)

(b)

Figure 5: (a) bias of arithmetic over harmonic distances and (b) measurement error of
Mayer and Zignago (2011)’s distw over arithmetic distances.

internal distances are overestimated relative to external distances, the border effect is

artificially inflated as there is “too little” trade externally. 10 The effect could also partially

be picked up by any variable that is correlated with shorter distances, as the effect itself

decreases with distance.

Figure 5b highlights the issue of mismeasurement when using human-collected data and

displays the aforementioned advantage of using satellite imagery for the weighting of

10Due to the saturation of the sensor of the satellite the radiance data is top-coded at DN 63, i.e. all values
larger than 63 are coded as 63. This obviously biases the measurement: the computed harmonic mean might
be still overstating the distance, so that the difference to the arithmetic mean could be even larger.
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Figure 6: Aggregate distances over time (Exponents in generalized mean of -1 and 1).
Commonly used time-invariant distances from Mayer and Zignago (2011) for comparison.

the mean. Arithmetic mean distances calculated with satellite images, i.e. θδ = 1, vary

significantly from Mayer and Zignago (2011)’s distw, calculated with city-level population

data. For geographically smaller countries and developing and emerging economies a

much higher detail of information is available than through figures manually collected.

Another benefit of using light emissions data from satellite imagery as weights for the

distance calculation is, as discussed above, its yearly availability. This allows me to calculate

distances between all country pairs for each year since 1992.11 Figure 6 shows the variation

11That is, given they existed at that point in time. There are a number of new countries in the data in the
wake of the disintegration of former Yugoslavia, as well as territorial changes in other parts of the world. I use
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Figure 7: Mean change of distance for neighboring countries in RTAs in 10 years prior
and after the formation. Bars display the 95% confidence interval.

over time of the previously discussed arithmetic and harmonic mean distances for the

same country pairs as in figure 4. The variation is again noticeably larger for developing

countries. The internal distance of the Democratic Republic of Congo varies over the range

of 35 to 63 kilometers when measured as a harmonic mean and 850 to 997 kilometers for

the arithmetic mean. For a high income country like Germany, this variation is expectedly

much lower and lies between 187 and 195 kilometers for the harmonic mean and 309 and

318 for the arithmetic mean. Variation is also observed for between-country distances,

although the effect itself is again a decreasing function of distance. The country pair of the

Democratic Republic of Congo and Rwanda varies between 313 and 886 kilometers (1191

to 1492 for the arithmetic mean) with a staggering drop of almost 50 % from 1993 to

1994—the year of the Rwandan genocide. The country pair Germany - France exhibits muss

less variation and ranges between 594 and 631 kilometers for the harmonic mean (731 to

764 for the arithmetic mean). Overall the variation over time is not negligible, especially

for internal distances and country pair distances for geographically close countries.

As noted in section 2, other research endeavours have estimated the effect of distance

on trade in the within dimension of a panel. Feyrer (2009) and Hugot and Dajud (2014)

exploit an exogenous shock to maritime shipping distances in order to assess the effect.

While, as will be seen below, their estimates are comparable, their approach exhibits one

noticeable difference. In their case, the locations of economic activity are assumed to be

static, but the optimal route connecting the importing and exporting entity changes. In the

present case, I assume the inverse: the geography of economic activity is changing over

data on border locations from Weidmann et al. (2010). This provides an additional source of time variation
that is not due to changes in economic geography.
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Figure 8: Distance for the UK with different source for weights (95 % confidence interval)

time, but optimal routes are static. This in turn means that there is the possibility that the

change in distances over time is actually driven or influenced by an endogenous process:

economic activity could move closer to the border with another country in anticipation of

more trade with said country. The result would be observed as a shorter aggregate distance

and more trade. An example could be the car industry in southern Ontario, Canada: Due

to the automobile production on the American side of the border, Canadian manufacturing

companies might move closer to the border to reduce transportation costs. One would

then observe higher cross-border activity as well as shorter distances due to the relocation

of economic activity. While this mechanism cannot be entirely ruled out, figure 7 suggests

that a reduction in trade barriers (the formation of an RTA), or anticipation thereof, has no

significant influence on the distance between neighboring countries. The mean percentage

difference of the distance in the ten years around the formation of a RTA to the year of its

formation is never significantly different from 0.12

Figure 8 displays a further test for the validity of the use of nightlight data for the weights.

I recompute the aggregate internal distance for the United Kingdom, however now using

for the weights calibrated nightlight data (blue line) made available by Hsu et al. (2015)

and gridded population data from the 2011 UK census (green line) made available by Reis

(2016). The red line denotes the distance computed using the “regular” nightlight data

used for the computations above. The difference between the regular nightlight data and

calibrated nightlight data is the absence of top-coding of radiance, likely giving more weight

to well-light urban areas. This in turn could yield consistently lower distances as a smaller

12See also figure 11 in the appendix that shows the change of distances between Mexico and the bordering
US States of Texas, New Mexico, Arizona and California relative to 1994, the year NAFTA came into force. No
clear pattern is visible with respect to smaller distances in the aftermath of the trade agreement.
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share of emitted light comes from non-urban areas. The population-weighted distance in

turn could give even more weight to densely populated areas—e.g. through multi-story

buildings—resulting in even smaller (although not always significantly) distances. Due

to technical limitations of the sensor on the satellites this data is only available for select

years (Hsu et al., 2015). For reference, the customary measures from Mayer and Zignago

(2011) are again displayed as horizontal bars. The computed distances all display the

same pattern and are significantly lower than distw for the standard distance elasticity as

exponent at -1. In fact, it appears as if distances computed using the uncalibrated nightlight

data could still slightly overstate actual distance, although for almost all exponents the

three distance measures are not statistically different at the 5 % significance level.

5 Evaluating the new distance measure

Before running gravity equations with the computed distances in section 6, it is useful to

construct a framework against which to evaluate the results. In their research program

on gravity equations, Head and Mayer (2013) borrow another analogy from physics to

describe the known unknowns13 of trade barriers: dark trade costs. In physics, dark

matter describes the seemingly immeasurable mass that leads to measurable outcomes

that can otherwise not be reconciled with orthodox theories. In the present context of

international trade, dark trade costs describe the fraction of trade costs that is observed

but not quantifiable in usual terms of tariffs, transportation costs or other trade barriers

and facilitators such as a common language spoken in two trading countries.

In section 3 trade costs φij were assumed to have the form of

φij = ψεijχ
δ
ij

where ψij is an entity-specific trade cost and χij the aggregate of location-specific ones. ψij
can equivalently be thought of as capturing any type of border effects, while χij captures

distance effects. ε and δ are then the elasticities of trade costs to border and distance,

respectively. When estimating a gravity equation, one usually estimates the elasticities

of trade to these specific trade costs, that is to say θδ and θε.14 The elasticity of trade to

trade costs, θ, is a standard parameter in most theoretical models that yield a gravity-type

expression. As Head and Mayer (2013) explain in further detail, it is σ−1, i.e. the elasticity

of substitution less 1, in Anderson and van Wincoop (2003)-type models; in Ricardian

models à la Eaton and Kortum (2002) the parameter governs the distribution of labor

13Hat tip to former US Secretary of Defense Donald Rumsfeld, who popularized this term. However, it
seems to originally have been coined by Nassim Nicholas Talib and/or NASA administrator William Graham.

14See Head and Mayer (2013) for a survey of studies that aim to estimate ε and δ directly.
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requirements across countries; and in Chaney (2008), θ determines firm heterogeneity. In

most cases, Head and Mayer (2014) report in a meta analysis, θ is in the range between 3

and 9, with a median of 5.

Following the analogy from physics, the observed distance coefficient can be broken down

into

θδg = θ (δl + δd) (8)

and analogously the border coefficient into

θεg = θ (εl + εd) (9)

where the subscript g denotes the gross coefficient, l denotes light trade costs, i.e. known

impediments or facilitators to trade, and the subscript d the above-mentioned dark, or

unknown trade costs. In the exercise below, I exploit the time-variation that is present in

the computed distances in order to estimate both θδg, the gross effect of distance on trade,

and θδl, the measurable and unbiased direct effect of distance on trade. The difference

between the two, θδd, is the dark part.

6 Iterative estimation of Gravity equation

When estimating a gravity equation in the cross section, the estimated coefficient for

distance also captures other entity-specific effects that are correlated with distance, such

as cultural similarity. Traditionally the elasticity of trade to distance is has been estimated

to be in the neighborhood of −1, relating nicely to the original analogy from physics. In a

meta survey Disdier and Head (2008) find the mean of estimates to be −0.9 (with 90%

of estimates between −0.28 and −1.55). Head and Mayer (2014) update this survey and

report for structural estimations a mean of −1.1 (standard deviation of 0.41) and for all

estimations including naive gravity, a mean of −0.93 (standard deviation of 0.4).

As noted above, the time-variation of the data allows me to exploit the within-dimension of

the data to estimate the distance coefficient. The choice of the exponent in the generalized

mean, as laid out in the previous section, makes a significant difference in the computed

aggregate distance. In the following I use results from section 3 to aggregate distances

using an iterative approach to find the unbiased exponent θδl. Recall that

χij =

∑
k∈i

∑
l∈j

sk
si

ml

mj
χθδkl

1/θδ
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where the exponent θδ is a parameter in the gravity equation

xij = Gsimjψ
θε
ij χ

θδ
ij .

The equation can easily estimated with an OLS estimator in its log-linearized form as

logXij = α0 + Si +Mj + α1 · Controlsij + β0 · Borderij + β1 · log Distanceij + εij (10)

or using the PPML estimator proposed by Santos Silva and Tenreyro (2006) as

Xij = exp (α0 + Si +Mj + α1 · Controlsij + β0 · Borderij + β1 · Distanceij) + εij . (11)

The variables of interest are the estimated coefficients β1 = θδ for the distance measure

and later β0 = θε for the border effect. Si is an exporter fixed effect and Mj an importer

fixed effect that capture everything that is country-specific. Controlsij is a vector of usual

bilateral gravity control variables such as contiguity, common language, historical colonial

ties, a common currency and the existence of an economic integration agreement.

I estimate equations (10) and (11) in multiple specifications: first in section 6.1 in a

panel, exploiting the within-dimension in order to obtain the unbiased effect of distance

on trade. The addition of a country-pair fixed effect FEij in the panel estimation captures

all bilateral time-invariant characteristics. While this eliminates unobserved time-invariant

country-pair features, it also captures the border coefficient β0. In a second step in section

6.2 I estimate equations (10) and (11) in the cross section annually. This allows me to

estimate the border effect using those distances computed with the distance coefficient

from the panel estimation.

The iterative estimation procedure is as follows: Using an arbitrary initial value,15 I

estimate the gravity equation, retrieve the distance coefficient β1 and then use it as the

θδ in the calculation of the aggregate distance in equation (5). This new distance is then

used for the next iteration. I repeat this process until the coefficient β1 remains unchanged

in its 5th digit.

In order to ensure robustness of the results I use multiple trade data sources and estimate on

several different samples. For the panel estimation trade data comes primarily from the IMF

DOTS dataset (International Monetary Fund, 2015), as it provides wide and continuous

coverage over the whole time period from 1992 to 2012. For robustness checks I use

UN COMTRADE data (United Nations Statistics Division, 2015). For estimations where
15I choose the value 0, i.e. the assumed absence of an effect of distance on trade. The choice has no

influence on the end result, it only influences the number of iterations to get there.
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Table 1: OLS estimation - pooled and within-dimension

Dependent variable: log(flow)

(1) (2) (3) (4) (5) (6)

log(Distance) −1.282∗∗∗ −1.264∗∗∗ −1.260∗∗∗ −0.407∗∗∗ −0.950∗∗∗ −0.927∗∗∗

(0.007) (0.006) (0.006) (0.125) (0.100) (0.100)

Distance arithmetic harmonic iterate arithmetic harmonic iterate
Pair FE No No No Yes Yes Yes
No. of Iterations - - 4 - - 12
Observations 177,996 177,996 177,996 177,996 177,996 177,996
R2 0.785 0.787 0.787 0.925 0.925 0.925
Adjusted R2 0.776 0.778 0.778 0.918 0.918 0.918

Notes: All regression include exporter × year and importer × year fixed effects. Significance
levels: ∗: p<0.1, ∗∗: p<0.05, ∗∗∗: p<0.01.

external and internal flows are separated, in particular in the cross section estimations in

section 6.2, I use the TradeProd dataset (De Sousa et al., 2012). It has the advantage of

having consistent figures for internal and external trade. For the other two data sources,

I calculate internal trade as the difference between GDP and total exports, per usual

following Wei (1996).

Data on RTAs and currency unions come from De Sousa (2012), other time-invariant

variables come from CEPII (Mayer and Zignago, 2011).

6.1 Distance effect

As a benchmark I estimate equation (10) in a balanced pooled panel. Then I re-estimate

controlling for unobserved country-pair characteristics with country-pair fixed effects

FEij . I further control for time-varying bilateral variables, RTA and common currency.16

Columns (1) to (3) of table 1 report the results for the benchmark pooled panel with

different distance measures, arithmetic and harmonic mean distances as well as those from

the generalized mean through iteration. The coefficients on distances do not vary much

between the measures. This changes drastically when introducing the country-pair fixed

effects, wiping out all distance-correlated but time-invariant characteristics. Columns (4)

to (6) report those coefficients for the same distances measures. The distance coefficient

drops markedly to −0.41 for the arithmetic mean, while the coefficients with harmonic

mean and iterated general mean with −0.95 and −0.93 are in the close vicinity of −1, in

line with customary cross-section estimations in the related literature.

All coefficients are highly significant. The results strongly suggest that the unbiased

16Coefficients are suppressed here but are almost identical to usual within-estimations of RTA and common
currency coefficients.
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Table 2: Robustness checks - different samples and datasets

Dependent variable: log(flow)

(1) (2) (3) (4) (5) (6)

log(Distance) −1.019∗∗∗ −1.177∗∗∗ −0.615∗ −0.860∗∗∗ −1.399∗∗∗ −0.771∗∗

(0.098) (0.208) (0.322) (0.282) (0.288) (0.323)

Distance iterate iterate iterate iterate iterate iterate
Pair FE Yes Yes Yes Yes Yes Yes
Dataset DOTS DOTS DOTS DOTS COMTRADE TradeProd
Sample Neighbors External High inc. Low inc. all all
No. of Iterations 14 6 21 13 6 27
Observations 30,429 175,140 31,395 2,646 87,969 132,795
R2 0.971 0.919 0.959 0.967 0.929 0.927
Adjusted R2 0.961 0.911 0.954 0.934 0.921 0.918

Notes: All regression include exporter × year and importer × year fixed effects. Significance
levels: ∗: p<0.1, ∗∗: p<0.05, ∗∗∗: p<0.01.

distance coefficient is close to −1. The important take-away for estimations of the gravity

equation is that, as laid out in section 3, this result calls for using aggregate distances that

use the generalized mean with a coefficient of −1, i.e. the harmonic mean. Arithmetic

mean distances strongly overstate short distances, as shown in section 4.3.

In order to ensure the robustness of the results I estimate the same equation on different

samples and datasets. Table 2 column (1) reports the coefficient on neighboring country

pairs, countries that directly share a border or are within a 2000km distance. Section 4.3

suggested that here the highest variation would be found. Again the distance coefficient

is very close to −1. Column (2) reports the coefficient of −1.18 when restricting the

sample to external trade. This suggests that the average effect of distance on internal

trade is lower relative to that than on external trade, which appears reasonable and is in

line with results from Yotov (2012). Columns (3) and (4) report the coefficient for what

the World Bank classifies as high income and low income countries. The coefficient for

high income countries is about 30% lower than for low income countries, which again

appears reasonable. Finally columns (5) and (6) report the coefficient when using UN

COMTRADE and TradeProd data. Both datasets have much lower numbers of observations

than IMF DOTS, which might explain the difference in the estimated coefficients. However

both coefficients, −1.4 for COMTRADE and −0.77 for TradeProd, are well in the range of

reasonable results.

The results are appealing: the coefficient estimated in the preferred specification is highly

significant and closely resembles the traditional estimate of the distance coefficient of

around −1. Estimates from the other specifications are all well in the range of traditional

estimates surveyed by Disdier and Head (2008) and Head and Mayer (2014).

Judging the results in terms of the framework setup in section 5, the estimated coefficient
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from the pooled panel regression can be thought of as the gross distance effect θδg from

equation (8), while θδl is the coefficient estimated in the within dimension.

Differentiating then between the light and dark shares of the distance effect in terms of

equation, I find that

θδg = θ (δl + δd)

−1.26 = −0.927 + θδd

so that dark trade costs make up a share of δd/δg = 0.264. About one quarter of the

traditionally measured distance effect is dark, i.e. due to trade costs that are merely

correlated with distance.

The estimated coefficients for distance elasticity being very close to the customary estimate

of −1, the results call for generally using harmonic mean distances in estimations of the

gravity equation, as opposed to the traditionally used arithmetic mean distances. In the

following, I analyze the effect using the former as opposed to the latter on various standard

gravity controls variables.

6.2 Border effect

As the border effect is captured by the country-pair fixed effect in the within-dimension

of the panel estimation, I resort to estimating it in the cross section annually. To ensure

comparability, I use the same balanced panel as before and stratify by year, while bearing in

mind that the bilateral coefficients might pick up other effects, as they cannot be controlled

for with a country-pair dummy.

There is some disagreement as to how to estimate and interpret the border effect. This often

makes a comparison of the estimated coefficients difficult, if not impossible. Some authors

are arguing over whether other gravity controls, such as a dummy for RTA, neighboring

country, or historical colonial linkages, should be set to either 0 or 1 for internal flows.

The choice indeed makes a large difference on the estimates border coefficient. Suppose

a setting as in De Sousa et al. (2012) in which the border dummy takes 1 for internal

flows. All other variables take 1 only if they apply for the external flow, e.g. for the US

and UK the dummies for common language and former colonial relation are set to 1. For

internal flows, the dummy is set to 0. With this setting, the border coefficient, i.e. the

coefficient for internal flows, increases ceteris paribus with any added dummy variable for

a trade facilitator and decreases with any additional trade barrier that is controlled for. The

benchmark, against which to evaluate the border effect thus depends on the nature and

number of added control variables. What is then measured is therefore not the average
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Table 3: Border coefficient estimation with TradeProd data

Dependent variable:

log(flow) flow

(1) (2) (3) (4)

log(distance) −1.530∗∗∗ −1.464∗∗∗ −0.886∗∗∗ −0.813∗∗∗

(0.033) (0.031) (0.025) (0.018)

border 1.959∗∗∗ 0.956∗∗∗ 2.091∗∗∗ 1.728∗∗∗

(0.202) (0.212) (0.053) (0.050)

Estimator OLS OLS PPML PPML
Distance arithmetic harmonic arithmetic harmonic
Observations 4,220 4,220 4,220 4,220
R2 0.856 0.856
Adjusted R2 0.848 0.849

Notes: All regression include exporter and importer fixed effects. Significance levels: ∗: p<0.1,
∗∗: p<0.05, ∗∗∗: p<0.01.

effect of a border on trade, but the effect of crossing the border to a country for which

none of the bilateral dummies is set 1. More importantly though, and present whenever

including any other co-variates next to a border dummy and distance measure, the setting

entails interpreting internal flows to be subject to directly comparable trade barriers and

facilitators as external trade flows. This may be plausible for common language, but fails

at the colony dummy.17

I therefore estimate the border coefficient, the gross effect of crossing a border, by exclu-

sively including the border dummy next to distance, at the expense of having the distance

coefficient capture (part) of those trade costs that are correlated with distance. Thinking

in terms of dark and light parts of trade costs from equation (9), the estimated coefficient

is then θεg. Table 3 reports the coefficients for the estimations using TradeProd data for

the year 2000. As noted above, the advantage of the data is, as De Sousa et al. (2012)

point out, that internal and external flows are consistently comparable, as internal flows

are represented by actual production data.18 Columns (2) and (4) show the estimates

when using harmonic mean distances as suggested above. For comparison, columns (1)

and (3) report the coefficient when estimated with arithmetic mean distances.

Using the OLS estimator, harmonic mean distances reduce the border coefficient from 1.96

to 0.956 in 2000, which translates into a reduction of the border effect from a factor of

about exp(1.96) ≈ 7.1 to exp(0.958) ≈ 2.6 for internal trade over external trade. When

assuming a trade elasticity θ of −4, as suggested by Head and Mayer (2013), the tariff-

equivalent reduces from ε = exp(1.96/4) − 1 = 63% to 27%. For the PPML estimator

the effect is smaller with a tariff-equivalent reduction from 68% to 54%, but significant

17Compare also Coughlin and Novy (2013) who argue along similar lines.
18See appendix D for the estimations with IMF DOTS dataset. The magnitude of the effects is similar.
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Table 4: Change in border coefficient by group with TradeProd data

Dependent variable:

log(flow)

(1) (2) (3) (4)

log(distance) −1.755∗∗∗ −1.662∗∗∗ −1.350∗∗∗ −1.290∗∗∗

(0.055) (0.053) (0.044) (0.042)

border 2.311∗∗∗ 0.793∗∗ 1.553∗∗∗ 0.982∗∗∗

(0.337) (0.363) (0.255) (0.263)

Estimator OLS OLS OLS OLS
Distance arithmetic harmonic arithmetic harmonic
Bias (AM/HM) ≥ median ≥ median < median < median
Observations 1,737 1,737 2,483 2,483
R2 0.823 0.822 0.890 0.890
Adjusted R2 0.801 0.800 0.881 0.881

Notes: All regression include exporter and importer fixed effects. Significance levels: ∗: p<0.1,
∗∗: p<0.05, ∗∗∗: p<0.01.

nevertheless.

Table 4 shows the change in the estimated border coefficient conditional on the size of the

bias in terms of the ratio of arithmetic over harmonic mean, as in figure 5a. Columns (1)

and (2) show the coefficients for the same specification but restricting the sample on those

exporting countries, whose bias is above the median, i.e. those countries with a strongly

overstated internal distance. Conversely, columns (3) and (4) display those coefficients for

the group with a bias lower than the median. The results confirm the intuition. Indeed,

the estimated border coefficient drops by far more for the group with a higher bias (from

2.31 to 0.79) than with a lower bias (from 1.55 to 0.98).

Figure 9 displays the variation of the coefficient over time. The magnitude of the difference

between using arithmetic and harmonic distances stays roughly the same for each estimator.

Judging the results again by the framework set up in section 5, the applied tariff can be

thought of as θεl, so that in 1992 for the OLS estimator and harmonic mean distances

θεg = θ (εl + εd)

exp(2.01/4) = 1.1189 + εd

and hence the share of unknown border impediments expressed in a tariff equivalent is

equal to (εd − 1)/(εg − 1) = 0.82. In 2006 this has dropped to about 0.33.

The results are consistent with the literature on border effects that use disaggregated

shipment data, like Hillberry and Hummels (2008). Their results suggest the border
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Figure 9: Gross border coefficients from cross section estimations using OLS and PPML
estimators with TradeProd data.

puzzle largely to be a statistical artifact due to aggregation. Hillberry and Hummels

show that trade within a single 3-digit ZIP code region is on average three times higher

than trade with partners outside the ZIP code. This suggest much shorter distances for

internal trade flows than usually assumed with arithmetic mean distances. This statistical

observation however is reflected in the use of the harmonic mean that gives short distances

a proportionally larger weight than long distances. As shown above, using harmonic mean

distances remedies the border puzzle to a large extent and reduces the share of dark costs

down to 33 %, conditional on the estimation technique employed.

6.3 Effect on other variables

The effect on other gravity variables is estimated separately from the border coefficient,

as discussed above. Again estimating equations (10) and (11) in the cross section, but

restricting to external trade, the difference between using arithmetic or harmonic distances

is most visible in those variables that are correlated with distance. To mind comes here

the dummy variable for neighboring countries. As seen above in section 5a, the bias of

using arithmetic distances is particularly pronounced for those within countries or with

neighboring countries, as the bias is itself a function of distance. Arithmetic distances are

biased upwards, so that a dummy variable for trade with a neighboring country picks up

the ceteris paribus too large trade flows. The use of harmonic distances corrects this: giving

more weight to short distances reduces the mean and accounts for the larger cross-border

trade with neighbors compared to those in greater distance.
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Figure 10: Neighbor coefficient over time by estimation method

Table 5: Gravity co-variates estimation with TradeProd data

Dependent variable:

log(flow) flow

(1) (2) (3) (4)

log(distance) −1.379∗∗∗ −1.338∗∗∗ −0.578∗∗∗ −0.521∗∗∗

(0.028) (0.027) (0.015) (0.013)

neighbor 0.266∗∗ 0.099 0.372∗∗∗ 0.355∗∗∗

(0.103) (0.105) (0.024) (0.024)

rta 0.539∗∗∗ 0.550∗∗∗ 0.871∗∗∗ 0.903∗∗∗

(0.063) (0.063) (0.033) (0.033)

comcur −0.061 −0.083 −0.088∗∗∗ −0.119∗∗∗

(0.138) (0.138) (0.030) (0.030)

colony 0.808∗∗∗ 0.805∗∗∗ −0.018 0.004
(0.093) (0.093) (0.027) (0.027)

comlang off 0.485∗∗∗ 0.488∗∗∗ 0.143∗∗∗ 0.115∗∗∗

(0.054) (0.054) (0.027) (0.027)

comleg 0.242∗∗∗ 0.240∗∗∗ 0.169∗∗∗ 0.167∗∗∗

(0.038) (0.038) (0.018) (0.018)

Estimator OLS OLS PPML PPML
Distance arithmetic harmonic arithmetic harmonic
Observations 8,811 8,811 8,811 8,811
R2 0.805 0.804
Adjusted R2 0.797 0.797
Residual Std. Error (df = 8471) 1.308 1.310

Notes: All regression include exporter and importer fixed effects. Significance levels: ∗: p<0.1,
∗∗: p<0.05, ∗∗∗: p<0.01.
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Table 5 shows the estimates for the year 2000 and the TradeProd data for the most

commonly used co-variates in the gravity equation: A dummy for trade between directly

neighboring countries, the existance of a RTA, a common currency, historical colonial links,

a common official language and the presence of a common legal system. Columns (1)

and (3) show the coefficients for OLS and PPML estimates when using arithmetic mean

distances, columns (2) and (4) those for the harmonic mean distances. The coefficient for

trade with a neighboring country when using the latter over the former drops from 0.27,

i.e. on average 30% more trade than with other countries, to an insignificant 0.1, or 10.5%

more, when using the OLS estimator. When using the PPML estimator the coefficient drops

from 45% to 42%, the decrease however is not significant. Figure 10 shows the evolution

of the coefficient from 1992 to 2006. Again, as in the case of the border coefficient, the

difference between the estimated coefficient using the two distance measures remains

relatively stable. Unsurprisingly the other variables are largely unaffected, as they tend to

be less correlated with distance.

6.4 Gauging the effects on simulated data

In order to further validate the theoretical and empirical findings as well as their magnitude,

I perform a simulation exercise. I first generate data using a very simple structural gravity

model à la Head and Mayer (2014) in which I explicitly set the bilateral trade costs, in

this case solely to be described by distance. Knowing the true distance elasticity, I estimate

the distance coefficient using both correct and mismeasured distances. Furthermore I can

introduce additional variables in the estimation that are orthogonal to the true distance,

but may not be to the mismeasured ones, as is hypothesized above about the border and

neighboring country dummies. In case the econometric results from above are correct,

they should be replicable in this simulated environment.

Suppose now that bilateral trade flows Xij are described by

Xij =
Yi
Ωi
· Xj

Φj
· φij (12)

where Yi =
∑

j Xij is the value of production in i, Xj =
∑

iXij is the value of all imports

in j, and

Ωi =
∑
k

Xkφik
Φk

and Φj =
∑
k

Ykφik
Ωk

are the multilateral resistance terms. As Fally (2015) notes, these can be solved for a given

set of trade costs φij , production and expenditure figures. Assuming that both Yk and Xk

can be proxied for by data on GDP, I can easily simulate real-world trade data by specifying
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Table 6: Gravity co-variates estimation with simulated data

Dependent variable:

log(trade flow) trade flow

(1) (2) (3) (4) (5) (6)

log(distance harm) −1.000∗∗∗ −1.000∗∗∗

(0.000) (0.000)

log(distance arith) −1.075∗∗∗ −1.028∗∗∗ −1.015∗∗∗ −1.077∗∗∗

(0.001) (0.001) (0.001) (0.001)

border 0.000∗∗∗ 1.136∗∗∗ 1.185∗∗∗ −0.000∗∗ 0.541∗∗∗

(0.000) (0.006) (0.006) (0.000) (0.003)

neighbor 0.000∗∗∗ 0.171∗∗∗ 0.000 0.108∗∗∗

(0.000) (0.003) (0.000) (0.002)

Estimator OLS OLS OLS OLS PPML PPML
Observations 32,041 32,041 32,041 32,041 32,041 32,041
R2 1.000 0.999 1.000 1.000
Adjusted R2 1.000 0.999 1.000 1.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

trade costs φij .

Suppose therefore for the purpose of the argument that bilateral trade costs φij were to be

governed exclusively by the bilateral geographic distance between i and j, such that

φij = exp(δ · ln Distij(δ))

where Distij is the harmonic mean distance for δ = −1.

Conveniently equation (12) can be estimated as

log(Xij) = Fi + Fj + δ̂ · ln(Distij(δ)) + γ̂ · zij + εij

where Fi and Fj are fixed effects capturing all exporter and importer characteristics and zij
is an additional bilateral variable. The coefficients of interest are δ̂, the estimated distance

elasticity which is supposed to be equal to δ when estimated with the correct distance

measure, and γ̂, which is supposed to be zero, as φij is only governed by distance. In

case of a mismeasurement of the distance, γ̂ could be non-zero, in which case zij were

to capture some of the distance effect. As discussed above, of particular interest here

are the variables capturing the border and neighboring country effect. Both variables are

correlated with distance to some degree and therefore could capture distance effects.

Table 6 reports the estimated coefficients for a variety of specifications: Columns (1) and

(5) show the benchmark result in which the correct harmonic mean distances are used,

estimated using an OLS or PPML estimator respectively. The distance coefficient is, as
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expected, −1. The coefficients for the border and neighboring country variable are both

0. Columns (2) - (4) and (6) report the corresponding estimates when erroneously using

the mismeasured arithmetic mean distances: in all cases the distance coefficient is biased

upwards, i.e. away from zero. Remarkably, the estimated border coefficients stand at more

than 1.1 for the OLS estimator and more than 0.5 using the PPML estimator, although its

true value is 0. The neighboring country coefficient yields about 0.2 and 0.1, respectively.

The consequences of using mismeasured distances, i.e. a substantially inflated border

coefficient as well as an overestimated neighboring country coefficient, are replicated by

using simulated data. Moreover the magnitude of the effects are validated. The use of

mismeasured distances leads to a severe overestimation of the border and neighboring

country coefficients, or in other words, using the correct—harmonic mean—distances

helps remedy the border puzzle of international trade.

7 Conclusion

In this paper I derive a trade cost aggregation from a very general representation of struc-

tural gravity that takes into account location- and entity-specific trade costs. The method,

building on earlier work from Head and Mayer (2009), is agnostic to the underlying

micro-foundation of the gravity framework and yields specific instructions on data and

computation. Specifically and most importantly, it yields an aggregation in the form of

a generalized mean of location-specific trade costs where the exponent is equal to the

elasticity of trade to these trade costs in the gravity model.

I then apply the procedure to the arguably most acknowledged proxy for location-specific

trade costs, distances. Using annual high resolution satellite nighttime imagery for the

calculation of the weights, I compute bilateral distances for all country pairs (including

within-country) and all years between 1992 and 2012. The data significantly improves

upon previously used human-collected figures with much broader and finer coverage

and the absence of mismeasurement. Additionally, the annual periodicity allows to take

into account changes in the economic geography of countries, which are particularly

prevalent in developing and emerging economies. The time dimension of the computed

distances allows me to estimate the required distance elasticity from the gravity model in

the within-dimension of the panel. This in turn ensures that time-invariant, potentially

distance-correlated bilateral characteristics are controlled for. The estimated coefficient in

the preferred estimation conveniently very close to the traditional estimate of −1, is then

used for the aggregation.

I show that with these harmonic mean distances, as opposed to the customary use of
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arithmetic mean distances, the border puzzle of international trade becomes much less

severe or even disappears, depending on the data and estimation technique employed. This

result is driven by the fact that arithmetic mean distances strongly overstate short distances

relative to harmonic mean distances. It is consistent with the literature suggesting that the

border puzzle generally disappears when using disaggregated data on volume and distance

of shipment, such as in Hillberry and Hummels (2008). Regressions using simulated data

confirm the theoretical and empirical findings and support the magnitude of the estimated

effects.

The results strongly suggest the use these harmonic mean distance over the de-facto

standard of arithmetic mean distances. The new distance measure also warrants an

evaluation on the effect of national and subnational borders in the initial spirit of McCallum

(1995) and recently Coughlin and Novy (2013), testing the results of this present paper on

less aggregated flows.
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A Theoretical appendix

A.1 Aggregation for structural gravity

Following Head and Mayer (2014), structural gravity is defined as

Xkl =
Yk
Ωk
· Xl

Φl
· φθkl

where Yk =
∑

lXkl is the value of production (i.e. exports) in k, Xl =
∑

kXkl is the value

of all expenditure (i.e. imports) in l, and

Ωk =
∑
l

Xlφ
θ
kl

Φl
and Φl =

∑
k

Ykφ
θ
kl

Ωk

are the multilateral resistance terms. For all k ∈ i and l ∈ j call Yi =
∑

k∈i Yk and

Xj =
∑

l∈j Xl, the total value of production in i and expenditure in j respectively. Then

Xij =
∑
k∈i

∑
l∈j

Xkl

=
∑
k∈i

∑
l∈j

Yk
Ωk
· Xl

Φl
· φθkl

Multiply and divide by the sum of all exporter and importer-specific terms, such that

Xij =
∑
k∈i

Yk/Ωk ·
∑
l∈j

Xl/Φl ·
∑
k∈i

∑
l∈j

Yk/Ωk∑
k∈i Yk/Ωk

Xl/Φl∑
l∈j Xl/Φl

φθkl

The sum of importer and exporter-specific terms can be simplified further, as

∑
k∈i

Yk
Ωk

=
Yi
Yi

∑
k∈i

Yk
Ωk

= Yi
∑
k∈i

Yk
Yi

Ω−1k

=
Yi
Ωi

with Ωi =

(∑
k∈i

Yk
Yi

Ω−1k

)−1
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and accordingly

∑
k∈i

Xl

Φl
=
Xj

Φj
with Φj =

∑
l∈j

Xl

Xj
Φ−1l

−1

The entity-level multilateral resistance terms are hence the harmonic mean of multilateral

resistances of locations, weighted by their share in the value of production or expenditure,

respectively.19

Finally putting it all together yields

Xij =
Yi
Ωi
· Xj

Φj
·
∑
k∈i

∑
l∈j

Yk/Ωk

Yi/Ωi

Xl/Φl

Xj/Φj
φθkl

=
Yi
Ωi
· Xj

Φj
· φθij with φij =

∑
k∈i

∑
l∈j

Yk/Ωk

Yi/Ωi

Xl/Φl

Xj/Φj
φθkl

 1
θ

(13)

which is isomorphic to equation (1).

19See also Ramondo et al. (2012), whose aggregation over regions yields a similar country-level price index.
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B Processing of satellite imagery

The United States Air Force Defense Meteorological Satellite Program (DMSP) has satellites

circling the planet about 14 times in 24h, image captured between 8:30pm and 10pm local

time. The results are digitally available since 1992, pre-processed by NOAA (cloud-free, no

fires). The resolution is 30 arc-seconds or about 860m at the equator, where the recorded

data is a so-called digital number (DN), an integer between 0 and 63. The number is

not necessarily true radiance, it is what the sensor picks up. In total there are about

60,000,000 illuminated cells, with variation over time.

I rasterize the raw satellite images and remove artefacts (gas flares and aurora borealis),

boats, etc. I reduce the sample to illuminated landmasses by detecting borders with

georeferenced border shapefiles from Weidmann et al. (2010). In line with the literature I

intercalibrate across years following Elvidge et al. (2014) with:

DN
′

= c0 + c1DN + c2DN
2

A number of years have observations from two satellites. For these years I average the

intercalibrated data by cell. Using this processed data I calculate great circle distances

between each illuminated cell and calculate the generalized mean as discussed above.

To reduce the size of the distance matrix to be calculated while maintaining general

validity, I randomly draw 100 times 1 percent and a minimum of 1000 from each country’s

illuminated cells.
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C Validity checks for Distance Measure
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Figure 11: Change of distance (1994 = 1) after NAFTA between Mexico and the US States
of Texas, New Mexico, Arizona and California.

38



D Gravity results

D.1 Border effect

Table 7: Border coefficient estimation with IMF DOTS data

Dependent variable:

log(flow) flow

(1) (2) (3) (4)

log(distance) −1.544∗∗∗ −1.496∗∗∗ −1.143∗∗∗ −1.029∗∗∗

(0.024) (0.023) (0.014) (0.012)

border 3.926∗∗∗ 2.332∗∗∗ 2.563∗∗∗ 2.076∗∗∗

(0.147) (0.159) (0.028) (0.031)

Estimator OLS OLS PPML PPML
Distance arithmetic harmonic arithmetic harmonic
Observations 7,584 7,584 7,584 7,584
R2 0.786 0.789
Adjusted R2 0.777 0.780
Residual Std. Error (df = 7288) 1.450 1.439

Notes: All regression include exporter and importer fixed effects. Significance levels: ∗: p<0.1,
∗∗: p<0.05, ∗∗∗: p<0.01.
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Figure 12: Gross border coefficients from cross section estimations using OLS and PPML
estimators with IMF DOTS data.
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D.2 Effect on other variables

Table 8: Gravity co-variates estimation with IMF DOTS data

Dependent variable:

log(flow) flow

(1) (2) (3) (4)

log(distance) −1.321∗∗∗ −1.279∗∗∗ −0.592∗∗∗ −0.531∗∗∗

(0.031) (0.030) (0.017) (0.015)

neighbor 0.359∗∗∗ 0.202∗∗ 0.367∗∗∗ 0.347∗∗∗

(0.095) (0.097) (0.027) (0.027)

rta 0.532∗∗∗ 0.544∗∗∗ 0.855∗∗∗ 0.893∗∗∗

(0.065) (0.065) (0.038) (0.038)

comcur 0.301∗∗ 0.299∗∗ −0.029 −0.059∗

(0.131) (0.131) (0.035) (0.036)

colony 1.049∗∗∗ 1.047∗∗∗ 0.048 0.073∗∗

(0.105) (0.105) (0.033) (0.032)

comlang off 0.199∗∗∗ 0.200∗∗∗ 0.052∗ 0.019
(0.059) (0.059) (0.031) (0.031)

comleg 0.335∗∗∗ 0.334∗∗∗ 0.186∗∗∗ 0.186∗∗∗

(0.042) (0.042) (0.021) (0.021)

Estimator OLS OLS PPML PPML
Distance arithmetic harmonic arithmetic harmonic
Observations 8,340 8,340 8,340 8,340
R2 0.773 0.772
Adjusted R2 0.764 0.763
Residual Std. Error (df = 8009) 1.440 1.441

Notes: All regression include exporter and importer fixed effects. Significance levels: ∗: p<0.1,
∗∗: p<0.05, ∗ ∗ ∗: p<0.01.
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Figure 13: Neighbor coefficient over time by estimation method
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