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Abstract: We propose a random effects panel data model with both spatially correlated
error components and spatially lagged dependent variables. We focus on diagnostic testing
procedures and derive Lagrange multiplier (LM) test statistics for a variety of hypotheses
within this model. We first construct the joint LM test for both the individual random effects
and the two spatial effects (spatial error correlation and spatial lag dependence). We then
provide LM tests for the individual random effects and for the two spatial effects separately.
In addition, in order to guard against local model misspecification, we derive locally adjusted
(robust) LM tests based on the Bera and Yoon principle (Bera and Yoon, 1993). We conduct a
small Monte Carlo simulation to show the good finite sample performances of these LM test
statistics and revisit the cigarette demand example in Baltagi and Levin (1992) to illustrate
our testing procedures.
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1. Introduction

Spatial econometric models have been extensively used to study regional effects and interdependence
between different spatial units. Most of the widely used spatial models are variants of the benchmark
models developed in Cliff and Ord (1973, 1981) [1,2] and Anselin (1988a) [3]. Based on the form of
spatially correlated error components and/or spatially lagged dependent variables, these models better fit
the real world data generating process by explicitly considering the spatial interdependence. Hypothesis
testing for spatial dependence has been developed rapidly in the recent literature. For standard LM tests
of spatial dependence in cross section models, see Anselin (1988a, b) [3,4], Anselin and Bera (1998) [5],
and Anselin (2001) [6]. For standard LM tests of spatial dependence in panel data models, Baltagi et al.,
(2003) [7] provide tests for random effects and/or spatial error correlation. Baltagi and Liu (2008) [8]
provide tests for random effects and/or spatial lag dependence. Debarsy and Ertur (2010) [9] derive
tests in the spatial panel data model with individual fixed effects based on Lee and Yu (2010) [10].
Qu and Lee (2012) [11] consider tests in spatial models with limited dependent variables. Baltagi et al.,
(2013) [12] extend the model in Kapoor et al., (2007) [13] by allowing for different spatial correlation
parameters in the individual random effects and in the disturbances, and they derive the corresponding
LM tests. Further, standardized versions of the LM tests are discussed in Yang (2010) [14], Baltagi and
Yang (2013a) [15] to remedy distributional misspecifications in finite sample and sensitivity to spatial
layout. Born and Breitung (2011) [16], Baltagi and Yang (2013b) [17] discuss versions of LM tests
that are robust against unknown heteroskedasticity. Recently, Yang (2015) [18] provides residual-based
bootstrap procedure to obtain improved approximations to the finite sample critical values of the LM test
statistics in spatial econometric models.

However, to the best of our knowledge, there are no test statistics treating the individual random
effects, the spatial error correlation, and the spatial lag dependence simultaneously. We contribute to the
literature by constructing various LM test statistics in such a general framework, or the so-called spatial
autoregressive model with autoregressive disturbances (SARAR). Our results are useful for applied
researchers to implement and perform model diagnostic testing in the SARAR framework. In particular,
we first derive the joint LM test for the individual random effects and the two spatial effects. We next
derive LM tests for the individual random effects. Finally, we derive LM tests for the two spatial
effects. In addition, we provide robust LM tests in some cases as needed in order to guard against
local misspecification. We emphasize some key features of the robust LM test in the following.

Bera and Yoon (1993) [19] argue that the LM test with specific values of the nuisance parameters
(marginal LM test) might suffer from local misspecification in the nuisance parameters. They propose
robust LM test to guard against such local misspecification, see also Anselin et al., (1996) [20],
Bera et al., (2001, 2009, 2010) [21–23], and He and Lin (2013) [24]. Here, we emphasize two advantages
of the robust LM test. First, the asymptotic size of marginal LM test will be distorted under local
misspecification in the nuisance parameters since it follows a non-central χ2 distribution. On the other
hand, robust LM test follows a χ2 distribution under such misspecification, thus it can provide valid
asymptotic size as long as the misspecification is local. Second, while LM test without specifying values
of the nuisance parameters (conditional LM test) does not suffer from such size distortion, it generally
needs the maximum likelihood estimator (MLE), which could be costly in computation. In contrast, the
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robust LM test only requires restricted estimator under the relevant joint null hypothesis, which is simply
the ordinary least square (OLS) estimator in most cases. Therefore, the robust LM test can provide result
as good as the conditional LM test at a lower computational cost, provided that the deviation of nuisance
parameters is local. However, there is one potential loss in using the robust LM test. If the values
of nuisance parameters are correctly specified, the robust LM test is in general less powerful than the
marginal LM test. Also, when the nuisance parameters deviate far away from the pre-specified values,
the robust LM test is generally invalid. In sum, the standard LM tests (marginal and conditional LM tests)
and the robust LM tests complement each other, and they should be used together for inference purposes.

In this paper, we maintain the assumption of random effects model, while an alternative specification
is the fixed effects model with spatial dependence as in Lee and Yu (2010) [10], Debarsy and Ertur
(2010) [9], and He and Lin (2013) [24]. On the one hand, the random effects specification is a
parsimonious way to allow for individual effects in different spatial units and it will be particularly
useful for testing and selection in microeconometric applications when the number of units is very large.
On the other hand, the fixed effects specification, which allows for correlation between the individual
effects and the covariates, is more suited for many macro studies when the number of units is not very
large (see Elhorst (2014) [25] for more discussion on comparison of the random effects model and the
fixed effects model).

The rest of the paper is organized as follows. Model specification is discussed in Section 2. The LM
test statistics are presented In Section 3. In Section 4, we report the Monte Carlo simulation results to
show their satisfactory finite sample size and power performances. In Section 5, we provide an empirical
example to illustrate our testing procedures. Section 6 concludes with suggestions for future research.
All mathematical derivations are relegated to the Appendices.

2. The Model

Suppose that the data is generated according to the following spatial panel data model, for
t = 1, 2, · · ·, T, {

yt = λWyt +Xtβ + εt,

εt = ρMεt + µ+ vt.
(2.1)

In the above specification, yt = (yt1, yt2, ···, ytN)′ is anN×1 vector of dependent variable for period t. It
is spatially interdependent, as reflected by the spatial lag dependence coefficient λ. Xt is an N× (K+1)

matrix of non-stochastic regressors for period t, with the first column to be ones, and β = (β0, β1, ···, βK)′

is the corresponding (K+1)×1 slope parameter vector. εt = (εt1, εt2, · · ·, εtN)′ is an N ×1 vector of the
regression error term for period t. The error vector is also spatially correlated, as reflected by the spatial
error correlation coefficient ρ. µ = (µ1, µ2, · · ·, µN)′ is an N × 1 vector representing the individual
random effects. The random effects terms {µi}, i = 1, · · ·, N are i.i.d. across i, with zero mean, variance
σ2
µ and E|µi|4+c1 < ∞ for some c1 > 0. vt = (vt1, vt2, · · ·, vtN)′ is an N × 1 vector of innovation

terms. The innovation terms {vti}, t = 1, · · ·, T, i = 1, · · ·, N are i.i.d. across i and t, with zero mean,
variance σ2

v and E|vti|4+c2 < ∞ for some c2 > 0 (see Lee and Yu (2012) [26] for other regularity and
identification conditions as needed for asymptotic theory). W and M are nonstochastic spatial weights



Econometrics 2015, 3 764

matrices of size N ×N . Typically, they are specified by the first-order rook contiguity criterion and are
row-standardized so that each row sums up to one.

By stacking across t, the model can be written as{
y = λ(IT ⊗W )y +Xβ + ε,

ε = ρ(IT ⊗M)ε+ ιT ⊗ µ+ v,
(2.2)

where y = (y′1, y
′
2, · · ·, y′T )′, X = (X ′1, X

′
2, · · ·, X ′T )′, ε = (ε′1, ε

′
2, · · ·, ε′T )′, and v = (v′1, v

′
2, · · ·, v′T )′.

ιT is a T × 1 vector of ones, I denotes the identity matrix with its dimension in the subscript, and
⊗ denotes the kronecker product. Let A = [IT ⊗ (IN − ρM)], and B = [IT ⊗ (IN − λW )]. The
error component ε is expressed as ε = A−1(ιT ⊗ µ + v), with E[ε] = 0, Var[ε] = Ωε = A−1Ω(A−1)′,
where Ω = [JT ⊗ (σ2

µIN) + IT ⊗ (σ2
vIN)]. Using the results in Magnus (1982) [27], we get Ω−1 =

(Tσ2
µ + σ2

v)
−1J̄T ⊗ IN + (σ2

v)
−1ET ⊗ IN , and |Ω| = (Tσ2

µ + σ2
v)
N(σ2

v)
N(T−1), where J̄T = JT/T ,

JT = ιT ι
′
T , ET = IT − J̄T . Notice that y = B−1Xβ + B−1ε, with E[y] = B−1Xβ and Var[y] = Ωy =

B−1A−1Ω(A−1)′(B−1)′. We have Ω−1
y = B′A′Ω−1AB, and |Ωy| = |B|−2|A|−2(Tσ2

µ + σ2
v)
N(σ2

v)
N(T−1).

Let δ = (β′, ρ, λ, σ2
µ, σ

2
v)
′ and ε = By −Xβ, the log-likelihood function of the random vector y as if

it is normally distributed is

L(δ) = −NT
2

ln(2π)− N

2
ln
(
Tσ2

µ + σ2
v

)
− N(T − 1)

2
ln
(
σ2
v

)
+ ln|A|+ ln|B| − 1

2
ε′A′Ω−1Aε (2.3)

3. LM and Robust LM Test Statistics

In this section, we provide explicit formulae for the LM test statistics. We first present the joint LM
test for both the individual random effects and the spatial effects. We then provide LM test statistics for
the individual random effects. Lastly, we present LM test statistics for the spatial effects, namely, the
spatial error correlation and/or the spatial lag dependence.1 In addition, we provide formulae for robust
LM tests when necessary.

Before presenting the LM test statistics, we introduce the following notations for easy reference. Let
R1 = M(IN−ρM)−1, R2 = W (IN−ρM)−1, R3 = W (IN−λW )−1, andR4 = (IN−ρM ′)(IN−ρM).
Let ẑρ = ε̂′Â′Ω̂−1(IT ⊗ M)ε̂, ẑλ = ε̂′Â′Ω̂−1Â(IT ⊗ W )y, and ẑσ2

µ
= [ε̂′Â′(J̄T ⊗ IN)Âε̂]/σ̂2

v − N ,
where ε̂ = B̂y − Xβ̂, Â, B̂, Ω̂, β̂, and σ̂2

v are restricted MLEs of A, B, Ω, β, and σ2
v under the null

hypotheses, respectively. Next, define ν̂ = ŷ′(IT ⊗ W ′)Â′Ω̂−1Â(IT ⊗ W )ŷ, τ̂ = T 2(b1b3 − b2
2) +

Tb1ω̂, where ω̂ = ŷ′(IT ⊗W ′)Â′[Ω̂−1− Ω̂−1ÂX(X ′Â′Ω̂−1ÂX)−1X ′Â′Ω̂−1]Â(IT ⊗W )ŷ, ŷ = B̂−1Xβ̂,
b1 = tr(M ′M + MM), b2 = tr(M ′W + MW ), b3 = tr(W ′W + WW ), and tr(·) is the trace operator.
Finally, let

ξ̂ =
NTϑ̂2 +Nω̂ − 2T ϑ̂2

3

Tb1(NTϑ̂2 +Nω̂ − 2T ϑ̂2
3)−N(T ϑ̂1)2

, ζ̂ =
Nθ̂1 − 2θ̂2

3

(Nθ̂1 − 2θ̂2
3)(T θ̂4 + ω̂)−NT θ̂2

2

1 Notice that there are four cases for which we do not present the LM tests formulae, since these four cases are not
particularly interesting. The null hypotheses for the four cases are: σ2

µ = ρ = 0 (λ = 0), σ2
µ = ρ = 0 (λ 6= 0),

σ2
µ = λ = 0 (ρ = 0) and σ2

µ = λ = 0 (ρ 6= 0). The LM tests formulae for these four cases are not presented in the paper,
but they are available upon request from the authors.
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where ϑ̂1 = tr[(M + M ′)R̂3], ϑ̂2 = tr(R̂3R̂3 + R̂3R̂
′
3), ϑ̂3 = tr(R̂3), θ̂1 = tr

(
R̂1R̂1 + R̂1R̂

′
1

)
,

θ̂2 = tr
[
WR̂1 + R̂2R̂

′
1(IN − ρ̂M)

]
, θ̂3 = tr(R̂1), θ̂4 = tr(WW ) + tr

(
R̂2R̂

′
2R̂4

)
, and R̂1, R̂2, R̂3, R̂4 are

restricted MLEs of R1, R2, R3, R4, respectively.

3.1. Jointly Testing for Random Effects and Spatial Effects

Now we are ready to present the test statistics. We first construct the joint LM test statistic for the
individual random effects and the spatial effects, namely, the spatial error correlation and the spatial lag
dependence. The joint hypothesis is Ha

0 : σ2
µ = ρ = λ = 0 vs. Ha

1 : at least one of σ2
µ, ρ and λ is not zero.

Thus we are testing the classical pooled panel data model against the full specification in (2.1), the LM
test in this case is given by

LMa =
Tb3 + ω̂a

τ̂a
ẑ2
ρ,a +

Tb1

τ̂a
ẑ2
λ,a −

2Tb2

τ̂a
ẑρ,aẑλ,a +

T

2N(T − 1)
ẑ2
σ2
µ,a
, (3.1)

where ω̂a = [ŷ′a(IT ⊗W ′)(INT −X(X ′X)−1X ′)(IT ⊗W )ŷa]/σ̂
2
v,a, σ̂

2
v,a = (ε̂′aε̂a)/(NT ), ε̂a = y − ŷa,

ŷa = Xβ̂a, τ̂a = T 2(b1b3 − b2
2) + Tb1ω̂a, ẑρ,a = [ε̂′a(IT ⊗ M)ε̂a]/σ̂

2
v,a, ẑλ,a = [ε̂′a(IT ⊗ W )y]/σ̂2

v,a,
ẑµ,a = [ε̂′a(J̄T ⊗ IN)ε̂a]/σ̂

2
v,a −N , and β̂a is the OLS estimator of β. Under Ha

0 , LMa is asymptotically
distributed as χ2

3, where χ2
d denotes the χ2 distribution with degree of freedom d.

The test statistic LMa is useful in practice, and it is simple to compute since only the OLS estimator
is required. Researchers should first use this joint LM test to determine if there is individual random
effects and/or spatial effects in the general specification (2.1). If the joint null hypothesis cannot be
rejected, then it is reasonable to just adopt the classical pooled panel data model. Otherwise either
the individual random effects, or the spatial error correlation, or the spatial lag dependence need to be
considered. As in Baltagi et al., (2003) [7], we do not provide formal proofs for the asymptotic null
distributions of the LM test statistics in this paper, but these distributions are likely to hold by using the
Central Limit Theorems (CLTs) in Kelejian and Prucha (2001, 2010) [28,29] under similar sets of low
level assumptions in their papers.

3.2. Testing for Random Effects

In this section, we focus on testing for the individual random effects in various spatial panel data
models. We provide formulae for the standard LM tests as well as formulae for the robust LM tests when
necessary. The first hypothesis we consider is Hb

0: σ2
µ = 0 (ρ = λ = 0) vs. Hb

1: σ2
µ > 0 (ρ = λ = 0).

The null model is the classical pooled panel data model, and the alternative model is the random effects
panel data model without spatial effects. The LM test denoted as LMb, is available in Baltagi et al.,
(2003) [7]. Moreover, it can be shown that the robust LM test is the same as LMb in this case. We thus
omit these formulae for the sake of compactness.

The second hypothesis is Hc
0: σ2

µ = 0 (ρ 6= 0, λ = 0) vs. Hc
1: σ2

µ > 0 (ρ 6= 0, λ = 0).2 Under the
null hypothesis, it is the pooled panel data model with spatial error correlation. Under the alternative

2 By ρ 6= 0, we mean that ρ is allowed to be nonzero, and the notation “6=” has similar meaning in the rest of this paper.
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hypothesis, it is the random effects panel data model with spatial error correlation. The LM test statistic
in this case is given by

LMc =
T

2N(T − 1)
ẑ2
σ2
µ,c
, (3.2)

where ẑσ2
µ,c

is ẑσ2
µ

evaluated at the restricted MLE under Hc
0.3 Under Hc

0, LMc is asymptotically
distributed as χ2

1. Further, it can be easily shown that the robust LM test in this case is the same as
LMc. Thus LMc itself is robust against local deviation of λ from 0, and this will be confirmed by the
simulation results.

The third hypothesis is Hd
0 : σ2

µ = 0 (ρ = 0, λ 6= 0) vs. Hd
1 : σ2

µ > 0 (ρ = 0, λ 6= 0). Under the
null hypothesis, it is the pooled panel data model with spatial lag dependence. Under the alternative
hypothesis, it is the random effects panel data model with spatial lag dependence. The LM test statistic,
denoted as LMd, is available in Baltagi and Liu (2008) [8]. Moreover, it can be shown that the robust
LM test in this case is the same as LMd. We thus omit these formulae here.

The last hypothesis concerning testing for the individual random effects is He
0 : σ2

µ = 0 (ρ 6= 0,

λ 6= 0) vs. He
1 : σ2

µ > 0 (ρ 6= 0, λ 6= 0). Under the null hypothesis, it is the pooled panel data model with
both spatial error correlation and spatial lag dependence. Under the alternative hypothesis, it is the full
model in (2.1). The LM test statistic is given by

LMe =
T

2N(T − 1)
ẑ2
σ2
µ,e
. (3.3)

Under He
0 , LMe is asymptotically distributed as χ2

1. LMe tests for the individual random effects in
the most general spatial model, and it is particularly useful when the researcher does not have any
prior knowledge about whether the spatial error correlation and/or spatial lag dependence exist or not.
In practice, the above four LM tests for the individual random effects correspond to different prior
information on the nuisance parameters, and they need to be analyzed together to lead to the most
appropriate model.

Notice that the LM tests in Section 3.2 are all designed for two-sided alternative hypothesis, while the
parameter involved in the hypotheses, σ2

µ, is by definition nonnegative. While our LM tests have good
power against the one-sided alternative (see the simulation results), we point out that power of these tests
can be further improved by following the ideas in Honda (1985, 1991) [30,31].

3.3. Testing for Spatial Effects

In this section, we focus on testing for the spatial effects. We provide formulae for the standard LM
tests as well as formulae for the robust LM tests when necessary.

3 In order to save space and avoid notational complication, we do not present the formulae of quantities involved in the LM
test statistics case by case. The subscripts of these quantities indicate these quantities evaluated at the restricted MLE for
each case. If the restricted MLE is just the OLS estimator, we use subscript “a” to indicate this, which is in line with the
fact that only OLS estimation is needed in LMa.
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3.3.1. Joint Tests for Spatial Effects

In practice, researcher may be interested in jointly testing for the spatial error correlation and the
spatial lag dependence. The first joint hypothesis is Hf

0 : ρ = λ = 0 (σ2
µ = 0) vs. Hf

1 : at least one of
ρ and λ is not zero (σ2

µ = 0). Under the null hypothesis, it is the classical pooled panel data model.
Under the alternative hypothesis, it is the pooled panel data model with at least one type of the spatial
effects. The LM test statistic in this case is given by

LMf =
Tb3 + ω̂a

τ̂a
ẑ2
ρ,a +

Tb1

τ̂a
ẑ2
λ,a −

2Tb2

τ̂a
ẑρ,aẑλ,a, (3.4)

where all quantities involved are defined Section 3.1 since only the OLS estimator is needed in this
case. The test LMf is a useful extension of the result in Anselin et al., (1996) [20] to the panel data
case. Interestingly, LMf is the sum of the first three terms of LMa. Under Hf

0 , LMf is asymptotically
distributed as χ2

2. It can be easily shown that the robust LM test in this case is the same as LMf .
The second joint hypothesis is Hg

0 : ρ = λ = 0 (σ2
µ ≥ 0) vs. Hg

1 : at least one of ρ and λ is not
zero (σ2

µ ≥ 0). Under the null hypothesis, it is the random effects panel data model without any spatial
effects. Under the alternative hypothesis, it is the random effects panel data model with at least one type
of spatial effects. The LM test statistic in this case is given by

LMg =
Tb3 + ω̂g

τ̂g
ẑ2
ρ,g +

Tb1

τ̂g
ẑ2
λ,g −

2Tb2

τ̂g
ẑρ,gẑλ,g. (3.5)

UnderHg
0 , LMg is asymptotically distributed as χ2

2. Notice that both LMf and LMg are useful for jointly
testing the spatial error correlation and spatial lag dependence. However, LMf assumes that it is pooled
panel data model, while LMg allows for the individual random effects. Since LMf is the same as its
robust version, then it can guard against local deviation of σ2

µ from zero. However, LMg will work well
even when σ2

µ deviates far away from zero.

3.3.2. Testing for Spatial Error Correlation

In this section, we focus on testing for spatial error correlation. The first hypothesis we consider is
Hh

0 : ρ = 0 (σ2
µ = λ = 0) vs. Hh

1 : ρ 6= 0 (σ2
µ = λ = 0). Under the null hypothesis, it is the classical

pooled panel data model. Under the alternative hypothesis, it is the pooled panel data model with spatial
error correlation. The LM and robust LM (denoted as LM∗) test statistics are given by

LMh =
1

Tb1

ẑ2
ρ,a, LM

∗
h =

Tb3 + ω̂a
τ̂a

(
ẑρ,a −

Tb2

Tb3 + ω̂a
ẑλ,a

)2

, (3.6)

where all quantities involved are defined in Section 3.1 since only the OLS estimator is needed in this
case. Notice that although the formula of LMh is available in Baltagi et al., (2003) [7], we provide it
here for comparison purposes as it is different from the robust test LM∗

h , which has not been considered
previously in the literature. Under Hh

0 , if the nuisance parameters λ and σ2
µ do not deviate from 0,

both LMh and LM∗
h are asymptotically distributed as χ2

1. However, when ρ = 0, but either λ or σ2
µ

deviates locally from 0, the distribution of LMh becomes non-centralized, tending to over reject the null
hypothesis. On the other hand, LM∗

h is still asymptotically distributed as χ2
1, thus it does not suffer from

size distortion as LMh.
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The second hypothesis is H i
0: ρ = 0 (σ2

µ = 0, λ 6= 0) vs. H i
1: ρ 6= 0 (σ2

µ = 0, λ 6= 0).
Under the null hypothesis, it is the pooled panel data model with spatial lag dependence. Under the
alternative hypothesis, it is the pooled panel data model with both spatial error correlation and spatial lag
dependence. The LM test statistic is given by

LMi = ξ̂iẑ
2
ρ,i. (3.7)

LMi is a useful extension of the results in Anselin et al., (1996) [20] to the panel data case. Under H i
0,

LMi is asymptotically distributed as χ2
1. Moreover, it can be easily shown that the robust LM test in this

case is the same as LMi. Thus LMi itself is robust against local deviation of σ2
µ from 0, and this will be

confirmed by the simulation results.
The third hypothesis is Hj

0 : ρ = 0 (σ2
µ ≥ 0, λ = 0) vs. Hj

1 : ρ 6= 0 (σ2
µ ≥ 0, λ = 0). Under the

null hypothesis, it is the random effects panel data model without spatial effects. Under the alternative
hypothesis, it is the random effects panel data model with spatial error correlation. The LM and robust
LM test statistics in this case are given by

LMj =
1

Tb1

ẑ2
ρ,j, LM

∗
j =

Tb3 + ω̂j
τ̂j

(
ẑρ,j −

Tb2

Tb3 + ω̂j
ẑλ,j

)2

. (3.8)

When ρ = 0, and if the nuisance parameter λ does not deviate from 0, both LMj and LM∗
j are

asymptotically distributed as χ2
1. However, when ρ = 0, but λ deviates locally from 0, the distribution

of LMj becomes non-centralized, tending to over reject the null hypothesis. On the other hand, LM∗
j is

still asymptotically distributed as χ2
1 in this case, thus it does not suffer from size distortion as LMj .

The last hypothesis for spatial error correlation is Hk
0 : ρ = 0 (σ2

µ ≥ 0, λ 6= 0) vs.
Hk

1 : ρ 6= 0 (σ2
µ ≥ 0, λ 6= 0). Under the null hypothesis, it is the random effects panel data model with

spatial lag dependence. Under the alternative hypothesis, it is the random effects panel data model with
both spatial error correlation and spatial lag dependence. The LM test statistic in this case is given by

LMk = ξ̂kẑ
2
ρ,k. (3.9)

Under Hk
0 , LMk is asymptotically distributed as χ2

1. In practice, to test for the spatial error correlation,
the above test statistics correspond to different prior information on the nuisance parameters, and they
need to be analyzed together to lead to the most appropriate model.

3.3.3. Testing for Spatial Lag Dependence

In this section, we focus on testing for the spatial lag dependence. The first hypothesis we consider
is H l

0: λ = 0 (σ2
µ = ρ = 0) vs. H l

1: λ 6= 0 (σ2
µ = ρ = 0). Under the null hypothesis, it is the classical

pooled panel data model. Under the alternative hypothesis, it is the pooled panel data model with spatial
lag dependence. The LM and robust LM test statistic in this case are given by

LMl =
1

Tb3 + ω̂a
ẑ2
λ,a, LM

∗
l =

Tb1

τ̂a

(
ẑλ,a −

b2

b1

ẑρ,a

)2

, (3.10)

where all the related quantities are defined in Section 3.1 since only the OLS estimator is needed in this
case. The formulae for LMl and LM∗

l are useful extensions of the results in Anselin et al., (1996) [20]
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to the panel data case. When λ = 0, and if the nuisance parameters σ2
µ and ρ do not deviate from 0,

both LMl and LM∗
l are asymptotically distributed as χ2

1. However, when λ = 0, but either σ2
µ or ρ

deviates locally from 0, the distribution of LMl becomes non-centralized, tending to over reject the null
hypothesis. On the other hand, LM∗

l is still asymptotically distributed as χ2
1 in this case, thus it does not

suffer from size distortion as LMl.
The second hypothesis is Hm

0 : λ = 0 (σ2
µ = 0, ρ 6= 0) vs. Hm

1 : λ 6= 0 (σ2
µ = 0, ρ 6= 0).

Under the null hypothesis, it is the pooled panel data model with spatial error correlation. Under the
alternative hypothesis, it is the pooled panel data model with both spatial error correlation and spatial lag
dependence. The LM test statistic in this case is given by

LMm = ζ̂mẑ
2
λ,m. (3.11)

LMm is a useful extension of the result in Anselin et al., (1996) [20] to the panel data case, and it is
asymptotically distributed as χ2

1 under Hm
0 . It can be easily shown that the robust LM test in this case

is the same as LMm. Thus LMm itself is robust against local deviation of σ2
µ from 0, and this will be

confirmed by the simulation results.
The third hypothesis is Hn

0 : λ = 0 (σ2
µ ≥ 0, ρ = 0) vs. Hn

1 : λ 6= 0 (σ2
µ ≥ 0, ρ = 0). Under the

null hypothesis, it is the random effects panel data model without spatial effects. Under the alternative
hypothesis, it is the random effects panel data model with spatial lag dependence. The LM and robust
LM test statistics are given by

LMn =
1

Tb3 + ω̂n
ẑ2
λ,n, LM

∗
n =

Tb1

τ̂n

(
ẑλ,n −

b2

b1

ẑρ,n

)2

. (3.12)

Notice that although the formula of LMn is available in Baltagi and Liu (2008) [8], we provide it here
for comparison purposes since it is different from the robust test LM∗

n, which has not been considered
previously in the literature. When λ = 0, and if the nuisance parameters ρ does not deviate from 0, both
LMn and LM∗

n are asymptotically distributed as χ2
1. However, when λ = 0, but ρ deviates locally from

0, the distribution of LMn becomes non-centralized, tending to over reject the null hypothesis. On the
other hand, LM∗

n is still asymptotically distributed as χ2
1 in this case, thus it does not suffer from size

distortion as LMn.
The last hypothesis is Ho

0 : λ = 0 (σ2
µ ≥ 0, ρ 6= 0) vs. Ho

1 : λ 6= 0 (σ2
µ ≥ 0, ρ 6= 0). Under the null

hypothesis, it is the random effects panel data model with spatial error correlation. Under the alternative
hypothesis, it is the random effects panel data model with both spatial error correlation and spatial lag
dependence. The LM test statistic in this case is given by

LMo = ζ̂oẑ
2
λ,o. (3.13)

Under Ho
0 , LMo is asymptotically distributed as χ2

1. In practice, to test for the spatial lag dependence,
the above test statistics correspond to different prior information on the nuisance parameters, and they
need to be analyzed together to lead to the most appropriate model.
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4. Monte Carlo Experiment

In this section, we conduct and present a small Monte Carlo experiment to show satisfactory
performances of the above LM test statistics. In our Monte Carlo experiment, the data generating process
is, for t = 1, 2, · · ·, T ,

(IN − λW )yt = αιN +Xtβ + (IN − ρM)−1(µ+ vt),

where α = 5, β = 0.5. xit is a single variable and is generated as xit = 0.1t + 0.5xi,t−1 + zit, where
zit is generated according to a uniform distribution on [−0.5, 0.5]. The initial value xi0 is set to be
5 + 10zi0. The random effects term µi is generated according to µi ∼ i.i.n.(0, σ2

µ), and the innovation
term vit is generated according to vit ∼ i.i.n.(0, σ2

v). σ2
µ takes values 0, 0.2, 0.5, and 0.8, while σ2

v is
fixed to be 1. The spatial weights matrices M and W are set to be first-order rook and queen contiguity
matrices with row-standardization, respectively. The spatial error correlation parameter ρ and spatial
lag parameter λ vary in [−0.8, 0.8], with increment 0.2. Two combinations of sample size (N, T ) are
considered, namely (49, 7) and (100, 10). Each experiment is replicated 1000 times, and the nominal
size is set to be 0.05.

Frequency of rejection (FoR) of the joint test LMa is summarized in Table 1, where the upper part and
lower part correspond to different sample sizes. We only report the case when σ2

µ = 0. For other cases,
that is, σ2

µ = 0.2, 0.5, 0.8, FoRs are uniformly higher than that when σ2
µ = 0. This is because we are

jointly testing σ2
µ = ρ = λ = 0. The empirical sizes of LMa are 0.049 and 0.050 for the (49, 7) and the

(100, 10) sample, respectively. They are almost the same as the nominal size, reflecting that the limiting
χ2

3 distribution approximates the finite sample null distribution very well. As ρ or λ deviates from 0,
FoR increases very fast. For example, when the sample size is (49, 7), FoR is 0.995 when ρ = λ = 0.2,
and it reaches 1 when ρ = λ = 0.4. The power performance when sample size is (100, 10) is better than
that when the sample size is (49, 7). The good size and power performance demonstrates that the joint
test LMa should be very useful for applied researcher to determine whether there are individual random
effects and spatial effects in a preliminary diagnostic testing process.

Experiment results for LMc and LMe are summarized in Table 2. For LMc, we only report results
when ρ = −0.4 and 0.4 here to save space. The results when ρ takes other values are very similar, and
they are available upon request. First, for the (49,7) sample, the empirical sizes of LMc are 0.043 and
0.036 when ρ = −0.4 and 0.4, respectively. As σ2

µ increases from 0, the FoR of LMc increases very
fast. Actually, when ρ = −0.4, FoR of LMc is 0.976 even when σ2

µ is only 0.2. Second, we discussed in
Section 3.2 that the robust LM test corresponding to LMc is the same as LMc, which implies that LMc

itself is robust against local deviation of λ from 0. This is confirmed by the column for σ2
µ = 0 in Table 2.

Given σ2
µ = 0, for the (49,7) sample, when λ varies in [−0.4, 0.4], the FoRs of LMc are in the range

of [0.036, 0.057]. Thus LMc itself does not suffer from size distortion under local misspecification of
the nuisance parameter λ. As expected, the performance of LMc for the (100, 10) sample is even better
than that for the (49, 7) sample. Next, for LMe, we choose to report the simulation results for a few
combinations of ρ and λ as shown in the table. Results for other cases are very similar. For the (49,7)
sample, the empirical sizes of LMe vary in [0.035, 0.044], and the FoR increases rapidly as σ2

µ increases
from 0. As expected, the performance of LMe for the (100, 10) sample is even better than that for the
(49, 7) sample. Both LMc and LMe are useful in testing for the random effects. LMe is useful in testing
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for the random effects when the researcher does not have any knowledge about the spatial effects, while
LMc is particularly useful when the researcher has information that there is only spatial error correlation.

Table 1. Frequency of rejection (FoR) of LMa, σ2
µ = 0, Sample Sizes: Upper Part: (49, 7);

Lower Part: (100, 10).

ρ −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

λ

−0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 1.000
−0.6 1.000 1.000 1.000 1.000 1.000 0.980 0.942 0.998 1.000
−0.4 1.000 1.000 1.000 1.000 0.946 0.692 0.861 1.000 1.000
−0.2 1.000 1.000 1.000 0.984 0.389 0.290 0.954 1.000 1.000

0.0 1.000 1.000 1.000 0.681 0.049 0.623 1.000 1.000 1.000
0.2 1.000 1.000 0.994 0.515 0.552 0.995 1.000 1.000 1.000
0.4 1.000 1.000 0.998 0.957 0.997 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

λ

−0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
−0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
−0.4 1.000 1.000 1.000 1.000 1.000 0.988 1.000 1.000 1.000
−0.2 1.000 1.000 1.000 1.000 0.864 0.758 1.000 1.000 1.000

0.0 1.000 1.000 1.000 0.989 0.050 0.986 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.911 0.926 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The simulation results for LMf and LMg are presented in Tables 3 and 4, respectively. From Table 3,
the empirical sizes of LMf are 0.053 and 0.050 for the (49, 7) and (100, 10) sample, respectively. As
either ρ or λ deviates from 0, the FoR of increases very fast, indicating good power performance of
LMf . For example, when ρ = λ = 0.2, FoR of LMf is 0.994 for the (49, 7) sample, while it is 1 for
the (100, 10) sample. In Table 4, we only report the results for the case when σ2

µ = 0.5 to save space,
results for the other two cases are similar and available upon request. The empirical sizes of LMg are
0.050 and 0.043 for the (49, 7) and the (100, 10) sample, respectively. Similar to LMf , as either ρ or λ
deviates from 0, the FoR of increases rapidly. Both LMf and LMg are useful in jointly detecting spatial
error correlation and spatial lag dependence. LMf is useful when we assume pooled panel data model,
while LMg is useful when we assume random effects panel data model.
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Table 2. FoR of LM Tests for Random Effects, Sample Sizes: Upper Part: (49, 7); Lower
Part: (100, 10).

σ2
µ = 0 0.2 0.5 0.8

LMc ρ = −0.4 λ = −0.4 0.057 0.974 1.000 1.000
−0.2 0.043 0.978 1.000 1.000
0.0 0.043 0.976 1.000 1.000
0.2 0.048 0.973 1.000 1.000
0.4 0.051 0.970 1.000 1.000

ρ = 0.4 λ = −0.4 0.047 0.968 1.000 1.000
−0.2 0.046 0.969 1.000 1.000
0.0 0.036 0.976 1.000 1.000
0.2 0.052 0.982 1.000 1.000
0.4 0.053 0.969 1.000 1.000

LMe ρ = −0.4 λ = −0.4 0.035 0.976 1.000 1.000
−0.4 0.4 0.043 0.982 1.000 1.000
0.0 0.0 0.035 0.970 1.000 1.000
0.4 −0.4 0.039 0.976 1.000 1.000
0.4 0.4 0.044 0.983 1.000 1.000

σ2
µ = 0 0.2 0.5 0.8

LMc ρ = −0.4 λ = −0.4 0.052 1.000 1.000 1.000
−0.2 0.047 1.000 1.000 1.000
0.0 0.049 1.000 1.000 1.000
0.2 0.045 1.000 1.000 1.000
0.4 0.057 1.000 1.000 1.000

ρ = 0.4 λ = −0.4 0.053 1.000 1.000 1.000
−0.2 0.054 1.000 1.000 1.000
0.0 0.038 1.000 1.000 1.000
0.2 0.047 1.000 1.000 1.000
0.4 0.049 1.000 1.000 1.000

LMe ρ = −0.4 λ = −0.4 0.041 1.000 1.000 1.000
−0.4 0.4 0.045 1.000 1.000 1.000
0.0 0.0 0.041 1.000 1.000 1.000
0.4 −0.4 0.047 1.000 1.000 1.000
0.4 0.4 0.042 1.000 1.000 1.000
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Table 3. FoR of LMf , σ2
µ = 0, Sample Sizes: Upper Part: (49, 7); Lower Part: (100, 10).

ρ −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

λ

−0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
−0.6 1.000 1.000 1.000 1.000 0.999 0.986 0.965 1.000 1.000
−0.4 1.000 1.000 1.000 1.000 0.982 0.752 0.919 1.000 1.000
−0.2 1.000 1.000 1.000 0.993 0.487 0.374 0.969 1.000 1.000

0.0 1.000 1.000 1.000 0.746 0.053 0.684 1.000 1.000 1.000
0.2 1.000 1.000 0.995 0.573 0.576 0.994 1.000 1.000 1.000
0.4 1.000 1.000 0.995 0.972 0.996 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

λ

−0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
−0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
−0.4 1.000 1.000 1.000 1.000 1.000 0.993 1.000 1.000 1.000
−0.2 1.000 1.000 1.000 1.000 0.916 0.829 1.000 1.000 1.000

0.0 1.000 1.000 1.000 0.992 0.050 0.990 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.933 0.953 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. FoR of LMg, σ2
µ = 0.5, Sample Sizes: Upper Part: (49, 7), Lower Part: (100, 10).

ρ −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

λ

−0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.999 1.000
−0.6 1.000 1.000 1.000 1.000 1.000 0.984 0.956 1.000 1.000
−0.4 1.000 1.000 1.000 0.999 0.963 0.738 0.907 1.000 1.000
−0.2 1.000 1.000 1.000 0.989 0.458 0.331 0.971 1.000 1.000

0.0 1.000 1.000 1.000 0.743 0.050 0.687 1.000 1.000 1.000
0.2 1.000 1.000 0.998 0.536 0.542 0.993 1.000 1.000 1.000
0.4 1.000 1.000 0.996 0.962 0.998 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4. Cont.

ρ −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

λ

−0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
−0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
−0.4 1.000 1.000 1.000 1.000 1.000 0.993 1.000 1.000 1.000
−0.2 1.000 1.000 1.000 1.000 0.898 0.815 1.000 1.000 1.000

0.0 1.000 1.000 1.000 0.993 0.043 0.991 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.928 0.944 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Now we discuss simulation results of the test statistics for spatial error correlation, their FoRs are
summarized in Tables 5 and 6 for different sample sizes. We focus on the (49, 7) sample for discussion.
For LMh, the empirical size is 0.048. Moreover, LMh is very powerful in detecting spatial error
correlation given that σ2

µ = λ = 0. For example, FoR of LMh is 0.856 when ρ = −0.2. However,
as discussed in Section 3.3.2, LMh is not robust against local misspecification, and this is confirmed by
the simulation results. Given ρ = 0, when σ2

µ and λ deviate locally from 0, the large FoRs of LMh are
undesirable. For example, when ρ = 0 but σ2

µ = λ = 0.2, FoR of LMh is 0.416. However, this size
distortion is avoided by using LM∗

h . When ρ = 0, σ2
µ takes values 0, 0.2 and λ ∈ [−0.4, 0.4], FoRs

of LM∗
h are in the range of [0.039, 0.081]. Although it is a little oversized in some cases, it is much

better than that of LMh. On the other hand, the robust LM test is supposed to be less powerful than the
corresponding LM test when the nuisance parameters are correctly specified. This is also confirmed by
the simulation results, that is, when σ2

µ = λ = 0, LM∗
h is less powerful than LMh. For example, when

ρ = −0.2, FoR of LMh is 0.856, while that of LM∗
h is 0.626. Next, LMi tests for spatial error correlation

in a pooled panel data model with spatial lag dependence. When σ2
µ = 0, the empirical sizes of LMi

vary in [0.040, 0.060]. As ρ deviates from 0, FoR increases as expected. Furthermore, as discussed in
Section 3.3.2, the robust LM test in this case is the same as LMi, implying that LMi is robust against
local deviation of σ2

µ from 0. This is confirmed by the simulation results. When σ2
µ = 0.2, ρ = 0,

the empirical sizes of LMi vary in [0.058, 0.080]. Next, we discuss LMj and LM∗
j . LMj tests for

spatial error correlation in a random effects panel data model without spatial lag dependence. We only
present the representative result when σ2

µ = 0.5 to save space, results in other cases are very similar.
The empirical size of LMj is 0.045, and the FoR increases as ρ deviates away from 0. For example,
FoR is 0.835 when ρ = −0.2. However, LMj suffers from size distortion when the nuisance parameter
λ deviates away from 0. For example, when λ = −0.4, ρ = 0, the FoR of LMj is 0.747, which is
undesirably high. For the same case, FoR of LM∗

j is 0.064. On the other hand, the robust LM test is less
powerful when the nuisance parameter is correctly specified. This is also confirmed by the simulation
results. For example, when λ = 0, ρ = −0.2, FoR of LM∗

j is 0.602, while that of LMj is 0.835. Lastly,
we discuss the performance of LMk. LMk tests for spatial error correlation in a random effects panel
data model with spatial lag dependence. The empirical sizes of LMk vary in [0.038, 0.058]. As expected,
when ρ moves away from 0, FoR increases rapidly, suggesting its good power performance. For all of
the above tests, their performances are even better for the (100, 10) sample than for the (49, 7) sample
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and follow a similar discussion. In sum, the test statistics LMh, LM∗
h , LMi, LMj , LM∗

j , and LMk are
all useful for detecting the spatial error correlation, but they are suited for different assumptions about
the nuisance parameters. In practice, researchers are suggested to analyze them together to draw correct
inference on ρ.

Table 5. FoR of LM Tests for the Spatial Error Correlation, Sample Size: (49, 7).

ρ = −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

LMh σ2
µ = 0 λ = −0.4 1.000 1.000 1.000 1.000 0.738 0.023 0.671 1.000 1.000

−0.2 1.000 1.000 1.000 0.986 0.305 0.193 0.975 1.000 1.000
0.0 1.000 1.000 1.000 0.856 0.048 0.754 1.000 1.000 1.000
0.2 1.000 1.000 0.996 0.340 0.452 0.993 1.000 1.000 1.000
0.4 1.000 1.000 0.753 0.210 0.965 1.000 1.000 1.000 1.000

LMh σ2
µ = 0.2 λ = −0.4 1.000 1.000 1.000 0.998 0.747 0.037 0.620 1.000 1.000

−0.2 1.000 1.000 1.000 0.984 0.324 0.189 0.971 1.000 1.000
0.0 1.000 1.000 0.999 0.822 0.065 0.743 1.000 1.000 1.000
0.2 1.000 1.000 0.992 0.372 0.416 0.989 1.000 1.000 1.000
0.4 1.000 1.000 0.756 0.206 0.954 1.000 1.000 1.000 1.000

LM∗h σ2
µ = 0 λ = −0.4 1.000 1.000 0.976 0.485 0.071 0.539 0.961 1.000 0.999

−0.2 1.000 1.000 0.990 0.562 0.056 0.482 0.941 1.000 0.999
0.0 1.000 1.000 0.995 0.626 0.039 0.431 0.952 0.999 0.989
0.2 1.000 1.000 0.997 0.639 0.052 0.460 0.969 1.000 0.961
0.4 1.000 1.000 0.996 0.524 0.046 0.597 0.980 1.000 0.880

σ2
µ = 0.2 λ = −0.4 1.000 1.000 0.975 0.495 0.081 0.535 0.937 1.000 0.999

−0.2 1.000 1.000 0.987 0.553 0.080 0.465 0.923 1.000 0.999
0.0 1.000 1.000 0.988 0.607 0.075 0.432 0.926 0.998 0.991
0.2 1.000 1.000 0.990 0.648 0.056 0.461 0.943 0.999 0.957
0.4 1.000 1.000 0.994 0.533 0.054 0.510 0.967 0.999 0.869

LMi σ2
µ = 0 λ = −0.4 1.000 1.000 0.999 0.665 0.050 0.479 0.957 0.998 1.000

−0.2 1.000 1.000 0.999 0.641 0.046 0.469 0.940 0.999 1.000
0.0 1.000 1.000 0.997 0.646 0.040 0.448 0.951 1.000 1.000
0.2 1.000 1.000 0.997 0.646 0.060 0.457 0.961 0.999 1.000
0.4 1.000 1.000 0.996 0.639 0.046 0.497 0.966 1.000 1.000

σ2
µ = 0.2 λ = −0.4 1.000 1.000 0.995 0.651 0.058 0.458 0.939 0.999 1.000

−0.2 1.000 1.000 0.995 0.619 0.080 0.455 0.927 0.998 1.000
0.0 1.000 1.000 0.991 0.619 0.072 0.454 0.920 0.997 1.000
0.2 1.000 1.000 0.992 0.662 0.069 0.463 0.939 1.000 1.000
0.4 1.000 1.000 0.995 0.610 0.063 0.487 0.951 1.000 1.000

LMj σ2
µ = 0.5 λ = −0.4 1.000 1.000 1.000 1.000 0.747 0.036 0.657 1.000 1.000

−0.2 1.000 1.000 1.000 0.987 0.301 0.192 0.975 1.000 1.000
0.0 1.000 1.000 1.000 0.835 0.045 0.771 1.000 1.000 1.000
0.2 1.000 1.000 0.991 0.353 0.427 0.993 1.000 1.000 1.000
0.4 1.000 1.000 0.758 0.194 0.957 1.000 1.000 1.000 1.000

LM∗j σ2
µ = 0.5 λ = −0.4 1.000 1.000 0.979 0.480 0.064 0.522 0.945 1.000 0.998

−0.2 1.000 1.000 0.990 0.551 0.060 0.460 0.934 1.000 0.998
0.0 1.000 1.000 0.993 0.602 0.040 0.412 0.943 0.999 0.985
0.2 1.000 1.000 0.993 0.617 0.035 0.429 0.954 1.000 0.944
0.4 1.000 1.000 0.991 0.508 0.042 0.550 0.972 0.999 0.852

LMk σ2
µ = 0.5 λ = −0.4 1.000 1.000 0.997 0.660 0.049 0.417 0.933 0.999 1.000

−0.2 1.000 1.000 0.998 0.607 0.049 0.422 0.936 0.996 1.000
0.0 1.000 1.000 0.992 0.627 0.058 0.433 0.952 0.999 1.000
0.2 1.000 1.000 0.996 0.602 0.054 0.427 0.952 1.000 1.000
0.4 1.000 1.000 0.995 0.630 0.038 0.480 0.948 1.000 1.000
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Table 6. FoR of LM Tests for the Spatial Error Correlation, Sample Size: (100, 10).

ρ = −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

LMh σ2
µ = 0 λ = −0.4 1.000 1.000 1.000 1.000 0.989 0.016 0.996 1.000 1.000

−0.2 1.000 1.000 1.000 1.000 0.654 0.573 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.999 0.048 0.994 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.628 0.819 1.000 1.000 1.000 1.000
0.4 1.000 1.000 0.984 0.369 1.000 1.000 1.000 1.000 1.000

LMh σ2
µ = 0.2 λ = −0.4 1.000 1.000 1.000 1.000 0.983 0.030 0.993 1.000 1.000

−0.2 1.000 1.000 1.000 1.000 0.654 0.548 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.999 0.086 0.993 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.633 0.781 1.000 1.000 1.000 1.000
0.4 1.000 1.000 0.976 0.344 1.000 1.000 1.000 1.000 1.000

LM∗h σ2
µ = 0 λ = −0.4 1.000 1.000 1.000 0.852 0.076 0.938 1.000 1.000 1.000

−0.2 1.000 1.000 1.000 0.934 0.061 0.899 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.952 0.051 0.899 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.950 0.036 0.930 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.901 0.067 0.977 1.000 1.000 1.000

0.2 λ = −0.4 1.000 1.000 1.000 0.826 0.103 0.914 1.000 1.000 1.000
−0.2 1.000 1.000 1.000 0.917 0.086 0.870 1.000 1.000 1.000

0.0 1.000 1.000 1.000 0.948 0.079 0.864 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.921 0.052 0.890 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.896 0.070 0.961 1.000 1.000 1.000

LMi σ2
µ = 0 λ = −0.4 1.000 1.000 1.000 0.961 0.046 0.910 1.000 1.000 1.000

−0.2 1.000 1.000 1.000 0.958 0.047 0.896 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.954 0.048 0.892 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.948 0.047 0.902 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.950 0.048 0.913 1.000 1.000 1.000

0.2 −0.4 1.000 1.000 1.000 0.955 0.064 0.876 1.000 1.000 1.000
−0.2 1.000 1.000 1.000 0.948 0.064 0.865 1.000 1.000 1.000

0.0 1.000 1.000 1.000 0.933 0.066 0.864 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.934 0.061 0.870 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.942 0.056 0.885 1.000 1.000 1.000

LMj σ2
µ = 0.5 λ = −0.4 1.000 1.000 1.000 1.000 0.990 0.018 0.998 1.000 1.000

−0.2 1.000 1.000 1.000 1.000 0.658 0.577 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.999 0.049 0.996 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.642 0.810 1.000 1.000 1.000 1.000
0.4 1.000 1.000 0.983 0.351 1.000 1.000 1.000 1.000 1.000

LM∗j σ2
µ = 0.5 λ = −0.4 1.000 1.000 1.000 0.853 0.086 0.932 1.000 1.000 1.000

−0.2 1.000 1.000 1.000 0.933 0.060 0.893 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.949 0.049 0.884 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.940 0.035 0.921 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.903 0.058 0.974 1.000 1.000 1.000

LMk σ2
µ = 0.5 λ = −0.4 1.000 1.000 1.000 0.958 0.055 0.899 1.000 1.000 1.000

−0.2 1.000 1.000 1.000 0.949 0.048 0.888 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.947 0.050 0.884 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.949 0.046 0.897 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.953 0.046 0.911 1.000 1.000 1.000

Finally, the performances of the test statistics for spatial lag dependence are summarized in
Tables 7 and 8. We focus on the (49, 7) sample for discussion. For LMl, the empirical size is 0.044, and
it is very powerful in detecting the spatial lag dependence given that σ2

µ = ρ = 0. For example, FoR of
LMl is 0.987 when λ = −0.4. However, as discussed in Section 3.3.3, LMl is not robust against local
misspecification, and this is confirmed by the simulation results. Given λ = 0, when σ2

µ and ρ deviate
locally from 0, the large FoRs of LMl are undesirable. For example, when λ = 0 but σ2

µ = ρ = 0.2,
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FoR of LMl is 0.526. This size distortion is to some extent avoided by LM∗
l . When λ = 0 and σ2

µ takes
values 0, 0.2 and ρ ∈ [−0.2, 0.2], FoRs of LM∗

l are in the range of [0.035, 0.088]. However, LM∗
l should

be used with caution in this case, since the range of ρ in which LM∗
l provides valid size is narrow, and

this becomes even worse for the (100, 10) sample. On the other hand, the robust LM test is supposed to
be less powerful than the corresponding LM test when the nuisance parameters are correctly specified.
When σ2

µ = ρ = 0, LM∗
l is less powerful than LMl. For example, when λ = −0.4, FoR of LMl is 0.987,

while that of LM∗
l is 0.809. Next, LMm tests for the spatial lag dependence in a pooled panel data model

with spatial error correlation. The empirical sizes of LMm vary in [0.037, 0.055]. As λ deviates from 0,
FoR increases. Moreover, as discussed in Section 3.3.3, the robust LM test in this case is the same as
LMm, implying that LMm itself is robust against local deviation of σ2

µ from 0. This is confirmed in the
simulation results. When σ2

µ = 0.2, λ = 0, the FoRs of LMm vary in [0.060, 0.74]. Next, we discuss
LMn and LM∗

n. LMn tests for the spatial lag dependence in a random effects panel data model without
spatial error correlation. We only present the representative result when σ2

µ = 0.5, results in other cases
are very similar. The empirical size of LMn is 0.035, and the FoR increases as λ deviates away from
0. For example, FoR is 0.981 when λ = −0.4. However, LMn suffers from size distortion when the
nuisance parameter ρ deviates away from 0. For example, when λ = 0, ρ = −0.2, the FoR of LMn is
0.476, which is undesirably high. For the same case, FoR of LM∗

n is 0.063. However, as LM∗
l , LM∗

n

should also be used with caution, since the range of ρ in which LM∗
n provides valid size is narrow, and

it becomes even worse for the (100, 10) sample. On the other hand, LM∗
n is less powerful than LMn

when ρ = 0. For example, when ρ = 0, λ = −0.4, FoR of LM∗
n is 0.778, while that of LMn is 0.981.

Lastly, we discuss the performance of LMo. LMo tests for the spatial lag dependence in a random effects
panel data model with spatial error correlation. The empirical sizes of LMo vary in [0.063, 0.079]. As
expected, when λ moves away from 0, FoR increases, suggesting its good power performance. For all of
the above tests, their performances for the (100, 10) sample follows a similar discussion. In sum, the test
statistics LMl, LM∗

l , LMm, LMn, LM∗
n, and LMo are all useful for detecting the spatial lag dependence,

but they are suited for different assumptions about the nuisance parameters. In practice, researchers are
suggested to analyze them together to draw correct inference on λ.

Table 7. FoR of LM Tests for the Spatial Lag Dependence, Sample Size: (49, 7).

λ = −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

LMl σ2
µ = 0 ρ = −0.4 1.000 1.000 1.000 1.000 0.965 0.221 0.405 1.000 1.000

−0.2 1.000 1.000 1.000 0.982 0.446 0.063 0.938 1.000 1.000
0.0 1.000 1.000 0.987 0.591 0.044 0.693 0.998 1.000 1.000
0.2 1.000 0.984 0.631 0.067 0.576 0.988 1.000 1.000 1.000
0.4 0.979 0.510 0.061 0.593 0.992 1.000 1.000 1.000 1.000

σ2
µ = 0.2 ρ = −0.4 1.000 1.000 1.000 1.000 0.964 0.285 0.305 0.999 1.000

−0.2 1.000 1.000 1.000 0.968 0.505 0.071 0.892 1.000 1.000
0.0 1.000 1.000 0.985 0.620 0.051 0.637 0.998 1.000 1.000
0.2 1.000 0.987 0.637 0.094 0.526 0.981 1.000 1.000 1.000
0.4 0.963 0.502 0.081 0.599 0.981 1.000 1.000 1.000 1.000
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Table 7. Cont.

λ = −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

LM∗l σ2
µ = 0 ρ = −0.4 0.626 0.318 0.128 0.121 0.337 0.801 0.995 1.000 1.000

−0.2 0.968 0.855 0.547 0.163 0.054 0.497 0.983 1.000 1.000
0.0 0.999 0.974 0.809 0.338 0.035 0.459 0.978 1.000 1.000
0.2 0.999 0.991 0.858 0.305 0.066 0.649 0.993 1.000 1.000
0.4 1.000 0.976 0.651 0.121 0.323 0.922 1.000 1.000 1.000

σ2
µ = 0.2 ρ = −0.4 0.582 0.318 0.157 0.153 0.353 0.753 0.992 1.000 1.000

−0.2 0.961 0.812 0.510 0.181 0.088 0.450 0.964 1.000 1.000
0.0 0.998 0.963 0.773 0.366 0.063 0.421 0.963 1.000 1.000
0.2 0.999 0.985 0.824 0.324 0.082 0.614 0.991 1.000 1.000
0.4 1.000 0.952 0.641 0.145 0.309 0.904 1.000 1.000 1.000

LMm σ2
µ = 0 ρ = −0.4 1.000 1.000 0.958 0.490 0.050 0.484 0.981 1.000 1.000

−0.2 1.000 0.998 0.941 0.444 0.037 0.422 0.966 1.000 0.973
0.0 1.000 0.998 0.900 0.406 0.055 0.371 0.909 0.997 0.757
0.2 1.000 0.988 0.862 0.360 0.049 0.285 0.769 0.923 0.556
0.4 0.998 0.971 0.756 0.263 0.046 0.233 0.575 0.766 0.366

σ2
µ = 0.2 ρ = −0.4 1.000 1.000 0.978 0.543 0.067 0.493 0.990 1.000 1.000

−0.2 1.000 0.999 0.929 0.478 0.074 0.446 0.964 1.000 0.962
0.0 1.000 0.998 0.924 0.478 0.060 0.367 0.934 0.998 0.701
0.2 1.000 0.996 0.869 0.338 0.067 0.299 0.818 0.946 0.462
0.4 0.999 0.977 0.750 0.294 0.068 0.225 0.591 0.772 0.531

LMn σ2
µ = 0.5 ρ = −0.4 1.000 1.000 1.000 1.000 0.970 0.269 0.291 0.999 1.000

−0.2 1.000 1.000 1.000 0.979 0.476 0.063 0.917 1.000 1.000
0.0 1.000 1.000 0.981 0.591 0.035 0.676 1.000 1.000 1.000
0.2 1.000 0.984 0.612 0.067 0.557 0.989 1.000 1.000 1.000
0.4 0.965 0.461 0.080 0.629 0.986 1.000 1.000 1.000 1.000

LM∗n σ2
µ = 0.5 ρ = −0.4 0.577 0.285 0.130 0.137 0.353 0.779 0.991 1.000 1.000

−0.2 0.966 0.823 0.515 0.153 0.063 0.453 0.972 1.000 1.000
0.0 0.999 0.971 0.778 0.328 0.051 0.421 0.973 1.000 1.000
0.2 0.999 0.983 0.830 0.287 0.072 0.642 0.996 1.000 1.000
0.4 1.000 0.952 0.623 0.103 0.326 0.928 1.000 1.000 1.000

LMo σ2
µ = 0.5 ρ = −0.4 1.000 1.000 0.961 0.504 0.064 0.532 0.992 1.000 0.998

−0.2 1.000 0.999 0.933 0.477 0.070 0.484 0.982 1.000 0.964
0.0 1.000 0.997 0.899 0.442 0.078 0.438 0.935 0.996 0.644
0.2 1.000 0.999 0.918 0.475 0.079 0.347 0.818 0.892 0.371
0.4 1.000 0.995 0.855 0.381 0.063 0.205 0.460 0.522 0.275

Table 8. FoR of LM Tests for the Spatial Lag Dependence, Sample Size: (100, 10).

λ = −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

LMl σ2
µ = 0 ρ = −0.4 1.000 1.000 1.000 1.000 1.000 0.608 0.699 1.000 1.000

−0.2 1.000 1.000 1.000 1.000 0.853 0.108 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.953 0.056 0.975 1.000 1.000 1.000
0.2 1.000 1.000 0.939 0.068 0.922 1.000 1.000 1.000 1.000
0.4 1.000 0.825 0.102 0.978 1.000 1.000 1.000 1.000 1.000

σ2
µ = 0.2 ρ = −0.4 1.000 1.000 1.000 1.000 1.000 0.660 0.581 1.000 1.000

−0.2 1.000 1.000 1.000 1.000 0.861 0.105 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.929 0.082 0.959 1.000 1.000 1.000
0.2 1.000 1.000 0.930 0.087 0.889 1.000 1.000 1.000 1.000
0.4 1.000 0.787 0.148 0.961 1.000 1.000 1.000 1.000 1.000
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Table 8. Cont.

λ = −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

LM∗l σ2
µ = 0 ρ = −0.4 0.955 0.579 0.152 0.198 0.731 0.995 1.000 1.000 1.000

−0.2 1.000 0.997 0.908 0.316 0.101 0.893 1.000 1.000 1.000
0.0 1.000 1.000 0.993 0.723 0.058 0.844 1.000 1.000 1.000
0.2 1.000 1.000 0.997 0.642 0.111 0.959 1.000 1.000 1.000
0.4 1.000 1.000 0.946 0.128 0.704 1.000 1.000 1.000 1.000

σ2
µ = 0.2 ρ = −0.4 0.927 0.542 0.175 0.238 0.715 0.988 1.000 1.000 1.000

−0.2 1.000 0.989 0.860 0.327 0.137 0.849 1.000 1.000 1.000
0.0 1.000 1.000 0.994 0.684 0.093 0.798 1.000 1.000 1.000
0.2 1.000 1.000 0.992 0.612 0.131 0.948 1.000 1.000 1.000
0.4 1.000 1.000 0.921 0.153 0.679 1.000 1.000 1.000 1.000

LMm σ2
µ = 0 ρ = −0.4 1.000 1.000 1.000 0.897 0.052 0.904 1.000 1.000 1.000

−0.2 1.000 1.000 1.000 0.864 0.054 0.860 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.794 0.053 0.794 1.000 1.000 0.995
0.2 1.000 1.000 0.997 0.712 0.055 0.679 0.994 1.000 0.883
0.4 1.000 1.000 0.987 0.588 0.045 0.522 0.957 0.993 0.624

σ2
µ = 0.2 ρ = −0.4 1.000 1.000 1.000 0.870 0.068 0.858 1.000 1.000 1.000

−0.2 1.000 1.000 1.000 0.810 0.075 0.800 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.795 0.075 0.732 0.999 1.000 0.989
0.2 1.000 1.000 0.993 0.679 0.070 0.630 0.993 1.000 0.888
0.4 1.000 1.000 0.989 0.592 0.073 0.491 0.951 0.993 1.000

LMn σ2
µ = 0.5 ρ = −0.4 1.000 1.000 1.000 1.000 1.000 0.648 0.634 1.000 1.000

−0.2 1.000 1.000 1.000 1.000 0.868 0.086 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.941 0.053 0.975 1.000 1.000 1.000
0.2 1.000 1.000 0.930 0.056 0.930 1.000 1.000 1.000 1.000
0.4 1.000 0.795 0.124 0.980 1.000 1.000 1.000 1.000 1.000

LM∗n σ2
µ = 0.5 ρ = −0.4 0.941 0.531 0.132 0.227 0.726 0.995 1.000 1.000 1.000

−0.2 1.000 0.995 0.884 0.305 0.105 0.874 1.000 1.000 1.000
0.0 1.000 1.000 0.995 0.702 0.055 0.813 1.000 1.000 1.000
0.2 1.000 1.000 0.999 0.624 0.100 0.961 1.000 1.000 1.000
0.4 1.000 1.000 0.940 0.137 0.731 1.000 1.000 1.000 1.000

LMo σ2
µ = 0.5 ρ = −0.4 1.000 1.000 1.000 0.884 0.062 0.992 1.000 1.000 1.000

−0.2 1.000 1.000 1.000 0.858 0.076 0.880 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.830 0.084 0.812 1.000 1.000 0.979
0.2 1.000 1.000 1.000 0.759 0.076 0.696 0.994 1.000 0.761
0.4 1.000 1.000 0.994 0.647 0.070 0.497 0.925 0.966 0.746

5. Empirical Illustration

In this section, we revisit the empirical example in Baltagi and Levin (1992) [32]. For the purpose
of illustrating usefulness of the test statistics in our framework, we estimate a static demand model for
cigarettes as in Elhorst (2014) [25]. The data is obtained from the Wiley website, it is a panel data of 45
U.S. states and Washington D.C. over the period of 1963–1992.4 We estimate the regression equation{

lnCt = λW lnCt + β0 + β1 lnPt + β2 lnYt + εt,

εt = ρMεt + µ+ vt,

for t = 1, · · ·, T . In the above specification, Ct is the vector of average cigarettes consumption (in packs)
per capita (14 years and older) for all the states in a given year t. Pt is the corresponding price (per pack)

4 The data for Colorado, Oregon and Pennsylvania are not available.



Econometrics 2015, 3 780

vector in year t, with β1 capturing the price effect on the demand for cigarettes. Yt is the vector of per
capita disposable income in year t, with β2 capturing the income effect on the demand for cigarettes. In
the regression analysis, in addition to the standard price and income effects, we are particularly interested
in whether and how the consumption of cigarettes in one state is related to those of its neighboring states.
This is reflected by the spatial lag dependence structure (or the corresponding parameter λ). Further, we
use the error component structure to allow for individual random effects and spatial correlation in the
error term. For the spatial weights matrices, we choose two specifications and try different combinations
of them. One is the standard row-normalized first-order rook contiguity matrix. The other one is the
row-standardized border length weights matrix as suggested in Debarsy et al., (2012) [33].5

Since we are particularly interested in whether the consumptions of cigarettes are spatial correlated
and how they are correlated, we plot the average consumption of cigarettes (in packs) per capita over
the 30 years for all the states in Figure 1. On the one hand, we see that the cigarette consumptions in
some states are negatively correlated with those of its neighboring states. For example, Utah, which has
a high percentage of Mormon population,6 has the lowest consumption of cigarettes, with the average
consumption to be 67.9 packs per capita per year. In sharp contrast, the consumption of cigarettes in
Nevada is nearly 2.6 times of that of Utah, and this could be attributed to the fact that Nevada is a highly
tourist state with many casinos. The cigarette consumption in Utah is negatively correlated with those
of its neighboring states. This similar pattern also hold for Nevada, New Mexico, Kentucky, and New
Hampshire. On the other hand, we see that the consumptions of cigarettes among many other states tend
to be similar and thus positively correlated, examples include Iowa, Wisconsin, Pennsylvania, Alabama,
Georgia, and so on. The overall spatial dependence is not clear and we will use the formal regression
analysis to assess it below.

Figure 1. Average Consumption of Cigarettes (in packs) per Capita per Year by States,
1963–1992.

5 The data for border length is obtained from Holmes [34].
6 According to the 2010 United States Census, the Mormons represent 62.1% of Utah’s total population.
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Before the regression analysis, we first perform the diagnostic procedures and the results are
summarized in Table 9. The first row in Table 9 shows that the joint null hypothesis Ha

0 is strongly
rejected, thus the classical pooled panel data model not appropriate for this data set, and the OLS
estimator is biased. The next four rows show that the random effects model is strongly favored against
the pooled panel data model, regardless of the assumptions imposed on the spatial parameters. Next,
when we test for the spatial error effect and the spatial lag effect jointly, the values of LMf and LMg

show that the null hypothesis ρ = λ = 0 is rejected no matter we assume σ2
µ = 0 or allow for the case

σ2
µ > 0. This points us to a random effects model with at least one type of spatial effects. In the next

six rows, we focus on testing for the spatial error correlation. Although these test statistics unanimously
reject the null hypothesis ρ = 0 in favor of a model with spatial error correlation, we point out that
the appropriate statistics should be LMj , LM∗

j , and LMk given the presence of random effects but not
spatial lag dependence yet at this stage. Finally, we test for the spatial lag dependence, the results in
the last six rows suggest rejecting the null hypothesis of no spatial lag dependence, although there is a
small value of LM∗

l . Given that the random effects and the spatial error correlation are present by results
above, we point out that the appropriate statistics should be LM∗

l , LM∗
n, and LMo. From the estimation

results in Table 10, the estimated ρ is between 0.353 and 0.622 and thus it is not proper to consider such
value of ρ as local deviation from 0. As a result, the robust LM tests do not apply. We are left with LMo,
and it points to the presence of spatial lag dependence. In the following, we first estimate the random
effects model with spatial error correlation using two types of spatial weights matrices, then we add in
the spatially lagged dependent variable as suggested by our test statistics.

The estimation results are summarized in Table 10. The first column provides the OLS benchmark
estimation result for comparison purpose. Although it is biased, all the parameter estimates have
expected signs. Price has a negative effect on the consumption of cigarettes per capita, and the disposable
income per capita has a positive effect on the consumption of cigarettes per capita, which are consistent
with the standard consumption theory. In Columns 2 and 4, we include the spatial error correlation for the
two different spatial weights matrices. Compared to the OLS estimates, the price and income elasticity
all become smaller in magnitude but have the same signs. The estimated spatial error correlation are
positive as 0.353 and 0.364, which do not differ much for the two different spatial weights matrices.
In Columns 3, 5, 6, and 7, we estimate the full model with different combinations of the weights
matrices. The estimates for the spatial lag dependence is negative and statistically significant, which
is consistent with our diagnostic testing results. We thus conclude that the full model is the more
appropriate specification, and overall we find that the negative correlation dominates in the spatial
dependence among cigarette consumptions.
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Table 9. LM Testing Statistics.

W = Rook W = Border W = Rook W = Border
M = Rook M = Border M = Border M=Rook

Joint Test LMa 12559 ∗∗∗ 12542 ∗∗∗ 12532 ∗∗∗ 12555 ∗∗∗

Testing for Random Effects
LMb 12471 ∗∗∗ 12471 ∗∗∗ 12471 ∗∗∗ 12471 ∗∗∗

LMc 12207 ∗∗∗ 12260 ∗∗∗ 12260 ∗∗∗ 12207 ∗∗∗

LMd 12471 ∗∗∗ 12530 ∗∗∗ 12471 ∗∗∗ 12530 ∗∗∗

LMe 1354.7 ∗∗∗ 1662.7 ∗∗∗ 1573.1 ∗∗∗ 1457.8 ∗∗∗

Testing for Spatial Effects

Spatial Error and Lag
LMf 88.13 ∗∗∗ 70.78 ∗∗∗ 60.82 ∗∗∗ 83.76 ∗∗∗

LMg 172.81 ∗∗∗ 188.36 ∗∗∗ 174.62 ∗∗∗ 143.68 ∗∗∗

Spatial Error
LMh 76.35 ∗∗∗ 60.72 ∗∗∗ 60.72 ∗∗∗ 76.35 ∗∗∗

LM∗h 51.78 ∗∗∗ 42.07 ∗∗∗ 24.47 ∗∗∗ 55.05 ∗∗∗

LMi 32.39 ∗∗∗ 23.68 ∗∗∗ 10.33 ∗∗∗ 38.02 ∗∗∗

LMj 138.96 ∗∗∗ 156.08 ∗∗∗ 156.08 ∗∗∗ 138.96 ∗∗∗

LM∗j 126.82 ∗∗∗ 126.41 ∗∗∗ 128.63 ∗∗∗ 81.72 ∗∗∗

LMk 94.01 ∗∗∗ 112.90 ∗∗∗ 99.03 ∗∗∗ 58.83 ∗∗∗

Spatial Lag
LMl 36.35 ∗∗∗ 28.71 ∗∗∗ 36.35 ∗∗∗ 28.71 ∗∗∗

LM∗l 11.77 ∗∗∗ 10.06 ∗∗∗ 0.10 7.41 ∗∗∗

LMm 1147.00 ∗∗∗ 1385.40 ∗∗∗ 1028.20 ∗∗∗ 580.53 ∗∗∗

LMn 45.99 ∗∗∗ 61.95 ∗∗∗ 45.99 ∗∗∗ 61.95 ∗∗∗

LM∗n 33.85 ∗∗∗ 32.28 ∗∗∗ 18.53 ∗∗∗ 4.72 ∗∗∗

LMo 133.96 ∗∗∗ 283.36 ∗∗∗ 108.62 ∗∗∗ 80.05 ∗∗∗

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 10. Estimation of the Cigarette Demand Function.

Model OLS MLE MLE MLE MLE MLE MLE

(W = M = Rook) (W = M = Border)
(W = Rook) (W = Border)

(M = Border) (M = Rook)

β̂0 2.825 ∗∗∗ 2.918 ∗∗∗ 4.267 ∗∗∗ 2.949 ∗∗∗ 3.737 ∗∗∗ 4.634 ∗∗∗ 3.227 ∗∗∗

(0.098) (0.086) (0.241) (0.087) (0.196) (0.261) (0.169)

β̂1 −0.773 ∗∗∗ −0.739 ∗∗∗ −0.867 ∗∗∗ −0.729 ∗∗∗ −0.821 ∗∗∗ −0.851 ∗∗∗ −0.788 ∗∗∗

(0.026) (0.021) (0.026) (0.021) (0.027) (0.025) (0.030)

β̂2 0.586 ∗∗∗ 0.559 ∗∗∗ 0.645 ∗∗∗ 0.551 ∗∗∗ 0.616 ∗∗∗ 0.628 ∗∗∗ 0.595 ∗∗∗

(0.022) (0.018) (0.022) (0.018) (0.022) (0.022) (0.024)

λ̂ −0.329 ∗∗∗ −0.204 ∗∗∗ −0.388 ∗∗∗ −0.088 ∗∗

(0.044) (0.039) (0.044) (0.038)

ρ̂ 0.353 ∗∗∗ 0.586 ∗∗∗ 0.364 ∗∗∗ 0.510 ∗∗∗ 0.622 ∗∗∗ 0.419 ∗∗∗

(0.030) (0.034) (0.028) (0.034) (0.032) (0.039)

σ̂2
µ 0.152 ∗∗∗ 0.140 ∗∗∗ 0.154 ∗∗∗ 0.145 ∗∗∗ 0.140 ∗∗∗ 0.149 ∗∗∗

(0.015) (0.014) (0.016) (0.015) (0.014) (0.015)

σ̂2
v 0.075 ∗∗∗ 0.069 ∗∗∗ 0.073 ∗∗∗ 0.071 ∗∗∗ 0.067 ∗∗∗ 0.074 ∗∗∗

(0.001) (0.002) (0.001) (0.002) (0.002) (0.001)

log-likelihood 450.94 1489.2 1514.7 1502.4 1514.6 1537.9 1491.7

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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6. Conclusions

In this paper, we propose a panel data random effects models with both spatially correlated error
components and spatially lagged dependent variables. We consider diagnostic testing within such a
framework. We first derive the joint LM test for the individual random effects, the spatial error correlation
and the spatial lag dependence. In practice, applied researchers should first consider this joint test. If
the joint null hypothesis cannot be rejected, it is reasonable to adopt the classical pooled panel data
model. Otherwise, either the individual random effects, or the spatial error correlation, or the spatial
lag dependence must be taken into consideration. Next, we derive a wide range of LM tests for the
individual random effects and for the two spatial effects separately. In addition, in order to guard against
possible local model misspecification, we apply the Bera and Yoon (1993) [19] principle and construct
robust LM tests in some cases. These test statistics complement each other and should be used together
in performing diagnostic test to search for the most appropriate model. A small Monte Carlo experiment
is carried out and the size and power performances of these test statistics are satisfactory. We further use
the cigarette demand data set in Baltagi and Levin (1992) [32] to illustrate our testing procedures.

Some future research directions can be considered. First, for the model specification of spatially
correlated error components used in this paper, although it allows for both spatial spillovers of permanent
and temporary shocks, it does not permit different intensities of these two shocks. It would be of interest
to relax this assumption and further generalize our model (see Baltagi et al., 2013 [12]). Second, one
can borrow the ideas in Baltagi and Yang (2013a, 2013b) [15,17] to modify our test statistics in order
to remedy distributional misspecifications in finite sample, sensitivity to spatial layout, or to be robust
against unknown heteroskedasticity.
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Appendix

In the appendices, we provide detailed derivations of the score vector, information matrix and the LM
test statistics in each case.

Appendix A

In this appendix, we provide formulae of the score vector and the information matrix for our general
model specification. Let R1 = M(IN − ρM)−1, R2 = W (IN − ρM)−1, R3 = W (IN − λW )−1 and
R4 = (IN − ρM ′)(IN − ρM). The score vector is

∂L(δ)

∂δ
=


sβ

sρ

sλ

sσ2
µ

sσ2
v

 =


X ′A′Ω−1Aε

−T tr(R1) + ε′A′Ω−1(IT ⊗M)ε

−T tr(R3) + ε′A′Ω−1A(IT ⊗W )y

− NT
2(Tσ2

µ+σ2
v)

+ T
2(Tσ2

µ+σ2
v)2
ε′A′(J̄T ⊗ IN)Aε

− N
2(Tσ2

µ+σ2
v)
− N(T−1)

2σ2
v
− 1

2
ε′A′ ∂Ω−1

∂σ2
v
Aε

 ,

where ε = By−Xβ. Let I be the information matrix, that is, I = −E [∂2L(δ)/∂δ∂δ′]. Then after some
routine calculation, the elements of I are given by

Iββ′ = X ′A′Ω−1AX, Iβρ = 0, Iβλ = X ′A′Ω−1A(IT ⊗W )B−1Xβ, Iβσ2
µ

= 0 Iβσ2
v

= 0,

Iρρ = T tr(R1R1 +R1R
′
1), Iρλ = T tr(R3R1) + T tr[R3(IN − ρM)−1R′1(IN − ρM)],

Iρσ2
µ

=
T

Tσ2
µ + σ2

v

tr(R1), Iρσ2
v

=

(
1

Tσ2
µ + σ2

v

+
T − 1

σ2
v

)
tr(R1),

Iλλ = T tr(R3R3) + T tr(R4R3R
−1
4 R′3) + (B−1Xβ)′(IT ⊗W ′)A′Ω−1A(IT ⊗W )B−1Xβ,

Iλσ2
µ

=
T

Tσ2
µ + σ2

v

tr(R3), Iλσ2
v

=

(
1

Tσ2
µ + σ2

v

+
T − 1

σ2
v

)
tr(R3),

Iσ2
µσ

2
µ

=
NT 2

2(Tσ2
µ + σ2

v)
2
, Iσ2

µσ
2
v

=
NT

2(Tσ2
µ + σ2

v)
2
, Iσ2

vσ
2
v

=
N

2(Tσ2
µ + σ2

v)
2

+
N(T − 1)

2(σ2
v)

2
.

Due to the large number of test statistics in this paper, it turns out to be convenient to introduce some
general notations for reference and easy exposition. Let

ẑρ = ε̂′Â′Ω̂−1(IT ⊗M)ε̂, ẑλ = ε̂′Â′Ω̂−1Â(IT ⊗W )y, ẑσ2
µ

=
ε̂′Â′(J̄T ⊗ IN)Âε̂

σ̂2
v

−N,

where ε̂ = B̂y−Xβ̂, and Â, B̂, Ω̂, β̂, σ̂2
v are restricted MLEs of A,B,Ω, β, σ2

v , respectively. Next, define

ν̂ = ŷ′(IT ⊗W ′)Â′Ω̂−1Â(IT ⊗W )ŷ, τ̂ = T 2(b1b3 − b2
2) + Tb1ω̂,

ω̂ = ŷ′(IT ⊗W ′)Â′
[
Ω̂−1 − Ω̂−1ÂX(X ′Â′Ω̂−1ÂX)−1X ′Â′Ω̂−1

]
Â(IT ⊗W )ŷ,

where ŷ = B̂−1Xβ̂, b1 = tr(M ′M +MM), b2 = tr(M ′W +MW ), b3 = tr(W ′W +WW ). Finally, let

ξ̂ =
NTϑ̂2 +Nω̂ − 2T ϑ̂2

3

Tb1(NTϑ̂2 +Nω̂ − 2T ϑ̂2
3)−N(T ϑ̂1)2

, ζ̂ =
Nθ̂1 − 2θ̂2

3

(Nθ̂1 − 2θ̂2
3)(T θ̂4 + ω̂)−NT θ̂2

2

,
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where ϑ̂1 = tr[(M + M ′)R̂3], ϑ̂2 = tr(R̂3R̂3 + R̂3R̂
′
3), ϑ̂3 = tr(R̂3), θ̂1 = tr

(
R̂1R̂1 + R̂1R̂

′
1

)
,

θ̂2 = tr
(
WR̂1 + R̂2R̂

′
1(IN − ρ̂M)

)
, θ̂3 = tr(R̂1), θ̂4 = tr(WW ) + tr

(
R̂2R̂

′
2R̂4

)
, and R̂1, R̂2, R̂3, R̂4

are restricted MLEs of R1, R2, R3, R4, respectively.
For notational convenience in deriving many LM test statistics in Appendix B, we write the general

information matrix as

I =


Iββ′ Iβρ Iβλ Iβσ2

µ
Iβσ2

v

· Iρρ Iρλ Iρσ2
µ
Iρσ2

v

· · Iλλ Iλσ2
µ
Iλσ2

v

· · · Iσ2
µσ

2
µ
Iσ2

µσ
2
v

· · · · Iσ2
vσ

2
v

 ,

and partition it into

I =

(
I11 I12

I21 I22

)
, where I11 = Iββ′.

Now

(I22 − I21I−1
11 I12)

=


Iρρ Iρλ Iρσ2

µ
Iρσ2

v

· Iλλ Iλσ2
µ
Iλσ2

v

· · Iσ2
µσ

2
µ
Iσ2

µσ
2
v

· · · Iσ2
vσ

2
v

−

Iρβ′I−1

ββ′

Iλβ′I−1
ββ′

Iσ2
µβ
′I−1
ββ′

Iσ2
vβ
′I−1
ββ′

( Iβρ Iβλ Iβσ2
µ
Iβσ2

v

)

=


Jρρ Jρλ Jρσ2

µ
Jρσ2

v

· Jλλ Jλσ2
µ
Jλσ2

v

· · Jσ2
µσ

2
µ
Jσ2

µσ
2
v

· · · Jσ2
vσ

2
v

 ≡ J ,
where Js1s2 = Is1s2 − Is1β′I−1

ββ′Iβs2 for s1, s2 = ρ, λ, σ2
µ or σ2

v . Further partition J into

J =

(
J11 J12

J21 J22

)
, where J11 =

(
Jρρ Jρλ
· Jλλ

)
.

Let K = J11 − J12J −1
22 J21 and L = J22 − J21J −1

11 J12, thus the upper left 2 by 2 submatrix and lower
right 2 by 2 submatrix of J −1 are K−1,L−1, respectively.7 Moreover, we use I∆

s1s2
to denote the term in

I−1 with the same location as Is1s2 in I.

Appendix B

In this appendix, we provide detailed derivations for all of the LM test statistics.

7 For computing the inverse of a partitioned symmetric matrix, if Λ =

(
Λ11 Λ12

Λ21 Λ22

)
, then

Λ−1 =

(
(Λ11 − Λ12Λ−1

22 Λ21)−1 −Λ−1
11 Λ12(Λ22 − Λ21Λ−1

11 Λ12)−1

−(Λ22 − Λ21Λ−1
11 Λ12)−1Λ21Λ−1

11 (Λ22 − Λ21Λ−1
11 Λ12)−1

)
.
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B.1. Derivation of LMa

The restricted MLE under Ha
0 is essentially the OLS estimator, i.e., β̂a = (X ′X)−1X ′y,

σ̂2
v,a = (ε̂′aε̂a)/(NT ), where ε̂a = y − ŷa, ŷa = Xβ̂a. The score vector under Ha

0 and evaluated at
the restricted MLE is

∂L(δ)

∂δ
|a =

(
0 ẑρ,a ẑλ,a

T
2σ̂2
v,a
ẑσ2

µ,a
0
)
,

where ẑρ,a = [ε̂′a(IT ⊗M)ε̂a]/σ̂
2
v,a, ẑλ,a = [ε̂′a(IT ⊗W )y]/σ̂2

v,a, ẑσ2
µ,a

= [ε̂′a(J̄T ⊗ IN)ε̂a]/σ̂
2
v,a−N . After

straightforward calculation, the information matrix under Ha
0 and evaluated at the restricted MLE is

Ia =



X′X
σ̂2
v,a

0 X′(IT⊗W )ŷa
σ̂2
v,a

0 0

· Tb1 Tb2 0 0

· · Tb3 + ν̂a 0 0

· · · NT 2

2(σ̂2
v,a)2

NT
2(σ̂2

v,a)2

· · · · NT
2(σ̂2

v,a)2


,

where ν̂a = [ŷ′a(IT ⊗ (W ′W ))ŷa]/σ̂
2
v,a. In this case,

Ja =


Tb1 Tb2 0 0

· Tb3 + ω̂a 0 0

· · NT 2

2(σ̂2
v,a)2

NT
2(σ̂2

v,a)2

· · · NT
2(σ̂2

v,a)2

 ,Ka =

(
Tb1 Tb2

· Tb3 + ω̂a

)
,La =

(
NT 2

2(σ̂2
v,a)2

NT
2(σ̂2

v,a)2

· NT
2(σ̂2

v,a)2

)
,

where ω̂a = [ŷ′a(IT ⊗W ′)(INT − X(X ′X)−1X ′)(IT ⊗W )ŷa]/σ̂
2
v,a. The first term of (La)−1 is easily

calculated to be 2(σ̂2
v,a)

2/[NT (T − 1)]. Also, we have

(Ka)−1 =
1

τ̂a

(
Tb3 + ω̂a −Tb2

−Tb2 Tb1

)
, where τ̂a = T 2(b1b3 − b2

2) + Tb1ω̂a.

Finally, the joint LM test statistic is given by

LMa =
Tb3 + ω̂a

τ̂a
ẑ2
ρ,a +

Tb1

τ̂a
ẑ2
λ,a −

2Tb2

τ̂a
ẑρ,aẑλ,a +

T

2N(T − 1)
ẑ2
σ2
µ,a
.

B.2. Derivation of LMc

The score vector under Hc
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|c =

(
0 0 T

2σ̂2
v,c
ẑσ2

µ,c
0
)
, where ẑσ2

µ,c
= [ε̂′cÂ

′(J̄T ⊗ IN)Âε̂c]/σ̂
2
v,c −N,

σ̂2
v,c = (ε̂′cÂ

′
cÂcε̂c)/(NT ), ε̂c = y − ŷc, ŷc = Xβ̂c, and β̂c, Âc are the restricted MLEs of β,A under Hc

0,
respectively. After a little calculation, the information matrix under Hc

0 and evaluated at the restricted
MLE is

Ic =


X′Â′cÂcX

σ̂2
v,c

0 0 0

· T θ̂1,c
T θ̂3,c
σ̂2
v,c

T θ̂3,c
σ̂2
v,c

· · NT 2

2(σ̂2
v,c)

2
NT

2(σ̂2
v,c)

2

· · · NT
2(σ̂2

v,c)
2

 ,
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where θ̂1,c, θ̂3,c are θ̂1, θ̂3 evaluated under Hc
0, respectively. Making use of the block diagonal structure of

Ic and straightforward but tedious calculation gives that I∆
σ2
µσ

2
µ,c

= 2(σ̂2
v,c)

2/(NT (T − 1)). Finally, the
LM test statistic in this case is given by

LMc =
T

2N(T − 1)
ẑ2
σ2
µ,c
.

B.3. Derivation of LMe

The score vector under He
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|e =

(
0 0 0 T

2σ̂2
v,e
ẑσ2

µ,e
0
)
, where ẑσ2

µ,e
= [ε̂′eÂ

′
e(J̄T ⊗ IN)Âeε̂e]/σ̂

2
v,e −N,

σ̂2
v,e = (ε̂′eÂ

′
eÂeε̂e)/(NT ), ε̂e = B̂ey − Xβ̂e, and β̂e, Âe, B̂e are restricted MLEs of β,A,B under He

0 ,
respectively. After a little calculation, the information matrix under He

0 and evaluated at the restricted
MLE is

Ie =



X′Â′eÂeX
σ̂2
v,e

0 X′Â′eÂe(IT⊗W )ŷe
σ̂2
v,e

0 0

· Îρρ,e Îρλ,e T tr(R̂1,e)

σ̂2
v,e

T tr(R̂1,e)

σ̂2
v,e

· · T tr(R̂2
3,e) + T tr(R̂4,eR̂3,eR̂

−1
4,eR̂

′
3,e) + ν̂e

T tr(R̂3,e)

σ̂2
v,e

T tr(R̂3,e)

σ̂2
v,e

· · · NT 2

2(σ̂2
v,e)

2
NT

2(σ̂2
v,e)

2

· · · · NT
2(σ̂2

v,e)
2


,

where ŷe = B̂−1
e Xβ̂e, ν̂e = ŷ′e(IT ⊗ W ′)Â′eÂe(IT ⊗ W )ŷe/σ̂

2
v,e, and Îρρ,e, Îρλ,e, R̂1,e, R̂3,e, R̂4,e

are restricted MLEs of Iρρ, Iρλ, R1,e, R3,e, R4,e under He
0 , respectively. In this case, straightforward

calculation gives

Je =


Îρρ,e Îρλ,e T tr(R̂1,e)

σ̂2
v,e

T tr(R̂1,e)

σ̂2
v,e

· T tr(R̂2
3,e) + T tr(R̂4,eR̂3,eR̂

−1
4,eR̂

′
3,e) + ω̂e

T tr(R̂3,e)

σ̂2
v,e
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σ̂2
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2(σ̂2
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2(σ̂2
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 ,

where ω̂e = ŷ′e(IT ⊗ W ′)Â′e

[
INT − ÂeX(X ′Â′eÂeX)−1X ′Â′e

]
Âe(IT ⊗ W )ŷe/σ̂

2
v,e. After some

straightforward but tedious calculation, we get that the term I∆
σ2
µσ

2
µ,e

is 2(σ̂2
v,e)

2/[NT (T − 1)]. Finally,
the LM test statistic in this case is given by

LMe =
T

2N(T − 1)
ẑ2
σ2
µ,e
.

B.4. Derivation of LMf

The restricted MLE under Hf
0 is essentially the OLS estimator. The score vector under Hf

0 and
evaluated at the restricted MLE is

∂L(δ)

∂δ
|f =

(
0 ẑρ,a ẑλ,a 0

)
.
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After a little calculation, the information matrix under Hf
0 and evaluated at the restricted MLE is

If =


X′X
σ̂2
v,a

0 X′(IT⊗W )ŷa
σ̂2
v,a

0

· Tb1 Tb2 0

· · Tb3 + ν̂a 0

· · · NT
2(σ̂2

v,a)2

 .

In this case, it is very easy to calculate that(
I∆
ρρ,f I∆

ρλ,f

· I∆
λλ,f

)
=

1

τ̂a

(
Tb3 + ω̂a −Tb2

−Tb2 Tb1

)
, where τ̂a = T 2(b1b3 − b2

2) + Tb1ω̂a.

Thus the LM test statistic in this case is given by

LMf =
Tb3 + ω̂a

τ̂a
ẑ2
ρ,a +

Tb1

τ̂a
ẑ2
λ,a −

2Tb2

τ̂a
ẑρ,aẑλ,a.

B.5. Derivation of LMg

The score vector under Hg
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|g =

(
0 ẑρ,g ẑλ,g 0 0

)
,

where ẑρ,g = ε̂′gΩ̂
−1
g (IT ⊗M)ε̂g, ẑλ,g = ε̂′gΩ̂

−1
g (IT ⊗W )y, ε̂g = y − Xβ̂g, and β̂g, Ω̂−1

g are restricted
MLEs of β,Ω−1 under Hg

0 , respectively. After a little calculation, the information matrix under Hg
0 and

evaluated at the restricted MLE is

Ig =


X ′Ω̂−1

g X 0 X ′Ω̂−1
g (IT ⊗W )ŷg 0 0

· Tb1 Tb2 0 0

· · Tb3 + ν̂g 0 0

· · · NT 2

2(T σ̂2
µ,g+σ̂2

v,g)2
NT

2(T σ̂2
µ,g+σ̂2

v,g)2

· · · · N
2(T σ̂2

µ,g+σ̂2
v,g)2

+ N(T−1)
2(σ̂2

v,g)2

 ,

where ν̂g = ŷ′g(IT ⊗W ′)Ω̂−1
g (IT ⊗W )ŷg, ŷg = Xβ̂g, and σ̂2

µ,g, σ̂
2
v,g are restricted MLEs of σ2

µ, σ
2
v under

Hg
0 , respectively. In this case,

Jg =


Tb1 Tb2 0 0

· Tb3 + ω̂g 0 0

· · NT 2

2(T σ̂2
µ,g+σ̂2

v,g)2
NT

2(T σ̂2
µ,g+σ̂2

v,g)2

· · · N
2(T σ̂2

µ,g+σ̂2
v,g)2

+ N(T−1)
2(σ̂2

v,g)2

 ,

where ω̂g = ŷ′g(IT ⊗W ′)
[
Ω̂−1
g − Ω̂−1

g X(X ′Ω̂−1
g X)−1X ′Ω̂−1

g

]
(IT ⊗W )ŷg. It is easy to calculate that

(Kg)−1 =
1

τ̂g

(
Tb3 + ω̂g −Tb2

−Tb2 Tb1

)
, where τ̂g = T 2(b1b3 − b2

2) + Tb1ω̂g.
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Finally, the LM test statistic in this case is given by

LMg =
Tb3 + ω̂g

τ̂g
ẑ2
ρ,g +

Tb1

τ̂g
ẑ2
λ,g −

2Tb2

τ̂g
ẑρ,gẑλ,g.

B.6. Derivation of LMh

The restricted MLE under Hh
0 is essentially the OLS estimator. The score vector under Hh

0 and
evaluated at the restricted MLE is

∂L(δ)

∂δ
|h =

(
0 ẑρ,a 0

)
.

The information matrix under Hh
0 and evaluated at the restricted MLE is simply

Ih =


X′X
σ̂2
v,a

0 0

· Tb1 0

· · NT
2(σ̂2

v,a)2

 ,

In this case, we simply have I∆
ρρ,h = 1

Tb1
, and thus the LM test statistic is given by

LMh =
1

Tb1

ẑ2
ρ,a.

To derive LM∗
h , we make use of the Bera and Yoon (1993) Principle that LMψφ = LMφ + LM∗

ψ, where
LMψφ denotes the joint LM test for ψ, φ, LMφ denotes the marginal LM test for φ, while LM∗

ψ denotes
the robust LM test for ψ. Thus it can be easily deduced that

LM∗
h = LMf − LMl =

Tb3 + ω̂a
τ̂a

(ẑρ,a −
Tb2

Tb3 + ω̂a
ẑλ,a)

2.

B.7. Derivation of LMi

The score vector under H i
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|i =

(
0 ẑρ,i 0 0

)
, where ẑρ,i =

1

σ̂2
v,i

ε̂′i(IT ⊗M)ε̂i,

σ̂2
v,i = ε̂′iε̂i/(NT ), ε̂i = B̂iy −Xβ̂i, and β̂i, B̂i are restricted MLEs of β,B under H i

0, respectively. The
information matrix under H i

0 and evaluated at the restricted MLE is

Ii =


X′X
σ̂2
v,i

0 X′(IT⊗W )ŷi
σ̂2
v,i

0

· Tb1 T ϑ̂1,i 0

· · T ϑ̂2,i + ν̂i
T ϑ̂3,i
σ̂2
v,i

· · · NT
2(σ̂2

v,i)
2

 ,
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where ŷi = B̂−1
i Xβ̂i, ν̂i = ŷ′i(IT ⊗ (W ′W ))ŷi/σ̂

2
v,i, ϑ̂1,i, ϑ̂2,i, ϑ̂3,i are ϑ̂1, ϑ̂2, ϑ̂3 evaluated at the restricted

MLE under H i
0, respectively. Straightforward but tedious calculation gives that

I∆
ρρ,i = ξ̂i ≡

NTϑ̂2,i +Nω̂i − 2T ϑ̂2
3,i

Tb1(NTϑ̂2,i +Nω̂i − 2T ϑ̂2
3,i)−N(T ϑ̂1,i)2

,

where ω̂i = ŷ′i(IT ⊗W ′)[INT −X(X ′X)−1X ′](IT ⊗W )ŷi/σ̂
2
v,i. Finally, the LM test statistic in this case

is given by
LMi = ξ̂iẑ

2
ρ,i.

B.8. Derivation of LMj

The score vector under Hj
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|j =

(
0 ẑρ,j 0 0

)
, where ẑρ,j = ε̂′jΩ̂

−1
j (IT ⊗M)ε̂j,

ε̂j = y−Xβ̂j , and β̂j, Ω̂−1
j are restricted MLEs of β,Ω−1 underHj

0 , respectively. The information matrix
under Hj

0 and evaluated at the restricted MLE is

Ij =


X ′Ω̂−1

j X 0 0 0

· Tb1 0 0

· · NT 2

2(T σ̂2
µ,j+σ̂

2
v,j)

2
NT

2(T σ̂2
µ,j+σ̂

2
v,j)

2

· · · N
2(T σ̂2

µ,j+σ̂
2
v,j)

2 + N(T−1)

2(σ̂2
v,j)

2

 .

Thus the LM test statistic in this case is trivially given by

LMj =
1

Tb1

ẑ2
ρ,j.

To derive LM∗
j , we again make use of the Bera and Yoon (1993) [19] Principle and it can be easily

deduced that

LM∗
j = LMg − LMn =

Tb3 + ω̂j
τ̂j

(
ẑρ,j −

Tb2

Tb3 + ω̂j
ẑλ,j

)2

.

B.9. Derivation of LMk

The score vector under Hk
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|k =

(
0 ẑρ,k 0 0 0

)
, where ẑρ,k = ε̂′kΩ̂

−1
k (IT ⊗M)ε̂k,
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ε̂k = B̂ky−Xβ̂k, β̂k, B̂k, Ω̂
−1
k are restricted MLEs of β,B,Ω−1 under Hk

0 , respectively. The information
matrix under Hk

0 and evaluated at the restricted MLE is

Ik =



X ′Ω̂−1
k X 0 X ′Ω̂−1

k (IT ⊗W )ŷk 0 0

· Tb1 T ϑ̂1,k 0 0

· · T ϑ̂2,k + ν̂k
T ϑ̂3,k

T σ̂2
µ,k + σ̂2

v,k

T [(T − 1)σ̂2
µ,k + σ̂2

v,k]ϑ̂3,k

(T σ̂2
µ,k + σ̂2

v,k)σ̂
2
v,k

· · · NT 2

2(T σ̂2
µ,k + σ̂2

v,k)
2

NT

2(T σ̂2
µ,k + σ̂2

v,k)
2

· · · · N

2(T σ̂2
µ,k + σ̂2

v,k)
2

+
N(T − 1)

2(σ̂2
v,k)

2


,

where ŷk = B̂−1
k Xβ̂k, ν̂k = ŷ′k(IT ⊗ W ′)Ω̂−1

k (IT ⊗ W )ŷk, σ̂2
µ,k, σ̂

2
v,k are restricted MLEs of σ2

µ, σ
2
v

under Hk
0 , and ϑ̂1,k, ϑ̂2,k, ϑ̂3,k are ϑ̂1, ϑ̂2, ϑ̂3 evaluated at the restricted MLE under Hk

0 , respectively.
Straightforward calculation gives

Jk =



Tb1 T ϑ̂1,k 0 0

· T ϑ̂2,k + ω̂k
T ϑ̂3,k

T σ̂2
µ,k + σ̂2

v,k

T [(T − 1)σ̂2
µ,k + σ̂2

v,k]ϑ̂3,k

(T σ̂2
µ,k + σ̂2

v,k)σ̂
2
v,k

· · NT 2

2(T σ̂2
µ,k + σ̂2

v,k)
2

NT

2(T σ̂2
µ,k + σ̂2

v,k)
2

· · · N

2(T σ̂2
µ,k + σ̂2

v,k)
2

+
N(T − 1)

2(σ̂2
v,k)

2


,

where ω̂k = ŷ′k(IT ⊗W ′)
[
Ω̂−1
k − Ω̂−1

k X(X ′Ω̂−1
k X)−1X ′Ω̂−1

k

]
(IT ⊗W )ŷk. Next, we need to calculate

the (1, 1)th element of (Kk)−1. Straightforward calculation yields

Kk =

(
Tb1 T ϑ̂1,k

· κ̂k

)
,

where

κ̂k = T ϑ̂2,k + ω̂k −
T 2(T − 1)2ϑ̂2

3,kη̂3,k(σ̂
2
µ,k)

2

(T σ̂2
µ,k + σ̂2

v,k)
2(σ̂2

v,k)
2

−
2T 2(T − 1)ϑ̂2

3,k(η̂2,k + η̂3,k)σ̂
2
µ,k

(T σ̂2
µ,k + σ̂2

v,k)
2σ̂2

v,k

−
T 2ϑ̂2

3,k(η̂1,k + 2η̂2,k + η̂3,k)

(T σ̂2
µ,k + σ̂2

v,k)
2

,

and

(
η̂1,k η̂2,k

η̂2,k η̂3,k

)
=


NT 2

2(T σ̂2
µ,k + σ̂2

v,k)
2

NT

2(T σ̂2
µ,k + σ̂2

v,k)
2

NT

2(T σ̂2
µ,k + σ̂2

v,k)
2

N

2(T σ̂2
µ,k + σ̂2

v,k)
2

+
N(T − 1)

2(σ̂2
v,k)

2


−1

=


2(σ̂2

v,k)
2

NT 2(T − 1)
+

2(T σ̂2
µ,k + σ̂2

v,k)
2

NT 2
−

2(σ̂2
v,k)

2

NT (T − 1)

−
2(σ̂2

v,k)
2

NT (T − 1)

2(σ̂2
v,k)

2

N(T − 1)

 .
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Then the (1, 1)th element of (Kk)−1 can be easily calculated as

ξ̂k =
κ̂k

Tb1κ̂k − (T ϑ̂1,k)2
=

NTϑ̂2,k +Nω̂k − 2T ϑ̂2
3,k

Tb1(NTϑ̂2,k +Nω̂k − 2T ϑ̂2
3,k)−N(T ϑ̂1,k)2

.

Finally, the LM test statistic in this case is given by

LMk = ξ̂kẑ
2
ρ,k.

B.10. Derivation of LMl

The restricted MLE under H l
0 is essentially the OLS estimator. The score vector under H l

0 and
evaluated at the restricted MLE is

∂L(δ)

∂δ
|l =

(
0 ẑλ,a 0

)
.

The information matrix under H l
0 and evaluated at the restricted MLE is

Il =


X′X
σ̂2
v,a

X′(IT⊗W )ŷa
σ̂2
v,a

0

· Tb3 + ν̂a 0

· · NT
2(σ̂2

v,a)2
,

 .

Straightforward calculation gives that I∆
λλ,l = 1/(Tb3 + ω̂a), thus the LM test statistic corresponding to

H l
0 is given by

LMl =
1

Tb3 + ω̂a
ẑ2
λ,a.

To derive LM∗
l , we again make use of the Bera and Yoon (1993) [19] Principle and it can be easily

deduced that

LM∗
l = LMf − LMh =

Tb1

τ̂a

(
ẑλ,a −

b2

b1

ẑρ,a

)2

.

B.11. Derivation of LMm

The score vector under Hm
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|m =

(
0 0 ẑλ,m 0

)
, where ẑλ,m =

1

σ̂2
v,m

ε̂′mÂ
′
mÂm(IT ⊗W )ŷm,

σ̂2
v,m = ε̂′mÂ

′
mÂmε̂m/(NT ), ε̂m = y − ŷm, ŷm = Xβ̂m, and β̂m, Âm are restricted MLEs of β,A under

Hm
0 , respectively. The information matrix under Hm

0 and evaluated at the restricted MLE is

Im =


X′Â′mÂmX

σ̂2
v,m

0 X′Â′mÂm(IT⊗W )ŷm
σ̂2
v,m

0

· T θ̂1,m T θ̂2,m
T θ̂3,m
σ̂2
v,m

· · T θ̂4,m + ν̂m 0

· · · NT
2(σ̂2

v,m)2
,

 ,
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where ν̂m = ŷ′m(IT ⊗W ′)Â′mÂm(IT ⊗W )ŷm/σ̂
2
v,m, and θ̂1,m, θ̂2,m, θ̂3,m, θ̂4,m are θ̂1, θ̂2, θ̂3, θ̂4 evaluated

at the restricted MLE under Hm
0 , respectively. Let

Im =

(
I11,m I12,m

I21,m I22,m

)
, where I11,m =

X ′Â′mÂmX

σ̂2
v,m

.

After some calculation, we get

I22,m − I21,m(I11,m)−1I12,m =


T θ̂1,m T θ̂2,m

T θ̂3,m
σ̂2
v,m

· T θ̂4,m + ω̂m 0

· · NT
2(σ̂2

v,m)2

 ,

where ω̂m = ŷ′m(IT⊗W ′)Â′m[INT−ÂmX(X ′Â′mÂmX)−1X ′Â′m]Âm(IT⊗W )ŷm/σ̂
2
v,m. Straightforward

calculation gives that

I∆
λλ,m = ζ̂m ≡

Nθ̂1,m − 2θ̂2
3,m

(Nθ̂1,m − 2θ̂2
3,m)(T θ̂4,m + ω̂m)−NT θ̂2

2,m

.

Finally, the LM test statistic in this case is given by

LMm = ζ̂mẑ
2
λ,m.

B.12. Derivation of LMn

The score vector under Hn
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|n =

(
0 ẑλ,n 0 0

)
, where ẑλ,n = ε̂′nΩ̂−1

n (IT ⊗W )y,

ε̂n = y −Xβ̂n, and β̂n, Ω̂−1
n are the restricted MLEs of β,Ω−1 under Hn

0 , respectively. The information
matrix under Hn

0 and evaluated at the restricted MLE is

In =


X ′Ω̂−1

n X X ′Ω̂−1
n (IT ⊗W )ŷn 0 0

· Tb3 + ν̂n 0 0

· · NT 2

2(T σ̂2
µ,n+σ̂2

v,n)2
NT

2(T σ̂2
µ,n+σ̂2

v,n)2

· · · N
2(T σ̂2

µ,n+σ̂2
v,n)2

+ N(T−1)
2(σ̂2

v,n)2

 ,

where ŷn = Xβ̂n, ν̂n = ŷ′n(IT ⊗W ′)Ω̂−1
n (IT ⊗W )ŷn. The LM test statistic in this case can be easily

calculated as
LMn =

1

Tb3 + ω̂n
ẑ2
λ,n,

where
ω̂n = ŷ′n(IT ⊗W ′)[Ω̂−1

n − Ω̂−1
n X(X ′Ω̂−1

n X)−1X ′Ω̂−1
n ](IT ⊗W )ŷn.

To derive LM∗
n, we again make use of the Bera and Yoon (1993) [19] Principle and it can be easily

deduced that

LM∗
n = LMg − LMj =

Tb1

τ̂n

(
ẑλ,n −

b2

b1

ẑρ,n

)2

.
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B.13. Derivation of LMo

The score vector under Ho
0 and evaluated at the restricted MLE is

∂L(δ)

∂δ
|o =

(
0 ẑλ,o 0 0 0

)
, where ẑλ,o = ε̂′oÂ

′
oΩ̂
−1
o Âo(IT ⊗W )y,

ε̂o = y−Xβ̂o, and β̂o, Âo, Ω̂−1
o are restricted MLEs of β,A,Ω−1 underHo

0 , respectively. The information
matrix under Ho

0 and evaluated at the restricted MLE is

Io =



X ′Â′oΩ̂
−1
o ÂoX 0 X ′Â′oΩ̂

−1
o Âo(IT ⊗W )ŷo 0 0

· T θ̂1,o T θ̂2,o
T θ̂3,o

T σ̂2
µ,o+σ̂

2
v,o

T [(T−1)σ̂2
µ,o+σ̂

2
v,o]θ̂3,o

(T σ̂2
µ,o+σ̂

2
v,o)σ̂

2
v,o

· · T θ̂4,o + ν̂o 0 0

· · · NT 2

2(T σ̂2
µ,o+σ̂

2
v,o)

2
NT

2(T σ̂2
µ,o+σ̂

2
v,o)

2

· · · · N
2(T σ̂2

µ,o+σ̂
2
v,o)

2 + N(T−1)
2(σ̂2

v,o)
2


,

where ŷo = Xβ̂o, ν̂o = ŷ′o(IT ⊗ W ′)Â′oΩ̂
−1
o Âo(IT ⊗ W )ŷo, σ̂2

µ,o, σ̂
2
v,o are restricted MLEs of σ2

µ, σ
2
v

under Ho
0 , and θ̂1,o, θ̂2,o, θ̂3,o, θ̂4,o are θ̂1, θ̂2, θ̂3, θ̂4 evaluated at the restricted MLE under Ho

0 , respectively.
A little calculation gives

Jo =



T θ̂1,o T θ̂2,o
T θ̂3,o

T σ̂2
µ,o+σ̂

2
v,o

T [(T−1)σ̂2
µ,o+σ̂

2
v,o]θ̂3,o

(T σ̂2
µ,o+σ̂

2
v,o)σ̂

2
v,o

· T θ̂4,o + ω̂o 0 0

· · NT 2

2(T σ̂2
µ,o + σ̂2

v,o)
2

NT

2(T σ̂2
µ,o + σ̂2

v,o)
2

· · · N

2(T σ̂2
µ,o + σ̂2

v,o)
2

+
N(T − 1)

2(σ̂2
v,o)

2


,

where ω̂o = ŷ′o(IT ⊗W ′)Â′o

[
Ω̂−1
o − Ω̂−1

o ÂoX(X ′Â′oΩ̂
−1
o ÂoX)−1X ′Â′oΩ̂

−1
o

]
Âo(IT ⊗W )ŷo. Next, we

need to calculate the (2, 2)th element of (Ko)−1. Straightforward calculation yields

Ko =

(
T θ̂1,o − (T θ̂3,o)2η̂1,o

(T σ̂2
µ,o+σ̂

2
v,o)

2 −
2T 2[(T−1)σ̂2

µ,o+σ̂
2
v,o]θ̂

2
3,oη̂2,o

(T σ̂2
µ,o+σ̂

2
v,o)

2σ̂2
v,o

− T 2[(T−1)σ̂2
µ,o+σ̂

2
v,o]θ̂

2
3,oη̂3,o

(T σ̂2
µ,o+σ̂

2
v,o)

2(σ̂2
v,o)

2 T θ̂2,o

· T θ̂4,o + ω̂o

)
,

where

(
η̂1,o η̂2,o

η̂2,o η̂3,o

)
=


2(σ̂2

v,o)
2

NT 2(T − 1)
+

2(T σ̂2
µ,o + σ̂2

v,o)
2

NT 2
−

2(σ̂2
v,o)

2

NT (T − 1)

−
2(σ̂2

v,o)
2

NT (T − 1)

2(σ̂2
v,o)

2

N(T − 1)

 .

Then straightforward calculation gives the (2, 2)th element of (Ko)−1 as

ζ̂o =
NT θ̂1,o − 2T θ̂2

3,o

(NT θ̂1,o − 2T θ̂2
3,o)(T θ̂4,o + ω̂o)−N(T θ̂2,o)2

.
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Finally, the LM test statistic in this case is given by

LMo = ζ̂oẑ
2
λ,o.
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