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Abstract: This paper studies an alternative bias correction for the M-estimator, which is obtained by
correcting the moment equations in the spirit of Firth (1993). In particular, this paper compares the
stochastic expansions of the analytically-bias-corrected estimator and the alternative estimator and
finds that the third-order stochastic expansions of these two estimators are identical. This implies that
at least in terms of the third-order stochastic expansion, we cannot improve on the simple one-step
bias correction by using the bias correction of moment equations. This finding suggests that the
comparison between the one-step bias correction and the method of correcting the moment equations
or the fully-iterated bias correction should be based on the stochastic expansions higher than the
third order.

Keywords: third-order stochastic expansion; bias correction; M-estimation

JEL Classification: C10

1. Introduction

Asymptotic bias corrections are pursued to make estimators closer to the truth values. There are
several ways of achieving this goal, including analytical corrections, jackknife and bootstrap methods
(see, e.g., Quenouille (1956) [1], Hall (1992) [2], Shao and Tu (1995) [3], MacKinnon and Smith (1998) [4],
Andrews (2002) [5], Hahn and Newey (2004) [6], Bun and Carree (2005) [7], Bao and Ullah (2007) [8,9],
Bao (2013) [10] and Yang (2015) [11]). This variety of bias correction methods evokes the issue whether
one method is preferable to others at least on asymptotic efficiency grounds (e.g., see Hahn et al.
(2004) [12]). For the maximum likelihood (ML) estimation, they show that a method of bias correction
does not affect the higher order efficiency of any estimator that is first-order efficient in parametric
or semiparametric models. An ML estimator is a class of M-estimators, and this paper extends their
intuition to a general class of M-estimators.1

Specifically, this paper considers an alternative bias correction for the M-estimator, which is
achieved by correcting moment equations in the spirit of Firth (1993) [13]. In particular, we compare
the stochastic expansions of the analytically-bias-corrected estimator (which is referred to one-step
bias correction) and the alternative estimator and find that the third-order stochastic expansions of
these two estimators are identical. This is a stronger result than comparing higher order variances,
since it implies that these two estimators do not only have the same higher order variances, but would
also agree upon more properties in terms of their stochastic expansions.2 We do not consider other
bias correction methods, such as bootstrap and jackknife methods, in this paper.

1 This possible extension was noted in Hahn and Newey (2004) [6].
2 This is subject to some caveats, such as the existence of moments and other negligible remainder terms in the

stochastic expansions.
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In the literature (see Hahn and Newey (2004) [6] and Fernandez-Val (2004) [14] for nonlinear panel
data models), it has been discussed that removing the bias directly from the moment equations has an
attractive feature that it does not use pre-estimated parameters that are not bias corrected, though this
alternative approach requires more intensive computations.3 Because the analytically-bias-corrected
estimator is a two-step estimator, for which an initial estimator needs to be plugged in, while the
bias-corrected moment equations estimator is a one-step estimator that does not need an initial
estimator, the higher order asymptotic equivalence of these two estimators is not obvious. This paper,
however, shows that at least for the third-order stochastic expansion, there is no benefit of using the
bias correction of the moment equations over the simple one-step bias correction in the context of
M-estimators. This finding suggests that the comparison between the one-step bias correction and the
method of correcting the moment equations should be based on the stochastic expansions higher than
the third order.

Examples of the M-estimation include maximum likelihood estimation (MLE), least squares and
instrumental variable (IV) estimation. Many other useful estimators can also fit into the M-estimation
framework with the appropriate definition of the moment equations. It includes some cases of the
generalized method of moments (GMM; see examples in Rilstone et al. (1996) [15]) and two-step
estimators (Newey (1984) [16]). We note that the generalized empirical likelihood (GEL) can also fit
into this framework. This suggests that Firth (1993)’s [13] correcting moment equations approach can
be an alternative to Newey and Smith’s approach to obtain the higher order bias and variance terms of
GEL (2004) [17].

Our paper is organized as follows. In Section 2, we derive the higher order stochastic expansion
of the M-estimator and consider the one-step bias correction. Section 3 introduces the bias-corrected
moment equations estimator and derives its higher order stochastic expansion. Section 4 discusses
the higher order efficiency properties of several analytically-bias-corrected estimators. We conclude
in Section 5. Primitive conditions for the validity of the higher order stochastic expansions and
mathematical details are gathered in Appendix A and B.

2. Higher Order Expansion for the M-Estimator

Consider a moment condition:
E [s (zi, θ0)] = 0 (1)

where s(zi, θ) is a known k× 1 vector-valued function of the data, and a parameter vector θ ∈ Θ ⊂ Rk

and zi includes both endogenous and exogenous variables. The M-estimator is obtained by solving:

1
n

n

∑
i=1

s
(

zi, θ̂
)
= 0. (2)

Examples for this class of estimators include MLE, least squares and IV estimation. In the MLE,
s(zi, θ) is the single observation score function. For the linear or nonlinear regression model of
yi = f (Xi; θ0) + εi, we set s (zi, θ) =

∂ f (Xi ;θ)
∂θ (yi − f (Xi; θ)) and zi = (yi X′i)

′ for a known function f (·).
In the linear IV model, we have s (zi, θ) = wi(yi − X′i θ) and zi = (yi X′i w′i)

′ for some instruments wi
with dim(wi) = dim(θ). Two-step estimators such as two-stage least squares, feasible generalized
least squares (GLS) and Heckman (1979) [18]’s two-step estimator also fit into this framework (see
Newey (1984) [16]). Rilstone et al. (1996) [15] provide some special cases of GMM estimators that can
be put into the M-estimation, but the examples are not restricted to those. Partly motivated with this
wide applicability, we study the stochastic expansion and the bias correction of the M-estimator.

3 Note that the bias correction problem in nonlinear panel data models is the correction for the first-order bias due to the
incidental parameters, while the bias correction in this paper is for the second-order bias.
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We obtain the higher order stochastic expansion of the M-estimator using the iterative approach
used in Rilstone et al. (1996) [15] up to a certain order. This approach is analytically convenient and
straightforward to implement since the estimators are expressed as functions of the sums of random
variables. Edgeworth expansion can be considered as an alternative whose validity has been derived in
Bhattacharya and Ghosh (1978) [19], but the stochastic expansion approach is noted as a much simpler
approach. Moreover, the main purpose of this paper is to provide the comparison of several estimators
based on the higher order variance (O(n−1) variance). Noting that rankings based on the higher order
variances in a third-order stochastic expansion are equivalent to rankings based on the variances of an
Edgeworth expansion as shown in Pfanzagl and Wefelmeyer (1978) [20] and Ghosh et al. (1980) [21]
and as discussed in Rothenberg (1984) [22], it suffices to use the simple stochastic expansions for
our purposes.

Here, we borrow Rilstone et al. (1996) [15]’s notation. We denote the matrix of υ-th order partial
derivatives of a matrix A(θ) as ∇υ A(θ). Specifically, if A(θ) is a k× 1 vector function, ∇A(θ) is the
usual Jacobian whose l-th row contains the partial derivatives of the l-th element of A(θ). ∇υ A(θ)

(a k × kυ matrix) is defined recursively, such that the j-th element of the l-th row of ∇υ A(θ) is the
1 × k vector aυ

l j(θ) = ∂aυ−1
l j (θ)/∂θ′, where aυ−1

l j is the l-th row and the j-th element of ∇υ−1 A(θ).
We use ⊗ to denote a usual Kronecker product. Using this Kronecker product, we can express
∇υ A(θ) = ∂υ A(θ)

∂θ′ ⊗ ∂θ′ ⊗ . . .⊗ ∂θ′︸ ︷︷ ︸
υ Kronecker product of ∂θ′

. Finally, we use a matrix norm ‖A‖ =
√

tr(A′A) for a matrix A.

We first derive the higher order stochastic expansion of the M-estimator and consider the one-step
bias correction here. In the next section, we introduce the bias-corrected moment equations estimator
and derive its higher order stochastic expansion. Then, we compare these two approaches.

Before we derive the second-order expansion of the M-estimator to obtain the second-order bias
analytically, we introduce simplifying notation. Let H1(θ) = E [∇s(zi, θ)], H2(θ) = E

[
∇2s(zi, θ)

]
,

Q(θ) = (−E [∇s(zi, θ)])−1, and write H1 = H1(θ0), H2 = H2(θ0), Q = Q(θ0). Let Ĥ1(θ) =
1
n ∑n

i=1∇s (zi, θ) , Ĥ2(θ) = 1
n ∑n

i=1∇2s (zi, θ) , Q̂(θ) = (−Ĥ1(θ))
−1, Ĥ1 = Ĥ1(θ0), Ĥ2 = Ĥ2(θ0) and

Q̂ = Q̂(θ0). Furthermore, define J ≡ 1√
n ∑n

i=1 s (zi, θ0), V ≡ 1√
n ∑n

i=1 (∇s (zi, θ0)− E [∇s (zi, θ0)]),

W ≡ 1√
n ∑n

i=1
(
∇2s (zi, θ0)− E

[
∇2s (zi, θ0)

])
.

Lemma 1. (Rilstone et al. (1996) [15]) Suppose {zi}n
i=1 are i.i.d.; θ0 is in the interior of Θ, and is the only

θ ∈ Θ satisfying (1); and the M-estimator θ̂ defined in (2) is consistent. Further suppose that: (i) s(z, θ) is
κ-times continuously differentiable in the neighborhood of θ0, denoted by Θ0 ⊂ Θ for all z ∈ Z ≡ Support(zi),
κ ≥ 3 with probability one; (iia) ∇υs(z, θ) is integrable for each fixed θ ∈ Θ0, υ = {0, 1, 2, . . . κ}, κ ≥ 3;
and (iib) E

[
∇3s(z, θ)

]
is continuous and bounded at θ0; (iii)

∥∥∥ 1
n ∑n

i=1∇υs
(
zi, θ

)
− E [∇υs (zi, θ0)]

∥∥∥ = op(1)

for θ = θ0 + op(1) and υ = 1, 2; (iv) 1√
n ∑n

i=1
(
∇2s

(
zi, θ

)
− H2(θ)

)
− 1√

n ∑n
i=1
(
∇2s (zi, θ0)− H2 (θ0)

)
=

op (1) for θ = θ0 + op(1); (v) Q(θ0) exists, i.e., E [∇s(zi, θ0)] is nonsingular; (vi) J = Op(1); (vii) V = Op(1);

(viii) W = Op(1). Then, we have
√

n
(

θ̂ − θ0

)
= QJ + Op

(
1√
n

)
, and moreover,

√
n
(

θ̂ − θ0

)
= QJ +

1√
n Q
(

VQJ + 1
2 H2 (QJ ⊗QJ)

)
+ Op(n−1).

This lemma and the following Lemma 2 are available in Rilstone et al. (1996) [15], but we
reproduce them since some of their results are useful to derive our new results. From Lemma 1, the
higher order bias of θ̂ is obtained as:

Bias(θ̂) ≡ 1
n

Q
(

E [VQJ] +
1
2

H2E [(QJ ⊗QJ)]
)

.
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Defining di(θ) = Q(θ)s(zi, θ) and vi(θ) = ∇s (zi, θ)− E [∇s (zi, θ)] and letting di = di(θ0) and vi =

vi(θ0), it is not difficult to see Q
(

E [VQJ] + 1
2 H2E [(QJ ⊗QJ)]

)
= Q

(
E [vidi] +

1
2 H2E [(di ⊗ di)]

)
, as

shown below. In this regard, we will write B(θ) ≡ Q(θ)
(

E [vi(θ)di(θ)] +
1
2 H2(θ)E [di(θ)⊗ di(θ)]

)
.

Lemma 2. (Rilstone et al. (1996) [15]) Suppose (1) holds and {zi}n
i=1 are i.i.d. Then, E [VQJ] +

1
2 H2E [QJ ⊗QJ] = E [vidi] +

1
2 H2E [di ⊗ di] , where di = Qs(zi, θ0) and vi = ∇s (zi, θ0)− E [∇s (zi, θ0)].

Thus, we can eliminate the second-order bias of the M-estimator θ̂ by subtracting a consistent
estimator of the bias.4 Now, let θ̂bc denote the bias-corrected estimator of this sort defined by:

θ̂bc = θ̂ − 1
n

B̂(θ̂) (3)

where the function B̂(θ), a consistent estimator of B(θ), is constructed as:

Q̂(θ)

(
1
n

n

∑
i=1

v̂i(θ)d̂i(θ) +
1
2

Ĥ2(θ)
1
n

n

∑
i=1

(
d̂i(θ)⊗ d̂i(θ)

))
(4)

for d̂i(θ) = Q̂(θ)s(zi, θ) and v̂i (θ) = ∇s (zi, θ). In particular, we can replace θ̂ in B̂(θ̂) with any√
n-consistent estimator of θ0. In this sense, θ̂bc is a two-step estimator.

To characterize the higher order efficiency based on the higher order variance (O(n−1) variance)
of the bias-corrected estimators, we need to expand the M-estimator to the third order. We use

some additional simplifying terms: H3 (θ) = E[∇3s(z, θ)], Ĥ3 (θ) = 1
n

n
∑

i=1
∇3s(zi, θ), H3 = H3 (θ0),

W3 ≡ 1√
n

n
∑

i=1

(
∇3s (zi, θ0)− E

[
∇3s (zi, θ0)

])
. Furthermore, we write:

a−1/2 = QJ, a−1 = Q
(

Va−1/2 +
1
2

H2 (a−1/2 ⊗ a−1/2)

)
a−3/2 = QVa−1 +

1
2

QW (a−1/2 ⊗ a−1/2) +
1
2

QH2 (a−1/2 ⊗ a−1 + a−1 ⊗ a−1/2)

+
1
6

QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2)

for the ease of notation. We obtain:

Lemma 3. Suppose {zi}n
i=1 are i.i.d., θ0 is in the interior of Θ, is the only θ ∈ Θ satisfying (1) and the

M-estimator θ̂ that solves (2) is consistent. Further suppose that: (i) s(z, θ) is κ-times continuously differentiable
in a neighborhood of θ0, denoted by Θ0 ⊂ Θ for all z ∈ Z , κ ≥ 4 with probability one; (iia) ∇υs(z, θ) is
integrable for each fixed θ ∈ Θ0, υ = {0, 1, 2, . . . κ}, κ ≥ 4; (iib) E[∇4s(z, θ)] is continuous and bounded at θ0;
(iii) 1√

n ∑n
i=1
(
∇3s

(
zi, θ

)
− H3

(
θ
))
− 1√

n ∑n
i=1
(
∇3s (zi, θ0)− H3 (θ0)

)
= op (1) for θ = θ0 + op(1); (iv)

Q is nonsingular; (v) J = Op(1); (vi) V = Op(1); (vii) W = Op(1); (viii) W3 = Op(1); (ix)
√

n(θ̂ − θ0) =

a−1/2 +
1√
n a−1 + Op

(
1
n

)
. Then, we have

√
n
(

θ̂ − θ0

)
= a−1/2 +

1√
n a−1 +

1
n a−3/2 + Op(n−3/2).

Note that the conditions in Lemma 3 are all standard regularity conditions.
In the following section, we propose an alternative one-step estimator that eliminates the

second-order bias by adjusting the moment equations inspired by Firth (1993) [13].

4 The fact that the estimating equation is the sum of n independent terms allows one to simply estimate the bias terms using
their sample analogues. This approach does not have a direct extension to cases where the estimating function takes a more
general form.
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3. Bias-Corrected Moment Equation

Here, we consider an alternative higher order bias reduced estimator that solves bias-corrected
moment equations. This idea was proposed in Firth (1993) [13] for the ML with a fixed number of
parameters and exploited in Hahn and Newey (2004) [6] and Fernandez-Val (2004) [14] for the nonlinear
panel data models with individual specific effects. We refer to this estimator as Firth’s estimator.

To be precise, consider:

0 =
1
n

n

∑
i=1

s (zi, θ)− 1
n

c(θ)

for a known function c(θ) that is given by:

c(θ) = Q(θ)−1B(θ) =
1
2

H2(θ)E [Q(θ)s(zi, θ)⊗Q (θ) s(zi, θ)] + E [∇s (zi, θ) Q(θ)s(zi, θ)] . (5)

This correction term c(θ) is obtained following Firth (1993) [13] and using the bias term for
the M-estimator. In the ML context, Firth (1993) [13] shows that by adjusting the score function (he
refers to this as a modified score function) with the correction term defined by the product of the
Fisher information matrix and the bias term, one can obtain a bias-corrected ML estimator. c(θ) has
the same interpretation in the ML, since −Q(θ)−1 is the Hessian matrix, and hence, Q(θ)−1 is the
Fisher information in the ML. Therefore, (5) is a generalization of Firth (1993) [13]’s approach to the
M-estimation . In general c(θ) contains population terms, and hence, to implement this alternative
estimator, we need to estimate the function c (θ). We use a sample analogue of (5) as:

ĉ(θ) = Q̂(θ)−1B̂(θ) (6)

=
1
2

Ĥ2(θ)

(
1
n

n

∑
i=1

[
Q̂(θ)s(zi, θ)⊗ Q̂(θ)s(zi, θ)

])
+

1
n

n

∑
i=1

[
∇s (zi, θ) Q̂(θ)s(zi, θ)

]
.

Now, we estimate θ0 by solving:

0 =
1
n

n

∑
i=1

s (zi, θ)− 1
n

ĉ(θ), (7)

and claim that the solution of this modified moment condition eliminates the second-order bias of θ̂

that solves the original moment condition (2).

Assumption 1. (i) {zi}n
i=1 are i.i.d.; (ii) s(z, θ) is κ-times continuously differentiable in a neighborhood of θ0,

denoted by Θ0 for all z ∈ Z , κ ≥ 4; (iii) E
[
supθ∈Θ0

‖∇υs(z, θ)‖2
]
< ∞, υ = {0, 1, 2, . . . κ}, κ ≥ 4; (iv) Θ

is compact; (v) θ0 is in the interior of Θ and is the only θ ∈ Θ satisfying (1); (vi) E
[∥∥∇υs(z, θ0)

∥∥4
]
< ∞ for

υ = {0, 1, 2, . . . , κ}, κ ≥ 3.

Assumption 2. For θ ∈ Θ0, E
[

∂s(zi ,θ)
∂θ′

]
is nonsingular.

Alternatively, we can assume the following instead of Assumption 1.

Assumption 3. (i) {zi}n
i=1 are i.i.d.; (ii) ∇υs(z, θ) satisfies the Lipschitz condition in θ as:

‖∇υs(z, θ1)−∇υs(z, θ2)‖ ≤ Bυ(z) ‖θ1 − θ2‖ ∀θ1, θ2 ∈ Θ0

for some function Bυ(·) : Z → R and E
[
Bυ(·)2t+δ

]
< ∞, υ = {0, 1, 2, . . . κ}, with positive integer t ≥ 2 and

for some δ > 0 and κ ≥ 4 in a neighborhood of θ0; (iii) E
[
supθ∈Θ0

‖∇υs(z, θ)‖2t+δ
]
< ∞, υ = {0, 1, 2, . . . κ},
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κ ≥ 4 with positive integer t ≥ 2 and for some δ > 0; (iv) Θ is bounded; (v) θ0 is in the interior of Θ and is the
only θ ∈ Θ satisfying (1).

Under Assumptions 1 and 2 or Assumptions 3 and 2, the following three conditions are satisfied
(see Lemma A.9 in Appendix A).

Condition 1. (i) ĉ(θ0) = Op(1); (ii) ĉ(θ0) = c(θ0) + Op

(
1√
n

)
.

Condition 2. ∇ĉ(θ) = Op(1) in the n−1/2 neighborhood of θ0.

Condition 3. ∇2 ĉ(θ) = Op(1) in the n−1/2 neighborhood of θ0.

Note that these three conditions are required to control for the estimation error in ĉ(θ) in the
stochastic expansions. Now, we are ready to present one of our main results.

Proposition 1. Suppose θ
∗

solves (7) where ĉ(θ) is given by (6) and that θ
∗

is a consistent estimator of θ0.
Further, suppose that Conditions 1–3 and Conditions (i)–(viii) in Lemma 1 are satisfied, then we have:

√
n
(

θ
∗ − θ0

)
= QJ +

1√
n

Q
(

VQJ +
1
2

H2 (QJ ⊗QJ)− c(θ0)

)
+ Op

(
1
n

)
,

where c(θ0) =
1
2 H2E [Qs(zi, θ0)⊗Qs(zi, θ0)] + E [∇s (zi, θ0) Qs(zi, θ0)], and hence, the second-order bias

of θ
∗

is Bias(θ
∗
) ≡ 1

n E
[

Q
(

VQJ + 1
2 H2 (QJ ⊗QJ)− c(θ0)

)]
= 0.

This concludes that we can eliminate the second-order bias by adjusting the moment equations
as (7), and it is a proper alternative to the analytic bias correction of (3).

4. Higher Order Efficiency

Asymptotic bias corrections can provide estimators that have better bias properties in the finite
sample. There are several ways of achieving bias correction, including analytical corrections that we
focus on in this paper, the jackknife and bootstrap methods. These abundant ways of bias correction
evoke the issue of which method is preferable to others at least on asymptotic efficiency grounds. For
the ML estimation, Hahn et al. (2004) [12] show that the method of bias correction does not affect
the higher order efficiency of any bias-corrected estimator that is first-order efficient. Although the
ML estimator is a class of the M-estimator we consider, it is not trivial to conjecture that the same
equivalence result will hold for a general class of M-estimators because the equivalence in the ML
can hold due to some specific properties of the ML estimator. In this section, we formally extend the
equivalence result to a general M-estimator.

We compare the higher order efficiency of several first-order efficient bias-corrected estimators
by comparing the higher order variances, which are defined by the O

(
1
n

)
variance in a third-order

stochastic expansion of an estimator.

4.1. Third-Order Expansion of the One-Step Bias-Corrected Estimator

To compare with the estimator of interest θ
∗

in (7), first we consider a one-step bias-corrected
estimator θ̂bc defined in (3) as θ̂bc = θ̂ − 1

n B̂(θ̂) and observe that B̂(θ̂) = Q̂(θ̂)ĉ(θ̂) from (4) and (6).
We also consider its infeasible version θ̂b as θ̂b = θ̂ − 1

n B(θ̂), where the function B(θ̂) is constructed
as B(θ̂) = Q(θ̂)c(θ̂), provided that both B̂(θ̂) and B(θ̂) are consistent estimators of the higher order
bias term B(θ0) = Q(θ0)c(θ0). Note that for some θ̃ between θ̂ and θ0, a first-order Taylor expansion
gives us:

c(θ̂)− c(θ0) = ∇c(θ̃)
(

θ̂ − θ0

)
= Op(1)Op

(
1/
√

n
)
= op (1)
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under Condition 2 and because θ̂ − θ0 = Op

(
1√
n

)
. Furthermore, we have:

∥∥∥ĉ(θ̂)− c(θ0)
∥∥∥ ≤

∥∥∥ĉ(θ̂)− c(θ̂)
∥∥∥+ ∥∥∥c(θ̂)− c(θ0)

∥∥∥
≤ sup

θ∈Θ0

‖ĉ(θ)− c(θ)‖+
∥∥∥c(θ̂)− c(θ0)

∥∥∥ = op (1) + op(1) = op(1)

by the triangle inequality, Lemma A.7 (in Appendix A) and the continuity of c(θ) at θ0 (applying the
Slutsky theorem), hence, both B(θ̂) and B̂(θ̂) are indeed consistent estimators of the higher order bias
noting that Q(θ̂) = Q(θ0) + op(1) by the continuity of Q(θ) at θ0 and Q̂(θ̂) = Q(θ0) + op(1).

Now, from the result of Lemma 3 and a second-order Taylor expansion of B(θ̂), it follows that:

√
n(θ̂b − θ0) =

√
n(θ̂ − θ0)−

1√
n

B(θ̂)

=
a−1/2 +

1√
n a−1 +

1
n a−3/2 + Op(n−3/2)

− 1√
n B(θ0)− 1√

n∇B(θ0)(θ̂ − θ0)− 1
2
√

n∇
2B(θ̃)((θ̂ − θ0)⊗ (θ̂ − θ0))

where θ̃ is a point between θ̂ and θ0, and hence:

√
n(θ̂b − θ0) = a−1/2 +

1√
n
(a−1 − B(θ0)) +

1
n
(a−3/2 −∇B(θ0)a−1/2) + Op(n−3/2), (8)

since
√

n(θ̂− θ0) = a−1/2 +Op

(
1√
n

)
and∇2B(θ̃) = ∇2B(θ0)+ op(1) = Op(1) by the Slutsky theorem,

from which we conclude 1
2
√

n∇
2B(θ̃)((θ̂ − θ0)⊗ (θ̂ − θ0)) = Op(n−3/2).

Now, similarly for θ̂bc, we obtain:

√
n(θ̂bc − θ0) =

√
n(θ̂ − θ0)−

1√
n

B̂(θ̂) (9)

=
a−1/2 +

1√
n a−1 +

1
n a−3/2 + Op(n−3/2)

− 1√
n B̂(θ0)− 1√

n∇B̂(θ0)(θ̂ − θ0)− 1
2
√

n∇
2B̂(θ̃)((θ̂ − θ0)⊗ (θ̂ − θ0)).

Then, applying the following three results (that hold under Assumptions 1 and 2 or 3 and 2, as shown
in Lemma A.12 in Appendix A):

Condition 4. B̂(θ0) = B(θ0) + Op
(
1/
√

n
)
,

Condition 5. ∇B̂(θ0) = ∇B(θ0) + Op
(
1/
√

n
)
,

Condition 6. ∇2B̂(θ) = Op(1) in the neighborhood of θ0,

we obtain:

√
n(θ̂bc − θ0) (10)

= a−1/2 +
1√
n
(a−1 − B(θ0)) +

1
n

(
a−3/2 −∇B(θ0)a−1/2 −

√
n(B̂(θ0)− B(θ0))

)
+ Op(n−3/2)

noting that 1√
n∇B̂(θ0)(θ̂ − θ0) = 1

n∇B̂(θ0)
(

a−1/2 + Op

(
1√
n

))
= 1

n∇B(θ0)a−1/2 + Op(n−3/2) by

Condition 5 and that 1
2
√

n∇
2B̂(θ̃)((θ̂ − θ0)⊗ (θ̂ − θ0)) = Op(n−3/2) by Condition 6 and the fact that

θ̂ − θ0 = Op
(
1/
√

n
)
.
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4.2. Third-Order Expansion of the Bias-Corrected Moment Equations Estimator

Now, we derive the higher order expansion of the proposed bias-corrected estimator θ
∗

up to
the third order. For this, we need to verify an additional condition below, which is satisfied under
Assumptions 1 and 2 or 3 and 2 with κ ≥ 5 as shown in Lemma A.10 and A.11 in Appendix A.

Condition 7. (i) ∇ĉ(θ0) = ∇c(θ0) + Op

(
1√
n

)
; (ii) ∇3 ĉ(θ) = Op(1) in the n−1/2 neighborhood of θ0.

Recall that c(θ) = Q−1(θ)B(θ) and ĉ(θ) = Q̂(θ)−1B̂(θ), and we obtain:

Proposition 2. Suppose θ
∗

solves (7), where ĉ(θ) is given in (6), and that θ
∗

is consistent. Further, suppose
that Conditions 1–7 and Conditions (i)–(viii) in Lemma 3 are satisfied, and assume

√
n(θ̂ − θ0) = a−1/2 +

1√
n (a−1 − B(θ0)) + Op

(
1
n

)
. Then, we have:

√
n
(

θ
∗ − θ0

)
= a−1/2+

1√
n (a−1 − B(θ0)) +

1
n

(
a−3/2 −∇B(θ0)a−1/2 −

√
n(B̂(θ0)− B(θ0))

)
+Op(n

−3/2).
(11)

Comparing (10) and (11), we therefore conclude that
√

n
(

θ
∗ − θ0

)
and
√

n
(

θ̂bc − θ0

)
are identical

up to Op(
1
n ) order terms. This implies that θ

∗
and θ̂bc at least agree upon their higher order variances,

as we discuss in the following section.

4.3. Higher Order Variances

For a three-term stochastic expansion of an estimator θ̌, such as:

√
n
(
θ̌ − θ0

)
= T−1/2 +

1√
n

T−1 +
1
n

T−3/2 + Op(n−3/2),

the higher order variance is given by:

Λθ̌ ≡ Σ +
1
n

Ξ,

with Σ =Var[T−1/2] and Ξ = Var[T−1] + E
[(√

nT−1 + T−3/2
)

T′−1/2

]
+ E

[
T−1/2

(√
nT−1 + T−3/2

)′].
Then, from the third-order stochastic expansions of the bias-corrected estimators derived in (8), (10)
and (11), we can obtain the higher order variances of three alternative estimators, denoted by Λ

θ̂b
, Λ

θ̂bc
,

and Λθ
∗ , respectively, as:5

Λ
θ̂b

=


E
[

a−1/2a′−1/2

]
+ 1

n E
[
(a−1 − B(θ0)) (a−1 − B(θ0))

′
]

+ 1
n E
[

a−1/2 (a−3/2 −∇B(θ0)a−1/2)
′
]
+ 1

n E
[
(a−3/2 −∇B(θ0)a−1/2) a′−1/2

]
+ 1

n E
[√

na−1/2 (a−1 − B(θ0))
′
]
+ 1

n E
[√

n (a−1 − B(θ0)) a′−1/2

]


Λ
θ̂bc

= Λ
θ̂b
− 1

n
E
[

a−1/2
√

n(B̂(θ0)− B(θ0))
′
]
− 1

n
E
[√

n(B̂(θ0)− B(θ0))a′−1/2

]
(12)

Λθ
∗ = Λ

θ̂bc
. (13)

First note that the result of (12) reveals that the higher order variance of θ̂bc has additional terms
compared with θ̂b (infeasible estimator) because we use the sample analogue of the second-order bias,
unless E

[
a−1/2

√
n(B̂(θ0)− B(θ0))

]
= 0. These additional terms contribute to the cost of estimating

5 The analytic forms of these variances are provided in Appendix C.
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the bias term B̂(·) in the analytic bias correction approach. Now, the result of (13) tells that the higher
order variances of two alternative bias-corrected estimators are the same, so on the grounds of this
higher order variances’ comparison, we find that the bias correction method by adjusting moment
equations does not improve over the analytic bias correction.

Indeed, it is more remarkable that comparing the third-order expansions of (10) and (11),
we further find:

n3/2(θ̂bc − θ
∗
) = op(1). (14)

This is a stronger result than just comparing the higher order variances because it implies that these
two estimators do not only have the same higher order variance, but also agree on more properties in
terms of their stochastic expansions. In the literature, it has been argued that removing the bias directly
from the moment equations has an attractive feature that it does not use pre-estimated parameters that
are not bias corrected, though this alternative approach requires more intensive computations, since it
requires solving some nonlinear equation. However, in view of the result (14), this paper concludes
that at least for the third-order stochastic expansion comparison, there is no benefit of using such bias
correction of the moment equations over the simple bias-corrected estimator.

4.4. Further Comparison of Alternative Bias Corrections

To have a better understanding of the equivalence result (14), here we compare several versions
of bias-corrected estimators that are infeasible by their nature. First, let θ

∗
1 be the solution of

0 = 1
n ∑n

i=1 s (zi, θ)− 1
n c(θ) where c(θ) is known. We also define two other bias-corrected estimators:

θ̂2 = θ̂ − Q̂(θ̂)c(θ̂) and θ̂3 = θ̂ −Q(θ̂)ĉ(θ̂),

so for θ̂2, c(θ) is known, but Q(θ) is estimated, while for θ̂3, c(θ) is estimated, but Q(θ) is known.
For these estimators, we obtain the following results.6

√
n(θ

∗
1 − θ0) =

√
n(θ̂b − θ0)−

1
n

QVB(θ0) + Op(n−3/2),
√

n(θ
∗
1 − θ0) =

√
n(θ̂2 − θ0) + Op(n−3/2),

√
n(θ

∗ − θ0) =
√

n(θ̂3 − θ0) +
1
n

QVB (θ0) + Op(n−3/2),
√

n(θ
∗ − θ0) =

√
n(θ̂bc − θ0) + Op(n−3/2).

The results illustrate that using Q̂(·) rather than Q(·) in the bias correction term plays a critical role for
equating the stochastic expansions (up to the third order) of the one-step bias-corrected estimator and
the bias-corrected moment equations estimator. To see the point compare θ

∗
1 and θ̂2 and compare θ

∗

and θ̂bc where in the former c(·) is known, and in the latter, c(·) is also estimated.
Next, we consider the possible iteration of the bias correction. Hahn and Newey (2004) [6] discuss

the relationship between the bias correction of moment equations and the iterated bias correction.
The iteration idea is that one can update B̂(·) several times using the previous estimator of θ̂. To be
precise, denoting B̂(θ) as a function of θ, we can write the one-step bias-corrected estimator as
θ̂1

bc = θ̂ − B̂(θ̂)/n. The k-th iteration will give us θ̂k
bc = θ̂ − B̂(θ̂k−1

bc )/n for k ≥ 2 where θ̂1
bc = θ̂bc. If we

iterate this procedure until convergence, we will obtain θ̂∞
bc = θ̂ − B̂(θ̂∞

bc)/n, which implies that θ̂∞
bc

solves (note B̂(θ) = Q̂(θ)ĉ(θ)):

0 = Q̂(θ)−1(θ̂ − θ)− 1
n

ĉ(θ) =
1
n ∑n

i=1 s
(

zi, θ̂
)
+ Q̂(θ)−1(θ̂ − θ)− 1

n
ĉ(θ), (15)

6 Detailed derivations are available upon request.
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where the second equality is from the definition of θ̂ in (2). Observing that Q̂(θ)−1 = − 1
n ∑n

i=1∇s (zi, θ),
if s (zi, θ) is linear in θ, then we find that the Equation (15) is the same as Equation (7) for
the bias-corrected moment equations; hence, θ̂∞

bc is exactly the same with θ
∗
. Otherwise, (15) is

an approximation of (7). From this, we conclude that the fully-iterated bias-corrected estimator θ̂∞
bc

can be interpreted as the solution to an approximation of the bias-corrected moment Equation (7).

Similarly to (9), for ˜̃θ between θ̂∞
bc and θ0, we can show that:

√
n(θ̂∞

bc − θ0) =
√

n(θ̂ − θ0)− 1√
n B̂(θ̂∞

bc)

=
a−1/2 +

1√
n a−1 +

1
n a−3/2

− 1√
n B̂(θ0)− 1√

n∇B̂(θ0)(θ̂
∞
bc − θ0)− 1

2
√

n∇
2B̂(˜̃θ)((θ̂∞

bc − θ0)⊗ (θ̂∞
bc − θ0)) + Op(n−3/2)

= a−1/2 +
1√
n (a−1 − B(θ0)) +

1
n

(
a−3/2 −∇B(θ0)a−1/2 −

√
n(B̂(θ0)− B(θ0))

)
+ Op(n−3/2)

using Conditions 4, 5 and 6 and
√

n
(

θ̂∞
bc − θ0

)
= QJ + Op

(
1/
√

n
)
. This result confirms that

√
n(θ̂∞

bc − θ̂bc) = Op(n−3/2), which actually holds for all θ̂k
bc ( k ≥ 2).

From this equivalence of the higher order expansions for θ̂∞
bc and θ̂bc at least up to the third order

term, one would expect that the higher order expansion of θ
∗

will be equivalent to that of θ̂bc at least
up to the third order, and we have verified that this intuition is correct. However, as observed in some
Monte Carlo examples of Hahn and Newey (2004) [6] and Fernandez-Val (2004) [14], the iterative
bias correction can lower the bias for small samples and so can the bias correction of the moment
equations. This suggests that the comparison between the one-step bias correction and the method
of correcting the moment equations (or the fully-iterated bias correction) should be based on the
stochastic expansions higher than the third order. The comparison of the two alternative bias-corrected
estimators over the fourth order or even higher order stochastic expansions can be challenging and is
beyond the scope of this paper.

5. Conclusions

This paper considers an alternative bias correction for the M-estimator, which is achieved by
correcting the moment equations in the spirit of Firth (1993) [13]. In particular, this paper compares
the stochastic expansions of the analytically-bias-corrected estimator and the alternative estimator
and finds that the third-order stochastic expansions of these two estimators are identical. This implies
that these two estimators do not only have the same higher order variances, but also agree upon more
properties in terms of their stochastic expansions.

We conclude that at least in terms of the third-order stochastic expansion, we cannot improve on
the simple one-step bias-correction by using the bias correction of the moment equations. The intuition
is that the fully-iterated bias-corrected estimator can be interpreted as the solution of an approximation
to the bias-corrected moment equations, and the iteration will not improve the asymptotic properties
in general; neither will the alternative estimator. We have verified this intuition in this paper.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1146/4/4/48/s1,
Technical Lemmas and Proofs.
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Appendix A. Technical Lemmas and Proofs

Some preliminary Lemmas and their proofs are available in the Supplementary Material, which
are useful to derive the main results presented in the paper.
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Appendix B. Proofs of the Main Lemmas and Propositions

This section collects proofs for the main results in the paper.

Appendix B.1. Proposition 1

Proof. By the first-order Taylor series approximation of (7), we have:

0 =
1
n ∑n

i=1 s (zi, θ0) +

(
1
n ∑n

i=1∇s
(

zi, θ̃
))

(θ
∗ − θ0)−

1
n

ĉ(θ0)−
1
n
∇ĉ
(

θ̃
)
(θ
∗ − θ0)

for θ̃ between θ
∗

and θ0 and, hence:

√
n
(

θ
∗ − θ0

)
= −

(
1
n ∑n

i=1∇s
(

zi, θ̃
)
− 1

n∇ĉ(θ̃)
)−1 ( 1√

n ∑n
i=1 s (zi, θ0)− 1√

n ĉ(θ0)
)

= −
(

E [∇s (zi, θ0)] + op(1) + Op

(
1
n

))−1 ( 1√
n ∑n

i=1 s (zi, θ0) + Op

(
1√
n

))
= QJ + op(1),

(B1)

by Conditions 1(i), 2 and θ̃ = θ0 + op(1) provided that
∥∥∥ 1

n ∑n
i=1∇s

(
zi, θ

)
− E [∇s (zi, θ0)]

∥∥∥ = op(1)

for θ = θ0 + op(1). This confirms that the estimator has the same first-order asymptotic distribution
with

√
n(θ̂ − θ0). Recalling Ĥ1(θ) ≡ 1

n ∑n
i=1∇s (zi, θ) and H1(θ0)(= −Q−1) ≡ E[∇s (zi, θ0)], we can

rewrite (B1) as:

√
n
(
θ
∗ − θ0

)
= −

(
H1(θ0)− 1

n∇ĉ(θ0)
)−1 ( 1√

n ∑n
i=1 s (zi, θ0)− 1√

n ĉ(θ0)
)

−
((

Ĥ1(θ̃)− 1
n∇ĉ(θ̃)

)−1
−
(

H1(θ0)− 1
n∇ĉ(θ0)

)−1
)(

1√
n ∑n

i=1 s (zi, θ0)− 1√
n ĉ(θ0)

)
= −

(
H1(θ0) + Op (1/n)

)−1
(

1√
n ∑n

i=1 s (zi, θ0) + Op
(
1/
√

n
))

−
((

Ĥ1(θ̃) + Op (1/n)
)−1
−
(

H1(θ0) + Op

(
1
n

))−1
)(

1√
n ∑n

i=1 s (zi, θ0) + Op
(
1/
√

n
))

= −
(

H1(θ0)
−1 + Op (1/n)

) ( 1√
n ∑n

i=1 s (zi, θ0) + Op
(
1/
√

n
))

−
(

Ĥ1(θ̃)
−1 − H1(θ0)

−1 + Op (1/n)
) (

1√
n ∑n

i=1 s (zi, θ0) + Op
(
1/
√

n
))

= −H1(θ0)
−1 1√

n ∑n
i=1 s (zi, θ0)−

(
Ĥ1(θ̃)

−1 − H1(θ0)
−1
)

1√
n ∑n

i=1 s (zi, θ0) + Op (1/n)

= −H1(θ0)
−1 1√

n ∑n
i=1 s (zi, θ0) + Op (1/n) ,

where the second inequality is by Condition 2 and the last equality is obtained by(
Ĥ1(θ̃)

−1 − H1(θ0)
−1
)

= Op
(
1/
√

n
)

and 1√
n ∑n

i=1 s (zi, θ0) = Op(1), and hence, we have
√

n
(

θ
∗ − θ0

)
= QJ + Op

(
1/
√

n
)

. This implies that θ
∗

and θ̂ have the same first order asymptotics.
In order to analyze the higher order asymptotic distribution, we make a second-order Taylor
series expansion:

0 =


1
n ∑n

i=1 s (zi, θ0) +
(

1
n ∑n

i=1∇s (zi, θ0)
)
(θ
∗ − θ0)

+ 1
2

(
1
n ∑n

i=1∇2s
(

zi, θ̃
)) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

n ĉ(θ0)− 1
n∇ĉ (θ0) (θ

∗ − θ0)− 1
2n∇2 ĉ

(
θ̃
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
 . (B2)
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We rewrite (B2) as:

0 =


1√
n J +

(
−Q−1 + 1√

n V
) (

θ
∗ − θ0

)
+ 1

2

(
H2 +

1√
n W
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

n ĉ(θ0)− 1
n∇ĉ (θ0) (θ

∗ − θ0)

− 1
2n∇2 ĉ

(
θ̃
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
+ Op(n−3/2)


=


1√
n J +

(
−Q−1 + 1√

n V
) (

θ
∗ − θ0

)
+ 1

2

(
H2 +

1√
n W
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

n ĉ(θ0) + Op(n−3/2)

 (B3)

since (a) 1
n∇ĉ (θ0) (θ

∗ − θ0) = Op(n−3/2) by Condition 2 and θ
∗
= θ0 + Op(

1√
n ) from (B1) noting

J = Op(1) and since (b):∥∥∥∥ 1
2n
∇2 ĉ

(
θ̃
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))∥∥∥∥
≤ 1

2n

∥∥∥∇2 ĉ
(

θ̃
)∥∥∥ ∥∥∥θ

∗ − θ0

∥∥∥2
= O(n−1)Op(1)Op(n−1) = Op(n−2)

by Condition 3 and θ
∗
= θ0 + Op

(
1/
√

n
)
.

From (B3), by observing that θ
∗

and θ̂ have the same first-order asymptotics, we obtain:

√
n
(

θ
∗ − θ0

)
= QJ +

1√
n

Q
(

VQJ +
1
2

H2 (QJ ⊗QJ)− ĉ(θ0)

)
+ Op

(
1
n

)
= QJ +

1√
n

Q
(

VQJ +
1
2

H2 (QJ ⊗QJ)− c(θ0)

)
+ Op

(
1
n

)
,

as in Lemma 1. The second equality comes from Condition 1(ii) (ĉ(θ0) = c(θ0) + Op
(
1/
√

n
)
), and

thus, the second-order bias Bias(θ
∗
) ≡ 1

n E
[

Q
(

VQJ + 1
2 H2 (QJ ⊗QJ)− c(θ0)

)]
= 0 since (noting

Q ≡ Q(θ0) and H2 ≡ H2(θ0)):

E
[
VQJ + 1

2 H2 (QJ ⊗QJ)
]

= E [∇s (zi, θ0) Q(θ0)s(zi, θ0)] +
1
2 H2E [Q(θ0)s(zi, θ0)⊗Q (θ0) s(zi, θ0)] = c (θ0)

by the definition of c(θ) in (5) and Lemma 2.

Appendix B.2. Lemma 3

Proof. Consider a higher order Taylor expansion of (2) around the true value of θ = θ0 up to the
third order as:

0 = 1
n ∑n

i=1 s (zi, θ0) +
(

1
n ∑n

i=1∇s (zi, θ0)
) (

θ̂ − θ0

)
+ 1

2

(
1
n ∑n

i=1∇2s (zi, θ0)
) ((

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ 1

6

(
1
n ∑n

i=1∇3s
(

zi, θ̃
)) ((

θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
,

where θ̃ lies between θ0 and θ̂. Now, by the stochastic equicontinuity Condition (iii) and θ̃ = θ0 + op(1),
we have:

1√
n ∑n

i=1

(
∇3s

(
zi, θ̃

)
− H3

(
θ̃
))
− 1√

n ∑n
i=1

(
∇3s (zi, θ0)− H3(θ0)

)
= op (1)
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and hence:(
1
n ∑n

i=1∇3s
(

zi, θ̃
)
− 1

n ∑n
i=1∇3s (zi, θ0)

) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
=
(

H3

(
θ̃
)
− H3 (θ0) + op

(
1√
n

)) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
=
(
∇
(
E
[
∇3s (zi, θ)

])∣∣
θ=˜̃θ (θ̃ − θ0) + op

(
1√
n

)) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
=
(

E
[
∇4s (zi, θ0)

]
(θ̃ − θ0) + op

(
1√
n

)) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
= Op(n−2),

applying the mean value theorem where ˜̃θ lies between θ̃ and θ0 and from standard results on
differentiating inside the integral. The second to last equality is from the continuity of E

[
∇4s (zi, θ0)

]
at θ0 and since ˜̃θ = θ0 + op (1). We, thus, obtain:

0 =


1
n ∑n

i=1 s (zi, θ0) +
(

1
n ∑n

i=1∇s (zi, θ0)
) (

θ̂ − θ0

)
+ 1

2

(
1
n ∑n

i=1∇2s (zi, θ0)
) ((

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ 1

6

(
1
n ∑n

i=1∇3s (zi, θ0)
) ((

θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ Op(n−2)

 . (B4)

Now, note:

1
n ∑n

i=1∇s (zi, θ0) = −Q−1 + 1√
n V, 1

n ∑n
i=1∇2s (zi, θ0) = H2 +

1√
n W

1
n ∑n

i=1∇3s (zi, θ0) = H3 +
1√
n W3 with W3 ≡ 1√

n ∑n
i=1
(
∇3s (zi, θ0)− E

[
∇3s (zi, θ0)

])
= Op(1).

We then rewrite (B4) as:

0 =


1√
n J +

(
−Q−1 + 1√

n V
) (

θ̂ − θ0

)
+ 1

2

(
H2 +

1√
n W
) ((

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ 1

6

(
H3 +

1√
n W3

) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ Op(n−2)

 . (B5)

Now, note that we can expand:(
−Q−1 +

1√
n

V
)−1

=

(
I −Q

1√
n

V
)−1

(−Q) (B6)

= −Q + Op(
1√
n
) = −Q− 1√

n
QVQ + Op(n−1) = −Q− 1√

n
QVQ− 1

n
QVQVQ + Op(n−3/2)

depending on the expansions we need. Plugging (B6) into (B5) (depending on the orders we need) and
inspecting the orders, we have:

θ̂ − θ0 (B7)

=


−
(
−Q−1 + 1√

n V
)−1 1√

n J

− 1
2

(
−Q−1 + 1√

n V
)−1 (

H2 +
1√
n W
) ((

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
− 1

6

(
−Q−1 + 1√

n V
)−1 (

H3 +
1√
n W3

) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ Op(n−2)


=


−
(
−Q− 1√

n QVQ− 1
n QVQVQ + Op(n−3/2)

)
1√
n J

− 1
2

(
−Q− 1√

n QVQ + Op(n−1)
) (

H2 +
1√
n W
) ((

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
− 1

6

(
−Q + Op

(
1√
n

)) (
H3 +

1√
n W3

) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ Op(n−2)


=


(

1√
n QJ + 1

n QVQJ + 1
n3/2 QVQVQJ

)
+ 1

2

(
Q
(

H2 +
1√
n W
)
+ 1√

n QVQH2

) ((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ 1

6 QH3

((
θ̂ − θ0

)
⊗
(

θ̂ − θ0

)
⊗
(

θ̂ − θ0

))
+ Op(n−2)

 . (B8)
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Now, plugging
√

n(θ̂− θ0) = a−1/2 +Op
(
1/
√

n
)

or
√

n(θ̂− θ0) = a−1/2 +
1√
n a−1 +Op (1/n) into (B8)

depending on the orders required, we obtain:

θ̂ − θ0

=



(
1√
n QJ + 1

n QVQJ + 1
n3/2 QVQVQJ

)
+ 1

2
1
n

(
Q
(

H2 +
W√

n

)
+ QVQH2√

n

) ((
a−1/2 +

a−1√
n + Op

(
1
n

))
⊗
(

a−1/2 +
a−1√

n + Op

(
1
n

)))
+ 1

6
1

n3/2 QH3

((
a−1/2 + Op

(
1√
n

))
⊗
(

a−1/2 + Op

(
1√
n

))
⊗
(

a−1/2 + Op

(
1√
n

)))
+Op(n−2)


=


(

1√
n QJ + 1

n QVQJ + 1
n3/2 QVQVQJ

)
+ 1

2
1
n

(
Q
(

H2 +
1√
n W
)
+ 1√

n QVQH2

) ((
a−1/2 +

1√
n a−1

)
⊗
(

a−1/2 +
1√
n a−1

))
+ 1

6
1

n3/2 QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2) + Op(n−2)

 (B9)

=


(

1√
n QJ + 1

n QVQJ + 1
n3/2 QVQVQJ

)
+ 1

2
1
n QH2 (a−1/2 ⊗ a−1/2)

+ 1
2

1
n3/2 (QH2 ((a−1/2 ⊗ a−1) + (a−1 ⊗ a−1/2)) + (QW + QVQH2) (a−1/2 ⊗ a−1/2))

+ 1
6

1
n3/2 QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2) + Op(n−2)

 .

Finally, rearranging (B9) according to the orders, we have:

θ̂ − θ0

=



1√
n QJ + 1

n Q
(

VQJ + 1
2 H2 (a−1/2 ⊗ a−1/2)

)
+ 1

n3/2

(
QVQ

(
VQJ + 1

2 H2 (a−1/2 ⊗ a−1/2)
)
+ 1

2 QW (a−1/2 ⊗ a−1/2)
)

+ 1
n3/2

(
1
2 QH2 ((a−1/2 ⊗ a−1) + (a−1 ⊗ a−1/2)) +

1
6 QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2)

)
+Op(n−2)


=


1√
n a−1/2 +

1
n a−1

+ 1
n3/2

(
QVa−1 +

1
2 QW (a−1/2 ⊗ a−1/2) +

1
2 QH2 ((a−1/2 ⊗ a−1) + (a−1 ⊗ a−1/2))

)
+ 1

n3/2

(
1
6 QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2)

)
+ Op(n−2)

 .

Appendix B.3. Proposition 2

Proof. Now, consider a third-order Taylor series expansion of 0 = 1
n ∑n

i=1 s
(

zi, θ
∗
)
− 1

n ĉ(θ
∗
):

0 = 1
n ∑n

i=1 s (zi, θ0) +
(

1
n ∑n

i=1∇s (zi, θ0)
)
(θ
∗ − θ0)

+ 1
2

(
1
n ∑n

i=1∇2s (zi, θ0)
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
+ 1

6

(
1
n ∑n

i=1∇3s
(

zi, θ̃
)) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

n ĉ(θ0)− 1
n∇ĉ (θ0) (θ

∗ − θ0)− 1
2

1
n∇2 ĉ (θ0)

((
θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

6
1
n∇3 ĉ

(
θ̃
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
From this, similarly as (B4) to (B5), we obtain:

0 = 1√
n J +

(
−Q−1 + 1√

n V
) (

θ
∗ − θ0

)
+ 1

2

(
H2 +

1√
n W
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

6

(
H3 +

1√
n W3

) ((
θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

n ĉ(θ0)− 1
n∇ĉ (θ0) (θ

∗ − θ0) + Op(n−2),
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since 1
2

1
n∇2 ĉ (θ0)

((
θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
= Op(n−2) by Condition 3 and θ

∗
= θ0 + Op(

1√
n )

and since: ∥∥∥ 1
2

1
n∇3 ĉ

(
θ̃
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))∥∥∥
≤ 1

2
1
n

∥∥∥∇3 ĉ
(

θ̃
)∥∥∥ ∥∥∥θ

∗ − θ0

∥∥∥3
= O(n−1)Op(1)Op(n−3/2) = Op(n−5/2)

by Condition 7(ii) and θ
∗
= θ0 + Op(

1√
n ). Similarly to (B7), we obtain:

θ
∗ − θ0 (B10)

=



−
(
−Q− 1√

n QVQ− 1
n QVQVQ + Op(n−3/2)

)
1√
n J

− 1
2

(
−Q− 1√

n QVQ + Op(n−1)
) (

H2 +
1√
n W
) ((

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

6

(
−Q + Op

(
1√
n

)) (
H3 +

1√
n W3

) ((
θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
+ 1

n

(
−Q− 1√

n QVQ + Op(n−1)
)

ĉ(θ0) +
1
n

(
−Q + Op

(
1√
n

))
∇ĉ (θ0) (θ

∗ − θ0)

+Op(n−2)



=



(
1√
n QJ + 1

n QVQJ + 1
n3/2 QVQVQJ

)
+ 1

2

(
Q
(

H2 +
1√
n W
)
+ QVQH2√

n

) ((
θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
+ 1

6 QH3

((
θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

)
⊗
(

θ
∗ − θ0

))
− 1

n

(
Q + 1√

n QVQ
)

ĉ(θ0)− 1
n Q∇ĉ (θ0) (θ

∗ − θ0) + Op(n−2).


(B11)

Now, replacing
√

n(θ
∗ − θ0) = a−1/2 + Op

(
1√
n

)
or
√

n(θ
∗ − θ0) = a−1/2 +

1√
n (a−1 −Qc(θ0)) +

Op

(
1
n

)
in (B11) depending on the orders required, we obtain:

θ
∗ − θ0

=



(
1√
n QJ + 1

n QVQJ + 1
n3/2 QVQVQJ

)
+ 1

2n

(
Q
(

H2 +
1√
n W
)
+ QVQH2√

n

) (
a−1/2 +

a−1−Qc(θ0)√
n + Op

(
n−1))

⊗
(

a−1/2 +
a−1−Qc(θ0)√

n + Op
(
n−1))


+ 1

6n3/2 QH3

((
a−1/2 + Op

(
1√
n

))
⊗
(

a−1/2 + Op

(
1√
n

))
⊗
(

a−1/2 + Op

(
1√
n

)))
− 1

n

(
Q + 1√

n QVQ
)

ĉ(θ0)− 1
n3/2 Q∇ĉ (θ0)

(
a−1/2 + Op

(
1√
n

))
+ Op(n−2)



=



(
1√
n QJ + 1

n QVQJ + 1
n3/2 QVQVQJ

)
+ 1

2n

(
Q
(

H2 +
W√

n

)
+ QVQH2√

n

) ((
a−1/2 +

a−1−Qc(θ0)√
n

)
⊗
(

a−1/2 +
a−1−Qc(θ0)√

n

))
+ 1

6n3/2 QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2)− 1
n

(
Q + 1√

n QVQ
)

ĉ(θ0)− 1
n3/2 Q∇c(θ0)a−1/2

+Op(n−2),
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where we replaced ∇ĉ(θ0) with ∇c(θ0) + Op

(
1√
n

)
from Condition 7(i). Rearranging terms according

to the orders, we have:

θ
∗ − θ0 (B12)

=



1√
n QJ + 1

n

(
QVQJ + 1

2 QH2(a−1/2 ⊗ a−1/2)−Qĉ(θ0)
)

+ 1
n3/2

 QVQVQJ + 1
2 QH2 ((a−1/2 ⊗ (a−1 −Qc(θ0))) + ((a−1 −Qc(θ0))⊗ a−1/2))

+ 1
2 (QW + QVQH2) (a−1/2 ⊗ a−1/2)

+ 1
6 QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2)−QVQĉ (θ0)−Q∇c(θ0)a−1/2


+Op(n−2)



=



1√
n QJ + 1

n

(
QVQJ + 1

2 QH2(a−1/2 ⊗ a−1/2)−Qc(θ0)
)

+ 1
n3/2

 QVa−1 +
1
2 QH2 ((a−1/2 ⊗ (a−1 −Qc(θ0))) + ((a−1 −Qc(θ0))⊗ a−1/2))

+ 1
2 QW (a−1/2 ⊗ a−1/2) +

1
6 QH3 (a−1/2 ⊗ a−1/2 ⊗ a−1/2)

−QVQ
(

c (θ0) + Op

(
1√
n

))
−Q∇c(θ0)a−1/2 −

√
nQ(ĉ (θ0)− c (θ0))


+Op(n−2)


=


1√
n QJ + 1

n (a−1 −Qc(θ0))

+ 1
n3/2

(
a−3/2 − 1

2 QH2 ((a−1/2 ⊗Qc(θ0)) + (Qc(θ0)⊗ a−1/2))

−QVQc (θ0)−Q∇c (θ0) a−1/2 −
√

nQ(ĉ (θ0)− c (θ0))

)
+ Op(n−2),


noting that ĉ (θ0) = c (θ0) + Op

(
1√
n

)
.

Now, we rewrite the higher order expansion of θ
∗

in terms of B(θ) recalling that Q(θ)−1B(θ) =
c(θ), and hence:

∇c(θ) = Q(θ)−1∇B(θ)− vec
∗ (

B(θ)′∇
(

H1 (θ)
′
))

(B13)

from Remark A.2 in Appendix A. From (B12), note:

√
n
(

θ
∗ − θ0

)
(B14)

=

a−1/2 +
1√
n (a−1 −Qc(θ0))

+ 1
n

(
a−3/2 − 1

2 QH2 ((a−1/2 ⊗Qc(θ0)) + (Qc(θ0)⊗ a−1/2))−QVQc (θ0)−Q∇c (θ0) a−1/2

)
− 1

n Q
√

n(ĉ(θ0)− c(θ0)) + Op(n−3/2)

from (11), and also note that:

1
2 QH2 ((a−1/2 ⊗Qc(θ0)) + (Qc(θ0)⊗ a−1/2)) + QVQc (θ0) + Q∇c (θ0) a−1/2
= 1

2 QH2 ((a−1/2 ⊗ B(θ0)) + (B(θ0)⊗ a−1/2)) + QVB (θ0)

+Q
(

Q(θ0)
−1∇B(θ0)− vec

∗
(

B(θ0)
′∇
(

H1 (θ0)
′
)))

a−1/2

= 1
2 QH2 ((a−1/2 ⊗Qc(θ0)) + (Qc(θ0)⊗ a−1/2))−Qvec

∗
(

B(θ0)
′∇
(

H1 (θ0)
′
))

a−1/2

+∇B(θ0)a−1/2 + QVB (θ0)

(B15)

from (B13) and B(θ) = Q(θ)c(θ). We claim that:

1
2

H2 ((a−1/2 ⊗ B(θ0)) + (B(θ0)⊗ a−1/2))− vec
∗ (

B(θ0)
′∇
(

H1 (θ0)
′
))

a−1/2 = 0, (B16)

which simplifies (B15) to ∇B(θ0)a−1/2 + QVB (θ0). This is obvious when dim(θ0) = 1, since:

1
2

H2 ((a−1/2 ⊗ B(θ0)) + (B(θ0)⊗ a−1/2)) = H2B(θ0)a−1/2
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and vec
∗
(

B(θ0)
′∇
(

H1 (θ0)
′
))

a−1/2 = B(θ0)H2a−1/2 noting ∇
(

H1 (θ0)
′
)
= H2 for the scalar case.

To verify this for a general case with dim(θ0) = k, we note vec(AB) = (I⊗ A)vec(B) = (B′⊗ I)vec(A),
and hence:

1
2 H2 ((a−1/2 ⊗ B(θ0)) + (B(θ0)⊗ a−1/2)) =

1
2 H2

(
vec
(

B(θ0)a′−1/2

)
+ vec (a−1/2B(θ0)

′)
)

= 1
2 H2 ((I ⊗ B(θ0)) a−1/2 + (B(θ0)⊗ I) a−1/2) =

1
2 H2 (I ⊗ B(θ0) + B(θ0)⊗ I) a−1/2.

Finally, after some tedious algebra, we find 1
2 H2 (I ⊗ B(θ0) + B(θ0)⊗ I) = vec

∗
(

B(θ0)
′∇
(

H1 (θ0)
′
))

,
which concludes (B16). Therefore, we can rewrite (B14) as:

√
n
(

θ
∗ − θ0

)
= a−1/2 +

1√
n (a−1 − B(θ0)) +

1
n

(
a−3/2 −∇B(θ0)a−1/2 −

√
n(B̂(θ0)− B(θ0))

)
+ 1

n

(√
n(Q̂(θ0)−Q(θ0))ĉ(θ0)−QVB (θ0)

)
+ Op(n−3/2).

Now, we have
√

n(Q̂(θ0)−Q(θ0))ĉ(θ0)−QVB (θ0) = Op

(
1√
n

)
, and hence:

√
n
(

θ
∗ − θ0

)
= a−1/2 +

1√
n
(a−1 − B(θ0)) +

1
n

(
a−3/2 −∇B(θ0)a−1/2 −

√
n(B̂(θ0)− B(θ0))

)
+ Op(n−3/2).

This completes the proof.

Appendix C. Higher Order Variances

Here, we derive the analytic forms of the higher order variances for several alternative estimators.
Note that E

[
(a−1 − B(θ0)) (a−1 − B(θ0))

′
]
= E[a−1a′−1]− B(θ0)B(θ0)

′, E
[√

na−1/2 (a−1 − B(θ0))
′
]
=

E
[√

na−1/2a′−1
]
, E

[
a−1/2 (a−3/2 −∇B(θ0)a−1/2)

′
]

= E
[

a−1/2a′−3/2

]
− E

[
a−1/2a′−1/2

]
(∇B(θ0))

′

from E[a−1] = B(θ0) and E[a−1/2] = 0, and hence:

Λ
θ̂b
=


E
[

a−1/2a′−1/2

]
+ 1

n

(
E
[√

na−1a′−1/2

]
+ E

[√
na−1/2a′−1

])
+ 1

n

(
E[a−1a′−1] + E

[
a−3/2a′−1/2

]
+ E

[
a−1/2a′−3/2

])
−B(θ0)B(θ0)

′ − E
[

a−1/2a′−1/2

]
(∇B(θ0))

′ −∇B(θ0)E
[

a−1/2a′−1/2

]
 .

Rilstone et al. (1996) [15] derive the second-order mean squared error (MSE) of the M-estimator
that solves the moment condition (2). Proposition 3.4 in Rilstone et al. (1996) [15] implies that:

Λ
θ̂b
= γ1 +

1
n
(
γ2 + γ′2

)
+

1
n
(
γ3 + γ4 + γ′4

)
− 1

n

(
B(θ0)B(θ0)

′ + γ1 (∇B(θ0))
′ +∇B(θ0)γ

′
1

)
+O

(
n−2

)
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where (denoting the expectation of a function A(θ) as A(θ) = E[A(θ)] for notational convenience):

γ1 = d1d′1, γ2 = Q
{

v1d1d′1 +
1
2

H2(d1 ⊗ d1) d′1

}

γ3 =



Q
{

v1d1d′2V′2 + v1d2d′1v′2 + v1d2d′2v′1
}

Q′

+QH2

{
(d1 ⊗ d1)

(
d′2 ⊗ d′2

)
+ (d1 ⊗ d2)

(
d′1 ⊗ d′2

)
+ (d1 ⊗ d2)

(
d′2 ⊗ d′1

)}
H′2Q′

−Q
{

v1d1
(
d′2 ⊗ d′2

)
+ v1d2

(
d′1 ⊗ d′2

)
+ v1d2

(
d′2 ⊗ d′1

)}
H′2Q′

−QH2

{
d1 ⊗ d1d′2v′2 + (d1 ⊗ d2) d′1v′2 + (d1 ⊗ d2) d′2v′1

}
Q′



γ4 =



Q
{

v1Qv1d2d′2 + v1Qv2d1d′2 + v1Qv2d2d′1
}

+ 1
2 Q
{

v1QH2 (d1 ⊗ d2) d′2 + v1QH2 (d2 ⊗ d1) d′2 + v1QH2 (d2 ⊗ d2) d′1
}

+ 1
2 Q
{

w1 (d1 ⊗ d2) d′2 + w1 (d2 ⊗ d1) d′2 + w1 (d2 ⊗ d2) d′1
}

+ 1
2 QH2

{
(d1 ⊗Qv1d2) d′2 + (d1 ⊗Qv2d1) d′2 + (d1 ⊗Qv2d2) d′1

}
+ 1

4 QH2

{
d1 ⊗QH2 (d1 ⊗ d2) d′2 + d1 ⊗QH2 (d2 ⊗ d1) d′2 + d1 ⊗QH2 (d2 ⊗ d2) d′1

}
+ 1

2 QH2

{
(QV1d1 ⊗ d2) d′2 + (QV1d2 ⊗ d1) d′2 + (QV1d2 ⊗ d2) d′1

}
+ 1

4 QH2

{
(QH2 (d1 ⊗ d1)⊗ d2) d′2 + (QH2 (d1 ⊗ d2)⊗ d1) d′2 + (QH2 (d1 ⊗ d2)⊗ d2) d′1

}
+ 1

6 QH3

{
[d1 ⊗ d1 ⊗ d2] d′2 + [d1 ⊗ d2 ⊗ d1] d′2 + [d1 ⊗ d2 ⊗ d2] d′1

}



.

for di = Qs(zi, θ0), vi = ∇s(zi, θ0) − E [∇s(zi, θ0)] and wi = ∇2s(zi, θ0) − E
[
∇2s(zi, θ0)

]
. We also

note B(θ0) =
(

Qv1d1 +
1
2 H2d1 ⊗ d1

)
from Lemma 2. Finally, we derive ∇B(θ0) as follows. Noting

vec∗ (s(zi, θ0)
′∇ (Q(θ0)

′)) = vec∗ (s(zi, θ0)
′Q′QH2) from Remark A.5 in Appendix A, we can show:

∇c(θ0) =
1
2 vec

∗
((

d1 ⊗ d1

)′
∇ (H2(θ)

′)|θ=θ0

)
+ 1

2 H2

(
e1 ⊗

∗ d1 + vec∗
(
d′1QH2

)
⊗∗ d1

)
+ 1

2 H2

(
d1 ⊗ e1 + d1 ⊗ vec∗

(
d′1QH2

))
+∇s1

(
e1 + vec∗

(
d′1QH2

))
+ vec∗

(
d′1 ∇

(
(∇s1(θ))

′
)∣∣∣

θ=θ0

)
where e1 = Q∇s(z1, θ0), ∇s1(θ) = ∇s(z1, θ) and ∇s1 = ∇s(z1, θ0). Combining this result with
∇B(θ0) = Q(θ0)∇c(θ0) + vec

∗
(c(θ0)

′∇ (Q(θ0)
′)) and B(θ0) = Q

{
v1d1 +

1
2 H2d1 ⊗ d1

}
, we obtain:

∇B(θ0) = Q(θ0)∇c(θ0) + vec
∗ (

c(θ0)
′∇
(
Q(θ0)

′))
= Q(θ0)∇c(θ0) + vec

∗ (
c(θ0)

′Q′QH2
)
= Q(θ0)∇c(θ0) + vec

∗ (
B(θ0)

′QH2
)

=



1
2 Qvec

∗
((

d1 ⊗ d1

)′
∇ (H2(θ)

′)|θ=θ0

)
+ 1

2 QH2

(
e1 ⊗

∗ d1 + vec∗
(
d′1QH2

)
⊗∗ d1

)
+ 1

2 QH2

(
d1 ⊗ e1 + d1 ⊗ vec∗

(
d′1QH2

))
+ e1

(
e1 + vec∗

(
d′1QH2

))
+Qvec∗

(
d′1 ∇

(
(∇s1(θ))

′
)∣∣∣

θ=θ0

)
+ vec

∗
({

d′1v′1 +
1
2 (d1 ⊗ d1)

′H′2
}

Q′QH2

)


.
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