
Spelta, Alessandro

Working Paper

Stock prices prediction via tensor decomposition and
links forecast

Working Paper, No. 41

Provided in Cooperation with:
Università Cattolica del Sacro Cuore, Dipartimento di Economia e Finanza (DISCE)

Suggested Citation: Spelta, Alessandro (2016) : Stock prices prediction via tensor decomposition
and links forecast, Working Paper, No. 41, Università Cattolica del Sacro Cuore, Dipartimento di
Economia e Finanza (DISCE), Milano

This Version is available at:
https://hdl.handle.net/10419/170638

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/170638
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


UNIVERSITÀ CATTOLICA DEL SACRO CUORE 

Dipartimento di Economia e Finanza 
 

 

 

 

 

Working Paper Series 
 

 

 

 

 

 

 

 

 
Stock prices prediction via tensor 
decomposition and links forecast 

 
 

Alessandro Spelta 
 

 

Working Paper n. 41 
 

May 2016 
 

 

 

 

 

 

 

 

 

 

 

 

  



Stock prices prediction via tensor 
decomposition and links forecast 

 
 
 

 
 
 
 

Alessandro Spelta 
Università Cattolica del Sacro Cuore  

 
 

 
 

 
 

 
 
 
 
 
 
 

Working Paper n. 41 
May 2016 

 
 
 

Dipartimento di Economia e Finanza 
Università Cattolica del Sacro Cuore  

Largo Gemelli 1 - 20123 Milano – Italy 
tel: +39.02.7234.2976 - fax: +39.02.7234.2781 

e-mail: dip.economiaefinanza@unicatt.it 
 

 
 
 

 

The Working Paper Series promotes the circulation of research results produced by the members 
and affiliates of the Dipartimento di Economia e Finanza, with the aim of encouraging their 
dissemination and discussion. Results may be in a preliminary or advanced stage. The 
Dipartimento di Economia e Finanza is part of the Dipartimenti e Istituti di Scienze Economiche 
(DISCE) of the Università Cattolica del Sacro Cuore. 



1 
 

Stock prices prediction via tensor decomposition and links forecast 

A. Spelta+ 

Catholic University and Complexity Lab in Economics, Milan, Italy 

May 24, 2016 

 

Abstract: Many complex systems display fluctuations between alternative states  in correspondence to 

tipping points. These critical shifts are usually associated with generic empirical phenomena such as 

strengthening correlations between entities composing the system. In finance, for instance, market crashes 

are the consequence of herding behaviors that make the units of the system strongly correlated, lowering 

their distances. Consequently, determining future distances between stocks can be a valuable starting point 

for predicting market down-turns. This is the scope of the work. It introduces a multi-way procedure for 

forecasting stock prices by decomposing a distance tensor. This multidimensional method avoids 

aggregation processes that could lead to the loss of crucial features of the system. The technique is applied 

to a basket of stocks composing the S&P500 composite index and to the index itself so as to demonstrate 

its ability to predict the large market shifts that arise in times of turbulence, such as the ongoing financial 

crisis. 
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Introduction: From biochemical reactions (1-4) to financial markets (5-7), passing through medicine (8,9) 

and ecological systems (10,11), the science of complexity is percolating through our everyday life, emerging 

as a unifying feature of the world. 

The complex system underlying different processes in nature, seems to behave in  similar ways (even if the 

drivers of these behaviors are process-specific), showing abrupt fluctuations from one state to another in a 

highly irregular way (7). 

These shifts usually take place at critical thresholds - the so-called tipping points - and are associated with 

critical transitions between alternative states (6-11).  

In medicine, asthma or epileptic attacks are triggered by spontaneous systemic failures (8-12),  abrupt 

shifts also occur in ocean circulation and climate changes (13) or ecological systems (10,11).  Financial 

markets, being a paradigm of complex systems (6,7), also experience sudden regime shifts where 

fluctuations are characterized by bumps that create upward and downward trends.  

Predicting critical transitions and abrupt changes in complex systems is a difficult task but fortunately some 

theoretical works (14,15) suggest the existence of generic indicators for critical transitions even when the 

knowledge of the functioning of the systems is insufficient for building  predictive models. 

The underlying principle of most of these indicators is a phenomenon known in dynamical systems theory 

as critical slowing down. This phenomenon occurs in most bifurcation points when the dominant 

eigenvalue characterizing the rates of change of the system around the equilibrium becomes zero (14). 

 

At these points the system becomes increasingly slow in recovering from small perturbations and the 

resulting time-series turn out to be highly auto-correlated. 

 

Beside the growing auto-correlations of the state variables of the system, recent works (11,16) have 

suggested that the critical slowing down phenomenon might, in theory, generate also spatial signals such as 

an increasing spatial correlation near transitions.  
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This is due to the fact that the entities composing the system pass from isolated to coordinated behaviors, 

where a spontaneous order emerges (6,7,16). When the intrinsic dynamics of each entity is weakened, the 

state of a unit will be strongly dependent on that of its neighbors. As a result, units will become more 

strongly correlated close to the transition. 

In finance, for instance, the formation and collapse of speculative bubbles have been largely considered the 

consequence of herding behaviors emerging from the broken balance between autonomous behavior and 

peer influence (7). When the effect of exchanging influence with the rest of the environment dominates, 

large-scale phenomena occur. 

 

These phenomena have a strong impact on the everyday life of millions of people and have attracted the 

interest of many researchers. Beside the pioneering work of Mandelbrot (17) that investigates the 

underlying stochastic process generating rare events, correlation-based measures play a central role also in 

the study of financial market fluctuations (18-20). 

Indeed, in finance, like in many other complex systems, researchers have observed modifications in the 

correlation structure between stock prices in the face of market turbulence, such as an ongoing crisis (21). 

While, during expansion and normal periods, financial markets tend toward randomness, in crisis phases 

their structures are reinforced due to a generalized increase in the level of correlations (21,22). 

 

Although there exists empirical evidence of connections between the strengthening of correlations and 

crisis episodes in financial markets, most of the existing studies mainly focus on correlations between stock 

prices (18-20), the resulting distance-based matrices and on their Minimum Spanning Tree representations 

(21-23), to provide optimal asset allocations and portfolio risk estimates. 

 

This paper, in turn, explicitly addresses the question of inferring the forthcoming dynamic of stock prices 

through the prediction of future distances between stocks.  
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This issue amounts to a link prediction problem (24). Given past connections (distances) between stocks, 

what will be their next period value? If predictions suggest a contraction of the next period distances for 

instance, than, we could expect a decrease in stock prices because of a strengthening of correlations and a 

higher likelihood of a crisis episode.  

The mainstream class of link prediction methods, are based on the so-called similarity-based algorithms, 

which are further classified into three categories: local, global and quasi-local depending on the 

information used (24). Usually all these techniques (24) collapse the temporal data into a single matrix by 

summing (with or without weights) the records corresponding to the each time period. Then similarity-

based measures like the Katz centrality (25) or the singular value decompositions (SVD) are applied to 

perform links prediction. 

 

This paper instead is the first attempt to use tensor decompositions and multi-way analysis (26,27) to 

extract complex relationships from stock prices' time series and use them in a link prediction application. 

This approach prevents the temporal aggregation of the data, avoiding losses of crucial features of the 

system that can be observed only by holding the original time-varying nature of the records. 

 

Starting from   time series of stock prices, a rolling window of length    is applied to compute the 

correlation      among each pair       of stocks. Given these pair-wise correlations, at each time step, a 

distance matrix with elements  

    √          

is created (28). 

Once the rolling window has produced   distance matrices       , these matrices are embedded into a 

3D-tensor          whose generic element      represents the distance between stock   and stock   at 

time  . 
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The tensor is thus approximated as the outer product of three vectors thought the canonical 

decomposition (29), also known as parallel factorization (30), the so-called CP decomposition. This 

technique can be regarded as a generalization of SVD to tensors (see Methods). 

 

The decomposition aims at writing the tensor   as the outer product of two identical vectors v, that 

contains the overall spatial dissimilarity between stocks  and a vector u, containing the temporal profile of 

the dissimilarities 

                                                                                     

where            and            . 

While a stock with a high (low) overall spatial dissimilarity score has, on average, a different (similar)  

behavior compared with the one of the rest of the stocks, a period in which a high (low) temporal profile 

score is registered will be a period in which most of the stocks are highly dissimilar (similar). 

The next step consists in generating the matrix of the forecasted distances. Instead of predicting the    

possible distances using    data points, with this method one has to predict only the next value of the 

temporal profile   and use it, together with the two fixed overall spatial dissimilarity vectors v, to build the 

matrix of the forecasted distances. 

An exponential smoothing, applied to the last    observations of the temporal profile vector u, extracts a 

scalar   representing the presumed value of this vector in the next period. Then the matrix containing the 

forecast distances of all stock pairs is obtained as a linear combination of the two spatial dissimilarity 

vectors v, the parameter   and of the forecast   of the temporal profile vector. 

In matrix terms;  ̂        or, element-wise    ̂         ( where the superscript  ̂ denotes the predicted 

distance).  

Finally, the vector of the forecasted prices is given by the outer product of the current price vector and of 

the normalized matrix representing the predicted future distances  ̃. The normalization is obtained by 
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dividing each entry of the predicted distance matrix by the number of stocks in the dataset. In this way the 

forecast stock price will be equal to the current price multiplied by the average of the predicted distances 

that relate it to the rest of the stocks. In matrix terms;  ̂    ̃  or, element-wise,   ̂    
 

 
∑    ̂  

  ∑    ̃. 

In accordance with empirical evidence suggesting that distances contract during crisis periods, the 

predicted price for each stock will be lower than the current one if, on average, the distance between that 

stock and the rest is decreasing. 

 

When the steps of the moving window exceed the parameter  , the tensor is allowed to move in time with 

each new step, as new data become available. The temporal shift of the tensor permits to compare the 

forecasts produced by two consecutive decompositions (31). The difference between the values of the two 

predictions generates a signal whose sign indicates the future direction of the price. 

To investigate whether this method is able to correctly identify changes in stock prices a back-test based on 

a hypothetical investment strategy is implemented (32).  

 

If the sign of the signal for a given stock   is negative, a short position is taken by selling the stock and 

buying it back the next trading day. In this case, the cumulative return made on that stock    changes by 

  
    

   

  
   . Otherwise, if the difference is positive, a long position is taken by buying the stock and then selling 

it the next trading day. The cumulative return in this case changes by 
  

      
 

  
 . Notice that profits are only 

possible if at least some future changes in stock prices are correctly anticipated, in particular regarding 

large market movements. Figure 1 gives a graphical representation of the technique.  
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Figure 1: Graphical representation of the method. Starting from stock price time series (A), a rolling window is applied to compute 

the correlation among each pair of stocks (B). At each time step a distance matrix is created. Once the rolling window has produced 

  distance matrices, those matrices are embedded into a 3D-tensor (C). When the steps of the moving window exceed  , the 

tensor is allowed to move in time with each new step, as new data are available (C - solid line vs. dashed line). This temporal shift of 

the tensor permits to compare the forecasts produced by two consecutive decompositions and, depending on their difference, to 

take a long or short investment position. For graphical purposes, the decomposition of two consecutive tensors, the resulting links 

prediction and price forecasts are drawn using solid and dashed lines. The two consecutive tensors are approximated as the linear 

combination of three vectors (D) representing spatial ( ) and temporal ( ) relationships between stocks distances;         . 

The exponential smoothing (D - green lines) applied to   extracts a scalar   representing the forecast of temporal profile for the 

next period (E - red lines). The forecast of the future distance matrix is obtained as a linear combination of the two spatial 

dissimilarity vectors, the parameter   and of the forecast   of the temporal profile vector;  ̂        (E and F - red squares). 

Finally, the prediction of future prices is computed as the outer product of the past price vector and of the normalized matrix 

representing the predicted distances   ̂    
 

 
∑    ̂ (F and G). An investment strategy is proposed to assess the efficiency of the 

method. If the difference   
      ̂ 

   ̂ 
    between two consecutive price forecast for a generic stock   is negative (G) then the 

stock is sold at price   
  and bought back the next trading day at price    

   . Otherwise, the stock is bought at price   
 and sold back 

in t+1 at price   
   . The returns are calculated as 

  
    

   

  
    or as 

  
      

 

  
  depending whether a short or a long position is taken (H).  

Results 

The method  is applied to the closure price of a basket of 388 stocks composing the S&P500 composite 

index, traded during 3527 working days, from 1999/08/04 to 2013/08/09. Additionally, a modified version 

of the method is also employed to forecast the dynamic of the S&P500 composite index for the period 

ranging from 2004/06/24 to 2013/04/30. 
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In order to give a rough overview of the market dynamic, Fig. 2(a) shows the average price of the basket of 

stocks under analysis (a) while Fig. 2(b) displays the S&P500 composite index dynamic. Besides the  general 

increasing trend, Fig. 2(a) shows two broad recession periods, the collapsed of the dot-com bubble 

occurred in 2002-03, and the global financial recession created by the bursting of the sub-prime mortgage 

bubble of 2008-09 . Figure 2(b), instead, reports the behavior of the S&P500 composite index for a shorter 

time length, not displaying the effects of the dot-com bubble. 

 

Figure 2 : Average stock price dynamic during the period 1999-2013 (a) together with the S&P500 index dynamic during the period 

2004-2013 (b).  Starting from the boom phase of the dot-com bubble in 2000, Figure 2(a) also shows the market decline of 2002, 

while both panels display the recovering period ended in 2007 with the sub-prime mortgage crisis together with the global financial 

crisis of the 2008-09. The final part on the sample shows the recovering taking place until 2013.  

Figure 3 shows the cumulative sum of the returns obtained for each stock together with the average 

cumulative performance, namely, the mean of the stocks’ returns (solid black line). Besides the fact that 

the investment strategy does not produce positive returns for all the stocks, the values of y-axis, biased in 

favor of positive quantities, together with the positive average return (black line), that reaches the value of 

     at the end of the sample, confirm the ability of the methodology to produce good predictions. 

Figure 3(a) displays the cumulative returns obtained by only taking short while the cumulative returns 

obtained by only taking long positions are showed in Fig. 3(c). In this way one is able to compare the 

performance of the methodology in predicting down-turns or up-turns of stock prices. From the average 

performance (black line) reported in Fig. 3(b) it clearly emerges that deep crashes, the burst of the dot-com 



9 
 

bubble and the 2008 financial crisis, are correctly anticipated. This more than compensates the losses of 

taking long positions (Fig. 3(c)) during these phases. These simulations are performed using the following 

parameters:      ,     ,      and the exponential smoothing parameter is set to be equal to    .  

 

Figure 3: Cumulative sum of returns obtained for each stock together with the average cumulative performance (solid black line). 

Figure 3(a) shows the performance of the investment strategy. Panels (b)-(c) display the cumulative returns obtained by investing 

only taking short or long positions respectively. This helps in quantifying how the correct forecast of booms and burst phases 

affects the overall cumulative returns. The simulations are obtained using the following parameters:      ,     ,      and 

the exponential smoothing parameter is set to be equal to    . 

While Fig. 3 aims at discovering whether the movements of each stock are correctly anticipated by only 

looking at the sign of the signal produced by the methodology (positive vs. negative), the next step consists 

in assessing the quality of the signals. In theory, the larger the absolute difference between two 

consecutive forecasts, i.e. the larger the absolute value of a signal, the more credible the forecast is. 

In order to show this feature, at each time step, the signals are sorted in descending order, based on their 

absolute values. Figure 4(a) displays the average cumulative sum of the returns associated with different 

quantiles of the distribution of the signals. In particular the upper blue line is associated with the strongest 

signal, the green line shows the average cumulative returns produced by the two strongest signals, the red 

line indicates the average performance of the first forty-five signals. The other lines illustrate the 
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performance associated with the cumulative sum of signals of gradually lower quantiles. Finally the lowest 

purple line displays the average cumulative return associated with the whole distribution (and it is 

equivalent to the black line of Fig. 3). 

Also in this case, the methodology is able to correctly predict the largest market movements, especially 

near  deep burst phases as shown in Fig. 4(b). Moreover Fig. 4 points out that stronger signals produce 

better forecasts, indeed the cumulative returns associate the most robust signal (436%) doubles the 

average performance associate to all the signals (230%).  

 

 

Figure 4: Cumulative sum of the returns associated with different quantiles of  the signals’ distribution. The goodness of each signal 

depends on the absolute difference between the two consecutive forecasts that compose the signal. The larger the difference , the 

better the signal.  Figure 4(a) shows the performance of the whole investment strategy. Panels (b)-(c) display the cumulative 

returns obtained by only taking short or long positions respectively. The signals are sorted according to their absolute values and 

therefore there is no one-to-one correspondence between each plotted line and a particular stock. For instance, the best signal can 

regard different stocks in different moments in time. The simulations are obtained using the same parameters of Figure 3. 

To further analyze the accuracy of the proposed methodology, the technique is also applied to forecasting 

the behavior of the S&P500 index as a whole (see Fig. 1(b)). Consequently, the procedure has been slightly 

modified to produce predictions for the whole composite index and not for each stock constituting the 
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basket. First, the number of stocks in the dataset is augmented (455 stocks are employed in this exercise), 

by restricting the temporal observations to the period 2004-2013. Secondly, only the forecasted distances 

 ̂ are used and not the forecasted stock prices. 

Similarly to Ref. (33) a Multidimensional Scaling Technique, the Principal Coordinates Analysis (34) is 

applied to  ̂ with the aim of embedding the data in a space of lower dimensions while retaining the 

pairwise distances between the points as much as possible. The dimensionality reduction facilitates the 

classification of high-dimensional data, by mitigating the curse of dimensionality and other undesired 

properties of high-dimensional spaces. 

 

After having found the centering matrix           , where   is the     identity matrix, and   is a 

vector of   ones, . the eigenvalue and eigenvectors of the matrix    ( 
 

 
 ̂ )  are found. The 

coordinates in the lower-dimensional space are recorded in a matrix       
   

, where    contains the 

eigenvectors corresponding to the   largest eigenvalues of  , and    
   

 contains the square root of the   

largest eigenvalues along the diagonal. 

 

Following Ref. (22) these points are embedded in a space of 6 dimensions (   ). The 6th root of the 

product of the eigenvalues of     defines the volume of the geometrical object composed by the 

embedded data (33).   

 

The volume is used as a reference for the identification of abnormal periods. The volume expands 

whenever the cloud of points represents a situation of “business as usual” and the market space is similar 

to that of a random universe. On the other hand, in critical periods, the volume of the geometric object 

severely contracts, leading to the emergence of distorted shapes (33). 

 

Now, the new signal is given by the difference of two subsequently predicted volumes        ̂   ̂   . 

Whenever this difference is negative the index is sold at price    and bought back the next trading day at 
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price      . Otherwise, the index is bought at price   and sold back in t+1 at price     . The cumulative 

returns are calculated as 
       

     in the first case, and as 
       

   in the second. 

 

Figure 5 shows the cumulative sum of the returns obtained by investing in the S&P500 composite index by 

following the differences in the predicted volumes. The simulations are obtained using the following 

parameters:     ,     ,      . As for the investment strategy based on stock price predictions, also 

in this case, Figure 5(a) shows that the predicted movements of stocks’ distances anticipates the market 

dynamic. Large down-turns are correctly anticipated as indicated by the cumulative returns illustrated in 

Fig. 5(b) near day 1000 (that corresponds to the initial period of the 2008 financial crisis). 

Figure 5(c), on the other hand, suggests that market up-turns, besides providing higher returns, are less 

severe than bust phases. The sum of the cumulative returns indeed has a smoother increasing behavior 

compared with  the one obtained by correctly predicting market down-turns. 

 

 

 

Figure 5: Cumulative sum of returns obtained for the S&P500 composite index. Figure 5(a) shows the performance of the 

investment strategy. Panels (b)-(c) display the cumulative returns obtained by investing only taking short or long positions 

respectively. This helps in quantifying how the correct forecasts of booms and burst phases affects the overall cumulative returns. 

The simulations are obtained using the following parameters:     ,     ,      . 
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Finally, Fig. 6  provides a robustness analysis. Since the parameter space is huge, the length of the tensor is 

kept fixed together with the parameter of the exponential smoothing while    and    take different values 

along the simulations. Each sub plot of Fig. 6 shows the cumulative returns obtained at the end of the time 

sample for different parameter values. In particular, the first row represents the end-of-sample cumulative 

returns obtained by averaging the cumulative performance of the method while forecasting the dynamic of 

the 388 stocks of the first dataset (see also Fig. 2). In particular Fig. 6(a) refers to the composite investment 

strategy, encompassing both long and short positions. Panels 6(b)-(c), instead, differentiate between short 

and long positions respectively. The central row of Fig. 6 shows the returns obtained by following only the 

best signal (as emphasized also in Fig. 4), for the whole investment strategy (d) and for short (e) and long (f) 

positions respectively. The last row, on the other hand, provides the same results but looking at the 

performance obtained by the application of the modified method to the S&P500 composite index.  

  



14 
 

Figure 6: Cumulative returns obtained at the end of the time sample for different values of    and   . Panel 6(a) represents the 

end-of-sample cumulative performance obtained by averaging the returns obtained by forecasting the dynamic of the 388 stocks of 

the first dataset. Panel 6(b) displays the end-of-sample returns by investing using only short positions and figure 6(c) encompasses 

the results for the long positions investment strategy. Panel 6(d) shows the results for the investment strategy obtained by looking 

only at the best signal produced by the method together with the results for short (panel 6(e)) and long (panel 6(f)) investment 

strategy only. Finally, the last row provides the end-of-sample cumulative returns obtained by applying the modified method to the 

S&P500 composite index, for the whole investment strategy (panel 6(h)) and for short (panel 6(i)) and long (panel 6(j)) investment 

positions.  

Discussion: The findings obtained by the application of this methodology have important consequences for 

the understanding of financial systems. Indeed, as pointed out by the recent financial crisis, financial 

systems are increasingly built on interdependencies and relationships that are difficult to predict and 

control. This work proposes a new dynamical approach to financial systems and stresses the systemic 

importance of empirical signs that can be used to extend the knowledge of financial markets and complex 

systems in general. 

 

Predicting abrupt market down-turns, as a matter of fact, facilitates the drafting of policies that can reduce 

the severity of  financial crises, by decreasing the risk of global collapses of financial services by making 

economic networks more robust. 

 

The results suggest that tensor decompositions and multi-way analysis can effectively extract complex 

relationships from stock prices' time series opening new insights into large-scale collective decision-making. 

 

Methods 

Tensor decomposition 

Tensor decompositions and multi-way analysis can be naturally employed to represent the time-varying 

distance matrices as a single mathematical object, a three-way tensor, and approximate this tensor as a 

product of vectors by extracting the most relevant spatial and temporal factors (29,30). 
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Uncovering the spatial ( ) and the temporal profile ( ) vectors that contain the overall dissimilarities 

between stocks and the related activity pattern requires the identification and the extraction of lower-

dimensional features. This can be achieved by means of the so-called canonical CP decomposition in three 

dimensions. 

 

The decomposition aims at writing the tensor   as the outer product of two identical vectors v, that 

contains the overall spatial dissimilarities between stocks' time series and a vector u, containing the 

temporal profile of the dissimilarities: 

                                                                                     

where            and            . 

Such an approximation of the tensor   is equivalent to minimizing the Frobenius norm of the difference 

between   and        . Solving this problem amounts at finding the rank-1 tensors that best 

approximate the   

                                                                                       
                              (1) 

The 3-dimensional problem is divided into 3 sub-problems by unfolding the tensor  . This means 

reordering the elements of a tensor into a matrix. 

The mode-3 unfolding of a tensor   is denoted by      and arranges the mode-q fibers to be the columns 

of the resulting matrix. Tensor elements         maps to matrix element       , where            and 

    ∑         
 
        with    ∏   

   
       . 

The three resulting matrices have respectively a size of     ,      and     . In this way problem 

(1) is equivalent to minimizing the difference between each of the modes and their respective 

approximation in terms of factors. Problem (1) is thus converted into three problems 
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                          (2)     

                       
  

where   denotes the Khatri-Rao product, namely the column-wise Kronecker product. Since distances are 

always non negative, a non-negative tensor factorization method is employed to solve (2) because it greatly 

simplifies the interpretation of the resulting decomposition. The Block Coordinate Descent Method for 

Regularized Multiconvex Optimization (34) and the Matlab Tensor Toolbox (35) are used to solve (2). 

After having initialized   and   as vectors of ones, the three components are updated according with the 

following rules: 

      (   ̌      
      

   ) 

where  ̌           
   (         ),   

       (
      

  
  √

  
   

  
   ) with      and     

 
 ⁄ (  √       

 );   
    |(  

   )
 
(  

   )| with   
         and   

    ( ̌   (  
   )

 
 

    )  
    

 

      (   ̌      
      

   ) 

where  ̌           
   (         ),   

       (
      

  
  √

  
   

  
   ) with      and     

 
 ⁄ (  √       

 );   
    |(  

   )
 
(  

   )| with   
         and   

    ( ̌   (  
   )

 
 

    )  
     

 

      (   ̌      
      

   ) 
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where  ̌           
   (         ),   

       (
      

  
  √

  
   

  
   ) with      and     

 
 ⁄ (  √       

 );   
    |(  

   )
 
(  

   )| with   
         and   

    ( ̌   (  
   )

 
 

    )  
    

 

Notice that, since the tensor is composed of symmetric matrices, the first and the second sub-problems of 

equation (2) are identical and therefore one only needs an updating rule for  . Nevertheless I prefer to 

show the decomposition for generic (directed) tensors. 

 

Similarly to the TOPHITS algorithm (36), the overall spatial dissimilarity score of a generic stock   is found as 

a function of the scores of the rest of the stocks weighted by the product of the distances connecting them 

to stock  , and of the temporal profile score of the period in which the distances are observed. The 

temporal profile score attached to a period, on the other hand, is a weighted sum of the distances recorded 

in that period. Where each distance is weighted by the product of the spatial dissimilarity score of the 

stocks connected by such distance. 

 

In this way, the spatial dissimilarity vectors retain also elements representing the temporal evolution of the 

distances and only the "next step" value of the temporal profile vector has to be inferred from past data. 

This is a perspective not available when computing link predictions using matrix-based approaches.  

 

A temporal link prediction, naturally follows from the decomposition and can be used to infer future 

distances between stocks, and, on the basis of these forecasts, to predict future prices. 
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Supplementary Information 

Stock price forecast of the supplementary dataset 

This section presents the application of the tensor forecast technique to the dataset used to predict the 

movements of the S&P500 composite index. In the main text the distances between 455 stocks computed 

over the period 2004/06/24 to 2013/04/30 have been employed to forecast the S&P500 index dynamics 

along with the Principal Coordinates Analysis and the resulting volume of the cloud of points embedded in 

6th dimension space. 

Those data are analyzed here with the aim of forecasting the movements of each stock price and to assess 

the quality of the signal produced by the methodology.  

Similarly to the results obtained for the first dataset, Fig. S1(a) shows the performance of the investment 

strategy in terms of cumulative returns obtained for each of the 455 stocks along with the average 

performance (black line). Also in this case, the technique does not guarantee positive returns for all the 

stocks but the positive average performance indicates that this is the case for most of the stocks. Moreover 

the decreasing trend associated with the 2008 financial crisis is correctly anticipated, as depicted by Fig. 

S1(b), while the long run positive trend results in the increasing cumulative returns associated with long 

investment positions (Fig. S1(b)) . 
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Figure S1: Cumulative sum of returns obtained for each stock together with the average cumulative performance (solid black line). 

Figure S1(a) shows the performance of the investment strategy. Panels (b)-(c) display the cumulative returns obtained only taking 

short or long positions respectively. This helps in quantifying how the correct forecast of booms and burst phases affects the overall 

cumulative returns. The simulations are obtained using the following parameters:      ,     ,      and the exponential 

smoothing parameter is set to be equal to    . 

In order to verify the hypothesis that larger absolute differences between two consecutive forecasts are 

associated with better signals as regards the accuracy of the prediction, the signals are sorted in descending 

order and Fig. S2 displays the average cumulative sum of the returns associated with different quantiles of 

the distribution of the signals. 

Figure S2(a) stresses that stronger signals produce better forecasts, indeed the upper blue line associated 

with the strongest signal yields the highest cumulative returns (385%), the green line that encompasses the 

average cumulative returns produced by the two strongest signals comes second, representing a 

cumulative return of 281%.  

The other lines illustrate the decreasing performances associated with the cumulative sum of signals of 

gradually lower quantiles of the distribution. This feature holds for both short and long investment 

positions as shown by Figs. S3(b) and (c) respectively. 
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Figure S2: Cumulative sum of the returns associated with different quantiles of  the signals’ distribution. The quality  of each signal 

depends on the absolute difference between the two consecutive forecasts that compose the signal. The larger the difference the 

better the signal.  While Figure S2(a) shows the performance of the whole investment strategy,  panels (b)-(c) display the 

cumulative returns obtained by only taking short or long positions respectively. The simulations are obtained using the following 

parameters:      ,     ,      and the exponential smoothing parameter is set to be equal to    . 

Finally Fig. S3 shows the sensitivity of the methodology to changes of the parameters    and    by 

indicating the cumulative returns obtained at the end of the time sample. In particular Fig. S3(a) shows the 

average performance of the method in forecasting the dynamic of the 455 stocks, while Fig. S3(b) and (c) 

refer only to the performance of short and long investment positions. Figure S3 in the bottom panels 

shows the returns obtained by looking at the best signal, for the whole investment strategy (d) and for 

short (e) and long (f) positions.  

 

Figure S3: Cumulative returns obtained at the end of the time sample for different values of    and   . Panel S3(a) represents the 

end-of-sample cumulative performance obtained by averaging the returns obtained in forecasting the dynamic of the 455 stocks of 

the second dataset. Panel (b) displays the end-of-sample returns obtained by investing using only short positions and  (c) 

encompasses the results for the long positions investment strategies. Figure S3(d) shows the results for the investment strategy 
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obtained by looking only at the best signal produced by the method together with the results for short (e) and long (f) investment 

strategies only.  

 

Percentage of correct prediction  

Complementary to the cumulative returns obtained from the application of the technique to different 

dataset, this section presents the percentage of correct predictions achieved by the methodology within 

the different parameter space. For different quantile of the returns distribution, Fig. S4 shows the 

average percentage of correct predictions obtained in forecasting the movements of the 388 stocks 

employed in the first dataset as long as     and    vary. Although Fig. S4(a) informs that the technique is 

able to correctly predict at least the 50% of price changes, this probability increases for higher quantiles of 

the distribution (see Figs. S4(b) and (c)), reaching values near 60% for the 99th quantile (see Fig. S4(d)). 

Although this quantile encompasses only few price changes, the returns obtained by correctly forecasting 

these changes range from 18 to 66% of total returns. This means that large market movements are 

correctly anticipated with a higher likelihood.  

 

Figure S4: Average percentage of correct predictions for the 388 stocks in the first dataset as long as parameters as     and    

changes and for different quantiles of the returns distribution. In particular, Figure S4(a) shows the percentage of correct 
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predictions for the distribution of all  returns. Despite the fact that the percentage is lower than 50, it does not consider the 

relative impact of changes of different sizes. Figures S4(b), (c) and (d) take into account these imbalances showing the percentage 

of correct predictions for increasing quantiles of the returns’ distribution, namely the 50
th

 the 75
th

 and the 99
th

 respectively.  

The next step is to investigate whether stronger signals give rise to better forecasts in terms of the 

percentage of correct predictions. Figure S5 shows the percentage of correct predictions produced  by the 

best signal for different quantiles of the  distribution of returns. By comparing Figs. S4 and S5 it clearly 

emerges that the strongest signals outperform the average investment strategy, going beyond the 

threshold of 50% for the whole distribution and reaching a percentage of 65 for the highest quantile. 

The same analysis is performed for the second dataset encompassing 455 stock price time series. Also in 

this case the likelihood of having a correct prediction is higher for higher quartile of the returns’ 

distribution and, moreover, the best signal provides better forecasts compared with the average 

percentage of correct predictions obtained by forecasting the movements of the 455 stocks. Additionally, 

Figures S6 and S7 show that, in general, better predictions are obtained for this dataset compared with the 

previous one. This result seems to indicate that a more complete dataset of the basket of stocks composing 

the S&P500 is useful for analyzing the  dynamic of this index because it includes additional relationships 

between previously discarded stock prices. 
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Figure S5: Percentage of correct predictions obtained by looking only at the strongest signal in the first dataset for different 

values of     and    and for different quantiles of the distribution of returns. In particular, Figure S5(a) shows the percentage 

of correct predictions for the whole distribution while Figure S5 (b), (c) and (d) display the percentage of correct predictions for 

increasing quantiles of the returns’ distribution, the 50
th

 the 75
th

 and the 99
th

 respectively. 

 

Figure S6: Percentage of correct predictions for the 455 stocks in the second dataset as long as     and    changes and for 

different quantiles of the distribution of returns. In particular, Figure S6(a) shows the percentage of correct predictions for the 
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whole distribution and panels (b), (c) and (d) display this percentage for increasing quantiles of the distribution of returns, namely 

the 50
th

 the 75
th

 and the 99
th

 respectively. 

 

Figure S7: Percentage of correct predictions produced by the best signal in the second dataset as     and    changes and for 

different quantiles of the distribution of returns. Figure S7(a) shows the percentage of correct predictions for the whole 

distribution and Figure S7(b), (c) and (d) display  this percentage for increasing quantiles of the  distribution of returns, namely the 

50
th

 the 75
th

 and the 99
th

 respectively. 

Finally, for the sake of completeness, the percentage of correct predictions regarding the S&P500 

composite index is also shown in Fig. S8. As for the previous cases, the likelihood of having a correct 

prediction is higher for higher quartiles of the distribution of returns but not for the whole parameter 

space. Indeed, it is true that for        the number of correct predictions is almost 59% but for lower 

values of       and high values of    the fraction of correct predictions is very low. 
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Figure S8: Percentage of correct predictions for the S&P500 composite index as long as     and    changes and for different 

quantiles of the distribution of returns. In particular, Figure S8(a) shows the percentage of correct predictions for the whole 

distribution and panels (b), (c) and (d) display this percentage for increasing quantiles of the returns’ distribution, namely the 50
th

 

the 75
th

 and the 99
th

 respectively. 
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