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Does Coaltion Size Matter?:

By Samuel Rutz* and Thomas Borek**

ABSTRACT: This paper reconsiders a widely used game of coalition formation
in international environmental negotiations. Due to the mathematical problems
of giving a full characterization of the solution, up to now most of the work on
this subject rested on numerical simulations to derive results. In this paper we
show for a general class of payoff functions that when the game is approximated
by assuming a continuum of players, a solution can be found. Using this result
as a "benchmark solution”, we further show that gains from cooperation resulting
in simulations are due to an ”integer effect”, i.e. coalition size being treated as a
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1 Introduction

In recent years the problem of transboundary pollution has attracted the attention
of many environmental economists. Transboundary pollution refers to pollution
which is released in one country but causes damage in at least one other country.
Such damages can affect a limited number of countries, like the acid rain problem
or the pollution of the Rhine. They can however also occur on a global scale, as in
the case of the depletion of the ozone layer or the problem of climate change due
to COg-emissions.

The reduction of transboundary pollution is inherently a public good. Due to
the lack of a supranational authority however, transboundary pollution problems
cannot be solved with common strategies for public good provision. Command
and control regulation, Pigou taxes or emission certificates for example cannot be
enforced between sovereign countries. The reduction of transboundary pollution
is therefore subject to diplomatic negotiations, which can only be successful if
resulting agreements are profitable for all affected parties.

Game theory provides a promising framework to analyze negotiations between
sovereign states on transboundary environmental problems. As a result the past
few years have seen a growing game-theoretic literature (cooperative and non-
cooperative) on transboundary pollution (for an overview see e.g. F. Missfeldt
[14]).

A lot of this previous work focuses on static, non-cooperative games to reduce
COg9-emissions. Such games are usually modeled as two-stage games. At the first
stage, countries decide non-cooperatively whether or not to sign an agreement
given a burden-sharing rule which is adopted by the signatory countries. At the
second stage, both signatory and non-signatory countries set their abatement lev-
els. Stable coalitions of signatory countries in such games have been determined
for the case of homogeneous countries by Barrett [2,3], Carraro and Siniscalco
[9] and Hoel [13] and by Barrett [6] and Botteon and Carraro [8] for the case of
heterogeneous countries.

Two important results have emerged from this literature. First, there are
stable, but only partial coalitions. Therefore, in the equilibrium of the game
there are two groups of countries, signatories and non-signatories. Second, the

coalition generally involves only a very small fraction of the negotiating countries



and efficiency gains are usually modest.

These results have however mainly been derived considering numerical sim-
ulations and can therefore not claim general validity. In this paper we provide
an analytical solution to a general class of such games for the case of identical

2 We first derive a ”benchmark

countries and non-orthogonal reaction functions.
solution” by approximating these games with a continuum of players and show
that the establishment of a profitable coalition then is impossible, i.e. the equilib-
rium of the approximated games is characterized by no gains from cooperation and
an abatement level equal to the situation where there is no cooperation between
countries at all. Using this ”benchmark solution”, it is then possible to show, that
gains from cooperation resulting in numerical simulations are solely the result of
an “integer effect”, i.e. coalition size being a discrete variable. It is therefore not
surprising that these gains are typically extremely small and that the overall effect
on the environment, compared to a situation without cooperation, is near to zero
in most simulations.

These results have several implications. First, in the framework of these models
the size of the stable coalition is irrelevant to gains from cooperation since stability,
independent of the specification of the payoff function, is always bought at the price
of giving away these gains. Further, since only minor gains from cooperation can
be realized, there hardly exist possibilities to increase coalition size and reduce
environmental pollution, as e.g. Carraro and Siniscalco [9] suggest.

Second, since in the equilibrium of these games no country has an incentive to
commit to an improvement of environmental quality, it seems doubtful whether
the model is an appropriate theoretical foundation for further research as several
authors suggest. Bohm [7] and Hoel [13] e.g. evaluate policy measures available
to a coalition of cooperating countries trying to reduce aggregate demand and/or
supply for fossil fuels. Escapa and Gutiérrez [12] assume in their work that an
agreement involving all the affected parties has been reached and analyze different

burden-sharing rules. Although it seems per se reasonable to assume that there

2Non-orthogonal reaction functions refer to the scenario where non-signatory countries
will increase their emissions whenever the signatory countries reduce their own, while in
the scenario of orthogonal reaction functions there is no such leakage, i.e. the non-signatory
countries do not offset the abatement efforts of the signatory countries by increasing their
polluting activities.



are groups of countries willing to cooperate and improve environmental quality,
such an assumption cannot theoretically be founded with the above models.

The structure of the paper is as follows: In part 2 we describe the standard
game, which will be analyzed in two versions (a sequential and a simultaneous one)
in the following sections. In part 3 we first focus on international environmental
negotiations modeled as a sequential game. We shortly reconsider the standard
solution of this game, as can be found in the literature and summarize results
from numerical simulations. Then, we derive the ”benchmark solution” when the
game is approximated by a continuum of players and draw conclusions. In part 4
we focus on international environmental negotiations modeled as a simultaneous
game. Again, a "benchmark solution” for the continuous version of this game
will be presented. In part 5 we analyze the above mentioned ”integer effect” and
show that the transition from the continuous to the discrete version of the game
is of minor importance to efficiency gains. Finally, some concluding remarks and

propositions for further research are contained in part 6.

2 The Standard Model

The complete information two-stage game of international environmental negoti-
ations we analyze in the next two sections has the following structure. To keep

matters simple, we assume that all countries are identical.?

Stage 1:

There are N identical countries, which decide simultaneously whether

or not to sign an agreement.4

3In the following index s stands for signatory countries and index n for non-signatory
countries.

4In the case of heterogeneous countries one needs to specify a burden-sharing rule to
be adopted by the signatory countries. Such a burden-sharing rule defines how costs of
abatement are split between signatory countries and can be any of the rules derived from
cooperative game theory, e.g. the Nash bargaining solution or the Shapley value. In the
case of identical countries however, any of the mentioned rules leads to an equal split of
the cost of abatement, i.e. the burden-sharing rule does not matter.



Stage 2:

The k signatory countries choose their aggregate abatement level (s =
Zle gs; , where gs; > 0 denotes the individual abatement level of

signatory country i, by maximizing their collective net benefits.’

The (N — k) non-signatory countries simultaneously choose their in-
dividual abatement level gn; = 0 to maximize their individual net
benefit.

The net benefit to non-signatory country j is then given by the payoff function
I, = B(Q) — C(gn,), where Q = Qs + Qn and Qp = >_7L, | gn,, while the
net benefit to a signatory country can be expressed as II;, = B(Q) — C(gs;)-
Inherent to the transboundary pollution problem, the benefits of abatement B (-)
typically depend not only on the individual adopted abatement level, but on the
abatement undertaken by all countries. The costs of abatement C (-), however, are
always incurred by the individual country. This specification of the payoff function
mirrors the public good character of transboundary pollution: a country cannot
be excluded from the benefits of abatement even if it undertakes no abatement
effort at all and hence incurs no abatement costs.

Further, two additional assumptions are worth mentioning:

1. The cost functions are independent, in particular we do not account for

economies of scale in abatement technology.

2. Countries are proposed to sign a single agreement, i.e. countries not signing

the initial agreement cannot negotiate a different agreement.

Following the literature, we assume that B (-) and C' (-) are twice differentiable
with Bg > 0, Bgg < 0, C4 > 0, Cy4q > 0 and hence II;; < 0, where a single
subscript stands for the first and a double subscript stands for the second deriva-
tive. These assumptions are necessary to ensure the existence of the solution of

the optimization problem at the second stage of the game.

9This implies that the chosen abatement level of the signatory countries meets the
“Samuelson-condition” for the provision of public goods.



In what follows, we will analyze two versions of the above described game.
In the sequential version of the game signatory countries choose their abatement
level first. Observing this, the non-signatory countries then choose their own
abatement level. The structure of the game implies a “first-mover” advantage
for the signatory countries, as they know that the non-signatory countries will
condition their decision on the chosen abatement level of the coalition. In the
simultaneous version of the game signatory and non-signatory countries choose

abatement levels at the same time.

3 International Environmental Negotiations

Modeled as a Sequential Game

3.1 The Standard Solution

In this section we shortly discuss the solution to the sequential version of the above
described game, as presented in Barrett [4]. The game is solved by backward
induction, i.e. we start by looking at the optimal choice of the abatement level of
the non-signatory countries at the second stage of the game.

When the non-signatory countries get to move at the second stage, each of
them faces the following optimization problem, where Q—; = ) —gyn; denotes every
possible aggregate abatement level all countries except non-signatory country j can

choose:

(1) max B(ij + an) - C(an)'

qnj

We denote the solution of this optimization problem by R, (k,Q_;), the re-
action function of non-signatory country j. Note that the best reply of country
j is also a function of the number of signatory countries k. The solution then re-
quires that in the optimum the marginal benefits from abatement should equal the

marginal costs of abatement, i.e.

(2) BQ (Q—j + Rﬂj (kaQ—jD = Cq (R”J (kaQ—j))'



Given the assumption that all countries are identical, we know however that
in the equilibrium of the subgame all non-signatory countries choose the same
individual abatement level g,,. The aggregate abatement level chosen by the non-
signatory countries can then be expressed as Ry, (k,Qs) = (N — k) Ry, (k, Q_;).

The signatory countries maximize their collective net benefits, anticipating the
aggregate abatement level R, (k,Qs) of the non-signatory countries. Maximizing
the collective net benefits implies that a signatory country not only takes into
account the individual benefit arising from aggregate abatement, but the benefits
arising to all the £ members of the coalition. The costs of abatement are however
still incurred by the individual country. The optimization problem of signatory

country ¢ then amounts to

k k
(3) (k) = argmax kB (;1 oo Rn<k,czs>) -3 Cla)

qs;

Again, given the assumption of identical countries, in the equilibrium of the
subgame all signatory countries will choose the same individual abatement level

and the optimization problem of signatory country ¢ can be simplified to

(4) L () = amgmas KB (@ + g5, + Rk, Q1)) = Clan)

where Qs_, = (k—1)qgs, denotes the aggregate abatement level of all signatory
countries except country i. Note that this formulation of the optimization problem
captures the above mentioned “first-mover” advantage. Since the signatory coun-
tries know that the non-signatory countries condition their decision on the chosen
abatement level ()5, this reaction enters the optimization problem.

The solution of the optimization problem for signatory country ¢ then requires
that it sets an abatement level ¢, such that it does not wish to revise its choice
after observing the actual chosen abatement level of the non-signatory countries,

1.e.

(5)  kBq (Qoy (k) +a2,(k) + Ralk, Q) (1+ 2LE20) =, (g2, (k).

Exploiting the homogeneity of the countries once more and expressing the ag-
gregate abatement level as @ = kqs+ (N —k)gy, the equilibrium conditions (2) and

(5) substantially simplify. Hence, for a given number of signatory countries k, we



can now state the equilibrium conditions, which have to be satisfied simultaneously

at the second stage of the game as follows:

(22) B (kg (k) + (N = K)a;(k)) = Cy (q3(k))
(52)  kBq (kai(k) + (N = k)gz(k) (14 (N = k)290) = C, (g2 (k).

A subgame perfect equilibrium of this two-stage game further requires that all
decisions made at the first stage (to join or not to join the coalition) are mutual
best responses for all countries. This equilibrium condition is usually termed as
the 7stability condition”. A coalition k is said to be ”stable” if the following two
conditions are met: First, there is no incentive for a signatory country to leave the
coalition, i.e. no signatory country can increase its payoff by leaving the coalition.
Second, there is no incentive for a non-signatory country to join the coalition,
i.e. a non-signatory country cannot increase its payoff by joining the coalition.’
Formally these two conditions can be expressed as follows, where k* stands for the

size of the stable coalition:

(6)  TL(k*) > I, (k* — 1) and T, (k*) > IL(k* + 1).

3.2 Results from Numerical Simulations

Due to the fact that it is usually not possible to solve Eq. (2a) and (5a) analytically
for ¢ (k) and g (k), an explicit characterization of the solution seems impossible.”
Therefore, solutions are typically derived by numerical simulations.® Two impor-
tant results emerging from these simulations are emphasized in the literature (see

e.g. Carraro and Siniscalco [10]):

1. In general there exist stable, but only partial coalitions. Therefore, the
equilibrium is not characterized by “no cooperation”, but there are two

groups of countries, signatory and non-signatory countries.

This concept was developed for the analysis of cartels by d’Aspremont et al. [1]. Some
authors refer to the first part of the stability condition as ”internal stability” and to the
second part as ”external stability”.

"Barrett [3,4] derives explicit solutions for a few specifications of the payoff function.

SFor simulations with identical countries see e.g. Barrett [3], simulations with asym-
metric countries can be found in Barrett [6] or Botteon and Carraro [8].

8



2. Stable coalitions generally involve only a very small fraction of the negoti-
ating countries, and gains from cooperation (in terms of social welfare and

environment quality) are usually small.

The small coalition size found in most of the simulations is seen as a particu-
larly unsatisfying result. Two ways to deal with this problem have emerged in the
literature. The first way is to alter the structure of the game by means of appropri-
ate policy measures, like e.g. issue linkage or trade sanctions. In this paper we will
however not pursue this strand of research any further.” The second way is to alter
the assumptions about the cost and benefit functions. As e.g. Barrett [3] shows
in his simulations, for certain specific functional forms of the payoff function large
coalitions can exist. But even in these cases, the resulting gains from cooperation,
again in terms of social welfare and environmental quality, are very small. Our
following analysis shows that this is no surprise, as gains from cooperation in the

above game are merely the result of an ”integer effect”.

3.3 The ”Benchmark Solution”

As we have explained above, due to the resulting mathematical problems to solve
equilibrium conditions explicitly for the optimal abatement levels and the size
of the stable coalition, most results in the literature are derived by numerical
simulations. Such results can however not claim general validity and might be
sensitive to the specification of the payoff function and the calibration of the model.
To understand the underlying logic of these games more deeply, it is therefore
desirable to derive a more general solution. In what follows, we will present such a
solution for a general class of payoff functions, having the properties introduced in
section 2. In order to do so, we approximate the game in a first step by assuming
a continuum of players in the range (0, N], which then implies that coalition size k
can take any value in this range. The structure of the game is otherwise maintained
as described above, i.e. the approximated game satisfies all the assumptions of the

discrete game except that players are treated as a continuum. The solution of this

9For the subject of issue linkage see e.g. Cesar and De Zeeuw [11]. The strategy of
trade sanction is e.g. discussed in Barrett [5].



slightly modified version of the game will proof as a helpful benchmark to derive
general results for the discrete version of the game.

The crucial step that allows us to solve this modified game is the resulting
simplification of the stability condition (6), when coalition size k is treated as a
continuous variable. The first part of Eq. (6) then simplifies to II5(k*) > IL,,(k*)
and the second part to II,(k*) > II5(k*). This together implies IT;(k*) = IL,(k*),
i.e. in a stable coalition k* the payoffs of signatory and non-signatory countries
must be equal.

A proposition about the existence and uniqueness of the solution of the mod-
ified game is considered in the following. We first show that the (simplified) sta-
bility condition requires that all countries set the same abatement level. Then
we show that the only subgame perfect equilibrium is for each country to set the
non-cooperative abatement level ¢,,., i.e. the same abatement level which results
in a situation without cooperation between countries. It follows then that in the
resulting equilibrium the effect on the environmental quality is zero, i.e. aggregate
payoff and abatement are the same as in a non-cooperative situation. This result
does however not imply that no coalition of signatory countries will be formed.
Rather, the equilibrium is characterized by a stable coalition involving k countries
setting the non-cooperative abatement level g,.. We shall denote such a coalition

as ko.

Proposition 1 For the approximated game, there exists a unique subgame per-
fect Nash equilibrium in pure strategies. In this equilibrium there are mo gains
from cooperation. Although there are no gains from cooperation in the resulting

equilibrium, there exists a stable coalition involving kg signatory countries.

Proof. A subgame perfect equilibrium requires at the first stage of the game

that IT;(k*) = II,,(k*). This condition can as well be written as:

(1) B(Q"(k) = C(g5 (k") = B(Q" (k")) = C (g5 (k).

Due to the homogeneity of the countries, benefits from abatement for sig-
natory and non-signatory countries will always be equal. Therefore their costs

must be equal in equilibrium. Since we assumed monotonicity of the cost function

10



(Cyq > 0) it follows immediately that in any equilibrium of the approximated game
q: (k*) = q%(k*) must hold, i.e. all countries must set the same abatement level in
equilibrium.

In what follows, we show that there cannot be an equilibrium in which all
countries set the same abatement level and this abatement level is not the non-
cooperative abatement level qn.. For this purpose we start by looking at the
optimal choice of the abatement level of non-signatory country j. These decisions
are governed by the reaction function R, (k,Q ;). Although it is not possible to
derive an explicit expression for R, (k,Q_;), it is easy to see that non-signatory
country j conditions its choice of the abatement level on @)_;, the aggregate abate-
ment level of all other countries except country j. Further it is possible to determine
the slope of the reaction function. Totally differentiating and rearranging Eq. (2)
yields

(8) ORn; (k,Q—;) Bag(Q(K))

00— 7 Cyq(an;(k))—Bqq(Q(k)) <0.

Since Bpg < 0 and Cyy > 0 the slope of the reaction function is strictly
negative, i.e. when the aggregate abatement level of all other countries except
country j increases, non-signatory country j decreases its abatement level and
vice versa.

Noting that the non-cooperative abatement level is defined as gn. = Ry, (k,
Qne_;), where Que_; = (N — 1)@ne, it is now straight forward to show that the
only subgame perfect equilibrium of the game is ¢ (k*) = ¢X(k*) = gne-

Assume:

1. Q—j = (N —1)gne: By definition it is a best response for country j to
set the non-cooperative abatement level g, and
hence g5(k*) = g:(k*) = due.

2. Q_; > (N —1)gne: Due to the negative slope of the reaction function,
it is a best response for country j to set ¢; > gne
and hence ¢ (k*) # qX (k™).

3. Q—j < (N —1)gne: Due to the negative slope of the reaction function,
it is a best response for country j to set q; > gne
and hence ¢ (k*) # ¢*(k*).

11



The remaining issue is to determine the size of the stable coalition. This
can simply be done by deriving an explicit expression for kg, the stable coalition
associated with a situation where there are no gains from cooperation.

Totally differentiating and rearranging Eq. (2a), the equilibrium condition for
the non-signatory countries at the second stage of the game, yields an explicit
expression for the slope of the reaction function g, (k, Q%):

(9) Oqn (k,Q%) _ Bgo(Q* (k)
9Qs Caq(47 (k)= (N—k)Boe(Q*(K))*

Substituting Eq. (2a) and (9) into Eq. (5a), the equilibrium condition for
the signatory countries at the second stage, rearranging terms and evaluating the

resulting expression at k* = kg yields

_ Bgg(Qne) B
(10) ko (1+ (N = W ompat e—a ) = 1

Solving (10) for kg then yields:

_ Cqq(gne)=NBgg(Qnc)
(11) ko - qu(qnc)_BQQ(QnC) ’

Since Bgg < 0 and Cyq > 0, it follows immediately that kg > 0. Simple
rearrangements of (11) show that kg < N. m

The intuition behind the first part of the proposition can be illustrated in the
(qn;,Q—j)-space as depicted in figure 1. The ray from the origin represents the
equilibrium condition of the first stage of the game. Only on this ray the chosen
abatement levels of all countries are equal: @ ;(k*) = (N —1)g;, (k*). Further,
the reaction function of non-signatory country j, Ry, (k,Q—;), is depicted in figure

1. As we showed above, the slope of R, (k,Q ;) is negative.

insert figure 1 here

Now assume that all the other countries except non-signatory country 5 choose
an aggregate abatement level Q_; > Qnc_;. For the equilibrium condition of the
first stage of the game to be satisfied, non-signatory country j must choose an

abatement level ¢; > gn.. According to country j’s reaction function it will however

12



be optimal to choose an abatement level ¢; < g, and we can conclude that there
cannot be an equilibrium with Q_; > Qnc_;.

If all the other countries except non-signatory country j choose an aggregate
abatement level Q_; < Qnc_;, the same logic applies. For the equilibrium condition
of the first stage of the game to be satisfied, non-signatory country j must choose
an abatement level ¢; < g, but according to its reaction function it will choose an
abatement level g; > gn.. Consequently, any situation with Q—; < Qnc_; cannot
be an equilibrium either. Hence, the only stable situation is when all countries set
the non-cooperative abatement level gy,..

The second part of the proposition states that although there are no gains from
cooperation in equilibrium, a positive number of countries will form a coalition.
The intuition behind this result is the following: The ”first-mover” advantage for
a signatory country consists in having the opportunity to set an abatement level
before all other countries. This advantage is exploited by the signatory countries
by setting lower abatement levels than the non-signatory countries (as long as
k < ko), which implies higher payoffs to the members of the coalition then to the
non-signatory countries. In fact, as we show in the appendix, the first countries
forming a coalition will choose a lower abatement effort then the non-cooperative
abatement level g,. and the optimal reaction for the non-signatory countries is then
to choose an abatement level higher then ¢,.. In such a situation the signatory
countries take a free-ride on the abatement effort of the non-signatory countries.”
But as long as the payoff of the members of the coalition is higher than the payoff of
the non-signatory countries, there is always an incentive for non-signatory countries
to join the coalition. An increasing coalition size however implies a declining ” first-
mover” advantage and hence a rising abatement level of the coalition. As a result,
the number of countries joining the coalition is exactly the fraction it takes to
push up the abatement effort of the signatory countries to the non-cooperative
abatement level gy,c.

As we have shown, there are no gains from cooperation when the game is played

with identical countries and coalition size is treated as a continuous variable. Since

10From this point of view the expression “coalition for the environment” is misleading,
as all that the signatory countries do, is maximizing their payoff irrespective of the effect
on the environment.

13



the resulting coalition size is in general no integer number, gains from cooperation
resulting in simulations must consequently be due to the fact that coalition size
is treated as a discrete variable. The connection between the equilibrium in the

continuous and the discrete version of the game will be the subject of section 5.

4 International Environmental Negotiations
Modeled as a Simultaneous (Game

As mentioned in the introduction, the second stage of the game cannot only be
modeled as a sequential game, but also as a simultaneous game. The difference to
the sequential version of the game consists in signatory and non-signatory coun-
tries choosing their abatement level simultaneously. This implies that signatory
countries no longer possess a “first-mover” advantage. Consequently, to find the
equilibrium conditions of the second stage of the game, we need to compute the
reaction function of the non-signatory and the signatory countries. While the
optimization problem of the non-signatory countries is the same as in the sequen-
tial version of the game (see Eq. (1) and (2)), the optimization problem of each
signatory country 7 now amounts to

(12) max kB(Q—Z + qsi) - C(qsi)J

ds;

where Q_; = Q — ¢s, denotes the aggregate abatement level of all countries ex-
cept country i. We denote the solution of this optimization problem by Rs, (k, Q—;),
the reaction function of signatory country ¢ The optimal choice of the abate-
ment level g3, then requires that the marginal benefits from abatement equal the

marginal costs of abatement, i.e.

(13)  kBQ (Q—i + Rs;(k, Qi) = Cy (Rs; (F, Q).

Given the assumption that all countries are identical and thus all signatory
countries choose the same individual abatement level ¢s; and all non-signatory
countries choose the same individual abatement level g,, these equilibrium condi-

tions can be simplified in the same way as shown for the sequential version of the

14



game. Hence, at the second stage the following two conditions have to be satisfied

simultaneously:

(2a)  Bq (kgs(k) + (N = k)g(F)) = Cq (4,(K))

(13a)  kBq (kg5 (k) + (N = k)g;,(k)) = Cq (g5(F))-

These two equations can further be simplified to a single equilibrium condition

by substituting Eq. (2a) into (13a):

(14)  kCq(an(k)) = Cq (g5 (k).

The equilibrium condition of the first stage of the game again requires that
the resulting coalition k needs to be “stable”. It is the same as in the sequential

version of the game (see Eq. (6)):

(15)  M(k*) > T,(k* — 1) and T, (k*) > T (k* + 1).

As in the sequential version of the game, it is usually not possible to solve the
resulting equilibrium conditions explicitly for the optimal abatement levels and
the size of the stable coalition. Therefore, in order to derive a general solution,
we approximate the above game again by assuming a continuum of players in the
range (0, N] and compute our ”benchmark solution”. Technically, the same logic
as in the sequential version of the game applies then. We can treat coalition size k
as a continuous variable and stability condition (15) simplifies to ITs(k*) = IL, (k*).

As in section 3.3 (see Eq. (7)), this condition can be written as

(16)  B(Q*(k) — C (g5 (k")) = B(Q" (k")) — C (g5, (k"))-

Since we assumed monotonicity of the cost function (Cy > 0) it follows imme-
diately that in any equilibrium ¢} (k*) = ¢¥(k*) must hold. Thus, as signatory and

non-signatory countries must choose the same abatement level in the equilibrium
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of the game, the only %k that satisfies Eq. (14) is k* = 1, i.e. there is only one
country in the coalition. But as one can easily see, this ”signatory country” then
maximizes the same payoff function as each non-signatory country, i.e. it behaves
like a non-cooperating country. This implies that in the equilibrium there is no
cooperation at all between countries and therefore no gains from cooperation can
be realized.

Consequently, the conclusions are the same as in the case of environmental
negotiations modeled as a sequential game: the resulting payoffs and abatement
levels in the equilibrium are the same as if there was no cooperation between
countries. Further, resulting gains from cooperation in the discrete version of this

game can only be due to an ”integer effect”.

5 The ”Integer Effect”

The fact that gains from cooperation in numerical simulations are always very
small seems to suggest that the resulting coalition size k* cannot be far from
our "benchmark solution” kg. A reasonable conjecture would thus be that k*
is always equal to ko rounded up to the next integer number: k* = [ko] + 1.
Barrett [4] however notes: ” For all the simulations I have run (see Barrett [3]),
ko < k* < kg +27.!! This indicates that the stable coalition in the discrete type
game can differ by more than one integer from k9. But if the stable coalition can
differ by more then one integer from kg, then there is a priori no argument why
the difference between kg and k* cannot amount to more then two integers. As
we will show in the following, this indeed is the case. The crucial point of the
following discussion is, however, that the difference between kg and k* is of little
importance, since coalition size is of minor relevance to gains from cooperation.

To show this, we start by looking at a slightly modified stability condition.
The only difference to Eq. (6) is that the integer number 1 is replaced by e:

(17)  T(k*) > T,(k* — ¢) and TI,(k* + ¢) < TL, (k*).

' The notation is adapted to our notation.
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As one can easily see, ¢ = 1 corresponds the discrete type model and ¢ = 0
corresponds the above discussed continuous type model. Instead of considering

both parts of the stability condition, it is however sufficient to look at the function

(18)  flk,e) = Iy(k* +¢) — I (k*)

and search for the stable coalition k¥ satisfying f(k*,e) = 0. Obviously such a
coalition k} satisfies the right part of the stability condition with equality. As we
proof in the appendix, such a coalition does however as well satisfy the left part of
the stability condition. Totally differentiating f(k*,e) = 0 and rearranging terms
then yields

(19) 4 = # >0,

_IE_E)__l

T, (kg +e)

where H/n, s(+) stands for the derivative of the payoff function with respect to k.
Intuitively, Eq. (19) tells us what will happen to the size of the stable coalition,
when we go from the continuous to the discrete version of the game. More precise,
Eq. (19) allows to measure the difference between ko, which corresponds to the
continuous situation with € = 0 and the stable coalition k* with ¢ = 1.

The fact that % is positive has the following intuition: For any coalition size
k smaller then kg, the payoff to the non-signatory countries is smaller then in a
situation without cooperation between countries. Therefore, in such a situation
there is always an incentive for non-signatory countries to join the coalition and
consequently the stable coalition in the continuous and the discrete version of the
game cannot be smaller then kg. A proof of this suggestion can be found in the
appendix.

It is now possible to distinguish two cases:

(45)., =0 Veoel0,1]

(%5)., >>0 Ve €[0,1].
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The realization of these two polar cases obviously depends on the ratio of the
slope of the two payoff functions. In what follows, we will show that both cases
imply negligible gains from cooperation in the equilibrium of the game.

In the first case, when dd—f ~ 0, nothing happens when we go from the con-
tinuous to the discrete version of the game. That is, in such a situation the size
of the stable coalition £* cannot depart by more then one integer from ko and
consequently gains from cooperation are minor. Intuitively, this case describes a
situation where there is a strong incentive for non-signatory countries to free ride
on the abatement effort of the coalition.

The second case is the more interesting one. When dd—l’? >> 0, the size of the
stable coalition in the discrete version of the game can get substantially bigger then
in the continuous version. This happens when E—l? — 1, i.e. the payoff function
of signatory and non-signatory countries have apﬁroximately the same slope and
thus run more or less parallel. Since the stable coalition £} however still satisfies
Eq. (18), Is(k* + &) = II,,(k*), this implies that the two payoff functions are very
near to each other and thus IIs(k*) ~ II,,(k*). Consequently, the abatement level
chosen by signatory and non-signatory countries must be similar. According to
the reaction function of a non-signatory country this can however only be the case,
when the chosen abatement levels are close to the non-cooperative abatement level
Qne- Intuitively, this case corresponds to a situation where there is not much to
gain from an environmental agreement, i.e. efficiency gains are minor even if all
affected countries would cooperate.

To summarize, the coalition in the discrete version of the game can get substan-
tially bigger then in the continuous version. This is however merely an ”integer
effect”, since a bigger coalition does not enhance efficiency gains, i.e. the size
of the stable coalition in the equilibrium of the game is irrelevant to gains from

cooperation.

6 Summary and Outlook

We have reconsidered two versions of a widely used model of international environ-
mental negotiations on the reduction of COs-emissions. Due to the mathematical

problems of giving a full characterization of the solution of these games, up to now
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most of the work on this subject rested on numerical simulations to derive results.
We have shown for a general class of payoff functions that when these models are
approximated by assuming a continuum of players, an analytical solution can be
found. In both versions of the model, there exist stable coalitions but there are
no gains from cooperation at all. Using the solution of this modified version of
the game, we have further shown that gains from cooperation in simulations result
from an ”integer effect”, i.e. from the fact that coalition size is treated as a discrete
variable. However, the stable coalition in the discrete version of the game needs
not necessarily to be near to the stable coalition in the continuous version. Since a
bigger coalition in the discrete game then in the continuous game does not imply
any substantial efficiency gains it is, however, not surprising that these gains are
extremely small in virtually all simulations.

In the light of these results it seems doubtful, whether it is possible to enlarge
coalition size and improve environmental quality in the above model, as suggested
by some authors. Carraro and Siniscalco [9] e.g. consider the possibility to use
resulting gains from cooperation to induce non-signatory countries to join the
coalition. But, since there are hardly any gains from cooperation which could
be redistributed, such a strategy seems very limited. Further, from a theoretical
point of view, this model cannot be used to motivate the existence of coalitions as a
starting point for further research as several authors suggest. In most of this work,
see e.g. Bohm [7] or Hoel [13], the process of coalition formation is neglected and
different policy measures available to a group of cooperating countries trying to
reduce environmental pollution are analyzed. Although the assumption that there
might be groups of countries willing to cooperate per se seems reasonable, it cannot
be theoretically founded with the discussed model, since in the equilibrium of this
game no country has an incentive to contribute to a reduction of environmental
pollution.

To summarize, one can conclude that the structure of the discussed model is
not well suited to explain international environmental cooperation as observed in
the real world. The unsatisfying results of the model are however strongly driven
by the assumption of identical countries, which implies that in the equilibrium of
the game all countries must set similar abatement levels. This of course is not

a very realistic assumption when studying negotiations on the reduction of COs-
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emissions. According to Barrett [6], the United States, the European Union and
the former USSR account for about one-half of global COz-emissions. Therefore,
an interesting question is, whether the above results are still likely to hold, when
heterogeneity between countries is introduced. Several authors, see e.g. Barrett [6]
or Botteon and Carraro [10], have run simulations with heterogeneous countries,
but their results do not substantially differ from the ones obtained in simulations
with identical countries. However, from a theoretical point of view, the effect of
heterogeneity on the equilibrium of the game seems not entirely clear. Generally,
there are two crucial differences between the case with identical and asymmetric
countries. First and trivially, it will no longer be true that in the equilibrium
all signatory and all non-signatory countries choose the same abatement level.
Second, with asymmetric countries there is the possibility of multiple equilibria
i.e. there might exist several compositions of the coalition which are stable. If
resulting gains from cooperation in simulations with asymmetric countries are real
efficiency gains or if they are, as in the case of identical countries, just the result

of an ”integer effect”, is subject to further research.

7 Appendix

In section 5, we introduced a slightly modified stability condition (see Eq. (17))
and claimed that it is sufficient to consider the function f(k¥, ¢), see Eq. (18),
to show that resulting gains from cooperation in numerical simulation are due to
an ”integer effect”. We further established the result that £}, the solution to the
problem f(k¥,e) = 0, satisfies the right part of the stability condition (17) with
equality. In this appendix we show that k7 satisfies as well the left part of stability
condition (17).

To proof this, we first have to show that there cannot exist a stable coalition
smaller then kg, i.e. kX > ko. In order to do so, two propositions are considered.
The first establishes the fact that for any coalition size smaller then kg, the payoff
to non-signatory countries is smaller then in a situation without cooperation at all.
The second proposition states that the payoff function of the signatory countries
has a minimum at kg. This two results together allow the desired conclusion that

kX > ko. It is then only a small step to proof that k} satisfies the left part of the
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stability condition.

Proposition 2 For any coalition size smaller then kg, the payoff to the non-
signatory countries is smaller then the non-cooperative payoff Iy, i.e. the pay-
off resulting in a situation without any cooperation between countries: I, (k) <
IL,c VE < ko.

Proof. As we proved in section 3.3, the stable coalition kg, with signatory
and non-signatory countries choosing the non-cooperative abatement level ¢y,
is the unique subgame perfect equilibria in the continuous version of the game.
This implies that Vk # kg signatory and non-signatory countries choose different
abatement levels. More precise, the uniqueness of the equilibria implies that Vk £
ko either ¢3(k) < g;,(k) or 5 (k) > q;, (k).

Now consider a coalition k£ < min{1,ko}. Substituting Eq. (2a), the equi-
librium condition of the non-signatory countries, into Eq. (5a), the equilibrium

condition of the signatory countries, yields
8 n 1) ; * —_ %
A1)k (1+ (V= &) 258 €, (g3(k) = Cy (g3 (k).

Since the reaction function has a negative slope, the term in the bracket is
always positive but smaller then one and since k¥ < min{1,kq}, it follows that
Vk < kg the marginal abatement costs of the signatory countries are smaller then
the marginal abatement costs of the non-signatory countries. Further, since we
assumed monotony of the cost function (C; > 0), it follows immediately that Yk <
ko: qX(k) < ¢ (k). This implies then by definition of the reaction function: ¢} (k) <
Gne < qi(k) Yk < ko. Using Eq. (2a), the equilibrium condition of the non-

signatory countries, again, we can thus conclude that

(AQ) BQ (Q*(k)) = Cq (q’;kb(k)) > Cq (%@c) = BQ (an) VEk < ko,

(since Cyq > 0) and hence Q*(k) < Qne Vk < ko (since Bgg < 0). This
establishes the desired result that II,, (k) < I, Vk < ko. m

Proposition 3 For any other coalition size then ko, the payoff to the signatory
countries is bigger then the non-cooperative payoff Mpe: s(k) > I, Yk # ko.

That is, ko is a minimum of I4(k).
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Proof. To proof proposition 2 it is necessary to show that the payoff function

II5(k) has a minimum at kg. To show this we need to compute a interpretable

expression for —

dlls(k) 12
t
As a preliminary step, we compute two derivatives that will proof helpful in

the following. Differentiating the reaction function of the non-signatory countries

with respect to k yields the following expression:

_ dRu(kQ3) _ ORa(hQ3) | ORn(hQ:)dQ:
- dk - ok 0Qs dk *

dq;,
(A3)

By totally differentiating Eq. (2a), the equilibrium condition for the non-

signatory countries, the first term on the right hand side of Eq. (A3) can be split

up further to

aRn(kaz) J— BQQ(qsiqn) —_ aR’ﬂ(k:QS)
(Ad) ok = Cu—(N—F)Bgg (gs — Qn)TS’
- ORn (k,Q%) _ Bge
since =50 = o— - 1Bog (see Eq. (9)).
We then start by differentiating the payoff function of a signatory country and
dQ: _ ;.dat
dk

substituting Eq. (A3) and (A4) in succession. Note further that —

(A5) ML) — B, Q") — Cy(qr) %

= Bo(Q) (a5 — a5 + HE + (N — WS ) — Cyla)) G

dq? ORn (k,Q%) | ORn(k,Q2) dQ*
= Bo(Q") [q;“—qud'J,g +(N—l<:)< (5Q3) | O (k) 5{)}
\ dg’
_CQ(qS)qu

dq: # AR (k, Q% #
— % [£Bo(@") (1+ (N - 25520} - Cy(q))] +
* * * * %\ ORn (k,Q%
It is easy to see that the expression in the first bracket is exactly the equilibrium

condition for a signatory country (see Eq. (5a)), which has to be equal to zero in

the optimum. Eq. (A5) thus simplifies to:

12For ease of notation, the dependence of abatement levels and payoffs on the coalition

size k will be omitted in the following.
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dils (k % * ARy (k,Q%
(A5.1) P58 = (g7 - g) Ba(Q*) (1+ (N — k) 2i=fpid).
Using Eq.(5a) again, this expression simplifies further to:

(A5.2) ML) _ Ligx _ g5)Cy(qh).

From Eq. (A5.2) it now easy to see that IIs(k) has a minimum at ko:

( dlls(k .
dlc()<0 Vk < kg smceq;“<CInc<q;‘L

dlls(k 1
dk():() k =ko since ¢; = qne = qj,

dIl, (
\ ~dk

K> 0 vk > ko since g > Gne > ;-
]

Proposition 1 and 2 together imply that IL;(k) > II,(k) Vk < ko. Further,
since II5(k) > I, Vk # ko it follows Ve > 0 that IIs(k + ) > II,(k) Vk < ko,
i.e. the right part of the stability condition (17) cannot be satisfied for a k < k.
Therefore we can conclude that there cannot exist a stable coalition involving less
then ko countries and consequently: k¥ > ko Ve > 0.

With this result it is now easy to show that k7, the solution to the problem
f(k*,e) = 0, satisfies the right and the left part of stability condition (17). The left
part of the stability condition requires II5(k*) — II,,(k* —¢) > 0. This is however
equivalent to demanding f(k,e) > 0 for & = k¥ — . Note that substituting
k = k¥ — ¢ into the right part of the stability condition yields exactly the left part
of the stability condition. Now, since k7 satisfies f(k*,e) = 0, this function is either
strictly positive or negative for any coalition size k£ smaller then k7. It is therefore
not necessary to check if f(k,e) > 0 exactly at k = k¥ — ¢, but it is sufficient to
check this condition for any given & < k. Our candidate of course is kg, which
is smaller then k7, as we proved above. Using the fact that II5(k) > II,. Vk # ko
and IT,,(kg) = Il,,, it is straight forward to conclude that IIs(ko +¢) — I, (ko) > 0
and thus f(k,e) > 0 Vk < kZ. Hence, coalition size k} satisfies the left and the
right part of the stability condition (17).
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