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Abstract
Despite steady increases in fuel economy, CO2 emissions from road transportation in 
Germany are on the rise, increasing by nearly 4% since 2009. This study analyzes the 
impact of different policy levers for bucking this trend, focusing specifically on the role 
of fuel prices and features of the built environment. We estimate two multinomial logit 
models, one addressing work-related tours and the other non-work related tours. Both 
models consider two interrelated dimensions of travel on the extensive margin: mode 
choice and tour complexity. We use the model estimates to predict outcome probabilities 
for different levels of our policy variables. Our results suggest significant effects of the 
built environment – measured by bike path density, urbanization, and proximity to 
public transit – in discouraging car use and increasing tour complexity. Fuel prices, by 
contrast, appear to have little bearing on these choices.

JEL Classification: D10, R48, R42

Keywords: Activity-based approach; travel mode choice; tour complexity; multinomial 
logit; predicted probabilities

September 2017

1 Michael Simora, RWI; Colin Vance, RWI and Jacobs University Bremen. – We thank Manuel Frondel for helpful 
commentary and suggestions. Financial support by the Collaborative Research Center “Statistical Modeling of 
Nonlinear Dynamic Processes” (SFB 823) of the German Research Foundation (DFG), within Project A3, “Dynamic 
Technology Modeling” is gratefully acknowledged.– All correspondence to: Colin Vance, RWI, Hohenzollernstr. 
1/3, 45128 Essen, Germany, e-mail: colin.vance@rwi-essen.de



1 Introduction

The transportation sector has emerged as a seemingly intractable obstacle to Ger-

many’s success in reducing CO2 emissions. While the country’s overall CO2 emis-

sions decreased by 27% between 1990 and 2014, emissions in transportation are on

the rise. To buck this trend, legislation was introduced by the European Commis-

sion in 2009 that limits the average emissions of new cars to 130g CO2/kilometer by

2015 and 95g CO2/kilometer by 2020 (European Commission, 2009). On its face, the

legislation has been effective: Between 2009 and 2014, the per kilometer CO2 dis-

charge of new cars in Germany decreased by about 14%, from 154.0 to 132.5g CO2

/kilometer (European Environment Agency, 2017). Over the same interval, however,

overall emissions from road transportation in Germany increased by nearly 4%, from

approximately 156 to 162 million tons (Umweltbundesamt, 2016).

One explanation for these opposing trends is a rising travel demand. Between 2005

and 2014, the mileage of German drivers steadily increased from 875.7 to 935 billion

kilometers (Bundesministerium für Verkehr und digitale Infrastruktur, 2016). Various

factors have contributed to this increase, one being that the real per kilometer costs

of driving decreased due to improved fuel economy and a stagnation in the level of

the ecotax on fuel, which has been set at 0.65 cent per liter for petrol and 0.45 cents

per liter for diesel since 2003. Higher fuel taxes is therefore one of the debated policy

options to decrease emissions, as taxes directly confront motorists with the costs of

driving. Several studies by Frondel and colleagues (Frondel and Vance, 2009, 2014,

2017) using household data from Germany support this tact, estimating fuel price

elasticities for German drivers to be on the order of 60%. Other studies, however, have

found substantially lower responsiveness to the cost of driving, calling into question
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the effectiveness of fuel taxation as an instrument to reduce emissions (De Borger

et al., 2016; Gillingham et al., 2016; Goodwin et al., 2004; Ritter et al., 2016; Small and

Van Dender, 2007).

These discrepancies raise the question of what policy levers can be availed to dis-

courage automobile dependency. Drawing on data set stemming from 16 years of

individual travel data in Germany, the present paper addresses this issue by present-

ing results from two multinomial logit models, one addressing work-related tours

and the other non-work related tours. Both models consider two interrelated dimen-

sions of travel on the extensive margin: mode choice and tour complexity. Specifi-

cally, the models distinguish four distinct combinations of tour choices according to

whether the car is used and whether the tour is simple or complex, with simple tours

being those without intermediate stops. The model includes a rich array of explana-

tory variables, many of which, including fuel prices, the accessibility of public transit

and bike path density, have immediate relevance for policy, but have rarely been

parametrized using household data. In a second step, we move beyond the standard

focus on the magnitude and significance of the parameter estimates to consider their

implications for predicted outcomes. To this end, we employ a Monte Carlo simula-

tion technique proposed by King et al. (2000) to explore the predictions of the model

and the associated degrees of uncertainty.

Among our main results, we find significant effects of the built environment – mea-

sured by bike path density, urbanization, and proximity to public transit – in discour-

aging car use and increasing tour complexity. Fuel prices, by contrast, appear to have

little bearing on these discrete choices, notwithstanding the high fuel price elastic-

ities that have been estimated for German drivers (Keller and Vance, 2013; Frondel

and Vance, 2017). Taken together, these results suggest that the extension of transit

infrastructure and increased building density hold promise for discouraging car use.
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The paper is organized as follows. In Section 2 we describe the data set, derive

the dependent variable of our model, and introduce the control variables. Section 3

shortly reviews the multinomial logit model. In Section 4 we first show regression

results, followed by the prediction of outcome probabilities. Finally, Section 5 sum-

marizes and concludes.

2 Data

The data is drawn from the German Mobility Panel (MOP, 2015) and covers sixteen

years, spanning 1999 through 2014. Participating individuals are surveyed upwards

of three consecutive years for a period of one week. During this week, they fill out

a drivers’s logbook documenting their travel behavior, including each trip taken, its

purpose, mode, duration, and several other features. In addition, the survey collects

sociodemographic information on the individual and household. A total of 13,500

individuals are observed for an average of 16 tours over the three-year survey period,

yielding a total sample size of approximately 220,000 observations.

2.1 The dependent variable

Following Ben-Akiva and Bowman (1998) as well as Shiftan et al. (2003), who argue

that a tour-based approach is best suited for disaggregate travel demand modeling

when analyzing the influence of built environment, we define our dependent variable

with reference to home-based tours that occur over the five-day work week. While

many studies focus exclusively on work tours (De Palma and Rochat, 1999; Kingham

et al., 2001; Krygsman et al., 2007; Rodrı̀guez and Joo, 2004), we also analyze non-

work related travel, since it considerably contributes to traffic and hence, emissions

(Bhat, 1997). A tour is considered to be work related as soon as at least one trip of the
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tour includes the workplace. Hence, work related tours might incorporate several

non-work related stops. Conversely, we define non-work tours to include any stops

other than work. As work related tours are different from non-work related tours in

the sense that they are non-discretionary and repeatedly undertaken, we model these

tour types separately using two multinomial logit estimators.

Two dimensions are considered in our models. First, we distinguish the travel

mode between car and no car. The latter includes walking, cycling and all modes of

public transit, while the former incorporates all modes of private motorized travel,

including rides as a passenger. Second, we distinguish between simple and complex

tours. Following Strathman and Dueker (1990), we define a tour to be complex if it

consists of more than two trips. For example, a tour from home to work and back is

considered a simple tour. If the individual adds at least one intermediate stop, the

tour becomes complex. Conducting one complex tour instead of several simple ones,

i.e. engaging in trip chaining, is an alternative strategy to reduce car usage.

The two dimensions – mode and complexity – result in four distinct options whose

shares are presented in Table 1. Note that because we exclude individuals who do

not have access to a car as well as individuals who are not working, the presented

shares are not intended to be representative of German travel mode choices. Unsur-

prisingly, complex non-car tours are the least favored option in both cases. It has been

found in previous studies that the complexity of tours is negatively correlated with

the propensity to use non-car options, since stops would need to be in proximity of

each other (Hensher and Reyes, 2000; Krygsman et al., 2007; Strathman and Dueker,

1990).
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Table 1: Different tour options and their sample shares

Option Description Share (in %)

WCS Work + Car + Simple 34.8
WCC Work + Car + Complex 47.0
WNS Work + NoCar + Simple 11.8
WNC Work + NoCar + Complex 6.4

N 123,436

Option Description Share (in %)

NCS NonWork + Car + Simple 46.9
NCC NonWork + Car + Complex 25.6
NNS NonWork + NoCar + Simple 23.7
NNC NonWork + NoCar + Complex 3.8

N 94,488

2.2 The explanatory variables

In assembling the explanatory variables presented in Table 2, we augmented the MOP

with various external data sources to allow investigation of policy-relevant variables

like fuel prices and features of the built environment. Fuel prices are obtained from

the website of Aral, one of Germany’s largest gasoline retailers, which publishes nom-

inal fuel prices by month dating back to 1999. The nominal fuel prices are converted

into real values using a consumer price index from Germany’s Federal Ministry of

Statistics.

Three variables of built environment are used, one of which is derived from

a shapefile of bike paths in Germany gathered from OpenStreetMap.org (Open-

StreetMap, 2017). Using a Geographical Information System (GIS), we intersected

this layer with another shapefile of German counties from the year 2005, at which

time there were 439 counties having an average size of 814 square kilometers. The

resulting intersected shapefile allows us to calculate the total length of bike paths
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Table 2: Descriptive statistics of explanatory variables
Variable Explanation Mean Std.Dev.

female Dummy: 1 if respondent is female 0.526
age Age of respondent 44.98 10.18
fulltime Dummy: 1 if respondent works fulltime 0.656
numemployed Number of employed persons in household 1.73 0.59
kids09 Dummy: 1 if kids between 0 and 9 years 0.198

live in household
kids1017 Dummy: 1 if kids between 10 and 17 years 0.280

live in household
middle Dummy: 1 if middle income household 0.510

(i.e. 1,500 - 3,500 EUR per month)
wealthy Dummy: 1 if wealthy income household 0.423

(i.e. ¿ 3,500 EUR per month)
lackofcars Dummy: 1 if number of cars in household 0.368

is smaller than number of drivers
distancework Distance to work for respondent (in km) 13.03 17.86
rain Dummy: 1 if rain fell on day of travel 0.495
temperature Mean temperature on day of travel 10.59 4.11
petrol Real petrol price in Cents (monthly average) 134.30 14.64
minutes Minutes to walk to nearest bus, tram 5.45 4.62

or train station from respondent’s home
bikepathdens Bikepath density in respondent’s county 0.169 0.161
urbanization Share of urbanized area in respondent’s county 0.195 0.193
1999 Dummy: 1 if year=1999 0.065
2000 Dummy: 1 if year=2000 0.054
2001 Dummy: 1 if year=2001 0.072
2002 Dummy: 1 if year=2002 0.057
2003 Dummy: 1 if year=2003 0.068
2004 Dummy: 1 if year=2004 0.060
2005 Dummy: 1 if year=2005 0.060
2006 Dummy: 1 if year=2006 0.053
2007 Dummy: 1 if year=2007 0.053
2008 Dummy: 1 if year=2008 0.060
2009 Dummy: 1 if year=2009 0.051
2010 Dummy: 1 if year=2010 0.055
2011 Dummy: 1 if year=2011 0.055
2012 Dummy: 1 if year=2012 0.062
2013 Dummy: 1 if year=2013 0.086
2014 Dummy: 1 if year=2014 0.090

in each county. Dividing this by the total area yields a measure of bike path den-

sity. Bhat et al. (2009) find a positive effect of a higher bike path density on opting for

non-motorized travel alternatives, though not distinguishing between work and non-

work related activities. On the contrary, Kingham et al. (2001) as well as Rodrı̀guez
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and Joo (2004) do not detect a significant effect, ascribing their finding to long com-

mute distances precluding an influence of bike paths. However, these two studies

focused solely on work commute, leaving open the possibility that more bike paths

lead to a more frequent use of this mode for recreational, thus non-work related,

travel.

The second metric capturing the built environment measures the extent of urban-

ized area, which was derived in a similar manner using the Corine Land Cover satel-

lite imagery obtained from the website of the European Environmental Agency. The

imagery distinguishes 26 land cover classes in raster format at a resolution of 100 ×
100 meters, and is available for the years 2000 and 2006. We added up the area clas-

sified as artificial surfaces (e.g. urban fabric, industrial and transport units) within

each county to obtain the square kilometers of urbanized area, and divided this by

the total size of the county to obtain the urban share. We assigned the 2000 value

of urban area to the years 1999 through 2005, and the 2006 value to the subsequent

years. Previous studies have found that a higher degree of urbanization fosters tour

complexity (Scheiner and Holz-Rau, 2017; Strathman and Dueker, 1990) as well as

non-motorized travel (Frank et al., 2008; Zhang, 2004).

The remaining variable measuring the built environment is directly recorded in

the MOP and measures the time in minutes to walk from a respondent’s home to

the nearest bus, tram or train station. We expect a closer proximity to decrease the

probability of those options that include the car as a travel mode.

For the variables of the built environment we might face endogeneity issues, as in-

dividuals with less inclination to drive may select into regions with a higher degree

of urbanization and better public transit. While endogeneity cannot be completely

ruled out, we follow the argumentation of Naess (2014) (p. 75), who notes that this

residential self-selection is “unlikely to represent any great source of error ... if tradi-
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tional demographic and socioeconomic variables have already been accounted for.”

Consequently, a suite of sociodemographic control variables is incorporated into our

analysis. These include the individual’s age, gender, and employment status as well

as the proximity of the workplace. They also comprise household level dummy vari-

ables indicating the presence of (young) children, the income level, and whether the

number of licensed drivers is greater than the number of cars. These variables have

been shown to significantly influence travel behavior in previous studies (Bhat, 1997;

Bhat et al., 2009; Hensher and Reyes, 2000; Kuhnimhof et al., 2006; Scheiner and Holz-

Rau, 2017) . Furthermore, we include a measure of the mean temperature on the day

of travel and a dummy indicating whether it rained, as De Palma and Rochat (1999)

found adverse weather conditions to lead to more car usage. The specification is

completed by year dummies to account for changes in travel behavior over time.

3 Methodology

As our dependent variable is nominal without natural ordering, we make use of the

multinomial logit model (MNLM). This section shortly reviews this approach.1

Let J = {1, ..., 4} denote the set of tour options individuals can choose from. As-

suming a standard random utility model (RUM), the utility for individual i from op-

tion j ∈ J is given by:

Uij = Vij + εij. (1)

Here, εij is the unobserved error term and Vij is the observed indirect utility, for which

1For more details see Long & Freese (2006) for estimation implementation. Furthermore, note that
using a nested logit approach is precluded due to a lack of option specific variables such as travel cost
or time.
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we assume a linear functional form depending on observed characteristics xi:

Vij = βT
j xi. (2)

xi comprises fuel price, the variables measuring built environment, sociodemo-

graphic and household characteristics, and year dummies. β j are the coefficients to

be estimated with superscript T denoting the transposition of a vector. As individual

i chooses option j if its utility is highest from this option, the probability of choosing

option j can be written as:

Pij = Pr(Uij > Uik) = Pr(εik − εij < Vij − Vik), ∀k = 1, ..., 4, k �= j (3)

If we further assume that the differences in the error terms (εik − εij) follow a logistic

distribution, we derive the multinomial logit model by rewriting equation 3 as:

Pij =
eVij

∑4
k=1 eVik

=
eβT

j xi

∑4
k=1 eβT

k xi
. (4)

From equation 4 it directly follows that the odds between two options just depend on

the parameters of these two options:

Pij

Pik
= e(β j−βk)

T xi , (5)

which poses a potential shortcoming of the model, known as the independence of

irrelevant alternatives (IIA) assumption. That is, the choice between two alternative

outcomes is unaffected by what other choices are available. While the IIA assumption

is in some contexts restrictive, particularly when relevant options have been omitted

from the definition of the choice set, there are two reasons why it is deemed to be

relatively innocuous for the current application. First, as advocated by McFadden
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(1973) and reiterated by Long and Freese (2006), the multinomal logit model is ap-

propriate when the choice categories are clearly distinct and not substitutes for one

another, a condition that can reasonably be said to apply to the choice between our

different travel options. Second, verification is provided by a Hausman testas well as

a Small-Hsiao test, both support the IIA assumption for our data.

To facilitate the interpretation of selected results from the model, the predicted

probabilities and associated 95% confidence intervals for particular variables of in-

terest are plotted, using a statistical simulation method described in King et al. (2000)

and Tomz et al. (2003). Recognizing that the parameter estimates from a maximum

likelihood model are asymptotically normal, the method uses a sampling procedure

akin to Monte Carlo simulation in which a large number of values – say 1,000 – of

each estimated parameter are drawn from a multivariate normal distribution. Taking

the vector of coefficient estimates from the model as the mean of the normal distri-

bution and the variance-covariance matrix as the variance, the simulated parameter

estimates can be used to calculate predicted values and the associated degree of un-

certainty. In generating the predictions, all explanatory variables except the one of

interest are held constant at their sample mean while the value of the variable under

scrutiny is varied.

4 Results

4.1 Estimates

Table 3 illustrates the effects of our variables of interest on travel behavior for work

related tours while Table 4 presents key results for non-work related tours. Results

for the further controls can be found in Tables X and Y in the Appendix. Note that

during a given day an individual might conduct several tours, which leads to non-
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independent observations. To account for this, we cluster standard errors on the per-

son level.

To ease interpretation, the discussion focuses on odds ratios for the different com-

binations of options. Broadly speaking, an odds ratio bigger than one indicates a

preference for the first of the compared options if the independent variable under

scrutiny increases. Correspondingly, an odds ratio smaller than one indicates a pref-

erence for the second option.

Table 3: Option odds from MNLM for work related tours

WCS/WCC WCS/WNS WCS/WNC WCC/WNS WCC/WNC WNS/WNC

minutes 1.007 1.026** 1.020* 1.019 1.013 0.994
bikepathdens 0.874 0.851** 0.548** 0.974 0.627** 0.644**
urbanization 0.621** 0.457** 0.095** 0.736 0.154** 0.209**
petrol 1.003 0.995 0.983 0.992 0.980 0.988

N 117,038
WCS=Work+Car+Simple; WCC=Work+Car+Complex; WNS=Work+NoCar+Simple; WNC=Work+NoCar+Complex.

** and * denote statistical significance at the 1 % and 5 % level, respectively.
Further controls as well as year dummies are included, though not depicted.

Results reveal that increasing remoteness of the nearest public transit station, mea-

sured by minutes, increases the odds that an individual conducts simple car tours

for work-related travel. The magnitude of the statistically significant estimates for

minutes, however, are relatively modest. For example, each minute increase in the

walking distance to the public transit is seen to increase the odds of using the car for

a simple tour relative to some other mode by just 2.6%. A similar magnitude of 2%

is seen for the comparison of a simple car tour relative to a complex non-car tour.

Thus, a better connection of the respondent’s place of residence to the public transit

network is associated with a somewhat higher propensity to refrain from car usage

for work related tours.

The results further reveal a strong tendency towards non-car travel given a higher

density of bike paths in the respondent’s county of residence. Both simple as well as
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complex tours without the car are preferred over simple car tours. Moreover, there

seems to be a preference of complex tours conducted with non-car modes in areas

with a high density of bike paths. This would suggest that if bike paths were ex-

tended, more individuals would refrain from car usage and chain more trips together

on their work commute. We also find strong effects of the degree of urbanization: Re-

spondents who live in urban areas are less likely to use their car for work-related

tours. Additionally, those individuals more frequently combine trips to complex

tours, especially when traveling without car, which might be explained by a higher

density of places of interest in urban areas.

Last, we see no evidence that the fuel price has an effect on the discrete travel

choices pertaining to work-related tours. We neither find a tendency to refrain from

car usage given high fuel prices, nor a tendency to chain trips together. One expla-

nation for this result is the model’s focus on work travel, which is typically non-

discretionary and hence less responsive to changes in fuel costs.

Table 4: Option odds from MNLM for non-work related tours
NCS/NCC NCS/NNS NCS/NNC NCC/NNS NCC/NNC NNS/NNC

minutes 1.007 1.027** 1.056** 1.019* 1.048** 1.028**
bikepathdens 0.933 0.923** 0.549** 0.989 0.588** 0.594**
urbanization 0.620** 0.391** 0.175** 0.631* 0.282** 0.447**
petrol 0.992 0.996** 1.000 1.004 1.008 1.004

N 76,570
NCS=NonWork+Car+Simple; NCC=NonWork+Car+Complex; NNS=NonWork+NoCar+Simple; NNC=NonWork+NoCar+Complex.

** and * denote statistical significance at the 1 % and 5 % level, respectively.
Further controls as well as year dummies are included, though not depicted.

Table 4 depicts the odds ratios for non-work related tours. Overall, the results

portray a similar pattern as that seen for work related travel. The walking distance to

the nearest transit stop, bike path density, and urban residency all encourage non-car

modes of transportation. In the case of the latter two variables, there is also evidence

for increased complexity of travel. One discrepancy relative to work tours is seen
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for the petrol price, which now registers a significant effect on the odds of car use

for simple tours relative to other modes. Nevertheless, the magnitude of the effect is

relatively small: each cent increase in the petrol price reduces the odds of using the

car by roughly 0.04%.

4.2 Predicted Probabilities

As the proliferation of estimates produced by the MNLM complicates the interpre-

tation of the results, we illustrate the impact of our key variables of interest in this

section by showing predicted probabilities for each travel option using the method of

King et al. (2000).

Results for work related tours are depicted in Figure 1. We focus on the three vari-

ables capturing the built environment. Notwithstanding the statistically significant

odds ratios estimated for these variables, their bearing on the predicted probabilities

is in many cases marginal. This is especially evident for the case of bike path density,

where the curves corresponding to each choice combination are seen to be relatively

flat.

Across the graphs, the highest probability, at about 0.47, is seen for the option com-

bining car travel with complex tours. Again, however, the flat trajectory of the curve

suggests that this is also the option that is least responsive to changes in the explana-

tory variables. The next most probable option is given by the combination of car use

with simple tours. The probability of this option is seen to increase with increasing

minutes to the nearest transit stop and to decrease with a higher share of urbanized

area in the county of residence.

Non-car modes for work commute are the two least probable options. For complex

tours, the probability increases markedly with a higher share of urbanized area, more

than doubling from a low of about 0.05 to a high of 0.13 when the urban share reaches
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Figure 1: Predicted probabilities for work related tour options depending on variables
of the built environment
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Figure 2: Predicted probabilities for non-work related tour options depending on
variables of the built environment
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0.8. Likewise, simple non-car tours respond strongly to public transit proximity, being

more likely when the station is nearby.

Figure 2 depicts predicted probabilities for non-work related tours. The most prob-

able option is now the one combining car travel with simple tours, indicating that trip

chaining is less likely when work stops are not part of the tour. This option appears

relatively responsive to changes in walking minutes to public transit and the share of

urban area, increasing with the former and decreasing with the latter. Likewise, non-

car simple tours are responsive to these two variables, in this case decreasing with the

former and increasing with the latter. It is also notable that the probability of non-car

simple tours, which ranges between nearly 0.2 and 0.3, is roughly twice that of the

corresponding probability for work-related travel.

Regarding bike path density, we again observe discrepancies between the statisti-

cally significant regression results and a relatively flat pattern of the predicted proba-

bilities (middle chart). Taken together, we conclude that an increase in bike paths has

little bearing on travel probabilities relating to work and non-work purposes.

5 Conclusion

Using a large data set stemming from 16 years of a household travel diary panel,

this paper has analyzed the roles of the fuel price and the built environment on work

and non-work related tours. To this end, we first estimated a multinomial logit model

that considered mode and the complexity of travel, two decisions that interrelate with

each other and thus should be scrutinized jointly (Bhat, 1997; Feng et al., 2013; Krygs-

man et al., 2007). In a second step we estimated outcome probabilities for different

levels of our policy levers.

Several findings emerge. First, for work related tours, we find no evidence for an

effect of fuel prices on the discrete choice pertaining to mode and tour complexity.

19



This result may be partially explained by the fact that such tours are for the most

part non-discretionary and hence less likely to be subject to changes in fuel costs. For

non-work travel, we find slight evidence for an effect of the fuel price, decreasing the

odds that the car is used for simple tours. Overall there seems to be limited response

of individuals to fuel price changes with respect to discrete work-related travel de-

cisions. This may owe to the possibility that individuals react via investing in more

fuel efficient vehicles if fuel prices continue to increase (Bhat et al., 2009; Feng et al.,

2013; Goodwin et al., 2004).

Regarding features of the built environment, we find a statistically significant

but modest effect of a higher bike path density in the respondent’s county. Al-

though regression results suggest a tendency towards non-car travel with more bike

paths being available, the predicted probabilities reveal little decrease in car usage.

Thus, making bike use more practicable seems to foster only a muted effect on non-

motorized travel. This might be ascribed to long commute distances or inconve-

niences in e.g. shopping with bike.

By contrast, we observe a significant impact of public transit proximity on dis-

couraging car use for simple tours. This effect is more pronounced for non-work

related travel than for work commute. In line with previous studies, we conclude

that extending public transit is the most promising approach to discourage car use

(De Palma and Rochat, 1999; Frank et al., 2008; Gärling and Schuitema, 2007; King-

ham et al., 2001). Results from Weis et al. (2010) moreover suggest that price elastic-

ities for public transit are higher than for car use, especially for leisure trips. Conse-

quently, subsidizing public transit should lead to stronger reactions than increasing

fuel prices. If public transit can compete better with car usage in terms of comfort

and price, individuals might switch.

However, certain barriers remain. For commuters, the distance to work still is an
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important obstacle for refraining from car usage (Gorham et al., 2002; Kingham et al.,

2001). Furthermore, for some users driving their own car is still a matter of social

status, while there is a stigma associated with the use of public transit (Aarts and

Dijksterhuis, 2000; Gärling and Schuitema, 2007; Gorham et al., 2002; Jensen, 1999).

Nevertheless, the evidence in this and other studies (Bamberg et al., 2003; Kingham

et al., 2001) shows that individuals react to infrastructure improvements making pub-

lic transit more convenient. In particular, young adults, who have not built up strong

travel habits yet, have been found to be willing to change to other modes of transport

than car (Kuhnimhof et al., 2012).

Future research should address the impact of neighborhood compacts as well as

of information and feedback about the environmental friendliness of travel habits as

these have been found to change travel behavior in other studies (Rose and Ampt,

2001; Taylor and Ampt, 2003).
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Appendix

Table A1: Option odds from MNLM for work related tours: Full Model

WCS/WCC WCS/WNS WCS/WNC WCC/WNS WCC/WNC WNS/WNC

minutes 1.007 1.026** 1.020* 1.019 1.013 0.994
bikepathdens 0.874 0.851** 0.548** 0.974 0.627** 0.644**
urbanization 0.621** 0.457** 0.095** 0.736 0.154** 0.209**
petrol 1.003 0.995 0.983 0.992 0.980 0.988
female 0.744** 0.820 0.549** 1.102 0.738** 0.670
age 1.008** 0.997 1.013 0.989 1.005 1.016
fulltime 0.907 1.189** 0.859 1.311** 0.947 0.722**
numemployed 1.173** 1.205* 1.464** 1.028 1.248** 1.215*
kids09 0.735** 0.913 0.732* 1.242* 0.997 0.803
kids1017 1.139* 1.112 1.378** 0.976 1.210 1.239
middle 0.778** 1.019 0.949 1.310* 1.220 0.931
wealthy 0.592** 0.983 0.637** 1.661** 1.075 0.647*
lackofcars 1.189** 0.347** 0.358** 0.292** 0.301** 1.031
distancework 1.007** 1.021 1.058 1.013 1.050 1.036
rain 0.989 0.984 1.072 0.995 1.085 1.090
temperature 0.998 1.006 1.011 1.008 1.012 1.004

N 117,038

WCS=Work+Car+Simple; WCC=Work+Car+Complex; WNS=Work+NoCar+Simple; WNC=Work+NoCar+Complex.
** and * denote statistical significance at the 1 % and 5 % level, respectively.
Year dummies are included, though not depicted.
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Table A2: Option odds from MNLM for non-work related tours: Full Model
NCS/NCC NCS/NNS NCS/NNC NCC/NNS NCC/NNC NNS/NNC

minutes 1.007 1.027** 1.056** 1.019* 1.048** 1.028**
bikepathdens 0.933 0.923** 0.549** 0.989 0.588** 0.594**
urbanization 0.620** 0.391** 0.175** 0.631* 0.282** 0.447**
petrol 0.992 0.996** 1.000 1.004 1.008 1.004
female 0.890* 0.902 0.620** 1.013 0.696** 0.687
age 1.016** 0.998 1.016 0.982 1.000 1.018
fulltime 1.301** 1.101** 1.330* 0.847** 1.022 1.208
numemployed 1.097* 1.090 1.077** 0.994 0.982 0.989
kids09 0.800** 0.797** 0.597** 0.996 0.746 0.749*
kids1017 1.269** 1.376** 1.761** 1.084 1.388** 1.280*
middle 1.087 1.064 1.592** 0.978 1.464* 1.497**
wealthy 0.956 1.281* 1.405** 1.341* 1.470* 1.096
lackofcars 1.051 0.741** 0.568** 0.705** 0.540** 0.766
distancework 0.999 1.002 1.004 1.003 1.005 1.002
rain 0.938 1.078 1.087 1.149 1.159 1.009
temperature 1.002 0.994 1.000 0.992 0.997 1.005

N 76,570

NCS=NonWork+Car+Simple; NCC=NonWork+Car+Complex; NNS=NonWork+NoCar+Simple; NNC=NonWork+NoCar+Complex.
** and * denote statistical significance at the 1 % and 5 % level, respectively.
Year dummies are included, though not depicted.
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