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Abstract

We investigate the role played by systematic monetary policy in tackling the real effects of
uncertainty shocks in U.S. recessions and expansions. We model key indicators of the business
cycle with a nonlinear VAR that allows for different dynamics in busts and booms. Uncertainty
shocks are identified by focusing on historical events that are associated to jumps in financial
volatility. Uncertainty shocks hitting in recessions are found to trigger a more abrupt drop and a
faster recovery in real activity than in expansions. Counterfactual simulations suggest that the
effectiveness of systematic monetary policy in stabilizing real activity is greater in expansions.
Finally, we provide empirical and narrative evidence pointing to a risk management approach by
the Federal Reserve.
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1 Introduction

Uncertainty shocks have recently been identified as one of the drivers of the U.S. business
cycle (Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014),
Leduc and Liu (2016), Jurado, Ludvigson, and Ng (2015), Basu and Bundick (2016)).
This paper investigates the relationship between uncertainty shocks and monetary pol-
icy. It does so by addressing three different but related questions: Are the effects of
uncertainty shocks different in good and bad times? Is the stabilizing power of system-
atic monetary policy in response to uncertainty shocks state-contingent? Do monetary
policymakers respond to movements in uncertainty per se? We answer these questions
by modeling a standard set of post-WWII U.S. macroeconomic variables with a Smooth
Transition Vector AutoRegression (STVAR) model. This nonlinear framework allows
us to capture the possibly different macroeconomic responses to an uncertainty shock
occurring in different phases of the business cycle. We endogenously account for po-
tential regime-switches due to an uncertainty shock by computing Generalized Impulse
Response Functions (GIRFs) a la Koop, Pesaran, and Potter (1996). This is important
to correctly address the above mentioned questions because i) uncertainty shocks which
occur in expansions could drive the economy into a recessionary state, and ii) uncer-
tainty shocks occurring in recessions may lead the economy to a temporary expansion
in the medium term due to a "volatility effect" (Bloom (2009)).!

Our focus on nonlinearities is justified by two important stylized facts. First, most
macroeconomic aggregates display asymmetric behavior over the business cycle (see,
among others, Sichel (1993), Koop and Potter (1999), van Dijk, Teréisvirta, and Franses
(2002), Caggiano and Castelnuovo (2011), Morley and Piger (2012), Abadir, Caggiano,
and Talmain (2013), and Morley, Piger, and Tien (2013)). Second, uncertainty features
different dynamics in good and bad times. Micro- and macro-evidence of countercycli-
cal uncertainty with abrupt increases in recessions is documented by Bloom (2009),
Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2014), Orlik and Veldkamp
(2014), and Jurado, Ludvigson, and Ng (2015). Moreover, different indicators of real-

ized volatility, often taken as a proxy for expected volatility in empirical analysis, are

'In Bloom’s (2009) model, the "volatility effect" is due to the fact that an uncertainty shock trans-
lates into an increase in the realized volatility of business conditions in the medium-term. The latter
leads high productive firms to invest and hire, and low productive ones to disinvest and fire. Given that
the majority of firms is clustered around the hiring and investing thresholds due to labor attrition and
capital depreciation, this reallocation of resources causes a temporary increase in aggregate production
and employment.



documented to be higher and more volatile in recessions (Bloom, 2014, 2017).? In light
of this evidence, one might expect uncertainty shocks to exert different macroeconomic
effects over the business cycle. A recent theoretical paper by Cacciatore and Ravenna
(2015) offers support to this intuition. Working with a model featuring matching fric-
tions in the labor market, Cacciatore and Ravenna (2015) find that deviations from
the efficient wage-setting due to such frictions, combined with downward wage rigidi-
ties, imply a state-dependent amplification of the real effects of uncertainty shocks and
contribute to make uncertainty countercyclical. Empirical support to this conjecture
is provided by Caggiano, Castelnuovo, and Groshenny (2014), Nodari (2014), Ferrara
and Guérin (2015), Casarin, Foroni, Marcellino, and Ravazzolo (2016), and Caggiano,
Castelnuovo, and Figueres (2017). Our investigation complements these ones by un-
veiling the interactions between uncertainty shocks and systematic monetary policy in
different phases of the business cycle.

Following Bloom (2009), the identification of uncertainty shocks pursued in this
paper relies on "extreme events", i.e., events which are associated to large jumps in the
VXO. These events are likely to be informative as regards unexpected movements in
uncertainty which are not associated to the business cycle. We offer an interpretation to
each of these jumps in uncertainty based on historical events. Moreover, we document
the concerns expressed by members of the Federal Open Market Committee (FOMC)
in discussions about monetary policy setting in the aftermath of these events. Hence,
we see these events as valid instruments to overcome the endogeneity problem one faces
when searching for exogenous variations in uncertainty. We anticipate here that our
results are robust to the employment of the VXO per se as an indicator of uncertainty
in our STVAR as well as to the construction of an alternative event dummy based on
the financial uncertainty proxy recently constructed by Ludvigson, Ma, and Ng (2016).

Our focus on financial proxies of uncertainty is justified both theoretically and em-
pirically. From a theoretical standpoint, Basu and Bundick (2016) show that movements
in a measure of financial uncertainty which is conceptually in line with the VIX can be
an important driver of the business cycle in a microfounded macroeconomic model of
the business cycle. Empirically, recent findings by Ludvigson, Ma, and Ng (2016) and
Casarin, Foroni, Marcellino, and Ravazzolo (2016) point to movements in financial un-

certainty as possibly exogenous to the business cycle and able to explain a larger share

2Spikes in uncertainty indicators occur also in good times. For instance, the VXO registered a
substantial increment after the Black Monday (October 19, 1987), during a period classified as expan-
sionary by the NBER. In general, however, increases in uncertainty during bad times are much more
abrupt than those occurring in good times.



of real activity’s forecast error variance than movements in real activity indicators of
uncertainty.’

Are the effects of uncertainty shocks different in good and bad times? We find
compelling evidence in favor of a positive answer. Real activity, measured by industrial
production and employment, falls much more quickly and sharply when uncertainty
shocks hit the economy during recessions. Moving to the reaction of nominal variables,
uncertainty shocks are found to be deflationary, especially in recessions. The response of
the policy rate is substantially more marked during economic downturns. Importantly,
the difference in the estimated responses in the two states - recessions, expansions - is
found to be statistically significant as regards real activity, prices, and the policy rate.

We next investigate whether the effectiveness of systematic monetary policy in sta-
bilizing the business cycle after an uncertainty shock is state-dependent. To shed light
on this issue, we run a counterfactual exercise in which systematic monetary policy is
assumed not to react to macroeconomic fluctuations due to uncertainty shocks. We
find the effectiveness of systematic monetary policy in tackling uncertainty shocks to
be different in recessions and expansions. In bad times, the short-run response of real
activity turns out to be virtually unaffected, while the medium-run response of real
activity is only mildly influenced by changes in the nominal interest rate. Differently,
our simulations suggest that a muted (i.e., non expansionary) monetary policy would
induce a much deeper and longer-lasting downturn after an uncertainty shock occurring
in expansions.

Finally, we dig deeper on the systematic relationship between uncertainty and mone-
tary policy by running counterfactual simulations in which the policy rate is assumed not
to respond to movements in uncertainty in our VAR. This is done to understand to what
extent the Federal Reserve acted, borrowing the terminology proposed by Greenspan
(2004), as a "risk manager", i.e., it set the nominal interest rate lower than what it
would have done in absence of uncertainty. The counterfactual policy rate obtained by
shutting down the reaction of the federal funds rate to uncertainty in our model is found

to be systematically higher than the historical one in the aftermath of abrupt increases

3Carriero, Clark, and Marcellino (2016) model a large dataset of macroeconomic and financial
variables and jointly compute the impact of macroeconomic and financial uncertainty shocks on such
variables. They find that macroeconomic uncertainty has a large and significant effect on real activity,
but has a limited impact on financial variables. Differently, financial uncertainty has an impact on
both financial and macroeconomic indicators. Given the presence of variables such as the S&P500
index, the federal funds rate, and - in a robustness check - a long-term interest rate, our focus on the
effects of financial uncertainty shocks is also intended to maximize the likelihood of capturing the real
effects of financial uncertainty shocks via movements in financial markets.



in uncertainty. The gap between the historical federal funds rate and the counterfactual
one, which we term "risk management-driven policy rate gap", confirms that elements of
risk management importantly characterized monetary policy decisions in the 1962-2008
sample we analyze. This empirical evidence squares well with the narrative evidence
we provide based on our reading of the FOMC minutes. Importantly, and in line with
our previous findings, the risk management-driven policy rate gap is found to be larger
in recessions. Our VAR also suggests that, absent the risk-management policy element,
we would have observed a lower level of industrial production and a higher price level
in the post-WWII U.S. period.

Our evidence on the risk management approach followed by the Federal Reserve
is consistent with the results recently put forth by Evans, Fisher, Gourio, and Krane
(2015). They estimate several Taylor rules and find evidence in favor of a systematic
response of the federal funds rate to a number of different uncertainty indicators. Then,
they corroborate their empirical findings with excerpts of the FOMC minutes that point
to uncertainty as one of the elements systematically considered by the U.S. policymakers
for determining the U.S. monetary policy. Our paper reaches a similar result via coun-
terfactual simulations conducted with a multivariate VAR framework which accounts
for second round effects involving the policy rate, uncertainty, and several measures of
real economic activity, as well as through the reading of the FOMC minutes covering
the period 1962-2008.

From a modeling standpoint, our results support the development and use of micro-
founded nonlinear frameworks able to replicate both the contractionary effects and the
different transmission mechanism of uncertainty shocks over the business cycle. Policy
wise, our findings offer support to research investigating how to efficiently tackle the
state-dependent effects of such shocks.

The paper develops as follows. Section 2 discusses connections with the existing
literature. Section 3 presents our nonlinear framework and the data employed in the
empirical analysis. Section 4 documents the nonlinear effects of uncertainty shocks
and discusses a number of robustness checks. Section 5 analyzes the role of systematic
monetary policy in recessions and expansions, quantifies to which extent uncertainty
systematically affects the policy rate setting, and offers narrative evidence in favor of

risk management by the Federal Reserve. Section 6 concludes.



2 Connections with existing literature

A recent strand of the literature has dealt with the measurement of uncertainty. Bach-
mann, Elstner, and Sims (2013) use survey data to compute measures of forecast dis-
agreement which proxy time-varying business level uncertainty for Germany and the
United States. Rossi and Sekhposyan (2015, 2016) propose uncertainty indices based
on the location of the real GDP forecast errors with respect to the sample distribu-
tion of the forecast errors of the same variable. Jurado, Ludvigson, and Ng (2015),
Ludvigson, Ma, and Ng (2016), and Carriero, Clark, and Marcellino (2016) build up
measures of uncertainty based on the (un)predictability of several macroeconomic and
financial indicators. Baker, Bloom, and Davis (2016) develop an index of economic
policy uncertainty which reflects the frequency of keywords related to economic con-
cepts, uncertainty, and policy decisions in a set of leading newspapers. Scotti (2016)
constructs a proxy for uncertainty based on Bloomberg forecasts which aims at cap-
turing agents’ uncertainty surrounding current realizations of real economic activity.
Our papers focuses on events that are instrumental for the identification of exogenous
variations in a financial uncertainty indicator.

Our contribution relates to other papers on the relationship between uncertainty
and monetary policy. Caggiano, Castelnuovo, and Pellegrino (2016) study the effects of
uncertainty shocks in normal times and during the zero lower bound period. They find
that uncertainty shocks affect more strongly real activity when the bound is binding.
With respect to them, we focus on a period during which monetary policy was conven-
tional and investigate the business-cycle dependence of the effects of uncertainty shocks
on real activity as well as nominal indicators. Hence, our paper is complementary to
Caggiano, Castelnuovo, and Pellegrino (2016). A related paper is Alessandri and Mum-
taz (2014), who investigate the effects of uncertainty shocks in presence of high/low
financial stress. Differently, our conditioning variables are indicators of the business
cycle. Moreover, our paper has a focus on the effectiveness of systematic monetary pol-
icy along the business cycle. A different strand of the literature analyzes the effects of
monetary policy shocks in recessions/expansions - see, e.g., Weise (1999), Mumtaz and
Surico (2015), and Tenreyro and Thwaites (2016) - or in presence of high/low uncer-
tainty, as Aastveit, Natvik, and Sola (2013), Eickmeier, Metiu, and Prieto (2016), and
Pellegrino (2017a,b). Our paper deals with a set of different questions, i.e., the impact
of uncertainty shocks conditional on a given stance of the business cycle and a given

systematic monetary policy conduct. Gnabo and Moccero (2015) find that risks in the



inflation outlook and in financial markets are a more powerful driver of monetary policy
regime changes in the U.S. than the level of inflation and the output gap. Our paper
complements their study by investigating the ability of systematic monetary policy to
stabilize the U.S. macroeconomic environment after an uncertainty shock.

Our findings on the weaker effectiveness of systematic monetary policy can also be
interpreted via a number of theoretical models. In presence of labor and capital non-
convex adjustment costs, Bloom (2009) and Bloom et al. (2014) predict a weak impact
of changes in factor prices when uncertainty is high because of the dominant relevance
of "wait-and-see" effects. Vavra (2014) and Baley and Blanco (2015) show that higher
uncertainty generates higher aggregate price flexibility, which in turn harms the central
bank’s ability to influence aggregate demand. Berger and Vavra (2015) build up a model
featuring microeconomic frictions which lead to a decline in the frequency of households’
durable adjustment during recessions. This dampens the response of aggregate durable
consumption to aggregate shocks, including policy changes. Our findings are also in
line with the empirical result put forth by Mumtaz and Surico (2015), who estimate
the interest rate semi-elasticity in a state-dependent IS curve for the United States to
be lower during recessions.

From a policy standpoint, our results offer support to the discussion on how to face
uncertainty shocks. Blanchard (2009) proposes to design policies aimed at removing tail
risks, channel funds towards the private sector, and undo the "wait-and-see" attitudes
by creating incentives to spend. Bloom (2014) suggests that stimulus policies should be
more aggressive during periods of higher uncertainty. Baker, Bloom, and Davis (2016)
find that policies that are unclear, hyperactive, or both, may raise uncertainty. In pres-
ence of zero nominal rates, Basu and Bundick (2015) find that uncertainty about future
shocks may endogenously arise if state-dependent policies, and in particular forward
guidance, are not engineered to exit the zero lower bound, while Evans et al. (2015)
and Seneca (2016) show that, in presence of uncertainty on future economic conditions,
it is optimal to delay the liftoff of the policy rate. Our evidence on the asymmetric ef-
fects of uncertainty shocks and on the effectiveness of systematic monetary policy adds
to this literature by suggesting that policymakers should evaluate the possibility of im-
plementing state-dependent policy responses, possibly close to first-moment policies in

expansions, but clearly different from them in recessions.



3 Modeling nonlinear effects of uncertainty shocks

We estimate the impact of uncertainty shocks on real economic outcomes via a nonlinear
VAR framework modeling eight U.S. macroeconomic indicators. The vector of endoge-
nous variables X, includes (from the top to the bottom) the S&P500 stock market
index, an uncertainty dummy based on the VXO, the federal funds rate, a measure of
average hourly earnings, the consumer price index, hours, employment, and industrial
production.* All variables are in logs, except the uncertainty dummy, the policy rate,
and hours.’

As in Bloom (2009), the uncertainty dummy takes the value of 1 when the HP-
detrended VXO level rises over 1.65 standard deviations above the mean, and 0 oth-
erwise. This indicator function is employed to ensure that identification comes from
large, and likely to be exogenous, jumps in financial uncertainty which are unlikely
to represent systematic reactions to business cycle movements. Given that we base
our identification strategy on these well-known uncertainty-inducing events, the effects
documented in this paper should be seen as responses to extreme jumps in uncertainty
more than a characterization of the general effects of uncertainty in the economy.®

We use monthly data covering the period July 1962-June 2008. We cut the sample
in June 2008 to avoid modeling the period that started with Lehman Brothers’ bank-
ruptcy and the acceleration of the 2007-09 financial crisis in September 2008. Such
acceleration led the Fed to quickly drop the federal funds rate to zero (December 2008),
and maintain such rate at that level until December 2015. We interpret this period
as a third regime, the modeling of which would render the estimation of our nonlinear

framework problematic.

4As recalled by Bloom (2014), Knight (1921) defined uncertainty as people’s inability to form
a probability distribution over future outcomes. Differently, he defined risk as people’s inability to
predict which outcome will be drawn from a known probability distribution. Following most of the
empirical literature, we do not distinguish between the two concepts, and use the VXO-related dummy
as a proxy for uncertainty, though we acknowledge it is a mixture of both risk and uncertainty. For
investigations that disentangle the effects of risk and uncertainty, see Bekaert, Hoerova, and Lo Duca
(2013) and Rossi, Sekhposyan, and Soupre (2016).

5 Unlike Bloom (2009), we do not Hodrick-Prescott (HP) filter these variables (other than the VXO).
As shown by Cogley and Nason (1995), HP-filtering may induce spurious cyclical fluctuations, which
may bias our results. However, exercises conducted with HP-filtered variables as in Bloom (2009)
returned results qualitatively in line with those documented in this paper. These results are available
upon request and are consistent with the robustness check in Bloom (2009), Fig. A3, p. 679.

SWorking with linear VARs, Furlanetto, Ravazzolo, and Sarferaz (2014) identify uncertainty shocks
using sign restrictions, while Caldara, Fuentes-Albero, Gilchrist, and Zakrajsek (2016) adopt a penalty
approach. We leave the investigation of the properties of these approaches in a nonlinear STVAR
context to future research.



Figure 1 reports the VXO series used to construct the dummy variable along with
the NBER recessions dates. The sixteen episodes which Bloom identifies as uncertainty
shocks are equally split between recessions and expansions. Noticeably, all recessions
are associated with significant spikes in the volatility series, an evidence in line with
the one summarized by Bloom (2014).

The vector of endogenous variables X, is modeled with the following STVAR (for

a detailed presentation, see Terésvirta, Tjgstheim, and Granger, 2010):

X, = F(z 1) Or(D)X i+ (1 = F(z1)Ie(L) X, + &, (1
g ~ N(0,9), (2
Q = F(z1)Q+ (1= F(z.1))2E, (3

(

)
)
)
F(z) = exp(—v2)/(1+exp(—7yz)),7 > 0,2 ~ N(0,1). 4)

In this model, F'(2;_1) is a logistic transition function which captures the probability
of being in a recession, 7 is the smoothness parameter, z; is a transition indicator, ITg
and Ilg are the VAR coefficients capturing the dynamics of the system in recessions
and expansions respectively, €, is the vector of reduced-form residuals with zero-mean
and time-varying, state-contingent variance-covariance matrix €2;, where 2z and Qg
are covariance matrices of the reduced-form residuals estimated during recessions and
expansions, respectively. Recent applications of the STVAR model to analyze the U.S.
economy include Auerbach and Gorodnichenko (2012), Bachmann and Sims (2012),
Berger and Vavra (2014), and Caggiano, Castelnuovo, Colombo, and Nodari (2015),
who employ it to study the effects of fiscal spending shocks in good and bad times,
and Caggiano, Castelnuovo, and Groshenny (2014) and Caggiano, Castelnuovo, and
Figueres (2017), who focus on the effects of uncertainty shocks on unemployment in
recessions.

In short, the STVAR model assumes that the vector of endogenous variables can be
described as a combination of two linear VARs, i.e., one describing the economy in bad
times and the other one in good times. Conditional on the standardized transition vari-
able z;, the logistic function F'(z;) indicates the probability of being in a recessionary
phase. The transition from a regime to another is regulated by the smoothness para-
meter 7, i.e., large (small) values of v imply abrupt (smooth) switches from a regime to
another.” The linear model & la Bloom (2009) is a special case of the STVAR, obtained

T A simpler, alternative approach would be that of adding an interaction term involving uncertainty



when v = 0, which implies Il = Iz = II and 2z = Qg = 2. We make sure that
the residuals of the uncertainty dummy equation are orthogonal to the other residuals
of the estimated VAR by imposing a Cholesky-decomposition of the covariance matrix
of the residuals. Hence, the ordering of the variables admits an immediate response of
industrial production and employment, as well as prices and the federal funds rate, to
an uncertainty shock. This ordering assumes that shocks inducing movements in vari-
ables which are ordered after the uncertainty dummy do not contemporaneously affect
such dummy, an assumption which is consistent with that of exogeneity of the spikes of
the VXO identified with the strategy described at the beginning of this Section. More
in general, this assumption is also consistent with the recent theoretical analysis by
Basu and Bundick (2016) on the very mild effect exerted by first moment shocks as re-
gards financial volatility. The inclusion of the SP500 index right before our uncertainty
indicator is meant to control for the impact of stock market levels on financial volatility.

A key-role is played by the transition variable z; (see eq. (4)). Auerbach and
Gorodnichenko (2012), Bachmann and Sims (2012), Berger and Vavra (2014), Caggiano,
Castelnuovo, and Groshenny (2014), and Caggiano, Castelnuovo, Colombo, and Nodari
(2015) use a standardized moving-average of the quarterly real GDP growth rate as
transition indicator. Our paper deals with monthly data. Similarly to Caggiano,
Castelnuovo, and Figueres (2017), we employ a standardized backward-looking moving
average involving twelve realizations of the month-to-month growth rate of industrial
production.® Another important choice is the calibration of the smoothness parameter
v, whose estimation is affected by well-known identification issues (see the discussion
in Teréisvirta, Tjostheim, and Granger (2010)). We exploit the dating of recessionary
phases produced by the National Bureau of Economic Research (NBER) and calibrate
~ to match the frequency of the U.S. recessions, which amounts to 14% in our sample.
Consistently, we define as "recession" a period in which F(z;) > 0.86, and calibrate -y
to obtain Pr(F(z;) > 0.86) ~ 0.14.% This metric implies v = 1.8.

and an indicator of the business cycle to the otherwise linear model a la Bloom (2009). The resulting
Interacted-VAR would have the potential to discriminate between responses to uncertainty in reces-
sions/expansions. We prefer to model a Smooth-Transition VAR for two reasons. First, it does not
require us to take a stand on the features of the interaction term (e.g., number of lags, timing of the
cross-products). Second, it is much less prone to instabilities, a problem often affecting Interacted-
VARs when involving interaction terms of order two or higher (for a discussion, see Mittnik, 1990).

8Section 4.3 discusses the robustness of our results to the employment of the unemployment rate as
transition indicator.

9This choice is consistent with a threshold value z%¢ equal to —1.01%, which corresponds to a
threshold value for the non-standardized moving average of the growth rate of industrial production
equal to 0.13%. This last figure is obtained by considering the sample mean of the non-standardized

10



Figure 2 plots the transition function F(z) for the U.S. post-WWII sample and
superimposes the NBER recessions dating. It is important to notice two facts about
our transition probability. First, it peaks with a slight delay relative to the NBER
recessions. This is due to the choice of using a backward-looking transition indicator.
This choice enables us to compute the transition probability by using observed values of
industrial production, rather than predicted ones as a centered moving average would
require. Second, the volatility of F(z) visibly drops when entering the Great Moderation
period, i.e., 1984-2008. This might suggest the need of re-optimizing the calibration of
our slope parameter to better account for differences in the regime switches occurring in
the two subsamples 1962-1983 and 1984-2008. The calibration of our slope parameter
for the two periods reads, respectively, 1.62 and 1.72 (for capturing the 19.6% and 8%
frequencies of NBER recessions in the two subsamples). Such calibrations are quite
close to the one we employ in our baseline exercise, i.e., 1.8. Estimations conducted
with these two alternative values of 7 lead to virtually unaltered results. All in all, our
transition probability tracks well the downturns of the U.S. economy.

Since any smooth transition regression model is not identified if the true data gen-
erating process is linear, we test for the null hypothesis of linearity vs. the alternative
of logistic STVAR for our vector of endogenous variables. We employ two tests pro-
posed by Teréisvirta and Yang (2014). The first is a LM-type test, which compares the
residual sum of squares of the linear model with that of a third-order approximation
of the STVAR framework. The second is a rescaled version of the previous test, which
accounts for size distortion in small samples. Both test statistics lead to strongly re-
ject the null hypothesis of linearity at any conventional significance level. A detailed
description of the tests is provided in our Appendix, which also reports the different im-
pulse responses to an uncertainty shock produced with a linear VAR vs. our nonlinear
model.

We estimate both the linear VAR model and the nonlinear STVAR framework with
six lags, a choice supported by standard information criteria as regards the linear version
of the VAR model, for which an extensive literature on optimal lag selection in VARs
is available. Given the high nonlinearity of the model, we estimate it by employing the

Markov-Chain Monte Carlo simulation method proposed by Chernozhukov and Hong

growth rate of industrial production (in moving average terms), which is equal to 0.40, and its standard
deviation, which reads 0.27. Then, its corresponding threshold value is obtained by "inverting" the
formula we employed to obtain the standardized transition indicator z, i.e., 27" = (z5%g5, + %) =
(—=1.01 x 0.27 + 0.40) ~ 0.13%.
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(2003).1° The estimated model is then employed to compute GIRFs to an uncertainty

shock.!!

4 Results

Uncertainty shocks: Response of real activity. Are the real effects of uncertainty
shocks state-dependent? Figure 3 plots the estimated dynamic responses of employment
and industrial production to an uncertainty shock in recessions and expansions along
with 68% confidence bands.!? These variables react negatively and significantly no
matter what the phase of the business cycle one considers is. However, such responses
are clearly asymmetric along the business cycle. In recessions, the peak short-run
response of industrial production is about —2.5%, while that of employment is about
—1.5%. The same values in expansions read, respectively, —1.5% and —0.9%. As shown
below, these differences are statistically significant. Hence, we find evidence in favor of
an asymmetric response of real activity to uncertainty shocks along the business cycle.

Our results are in line with recent contributions by Caggiano, Castelnuovo, and
Groshenny (2014), Nodari (2014), Ferrara and Guérin (2015), Casarin, Foroni, Mar-
cellino, and Ravazzolo (2016), and Caggiano, Castelnuovo, and Figueres (2017), who
also find that uncertainty shocks have a larger effect on real activity when they hit dur-
ing recessionary periods. Moreover, this evidence is robust to a variety of robustness

checks, including: i) a different identification of uncertainty shocks alternatively based

10Tn principle, one could estimate the STVAR model we deal with via maximum likelihood. However,
since the model is highly nonlinear and has many parameters, using standard optimization routines is
problematic. Under standard conditions, the algorithm put forth by Chernozhukov and Hong (2003)
finds a global optimum in terms of fit as well as distributions of parameter estimates.

HFollowing Koop, Pesaran, and Potter (1996), our GIRFs are computed as follows. First, we draw
an initial condition, i.e., starting values for the lags of our VARs as well as the transition indicator
z, which - given the logistic function (4) - provides us with the starting value for F'(z). Then, we
simulate two scenarios, one with all the shocks identified with the Cholesky decomposition of the VCV
matrix (3), and another one with the same shocks plus a § > 0 corresponding to the first realization
of the uncertainty shock. The difference between these two scenarios (each of which accounts for the
evolution of F(z) by keeping track of the evolution of industrial production and, therefore, z) gives
us the GIRFs to an uncertainty shock of size §. Per each given initial condition z, we compute 500
different stochastic realizations of our GIRFs, then store the median realization. We repeat these steps
until 500 initial conditions (drawn by allowing for repetitions) associated to recessions (expansions)
are considered. Then, we construct the distribution of our GIRFs by considering these 500 median
realizations. Our Appendix provides details on the algorithm we employed to compute the GIRF's.

12The size of the shock in all scenarios is normalized to induce an on-impact response of uncertainty
equal to one as in Bloom (2009). Nonlinear VAR impulse responses may depend on the size of the
shock (as well as its sign and initial conditions). Simulations conducted to investigate the role of the
size of the shock in shaping our impulse responses suggest that such role is negligible in our analysis.
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on a dummy which focuses on events associated with terror, war, or oil events; the use
of the VXO per se; the use of an alternative dummy which identifies extreme events
conditional on the one-month ahead financial uncertainty indicator recently developed
by Ludvigson, Ma, and Ng (2016); ii) different calibrations of the slope parameters of
our logistic function; iii) the use of unemployment as transition indicator; iv) the use
of control variables such as credit spreads, house prices, and a long-term interest rate.
In all cases, we find that the evidence of asymmetric responses of industrial production
and employment (in terms of severity of the recession, speed of the recovery, and overall
dynamics) over the business cycle documented with our baseline STVAR is confirmed.
For the sake of brevity, a detailed documentation and discussion of these robustness
exercises is provided in our Appendix.

Uncertainty shocks: Systematic monetary policy response. We now turn
to studying the response of systematic monetary policy to an uncertainty shock. The
asymmetric reaction of real activity documented above could lead to an asymmetric
policy response and, therefore, a stronger reaction of the federal funds rate in recessions.
However, a stronger reaction of the policy rate in recessions could also be justified by
an asymmetric price response. We then study the response of prices on top of that of
the federal funds rate to shed light of the relevant sources of the potential asymmetric
response of the policy rate.

Figure 4 shows the effects of an uncertainty shock on the federal funds rate and
the price level. An uncertainty shock triggers a negative reaction of prices which is
statistically significant in recessions only. Prices go down and then gradually return to
their pre-shock level. The interest rate goes down significantly, both in recessions and
expansions. However, in terms of dynamics and quantitative response, the difference
in the two states is remarkable. When an uncertainty shock hits the economy in good
times, the interest rate goes down of about 0.8 percentage points at its peak, and
the reaction is short-lived. When an uncertainty shock hits in a recession, the policy
rate goes down to about two percentage points, and remains statistically significant for
a prolonged period of time. The impulse responses associated to recessions offer clear
support to the view put forward by Basu and Bundick (2016) and Leduc and Liu (2016)
that uncertainty shocks act as demand shocks.

Statistical significance of the differences documented above. The evidence
proposed so far points to differences in the response of real and nominal indicators to
an uncertainty shocks when quantified in recessions vs. expansions. How relevant is

this result from a statistical standpoint? Figure 5 contrasts the responses of industrial
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production, employment, prices, and the federal funds rate in recessions vs. expan-
sions using 68% confidence intervals surrounding the response of the difference for each
variable. Bottom line: Industrial production, employment, and the federal funds rate
react significantly more in recessions to uncertainty shocks. Differently, we do not find
significant evidence in favor of an asymmetric reaction of prices to an uncertainty shock.
Hence, from a statistical standpoint, the more aggressive systematic policy reaction es-
timated in recessions must be driven by the response of real activity. In the rest of the
paper we will then focus on the responses of industrial production and employment with
the aim of understanding if the Federal Reserve’s systematic policy was more effective

- in terms of business cycle stabilization - in recessions or expansions.

5 Uncertainty and monetary policy

5.1 Systematic monetary policy effectiveness

The previous evidence shows that monetary authorities react to uncertainty shocks
in both phases of the business cycle. But what would have happened if the Federal
Reserve had not reacted to the macroeconomic fluctuations induced by uncertainty
shocks? Would the recessionary effects of such shocks have been magnified? Answering
these questions is key to understand the role that conventional monetary policy can
play in tackling the negative effects triggered by sudden jumps in uncertainty. We
then employ our STVAR and run a counterfactual simulation designed to answer these
questions. Our counterfactual exercise assumes the central bank to stay still after an
uncertainty shock, i.e., we shut down the systematic response of the federal funds rate
to movements in the economic system due to uncertainty shocks.?

Figure 6 contrasts the dynamic reactions of real activity conditional on a muted
systematic policy response with the baseline ones. Remarkably, the effectiveness of this
counterfactual policy response is much lower in recessions. In other words, the recession
is estimated to be almost as severe as the one which occurs when policymakers are

allowed to lower the policy rate. Notably, the difference between the baseline and the

13We do so by zeroing the coefficients of the federal funds rate equation in our VAR. For a paper
running counterfactual simulations by implementing perturbations of the coefficients of the policy rule
in a VAR model, see Sims and Zha (2006). Alternatively, one could create fictitious monetary policy
shocks to keep the federal funds rate fixed to its pre-shock level. We follow the former strategy to line
up with counterfactuals typically played by macroeconomists who work by perturbing the values of
policy parameters directly. In this sense, we interpret our federal funds rate equation as a "monetary
policy equation".
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counterfactual scenarios mainly regards the speed with which real activity recovers and
overshoots before going back to the steady state. Possibly, this is due to the lags via
which monetary policy affects the real economy. A different picture emerges when our
counterfactual monetary policy is implemented in good times. As Figure 6 shows, when
the policy rate is kept fixed, industrial production goes down markedly (about —3% at
its peak) and persistently, remaining statistically below zero for a prolonged period of
time (for all 20 quarters according to 68% confidence bands).!* The same holds when
looking at the response of employment, i.e., the gap between the baseline response and

the one associated to our counterfactual exercise is quantitatively substantial.

5.2 Interpreting policy (in)effectiveness in recessions

How can one interpret the state-dependence of monetary policy effectiveness? As sug-
gested by Bloom (2009) and Bloom et al. (2014), these findings might find a rationale in
the real option value theory. When uncertainty is high, firms’ inaction region expands
(Bloom, 2009). Since the real option value of waiting increases, the "wait-and-see" be-
havior becomes optimal for a larger number of firms, compared to normal times. If the
real option value of waiting is high, firms become insensitive to changes in the interest
rate, which explains why the peak recessionary effect is virtually identical regardless of
the reaction of monetary policy. When uncertainty starts to drop, the inaction region
shrinks, firms become more willing to invest and face their pent-up demand. In turn,
the elasticity of investment with respect to the interest rate starts increasing. If mon-
etary policy does not react, as in our counterfactual scenario, the higher (relative to
the baseline) cost of borrowing starts playing a role. Hence, firms re-start investing at
a lower pace with respect to what happens in our baseline scenario (which is charac-
terized by a strong temporary drop in the nominal interest rate). In the medium run,
once uncertainty has vanished, firms invest less with respect to the baseline case, and
the overshoot is substantially milder, if any. A similar reasoning can be done for labor
demand and, therefore, employment.

Very differently, a muted (non counter-cyclical) monetary policy is found to exert a

14The baseline and counterfactual scenarios produce similar responses for the first few months after
the shock. This is due to the relevance of initial conditions, which is dominant during the first periods.
In fact, initial conditions heavily influence the evolution of the transition indicator and, therefore, the
probability of being in a recession. Different systematic policies take time before importantly affecting
the economic system and, consequently, the value of the logistic function in our STVAR. However,
as periods go by, different policies clearly exert a different impact on the evolution of the economic
system, above all in expansions.
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big influence (above all in the short run) to the downturn triggered by uncertainty shocks
in expansions. If the option value of waiting due to uncertainty is lower in expansions,
firms are more reactive to changes in factor prices. Hence, if the nominal interest rate
remains unchanged, firms’ investment is likely to be lower. Consequently, uncertainty
shocks trigger stronger recessionary effects in absence of systematic monetary policy
interventions.

These findings line up with those in Vavra (2014), who shows that monetary policy
shocks are less effective during periods of high volatility. In his model, despite the
presence of an inaction region due to price adjustment costs, second moment shocks
push firms to adjust their prices more often. This increased price dispersion translates
into higher aggregate price flexibility, which dampens the real effects of monetary policy
shocks. Given the countercyclicality of price volatility, monetary policy shocks turn out
to be less powerful in recessions. A similar mechanism is present in Baley and Blanco
(2015). Our results complement Vavra’s (2014) and Baley and Blanco’s (2015), because
we show that the systematic component of monetary policy is less effective in recessions,
when uncertainty is higher.

Berger and Vavra (2015) build up partial- and general-equilibrium models which
focus on the response of aggregate durable expenditures to a variety of macroeconomic
shocks. In particular, their model features microeconomic frictions which lead to a
decline in the frequency of households’ durable adjustment during recessions. This
decline in the probability of adjusting during recessions, joint with the variation over
time in the distribution of households’ durable holdings, implies a procyclical impulse
response of aggregate durable spending to macroeconomic shocks, a result also docu-
mented in Berger and Vavra (2014). Hence, macroeconomic policies are less effective
in stabilizing the business cycle (at least, durable spending) in recessions, consistently
with our counterfactual impulse responses.

Our empirical findings, which highlight the role of the systematic component of mon-
etary policy, are also consistent with those by Weise (1999), Aastveit, Natvik, and Sola
(2013), Mumtaz and Surico (2015), Tenreyro and Thwaites (2016), Eickmeier, Metiu,
and Prieto (2016), and Pellegrino (2017a,b), who also find monetary policy to be less
powerful in periods of high uncertainty or, more generally, during recessions. In partic-
ular, Mumtaz and Surico (2015) show that, when real activity is above its conditional
average, the degree of forward-lookingness and the interest rate semi-elasticity are sig-
nificantly larger than the values estimated when real activity is below average. This

implies that, all else being equal, monetary policy is more powerful in good than in
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bad times. Given the tight link between the IS schedule (which refers to the consump-
tion/saving decisions by households) and the financial markets, we speculate that our
results might be seen as consistent with the different role played by financial frictions

in economic booms and busts.

5.3 Risk management by the Federal Reserve

The evidence provided so far shows that uncertainty shocks trigger a response by mon-
etary policy makers, and that such response is particularly strong during recessions.
But what role did uncertainty per se play as far as the U.S. monetary policy setting is
concerned? In analyzing the conduct of monetary policy under his regime, Greenspan
(2004, pp. 36-37) states that

"[...] The Federal Reserve’s experiences over the past two decades make it
clear that uncertainty is not just a pervasive feature of the monetary policy
landscape; it is the defining characteristic of that landscape. |[...] the conduct
of monetary policy in the United States has come to involve, at its core,

crucial elements of risk management.”

While being consistent with Greenspan’s statement, the impulse response analysis
documented in Section 4.1 does not necessarily point to a systematic monetary pol-
icy reaction to uncertainty per se. Second round effects, working via the impact that
uncertainty shocks exerted on real activity and prices in our sample, represent an al-
ternative, not mutually exclusive, potential explanation for the response of the policy
rate to uncertainty shocks. It is then of interest to shed further light on whether the
Federal Reserve reacted to movements in uncertainty per se, therefore acting as a "risk
manager", or rather it simply reacted to movements in real activity and prices induced
by uncertainty shocks. To isolate the systematic response of the Federal Reserve to
variations in uncertainty, we proceed in two steps. First, we run a counterfactual sim-
ulation to produce what we label "risk management-driven policy rate gap". This gap
is constructed by computing the difference between the observed federal funds rate and
the counterfactual policy rate that, according to our nonlinear VAR, we would have
observed if the Federal Reserve had not systematically reacted to uncertainty in our
sample. Evidence of a negative gap would point to a higher interest rate in absence of
systematic policy response to uncertainty. Hence, it would be consistent with the claim

that the Federal Reserve acted as a "risk manager". As a second step, we refer to the
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minutes of the FOMC meetings to see whether there is narrative evidence in favor of
risk management.

Risk management: Empirical evidence. Figure 7 plots the difference between
the historical and the counterfactual federal funds rate. The counterfactual policy
rate is computed by muting the response of the federal funds rate to contemporaneous
and lagged realizations of uncertainty in our VAR. Given that we consider all shocks
hitting the economic system, the factual scenario (the one which does allow for the
estimated systematic response of the federal funds rate to contemporaneous and past
realizations of uncertainty) just replicates the historical realizations of the federal funds
rate. T'wo observations are in order. First, after the realization of an uncertainty shock,
the contemporaneous difference between the historical rate and the counterfactual one
turns out to be negative. This suggests that, in absence of systematic monetary policy
response to uncertainty, the federal funds rate would have been higher in the aftermath
of spikes in uncertainty. Second, the gap between the historical and the counterfactual
policy rates, which has an average value of about —16 basis points, is found to be much
wider in recessions, with an average value of about —48 basis points and peaks often
larger than 100 basis points (in absolute value). By contrast, the average realization
conditional on expansions is found to be —11 basis points. Consistently, the correlation
between the "risk management-driven policy rate gap" and the NBER recession dummy
is clearly negative, and reads —0.31. Finally, our counterfactual exercise also points
to a non-negligible quantitative effect of this risk-management approach on industrial
production and prices. As documented in Table 1, the deviations of the historical
realizations with respect to the "no risk-management" ones point to a higher level of
industrial production - on average, 0.66%, and a lower price level - on average, about
0.3%. Differently, not much change would have emerged as regards employment.!'®
Focusing on recessions, industrial production is estimated to be 0.50% higher on average,
while the price level is 0.41% lower. In expansions, these numbers read 0.69% and 0.28%,
respectively. This analysis is conditional on all shocks hitting the economic system,
which is something conceptually different from an impulse-response analysis. However,
the indication of a lower push for industrial production by systematic monetary policy in
recessions is in line with our previous impulse-response-related findings on a systematic

monetary policy which is largely ineffective during economic downturns.

15The counterfactual paths of these variables modeled with our VAR, not shown here for the sake of
brevity, are documented in our Appendix available upon request.
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Our empirical analysis assigns a role to uncertainty as a driver of the U.S. monetary
policy decisions. We now link this empirical evidence to the narrative evidence which
emerges from the reading of the FOMC minutes.

Risk management: Narrative evidence. The reading of the FOMC minutes
confirms that uncertainty was an element carefully considered by the members of the
FOMC when deciding over the federal funds rate setting. Table 1 collects excerpts from
the FOMC minutes with references to uncertainty, risk, and risk management under-
taken by the U.S. monetary policymakers in correspondence of each of the jumps in
uncertainty we analyze. The selected excerpts provide ample and convincing evidence
pointing to uncertainty as one of the ingredients explicitly considered by FOMC mem-
bers when setting monetary policy. To ease the reading of the information collected in
Table 1, we highlight some of the most informative examples below.

Uncertainties related to external events like the first oil crisis and the Arab-Israeli

suggested to implement a cautious behavior at the end of 1973:

"[...] in light of current uncertainties regarding the economic outlook and
the sensitive state of financial market psychology, current money market

conditions be maintained for the time being."

The Black Monday is a textbook example of an uncertainty-inducing event. In
October 1987, the minutes report that

"[...] The Committee recognizes that still sensitive conditions in financial
markets and uncertainties in the economic outlook may continue to call for

a special degree of flexibility in open market operations”.

The risk management approach by the Federal Reserve appears evident also in the

case of the Asian crisis, as the reading of the December 1997 minutes suggests:

"[...] While developments in Southeast Asia were not expected to have much
effect on the U.S. economy, global financial markets had not yet settled
down and further adverse developments could have greater-than-anticipated
spillover effects on the ongoing expansion. In this environment, with mar-
kets still skittish, a tightening of U.S. monetary policy risked an oversized
reaction. [...] At the conclusion of the Committee’s discussion, all but one
member supported a directive that called for maintaining conditions in re-

serve markets that were consistent with an unchanged federal funds rate of
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about 5-1/2 percent and that retained a bias toward the possible firming of
reserve conditions and a higher federal funds rate during the intermeeting

period. "

Finally, the Gulf War event in 2003 again suggested to the Committee to carefully
consider the related degree of uncertainty surrounding the future domestic economic

outcomes, as suggested by the March minutes:

"[...] members commented that an unusually high degree of uncertainty had
made it very difficult to assess the factors underlying the performance of
the economy. [...] In light of these considerable uncertainties, the members
agreed that heightened surveillance of evolving economic trends would be es-
pecially useful in the weeks ahead. |[...] the Committee in the immediate
future seeks conditions in reserve markets consistent with maintaining the

federal funds rate at an average of around 1-1/4 percent.”

Wrapping up, both our econometric results and the narrative evidence based on the
FOMC minutes point to a risk management approach by the Federal Reserve. In pe-
riods of expectations of sustained future growth and inflationary pressures surrounded
by high uncertainty, this risk management practice translated into a "wait-and-see"
behavior, i.e., the liftoff of the policy rate to tackle nascent inflation was postponed to
collect more information about the state of the economy (e.g., the response to the 1997
uncertainty shock related to the Asian crisis). Differently, expectations of a gloomy eco-
nomic scenario in a high uncertainty environment led the FOMC to implement larger
decreases of the policy rate than those that the Federal Reserve would have been im-
plemented in absence of uncertainty (e.g., the decisions taken after the 1990 first Gulf
War shock and after the 9/11 attack).'

The attention paid by the FOMC to uncertainty and the consequent risk-management
approach in setting the policy rate have also been documented in a recent paper by

Evans, Fisher, Gourio, and Krane (2015). They also identify and discuss excerpts

16Interestingly, our evidence is also in line with the following recent statement by Janet Yellen
(Chairman of the Federal Reserve): "The recovery from the Great Recession has advanced sufficiently
far, and domestic spending appears sufficiently robust, that an argument can be made for a rise in
interest rates at this time. We discussed this possibility at our meeting. However, in light of the
heightened uncertainties abroad and a slightly softer expected path for inflation, the Committee judged
it appropriate to wait for more evidence, including some further improvement in the labor market, to
bolster its confidence that inflation will rise to 2 percent in the medium term."” (FOMC Press Conference
Opening Statement, September 17, 2015).
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of the FOMC minutes which reveal the attention paid by the Committee members
on uncertainty triggered by national and international factors. Then, they assess the
statistical and economic relevance of risk management by the U.S. monetary policy
makers by constructing judgemental and automatic (keyword-based) indicators using
the minutes of the FOMC meetings as database. Finally, they use these indicators,
along with a number of other proxies for uncertainty, to estimate augmented Taylor
rules, in which all these measures of uncertainty are included one at a time on top of
inflation and output. Evans et al. (2015) find evidence pointing to a significant and
negative contemporaneous response of the Federal Reserve to uncertainty in the period
1987-2008. Hence, their evidence suggests that the Federal Reserve adopted a looser
policy in presence of uncertainty. Our VAR dynamic analysis and our narrative-based

investigation point exactly to the same qualitative conclusion.'”

6 Conclusions

This paper quantifies the effects of uncertainty shocks in good and bad times and inves-
tigates the role that monetary policy plays in tackling such shocks. Using a nonlinear
VAR model, we show that the contractionary effects of uncertainty shocks are much
stronger when they hit the economy during recessions, compared to non recessionary
times. Counterfactual simulations conducted to assess the role of systematic monetary
policy in our framework point to policy ineffectiveness in the short run, especially when
uncertainty shocks hit in bad times. Policy effectiveness is found to increase in the
medium run, especially in good times. Our empirical findings lend support to the-
oretical models like those developed by Vavra (2014), Berger and Vavra (2015), and
Baley and Blanco (2015), which predict a reduced ability by monetary policymakers to
influence output in presence of high uncertainty. Finally, we provide empirical and nar-
rative evidence in favor of a risk management-type of behavior by the Federal Reserve.

Uncertainty about future economic outcomes affected the decisions taken by the Fed-

1"To understand how quantitatively close our results are to Evans et al.’s (2015), we conduct the
following exercise. We estimate their Taylor rule over the sample 1987Q1-2008Q2 by allowing for a
nonlinear response of the policy rate in NBER recessions/expansions to uncertainty, which is proxied
by the VXO. Then, we produce the "Taylor rule-consistent risk-management policy rate gap" by taking
the difference between the historical policy rate and the one produced by sticking to historical values
of core inflation, the output gap, and (lagged realizations of) the policy rate, in a version of the Taylor
rule conditional on a zero response to uncertainty. The resulting Taylor rule-policy rate gap: i) displays
large realizations (in absolute terms) in recessions, and ii) points to a value as large as 114 basis points
in 2001Q4. Details on the derivation of the Taylor rate gap are documented in our Appendix.

21



eral Open Market Committee, which acted as a risk manager hedging against downside
risks. This induced the U.S. policymakers to keep the federal funds rate lower than
what suggested by inflation and output when spikes in uncertainty occurred to insure
against adverse outcomes. Our evidence, which is based on counterfactual simulations
conducted with our multivariate nonlinear VAR model, lines up with the one proposed
in a recent paper by Evans, Fisher, Gourio, and Krane (2015) and Seneca (2016), who
work with augmented Taylor rules. This empirical evidence is corroborated by narrative
evidence coming from the minutes of the FOMC meetings.

Overall, our findings support a research agenda aiming at identifying state-dependent
frictions able to induce different dynamic responses to structural shocks in recessions
and expansions. In terms of stabilization policies, high uncertainty is found to reduce
the sensitivity of output to stimulus interventions, above all in recessions. Our findings
call for the design of state-dependent optimal policy responses, possibly closer to first-
moment policies in expansions, but clearly different from them in recessions. Blanchard
(2009) and Bloom (2014) call for larger policy stimuli in bad times, as well as "second
moment policies" like stabilization packages designed to reduce systemic risk. Baker,
Bloom, and Davis (2016) point to the role of clear policy communication and steady
policy implementation. Basu and Bundick (2015) find that in economies characterized
by a binding zero lower bound the inability of the central bank to tackle adverse shocks
may contribute to increase uncertainty about future shocks and lead to severe contrac-
tions. They advocate the use of state-dependent policies, and in particular forward
guidance, to exit the zero lower bound. Evans et al. (2015) and Seneca (2016) show
that it is optimal to delay the liftoff of the policy rate when expectations of improving
future economic conditions are surrounded by uncertainty. Our results suggest that
policy prescriptions like those proposed by these authors should be carefully assessed
in order to exit phases characterized by severe economic conditions in presence of high

uncertainty.
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Figure 2: Probability of being in a recessionary phase. Blue line: Transition
function F(z). Shaded columns: NBER recessions. Transition function computed by
employing the standardized moving average (12 terms) of the month-on-month growth
rate of industrial production.
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Figure 3: Real Effects of Uncertainty Shocks: Good and Bad Times. Impulse
responses (median values) to an uncertainty shock inducing an on-impact reaction of
uncertainty equal to one as in Bloom (2009). Uncertainty shock identified as described
in the paper. Red dashed (blue dashed-circled) lines: Responses computed with the
Smooth-Transition VAR and conditional on recessions (expansions). Dashed-dotted

lines: 68% confidence bands. Markov-Chain Monte Carlo simulations to estimate the
VAR coefticients based on 50,000 draws.
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Figure 4. Effects of Uncertainty Shocks on Prices and Policy Rate: Role of
Nonlinearities. Impulse responses (median values) to an uncertainty shock inducing
an on-impact reaction of uncertainty equal to one as in Bloom (2009). Uncertainty
shock identified as described in the paper. Red dashed (blue dashed-circled) lines:
Responses computed with the Smooth-Transition VAR and conditional on recessions
(expansions). Dashed-dotted lines: 68% confidence bands. Markov-Chain Monte Carlo
simulations to estimate the VAR coefficients based on 50,000 draws.
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Figure 5: Effects of Uncertainty Shocks: Differences between Recessions and

Expansions. Differences between generalized median impulse responses in busts and

booms to an uncertainty shock inducing an on-impact reaction of uncertainty equal to

one as in Bloom (2009). Solid line: Median realizations. 68% confidence intervals iden-

tified via dotted lines. Uncertainty shock identified as described in the paper. Markov-
Chain Monte Carlo simulations to estimate the VAR coefficients based on 50,000 draws.
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Figure 6: Real Effects of Uncertainty Shocks: Role of Systematic Monetary
Policy. Median impulse responses to a one-standard deviation uncertainty in scenar-
ios with unconstrained /constrained monetary policy. Red dashed-dotted (blue dashed)
lines: Responses computed with the Smooth-Transition VAR and conditional on reces-
sions (non-recessionary phases). Counterfactual responses computed conditional on a
muted systematic policy (fixed federal funds rate) in green-circled lines. Markov-Chain
Monte Carlo simulations to estimate the VAR coefficients based on 50,000 draws.
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Gap Full Recess.  Expans.
Federal funds rate —16bp  —4Tbp  —11bp
Prices —0.30% —0.41% —0.28%
Industrial Production ~ 0.66%  0.50%  0.69%
Employment —0.02% —0.17% —0.07%

Table 1: Risk-managent by the Federal Reserve: Macroeconomic gaps. Sam-
ple: 1964M2-2008M6. Gaps constructed by taking the difference between the historical
realizations of each variable and their counterfactual values obtained by muting the
systematic response of the policy rate to current and past realizations of uncertainty in
our VAR. Federal funds rate: Difference expressed in basis points. Other variables: Per-
centage differences computed as log-deviations of the historical realizations with respect
to the counterfactual, "no risk-management" values. Realizations of the counterfactual
rate start in 1964M2 because of initial conditions (lags of the VAR, transition indicator

of the logistic function).
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Appendix of "Uncertainty and Monetary Policy in
Good and Bad Times" by Giovanni Caggiano, Efrem
Castelnuovo, Gabriela Nodari [not for publication]

This Appendix documents statistical evidence in favor of a nonlinear relationship be-
tween the endogenous variables included in our STVAR. Next, it offers details on the
estimation procedure of our non-linear VARs. It then reports details on the computa-
tion of the GIRFs and on our robustness checks. Finally, it presents some extra-results

on the risk-management part of our paper.

Statistical evidence in favor of non-linearities

To detect non-linear dynamics at a multivariate level, we apply the test proposed by
Terdsvirta and Yang (2014). Their framework is particularly well suited for our analysis
since it amounts to test the null hypothesis of linearity versus a specified nonlinear
alternative, that of a Smooth Transition Vector AutoRegression with a single transition
variable.

Consider the following p—dimensional 2-regime approximate logistic STVAR model:

X, =0Y,+ )Y 0)Yz +e (A1)
i=1

where X, is the (p x 1) vector of endogenous variables, Y, = [X;_1|...|X;_¢|a] is the
((k X p+ q) x 1) vector of exogenous variables (including endogenous variables lagged k
times and a column vector of constants a), z; is the transition variable, and ®, and ©;
are matrices of parameters. In our case, the number of endogenous variables is p = 8,
the number of exogenous variables is ¢ = 1, and the number of lags is k£ = 6. Under the

null hypothesis of linearity, ®; = 0 Vi.
The Terssvirta-Yang test for linearity versus the STVAR model can be performed

as follows:

1. Estimate the restricted model (®; = 0, Vi) by regressing X; on Y. Collect the

residuals E and the matrix residual sum of squares RSS, = E'E.

2. Run an auxiliary regression of E on (Y, Z,) where Z, = [Z|Z,|...|Z,] =
[Y!2|Y!22|...|Y}z"]. Collect the residuals = and compute the matrix residual

S

sum of squares RSS; = E'E.
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3. Compute the test-statistic

LM = Ttr{RSS;" (RSS, — RSS;)}
= T (p—tr {RSS;'RSS,})

Under the null hypothesis, the test statistic is distributed as a x? with p (kp + q)
degrees of freedom For our model, we get a value of LM = 1992 with a corre-
sponding p-value equal to zero. The LM statistic has been computed by fixing
the value of the order of the Taylor expansion n equal to three, as suggested by
Luukkonen, Saikkonen, and Terésvirta (1988). It should be noticed, however, that

the null of linearity can be rejected also for n = 2.

4. As pointed out by Terésvirta and Yang (2014), however, in small samples the LM-
type test might suffer from positive size distortion, i.e., the empirical size of the
test exceeds the true asymptotic size. We then employ also the following rescaled
LM test statistic: (T — k)

F = e T T LM,
where G is the number of restrictions. The rescaled test statistic follows an
F (G,pT — k) distribution. In our case, we get F' = 13.54, with p-value ap-

proximately equal to zero.

Estimation of the non-linear VARs

Our model (1)-(4) is estimated via maximum likelihood.! Tts log-likelihood reads as

follows:

1

1 T T
log L = const — 3 thl log || — 3 thl e/ e, (A2)

where €, = Xy— (1 — F(z1)MgX, 1 — F(z_1)IIgX, ; is the vector of residuals.
Our goal is to estimate the parameters ¥ = {Qp, Qg Iz(L), I g(L)}, where IT,;(L) =
[ I, .. II,, }, j € {R, E}. We do so by conditioning on a given value for the slope
parameter ~y, which is calibrated as described in the text. The high nonlinearity of
the model and its many parameters make its estimation with standard optimization
routines problematic. Following Auerbach and Gorodnichenko (2012), we employ the

procedure described below.

!This Section heavily draws on Auerbach and Gorodnichenko’s (2012) "Appendix: Estimation
Procedure".
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Conditional on {~,Qz, Qg}, the model is linear in {ITIx(L),IIg(L)}. Then, for
a given guess on {7, Qg,Qg}, the coefficients {IIz(L),IIx(L)} can be estimated by
minimizing %ijl e/Q; 'e,. This can be seen by re-writing the regressors as follows.
Let Wy = [ F(z-1)X,-1 (1— F(zim1)X o1 . Fz-1)X -y 1= F(221)X,—, | be
the extended vector of regressors, and IT = [ IIz(L) IIg(L) ]. Then, we can write

g, = X, — IIW,. Consequently, the objective function becomes

1 =T _
5 thl(xt —~IOIW)'Q; Y(X, — TIW)).
It can be shown that the first order condition with respect to IT is

vecIl' = (ZtT:l Q' o W, WtD 1 vec <ZtT:1 W;Xth) . (A3)

This procedure iterates over different sets of values for {2z, 2z} (conditional on a
given value for 7). For each set of values, IT is obtained and the logL (A2) computed.

Given that the model is highly non-linear in its parameters, several local optima
might be present. Hence, it is recommended to try different starting values for {Qr, Qp}
and then explore the robustness of the estimates to different values of v. To ensure
positive definiteness of the matrices 2z and Qp, we focus on the alternative vector
of parameters ¥ = {chol(Q2g), chol(Qg),IIx(L),IIg(L)}, where chol implements a
Cholesky decomposition.

The construction of confidence intervals for the parameter estimates is complicated
by, once again, the non-linear structure of the problem. We compute them by appealing
to a Markov Chain Monte Carlo (MCMC) algorithm developed by Chernozhukov and
Hong (2003) (CH hereafter). This method delivers both a global optimum and densities
for the parameter estimates.

CH estimation is implemented via a Metropolis-Hastings algorithm. Given a starting
value ¥ the procedure constructs chains of length N of the parameters of our model
following these steps:

Step 1. Draw a candidate vector of parameter values O™ = U™ 4 ™ for the
chain’s n + 1 state, where ™ is the current state and 9™ is a vector of i.i.d. shocks
drawn from N(0,Qy), and Qg is a diagonal matrix.

Step 2. Set the n+1 state of the chain ™) = @™ with probability min {1, LOM)/L(®™) },
where L(©™) is the value of the likelihood function conditional on the candidate vector
of parameter values, and L(®™) the value of the likelihood function conditional on the

current state of the chain. Otherwise, set @™+ = @)
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The starting value ®© is computed by working with a second-order Taylor approx-
imation of the model (1)-(4) (see the main text), so that the model can be written as
regressing X; on lags of X;, X;2;, and X;22. The residuals from this regression are
employed to fit the expression for the reduced-form time-varying variance-covariance
matrix of the VAR (see our paper) using maximum likelihood to estimate Qp and Q.
Conditional on these estimates and given a calibration for v, we can construct €2,.
Conditional on €, we can get starting values for ITz(L) and I1g(L) via equation (A3).

Given a calibration for the initial (diagonal matrix) €2y, a scale factor is adjusted
to generate an acceptance rate close to 0.3, a typical choice for this kind of simulations
(Canova (2007)). We employ N = 50,000 draws for our estimates, and retain the last
20% for inference. Checks performed with N = 200,000 draws delivered very similar
results.

As shown by CH, ¥ = zlv 25—1 W™ is a consistent estimate of ¥ under standard
regularity assumptions on maximum likelihood estimators. Moreover, the covariance
matrix of ¥ is given by V = & ZN (B —W)2 = par(®™), that is the variance of

n=1
the estimates in the generated chain.

Generalized Impulse Response Functions

We compute the Generalized Impulse Response Functions from our STVAR model by
following the approach proposed by Koop, Pesaran, and Potter (1996). The algorithm

features the following steps.

1. Consider the entire available observations, with sample size t = 1962M7, . .., 2008 M6,

with T = 552, and construct the set of all possible histories A of length p = 12:2
{A\i € A}. A will contain T'— p + 1 histories A,.

2. Separate the set of all recessionary histories from that of all expansionary histories.
For each A; calculate the transition variable z,,. If z), < Z = —1.01%, then
A; € A where A is the set of all recessionary histories; if z), >z = —1.01%,

then \; € AF, where A¥ is the set of all expansionary histories.

3. Select at random one history A; from the set A®. For the selected history \;, take
Q ); Obtained as:
Q)\i :F<Z/\i) QR—i-(l—F(Z)\Z)) QE, (A4)

2The choice p = 12 is due to the number of moving average terms (twelve) of our transition variable
Zt.
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where r and Qp are obtained from the generated MCMC chain of parameter
values during the estimation phase.® z,, is the transition variable calculated for
the selected history ;.

4. Cholesky-decompose the estimated variance-covariance matrix €2 Al
ﬁ% = a/\zag\l (A5)
and orthogonalize the estimated residuals to get the structural shocks:

e{) = Cjle. (A6)

5. From e,, draw with replacement h eight-dimensional shocks and get the vector of

bootstrapped shocks

eg\jl)* = {e;‘\i,t? ej\i,t+17 e 7e§\¢,t+h} ) (A7)
where h is the horizon for the IRFs we are interested in.

6. Form another set of bootstrapped shocks which will be equal to (A7) except for
the £y, shock in eE\]): which is the shock we want to perturb by an amount equal

to . Denote the vector of bootstrapped perturbed shocks by ef\];)a.

7. Transform back ef\i)* and egi)é as follows:

eV = Cy el (A8)
and
eV’ = el (A9)

8. Use (A8) and (A9) to simulate the evolution of XE\?* and XE\{)(S and construct the
GIRF (h,4,\;) as X" — X,

9. Conditional on history A;, repeat for j = 1,..., B vectors of bootstrapped residu-
als and get GIRF®™ (h,8, ;) ,GIRF® (h,8,\),...,GIRF®) (h,§,)\;). Set B =
500.

3We consider the distribution of parameters rather than their mean values to allow for parameter
uncertainty, as suggested by Koop, Pesaran, and Potter (1996).

A5



10. Calculate the GIRF conditional on history \; as

. B
GIRF" (h,6,)) = B'S " GIRFGD (h,5,),). (A10)

j=1

11. Repeat all previous steps for : = 1, ..., 500 histories belonging to the set of reces-

—_— 1,R —_— 2,R
sionary histories, A\; € A, and get GIRF( )(h,é,/\LR) , GIRF( )(h,(s,)\g,R>,
__—— (500,R
... ,GIRF (G000 (h, 0, As00.r), Where now the subscript R denotes explicitly that

we are conditioning upon recessionary histories.

—_— R
12. Take the average and get GI RF o (h, 0, AR) , which is the average GIRF under

recessions.

13. Repeat all previous steps E ?); to 12 - for 500 histories belonging to the set of all
_— _(E
expansions and get GIRF ~ (h,d, A¥).

14. The computation of the 68% confidence bands for our impulse responses is under-
taken by picking up, per each horizon of each state, the 16th and 84th percentile

. _———([1:500],R) _— ([1:500],E)

of the densities GIRF and GIRF .

Robustness analysis

Identification of the financial uncertainty shock. Our baseline exercise is based
on uncertainty shocks identified via events associated to large jumps in the VXO, which
is our proxy of financial uncertainty. We verify the solidity of results to three departures
with respect to this baseline scenario. First, we employ a different uncertainty dummy,
which is constructed by considering just 10 out of 16 extreme realizations of uncertainty,
i.e., those which are associated to terror, war, or oil events. This is done in order to
maximize the probability of handling a dummy associated to exogenous movements in
financial uncertainty. Second, we consider the VXO per se in our VAR, and identify
a financial uncertainty shock as an unpredictable movement of the VXO identified
via a Cholesky decomposition of the variance-covariance matrix of the estimated VAR
residuals. In this exercise, the VXO replaces the uncertainty dummy in the vector

of variables we model. Hence, we assume that financial uncertainty shocks can affect

4The Terror shocks are: the Cuban Missile Crisis (October 1962), the Assassination of JFK (No-
vember 1963), the 9/11 Terrorist Attack (September 2001). The War shocks are: the Vietnam buildup
(August 1966), the Cambodian and Kent State (May 1970), the Afghanistan, Iran hostages (March
1980), the Gulf War I (October 1990), the Gulf War II (February 2003). The Oil shocks are dated
December 1973 and November 1978.
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the economy contemporaneously, while shocks hitting the economic system (apart from
the VXO and the S&P500 index) can hit the VXO only with a lag. As discussed
before, this assumption is theoretically supported by the recent analysis conducted by
Basu and Bundick (2016). Moreover, the assumption of exogeneity of the VXO is
corroborated by a Granger-causality analysis conducted with two different bivariate
VARs. In particular, we model the vectors [indpro, VXO] and [empl, VXO]', where
VXO, indpro, and empl stand for (respectively), the log of industrial production, the
log of employment, and the VXO index. At any conventional level, these bivariate
VARSs point to i) strong evidence against the null hypothesis that the VXO does not
Granger-cause real activity, and ii) no evidence against the null hypothesis that real
activity Granger-cause the VXO. Third, we compute an "extreme event dummy" by
following the same identification strategy presented in Section 2 but considering the
one-month ahead financial uncertainty indicator recently developed by Ludvigson, Ma,
and Ng (2016). Figure Al plots the impulse responses of industrial production and
employment conditional on these alternative indicators of uncertainty, and contrasts
such responses with the baseline ones. The baseline results turn out to be robust.

Different calibration of the slope parameter. One potential drawback of our
empirical exercise is that the slope parameter « of the logistic function of our STVAR,
which drives the smoothness with which the economy switches from one regime to
another, is calibrated. Our baseline estimation uses a value of v = 1.8, selected so that
the economy spends 14% of the time in recessions, which is the frequency observed in
our sample according to the NBER definition of recessions. To check the robustness of
the baseline results to different values of v, we re-estimate the model using values of ~
between 1.4 and 2.2, which imply a frequency of recessionary periods in the sample equal
to 10% and 25%, respectively. Following Hansen (1999), we set to 10% the frequency
corresponding to the minimum amount of observations each regime should contain to
be identified. Our results are reported in Figure A2, which plots our baseline GIRFs
along with the GIRF's obtained with alternative calibrated values for 7. This robustness
check clearly confirms our baseline results.

Unemployment as transition indicator. In our baseline exercise, the transition
indicator z, which regulates the probability of being in a recession, is a twelve-term
moving average of the month-by-month growth rate of the industrial production index.
An alternative indicator of the business cycle often considered by policymakers and
academics is the unemployment rate. We check the robustness of our baseline results

to the employment of the unemployment rate in place of the growth rate of industrial
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production as transition indicator. Following the modeling choice in Ramey and Zubairy
(2016), we classify periods in which the unemployment rate is over (under) 6.5% as
recessionary (expansionary). In doing this exercise, we calibrate the slope parameter
~v = 1.7 to match the 14% frequency of recessions in the sample as classified by the
NBER. Figure A3 documents our GIRFs, which deliver the same stylized facts as in
our baseline analysis, i.e., a marked drop followed by a quick rebound and a temporary
overshoot in industrial production and employment when uncertainty shocks occur in
recessions, and a hump-shaped response of real activity in good times.

Uncertainty and financial risk. Stock and Watson (2012) point out that financial
strains lead to higher uncertainty, which in turn increases financial risk. An implication
of this relationship for our analysis is that the transmission of uncertainty shocks to
the real economy might not be due to uncertainty per se but it might rather be driven
by the level of financial stress in the economy. Caldara, Fuentes-Albero, Gilchrist, and
Zakrajsek (2016) provide empirical evidence in favor of larger real effects of uncertainty
shocks in periods of high financial stress. A way to control for the presence of time-
varying financial risk is to include a measure of credit spread in our VAR. Gilchrist
and Zakrajsek (2012) propose a micro-founded measure of excess bond premium, i.e.,
a measure of credit spread cleaned by the systematic movements in default risk on
individual firms. Such a measure has the attractive feature of isolating the cyclical
changes in the relationship between measured default risk and credit spreads. The
original version of the GZ spread is available from 1973. Our baseline analysis starts
in 1962. Then, we regress the GZ spread against the difference between i) the AAA
corporate bonds and the 10-year Treasury yield; ii) the BAA corporate bonds and
the 10-year Treasury yield; iii) the 6-month T-Bill rate and the 3-month T-Bill rate;
iv) the l-year Treasury yield and the 3-month T-Bill rate; v) the 10-year Treasury
yield and the 3-month T-Bill rate. We do this for the sample 1973-2008, and then
we use the fitted values of the regression to backcast the GZ spread and match our
baseline sample. All data are taken from the Federal Reserve Bank of St. Louis’
database. We then add this measure of credit spread to our 8-variate VAR. Figure
A4 reports the response of industrial production and employment to an uncertainty
shock in recessions and expansion for a nine-variate STVAR embedding the selected
credit spread. Two alternative orderings are considered. In one, the credit spread
is ordered before uncertainty, implying that uncertainty responds contemporaneously
to credit spread but not viceversa. In the other one, credit spread is ordered after

uncertainty, so to admit a contemporaneous reaction of credit spread to changes in
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uncertainty. Our results broadly confirm those of our baseline scenario, i.e., uncertainty
shocks occurring in recessions generate a drop and rebound in real activity in the short-
run, followed by a medium-run, temporary overshoot (which is less clearly evident
for employment, though). These results are consistent with the findings by Bekaert,
Hoerova, and Lo Duca (2013), who show that uncertainty shocks induce business cycle
fluctuations even when controlling for indicators of time-varying risk aversion. Our
results are also consistent with those in Caldara et al. (2016), who show that uncertainty
shocks working via credit frictions may lead to a persistent decline in real and financial
variables.

Uncertainty and housing. Since lacoviello (2005), there has been a revamped
attention toward the relationship between housing market dynamics and the business
cycle, especially after the 2007-09 financial and real crisis. The housing market is
particularly important for us in light of a recent paper by Furlanetto, Ravazzolo, and
Sarferaz (2014), who show that uncertainty shocks may play a minor role if one controls
for housing shocks. We then add the real home price index computed by Robert Shiller
to our baseline vector.” As before, two alternative orderings are considered, one in which
the house price index is ordered just before uncertainty, and the other one in which
such index is ordered after uncertainty. Figure A5 depicts our median responses. Quite
interestingly, the presence of house prices does not appear to quantitatively affect the
drop and rebound part of the response of industrial production and employment in bad
times. However, it clearly dampens the overshoot of the former variable, and it implies
no overshoot as for the latter. As for the response of these variables in expansions,
house prices do appear to moderate the response of real activity also in the short-run.
These results are consistent with those in with Furlanetto, Ravazzolo, and Sarferaz
(2014), who show that part of the effects often attributed to uncertainty shocks may be
an artifact due to the omission of house prices from VAR analysis. However, even when
controlling for house prices, we find asymmetric responses of industrial production and
employment (in terms of severity of the recession, speed of the recovery, and overall
dynamics) over the business cycle.

Wrapping up, our findings are robust to the inclusion of a different uncertainty
indicators, calibration of the slope parameter of the logistic function, business cycle

indicators to detect the transition from a state to another, a measure of credit spread,

>The index is available here: http://www.econ.yale.edu/ shiller/data/Fig2-1.xls. This index is
quarterly. We moved to monthly frequencies via a cubic interpolation of the quarterly series. Our
VAR models the log of such interpolated index.
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and an indicator of real house prices.

Short- vs. long-term interest rates. The differences documented in Figures 6
in the paper are attributed to different policies as captured by different paths of the
federal funds rate. As recalled by Bernanke (2013), however, monetary policy is likely to
work mainly through the term structure, and in particular via long-term interest rates.
Giirkaynak, Sack, and Swanson (2005) argue that the Federal Reserve has increasingly
relied on communication to affect agents’s expectations over future policy moves to
eventually influence long-term rates.5 Kulish (2007) shows that long-term rates may
effectively help stabilizing inflation in the context of a new-Keynesian framework fea-
turing a term-structure of interest rates. Following Bagliano and Favero (1998), we then
enrich our VAR with the 10-year Treasury constant maturity rate (ordered after the
uncertainty dummy), and re-run our estimates. We use this nine-variate VAR model
to compute impulse responses to an uncertainty shock in the unconstrained case, as
well as in two counterfactual scenarios. The first counterfactual focuses on the response
of real activity conditional on a fixed path of the federal funds rate. The aim of this
counterfactual is to assess the role of systematic monetary policy when expectations
about future rates, as captured by the 10-year rate, are allowed to change. In the sec-
ond counterfactual, we estimate the responses to an uncertainty shock conditional on a
fixed path of the long-term interest rate, i.e. under the assumption that expectations
about the future stance of monetary policy remain unchanged. This exercise is intended
to capture the role that the 10-year rate plays in transmitting the effects of uncertainty
shocks. Clearly, the 10-year rate is a combination of expectations over future mone-
tary policy moves and the risk-premium, and as such should be considered only as an
imperfect proxy of expectations.

Figure A6 plots the impulse responses. Three results stand out. First, the pres-

ence of the long-term interest rate per se does not exert any appreciable impact on the

6Such rates are a function of future expected monetary policy and term premia. An overview of the
analysis of the term structure of interest rates is provided by Giirkaynak and Wright (2012). It would
be of interest to pin down the role played by expectations over future policy moves per se. Gertler
and Karadi (2015) and Bacchiocchi, Castelnuovo, and Fanelli (2016) employ federal funds rate futures
as measure of expectations (as in Kuttner (2001)) to investigate the empirical relevance of forward
guidance by the Federal Reserve. Unfortunately, federal funds rate futures are available from 1989
only, which would imply a substantial loss in degrees of freedom if we used them in our econometric
analysis. Giirkaynak, Sack, and Swanson (2007) find the predictive power of a variety of financial
instruments, including federal funds rate futures and short-term Treasury maturity rates, to be very
similar when horizons over six months are considered. Attempts to model short-term interest rates led
us to experience multicollinearity-related problems due to their very high correlation with the federal
funds rate.
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impulse responses, which are very similar to those obtained with our baseline STVAR
(shown in Figure 3 in the paper). This holds true regardless of whether the economy
is in a recession or in an expansion. Second, a counterfactually still monetary policy is
confirmed to deliver a deeper recession than that predicted by our baseline exercise even
when controlling for the role of expectations about future monetary policy. However,
relative to the baseline case reported in Figure 6 in the paper, the counterfactual reces-
sion in this case is milder. In particular, after an uncertainty shock hitting the economy
in bad times, real activity goes back much more quickly to the pre-shock level relative
to the baseline case (about 12 versus 18 months for industrial production, and 15 versus
24 for employment). This happens because of the role played by the long-term interest
rate in this system (possibly, via changes in expectations over future monetary policy
moves), which substitutes in part the federal funds rate in influencing the response of
real activity. Finally, the third message of this exercise is that shutting down the long-
rate channel implies that uncertainty shocks hitting in recessions trigger a slower and
less marked medium-run recovery (relative to the baseline model augmented with the
long-term interest rate). The effect is even more pronounced when uncertainty shocks
hit in good times.

Our results suggest that the long-end of the term structure represents an important
bit to understand the effects of an unexpected increase in volatility when the economy
experiences booms. Interestingly, the two channels through which monetary policy may
dampen the recessionary effects of uncertainty shocks seem to play a similar role, es-
pecially during recessions. Shutting down the short-term interest rate, which captures
systematic monetary policy, or the long-term interest rate, which captures expectations
about future monetary policy stance as well as the risk-premium, appears to produce
quite similar dynamic responses during the first eighteen months when we look at in-
dustrial production in recessions. Some differences, however, arise when we look at the
response of industrial production to uncertainty shocks in good times. In such a case,
the role of the long-term interest rate seems to be less important, while the federal
funds rate matters much more. The opposite holds as for employment, which turns out
to be mainly affected by the long-term interest rate. Interestingly, the effects of these
counterfactual policies are again larger, above all as for expansions, in the medium run,

but remain weak in the short run, particularly during recessions.”

"Obviously, caution should be used in interpreting these results, which come from exercises that
are subject to the Lucas critique. Ideally, one should build up a model which meaningfully features
uncertainty shocks, financial frictions, short- and long-term interest rates, and mechanisms inducing
a nonlinear response of real aggregates to uncertainty shocks. We see our results as supporting this
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Risk management-driven policy decisions: Further results

Quantity and price-gaps. Our paper documents the risk management-driven policy
rate gap, i.e., the difference between the historical federal funds rate and the policy
rate that, according to our VAR, would have been in place in absence of a system-
atic policy response to movements in uncertainty. In addition, we show here the risk
management-driven gaps for other key variables of our analysis, i.e., industrial produc-
tion, employment, and prices. These gaps are shown in Figure A7.

Risk management-driven policy rate gap: Comparison with Evans et al.
(2015). The "risk management-driven policy rate gap" documented in Section 4.4
points to a state-dependent policymakers’ response to uncertainty. It is of interest to
contrast our VAR-based results with those one can produce by working with a Taylor
rule & la Evans, Fisher, Gourio, and Krane (2015). The interest arises because our
multivariate model and their uni-equational framework obviously have different char-
acteristics. While our VAR model enables us to keep track of feedbacks going from
the rest of the economy to the policy rule (and, therefore, policy rate) and back when
simulating the counterfactual scenario in which the Federal Reserve does not react to
uncertainty, the Taylor rule estimated by Evans et al. (2015) does not. At the same
time, the latter model focuses on the information possessed by the FOMC in real time,
while our VAR framework employes revised data. Hence, if the Evans et al. (2015)
model produced a risk management-driven policy rate gap in line with ours, we would
be reassured about the credibility of our policy rate gap.

We then turn to Evans et al.’s (2015) model, which is the following:

Ry = R+ B(Ems) — ) + vE[ay] + psi
R = (1—AL)R*+ A(L)R;_1 + v,

where 7., stands for the average annualized inflation rate from ¢ to ¢t + k, 7* models
the inflation target, z; , is the average output gap from ¢ to t+g¢, s; is a risk management
proxy, and F; denotes expectations conditional on information available to the FOMC
at time t. The coefficients 3, v, and p are fixed over time, while R* is the Taylor
rate conditional on an inflation rate equal to the target, a zero output gap, and a
consideration of uncertainty by the policymakers p set to zero. In this case, the natural

real rate of interest r* = R* 4+ 7*.

research agenda.
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Given that the FOMC has a preference for implementing variations in the policy
rate in a smooth manner, and that it does not have full control of interest rates, the
polynomial A(L) = Zf:_olajHLj and the zero-mean, constant variance error term v; are
also modeled. As regards the former, L is the lag operator, while N denotes the number
of federal funds rate lags.

Combining the equations above yields to the following estimation equation:

Ry = by + b1 By i) + b2 B[y 4] + bssy + pr Rt + poRi—a + vy

where b;,7 = 0,1, 2,3 are nonlinear functions of the structural parameters 3, =, pu,
R*, and 7*.

The estimation of the above equation confirms that we are able to replicate the
results documented in Evans et al. (2015).® In particular, we obtain a significant
coefficient for the long-run response of the policy rate to the (standardized) VXO,
whose size is —0.43.° To get closer to our nonlinear VAR analysis, we then estimate

the following state-dependent version of the Taylor rule:

Ry = by + b1 Ey[my ] + ba B[z 4] + bsDysy + ba(1 — Dy)sy + pyRi—1 + poRi—a + vy

where D, is a zero/one dummy taking a value equal to one in correspondence of
quarters classified as "recessions" by the NBER and zero otherwise, and s; is now the
non-standardized VXO, which is the proxy for uncertainty exploited in Bloom (2009)
to identify the uncertainty shock-dummy. This equation has the potential of capturing

nonlinearities in the relationship between the policy rate and uncertainty. We estimate

8The replication files containing their datasets are available at

https://www.chicagofed.org/publications/working-papers/2015/wp2015-03 . We focus on the thirty-
day forward average of the target rate following each FOMC meeting as policy rate, and on the Green-
book measures of CPI inflation and output gap expectations for modeling the response to inflation and
real activity. A detailed description of the data is provided in Evans et al.’s (2015) Appendix, which is
available here: https://www.chicagofed.org/~ /media/publications/working-papers/2015/wp2015-03-
main-appendix-pdf.pdf?la=en . Given our choice of proxying uncertainty with the VXO, we focus
on the case in which the measure of uncertainty is the VXO. Following Evans et al. (2015), we first
standardize the VXO in order to interpret the long-run response of the policy rate as the reaction to a
one-standard deviation increase in uncertainty. We then estimate the last equation reported above via
least squares by focusing on the sample 1987Q1-2008Q4, which is the very same sample they focus on,
and we account for heteroskedasticity by modeling the White-correction of the VCV matrix, as they
do.

9See Table 9 p. 50 in their working paper version, i.e.,

https://www.chicagofed.org/publications/working-papers/2015/wp2015-03 .
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this equation over the sample 1987Q1-2008Q2 to align the end-of-sample of this empiri-
cal analysis to the one we conduct with our VAR. Interestingly, we get a more aggressive
long-run response of the policy rate to uncertainty in recessions, and we verify that the
restriction by = by is rejected at a 1% level. We use this version of the Taylor rule to
compute the "risk management-driven policy rate gap" consistent with this nonlinear
Taylor rule as R?Rgap = bAthst + 1;:;(1 — Dy)s;.

Figure A8 plots the Taylor rule policy rate gap obtained as explained above. Evi-
dently, the values of the policy rate gaps in recessions are much larger, with peaks (in
absolute values) of 114 (2001Q4), 109 (2008Q1), and 101 (1990Q4) basis points. If one
considers that the lack of a feedback mechanism accounting for different paths of the
policy rate, their effects on the economic system, and the feedback on the regressors
of the Taylor rule in the Taylor rule model is likely to downplay the dynamics effects
induced by role played by risk management in monetary policy setting, this result can

be seen as reasonably close to the one documented in our paper.

Comparison with linear VAR

Figure A9 plots the estimated dynamic responses of employment and industrial produc-
tion to an uncertainty shock obtained with the linear VAR as well as those conditional
on recessions and expansions estimated by our STVAR model. Clearly, a linear model
provides a distorted picture of the real effects of uncertainty shocks in terms of the mag-
nitude of the impact over the business cycle with respect to a nonlinear model (which

is supported by the formal tests documented in the first Section of this Appendix).
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Figure Al. Real Effects of Uncertainty Shocks: Alternative uncertainty in-
dicators. Baseline: Uncertainty dummy as described in the paper. VXO: Uncertainty
shock identified as the orthogonalized residual of the of the VXO in the VAR. Exoge-
nous dummy: Uncertainty dummy constructed by considering extreme realizations of
the VXO index related to terror, war, and oil events only. LMN dummy: Uncertainty
dummy constructed by considering extreme events as defined in the paper and associ-
ated to the financial uncertainty indicator a la Ludvigson, Mah, and Ng (2016). Impulse
responses (median values) to an uncertainty shock for the dummy-related cases identi-
fied as described in the paper. Markov-Chain Monte Carlo simulations to estimate the
VAR coefficients based on 50,000 draws.
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Figure A2. Real Effects of Uncertainty Shocks: Different Calibrations of
the Slope Parameter. Impulse responses (median values) to an uncertainty shock
identified as described in the paper. Red dashed/blue dashed-circled lines: GIRFs
conditional on v = 1.8. Green lines: GIRFs conditional on v = 1.4. Orange lines:
GIRFs conditional on v = 2.2. Markov-Chain Monte Carlo simulations to estimate the
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Figure A3. Real Effects of Uncertainty Shocks: Unemployment as transi-
tion indicator. Unemployment added to our baseline model and employed as tran-
sition indicator. Realizations of unemployment above (below) 6.5% are associated to
recessions (expansions). Impulse responses (median values and confidence bands) to
an uncertainty shock identified as described in the paper. Red dashed (blue dashed-
circled) lines: Responses computed with the Smooth-Transition VAR and conditional
on recessions (expansions). Dashed-dotted lines: 68% confidence bands. Gray areas:
95% confidence bands. Markov-Chain Monte Carlo simulations to estimate the VAR
coefficients based on 50,000 draws.
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Figure A4. Real Effects of Uncertainty Shocks: Role of Credit Spreads. Me-
dian impulse responses to an uncertainty in scenarios without/with credit spreads. Red
dashed-dotted (blue dashed) lines: Responses computed with the Smooth-Transition
VAR and conditional on recessions (non-recessionary phases). Responses of the models
estimated with credit spreads are in green (when the spread is ordered after uncer-
tainty) and orange (when the spread is ordered before uncertainty). Markov-Chain
Monte Carlo simulations to estimate the VAR coefficients based on 50,000 draws.
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Figure A5. Real Effects of Uncertainty Shocks: Role of House Prices.
Median impulse responses to an uncertainty shock identified as described in the text in
scenarios without/with real house price index. Red dashed-dotted (blue dashed) lines:
Responses computed with the Smooth-Transition VAR and conditional on recessions
(non-recessionary phases). Responses of the models estimated with the real house price
index in green (when the index spread is ordered after uncertainty) and orange (when
the index is ordered before uncertainty). Markov-Chain Monte Carlo simulations to
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Figure A6. Real Effects of Uncertainty Shocks: Role of Short- and Long-
term Interest Rates. Median impulse responses to an uncertainty shock identified
as described in the text in scenarios with unconstrained/constrained monetary pol-
icy. Red dashed-dotted (blue dashed) lines: Responses computed with the baseline
Smooth-Transition VAR and conditional on recessions (non-recessionary phases). Vi-
olet squared-lines: Responses computed with the estimated nine-variate STVAR with
the 10 year Treasury yield (unrestricted model). Counterfactual responses computed
conditional on a muted systematic policy (fixed federal funds rate) in green-circled
lines. Counterfactual responses computed conditional on a muted response of the 10
year Treasury yield in orange-diamonded lines. Markov-Chain Monte Carlo simulations
to estimate the VAR coefficients based on 50,000 draws.
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Figure A7. Macroeconomic gaps. Sample: 1962M7-2008M6. Gaps constructed
by taking the difference between the historical realizations of each variable and their
counterfactual values obtained by muting the systematic response of the policy rate
to current and past realizations of uncertainty in our VAR. Shaded areas: NBER re-
cessions. Realizations of the counterfactual rate start in 1964M2 because of initial
conditions (lags of the VAR, transition indicator of the logistic function).
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Figure A8. Taylor Rule Risk Management-driven Policy Rate Gap. Taylor
rule policy rate gap constructed on the basis of an estimated nonlinear Taylor rule as
explained in this Appendix.
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Figure A9. Real Effects of Uncertainty Shocks: Linear vs. Nonlinear
Frameworks. Impulse responses (median values) to an uncertainty shock inducing
an on-impact reaction of uncertainty equal to one as in Bloom (2009). Uncertainty
shock identified as described in the paper. Solid black lines: Responses computed with
the linear VAR. Red dashed (blue dashed-circled) lines: Responses computed with the
Smooth-Transition VAR and conditional on recessions (expansions).
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