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Abstract

We assess the bias and the efficiency of state-of-the-art dynamic panel data estimators by
means of model-based Monte Carlo simulations. The underlying data-generating process
consists of a standard theoretical growth model of income convergence based on capital
accumulation. While we impose a true underlying speed of convergence of around 5% in
our simulated data, the results obtained with the different panel data estimators range
from 0.03% to 17%. This implies a range of the half life of a given income gap from
4 years up to several hundred years. In terms of the squared percent error, the pooled
OLS, fixed effects, random effects, and difference GMM estimators perform worst, while
the system GMM estimator with the full matrix of instruments and the corrected least
squares dummy variable (LSDVC) estimator perform best relative to the other methods
under consideration. The LSDVC estimator, initialized by the system GMM estimator with
the full matrix of instruments, is the only one capturing the true speed of convergence within
the 95% confidence interval for all scenarios. All other estimators yield point estimates that
are substantially different from the true values and confidence intervals that do not include
the true value in most scenarios.
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1. Introduction

Given that dynamic panel data estimators are widely used in economics, it might come as

a surprise that even the most sophisticated methods are prone to large biases and inefficien-

cies. We use theory-based Monte Carlo simulations to uncover the direction of these biases,

their magnitudes, and also the extent to which the simulated true speed of convergence lies

outside the confidence intervals of the point estimates obtained with these estimators. In so

doing, we rely on a standard theoretical model of income convergence as the true underlying

data-generating process.

Since the publication of Islam (1995), dynamic panel data estimators have become a

popular tool in the empirical analysis of the speed of income convergence. A very detailed

overview of the literature and a thorough discussion of the problems that arise in these

types of growth regressions is provided by Durlauf et al. (2005). While there seems to be a

broad consensus in the profession that a reasonable estimate for the speed of convergence

lies around 2%, the results of different empirical studies vary wildly: Abreu et al. (2005)

analyze 48 articles with 619 estimated values for the speed of convergence and show that

the estimates range from negative values to the maximum of 65.59%. This huge dispersion

can be attributed partly to the use of different specifications, different control variables,

and different sample sizes, the presence of measurement errors, and to endogeneity issues

(see, for example, Durlauf, 2001; Durlauf et al., 2005, for discussions). However, purely

methodological aspects also seem to play an important role: Abreu et al. (2005, p. 410)

note that generalized method of moments (GMM) estimators and the corrected least squares

dummy variable (LSDVC) technique yield substantially higher estimates of the speed of

convergence than other approaches. This might be due to the fact that the biases of GMM-

based estimators can be large as shown by Hsiao et al. (2002) in Monte Carlo studies, albeit

in a different context.

From the perspective of growth economics, the large differences in the results delivered by
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the different estimation techniques urge for a thorough analysis of the biases and inefficiencies

of the state-of-the-art estimators used in convergence regressions. Simulations based on

a theoretical model as the “true” and known data-generating process offer an interesting

opportunity to put the different methods to a test. Such an approach allows to abstract

from complications that emerge in the real world such as measurement errors, omitted

variables, different sample sizes, and endogeneity, i.e., it is essentially the same as running

a controlled experiment. Hauk and Wacziarg (2009) were to our knowledge the first to

provide a systematic analysis of the different biases involved with panel data estimators

in growth regressions. Our study differs from theirs along the following lines: i) while

Hauk and Wacziarg (2009) simulate the data based on estimated fixed effects, we simulate

the trajectories of per capita GDP based on a Solow (1956) growth model with different

deep parameters, such as the savings rate and the population growth rate, for the different

countries. This yields simulated country-specific fixed effects without the need to rely on

estimations obtained with the same statistical techniques that are later on tested for their

overall performance;3 ii) we include additional estimators: two versions of the system GMM

(SYSGMM) estimator – one with the full matrix of instruments and one with the collapsed

matrix of instruments – and the LSDVC estimator that has been proposed recently as an

alternative to GMM-based estimators as a remedy for the Nickell (1981) bias. Including

the LSDVC estimator is particularly important because we show that it outperforms all the

other estomators; iii) we do not only analyze the extent of the bias of different estimators but

also their efficiency by means of their confidence intervals. This yields the surprising insight

that the true speed of convergence is outside of the 95% confidence intervals of almost all

estimators and that the SYSGMM estimator – particularly the one with a collapsed matrix

3Note that we do not need to simulate “realistic” convergence processes. In fact, all we need is that

the underlying true speed of convergence is known and that there are enough data points available for the

estimation procedure.
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of instruments – is highly inefficient. The SYSGMM estimator with the collapsed matrix

of instruments is also the only estimator that yields insignificant results in some scenarios

even though the simulated true rate of convergence is substantially larger than zero.

In our Monte-Carlo study we take into account the following state-of-the-art methods:

the pooled least squares (POLS) estimator, the random effects (RE) estimator, the between

estimator (BE), the fixed effects (FE) estimator, the difference GMM (DIFFGMM) estima-

tor, the system GMM (SYSGMM) estimator with both the full matrix of instruments and

the collapsed matrix of instruments, and the LSDVC estimator.4 Knowing the true speed of

convergence by design, we compare the point estimates delivered by the different methods as

well as the confidence intervals of these point estimates to identify those estimators that are

most promising for estimating the rate of convergence in practical applications. Clearly, our

analysis indicates that the LSDVC estimator performs best and should therefore be among

those estimators that are employed in empirical studies of the rate of convergence. Since

even some of the allegedly unbiased estimators perform badly, we argue that researchers

should not rely on only one estimator when assessing the speed of convergence, even if this

estimator is deemed to be suitable for the different sources of biases involved in the given

specifications and in the corresponding data set (for example the DIFFGMM or the SYS-

GMM estimators). A more cautious and appropriate strategy would be to compare the

outcomes of different estimators in light of the results of Monte Carlo studies like this and

the one of Hauk and Wacziarg (2009).

The remainder of the paper is organized as follows. In Section 2 we provide a short

4For the conceptual details of the different estimators and discussions regarding their advantages and

disadvantages see Hurwicz (1950), Nickell (1981), Arellano and Bond (1991), Blundell and Bond (1998),

Judson and Owen (1999), Wooldridge (2002), Bun and Kiviet (2003), Bruno (2005a), Durlauf et al. (2005),

Hauk and Wacziarg (2009), Baltagi (2013), Hsiao (2014), Pesaran (2015), Ditzen and Gundlach (2016), and

Hauk (2017).
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discussion of important articles on convergence and we briefly describe some known biases

of panel data estimators and the state-of-the-art solutions to cope with them. In Section 3 we

provide a detailed explanation of the data-generating process and the different scenarios and

trajectories that we simulate. In Section 4, we employ our generated data set to estimate the

autoregressive coefficient of the dynamic panel data model with the different state-of-the-

art methods. We report the point estimates and their confidence intervals for the different

estimators and we compute the implied speed of convergence and the squared percent error

for each estimator. This allows us to assess the biases of the estimators in terms of the

deviations from the true speed of convergence and the efficiency of the estimators in terms

of the range of their confidence intervals. Finally, in Section 5 we summarize our findings

and conclude.

2. Panel data estimators and their known biases

While earlier studies of convergence relied on cross-sectional data (cf. Barro, 1991, 1997;

Sala-i-Martin, 1997), progress has been made toward the use of panel data in the mid 1990s

(cf. Islam, 1995; Caselli et al., 1996).5 The main advantages of the use of panel data in

this context are that i) the number of available observations increases substantially, ii) it

becomes possible to control for unobserved heterogeneity that stays constant over time, and

iii) dynamic relationships can be captured in a more accurate way by including the lagged

dependent variable as regressor (see, for example, Baltagi, 2013; Hsiao, 2014; Pesaran, 2015,

for detailed discussions).

While the inclusion of the lagged dependent variable in panel data growth regressions

is crucial for the calculation of the speed of convergence, its introduction comes with a

5For recent applications see, for example, Cohen and Soto (2007), Esposti (2007), Hauk and Wacziarg

(2009), Brückner (2013), Crespo-Cuaresma et al. (2014), Irmen and Litina (2016), and Gehringer and

Prettner (2017).
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substantial cost: the estimation of dynamic models is subject to the Hurwicz (1950) bias

and endogeneity between fixed effects and the lagged dependent variable in FE estimation

gives rise to the Nickell (1981) bias. While the Hurwicz (1950) bias can only be mitigated

by increasing the time dimension of the panel data set, a number of estimators have been

proposed to deal with the endogeneity between fixed effects and the lagged dependent vari-

able: difference GMM (Arellano and Bond, 1991; Arellano and Bover, 1995), system GMM

(Blundell and Bond, 1998) and the LSDVC estimator (Judson and Owen, 1999; Bun and

Kiviet, 2003; Bruno, 2005a). In spite of the fact that the newer panel data estimators of-

fer promising improvements over older ones (such as POLS, FE, and BE), there are still a

number of known biases arising from these estimators. The sources of those biases that are

relevant in our analysis are summarized in Table 1. Of course, the extent of the bias may

be different from case to case.

Table 1: Biases of panel data estimators that we address in our study

Biases POLS FE RE BE LSDVC DIFFGMM SYSGMM

Non-random heterogeneity x x

Omitted group effects x x x

Endogeneity of yt−1 x x x

Validity of instruments x x x

Sources: Hauk and Wacziarg (2009); Hayakawa (2007); Buddelmeyer et al. (2008)

Fernández-Val and Vella (2011); Roodman (2009); Wooldridge (2002)

A very insightful overview of known biases of well-established panel data estimators is

provided by Hauk and Wacziarg (2009): among other biases, they note that the omitted

country-specific fixed effect may create a bias for BE and RE estimators and endogeneity of

the lagged dependent variable would cause a bias for FE and RE estimators. Another issue is

the problem of weak instruments as also noted by Hauk and Wacziarg (2009): this problem

is particularly severe in DIFFGMM estimation because it only relies on lagged levels as

instrument for current differences. The SYSGMM estimator was designed to alleviate this

problem by relying on two types of instruments, lagged levels and lagged differences. Even
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if the instruments are not weak, however, there can simply be too many of them – this

issue is described in detail by Roodman (2009) and referred to as the problem of instrument

proliferation. In general, the validity of instruments is often not guaranteed in case of

GMM-based estimators.

In our study we focus on the biases described in Table 1. However, there are other known

sources for biases the analysis of which are beyond the scope of this paper and would require

a different underlying data-generating process. For example, all of the estimators involved

are exposed to the bias that arises because of measurement errors (Wooldridge, 2002, p.

311) and to the serial correlation of the error term (see Wooldridge, 2002, pp. 282–283 and

307).

3. The data-generating process

We design the data-generating process based on a Solow (1956) growth model. This is

the simplest framework for simulating a theory-based convergence process in which we can

adjust the true underlying speed of convergence by changing the model’s parameters. The

knowledge of the true speed of convergence allows us to assess the biases of the different

state-of-the-art estimators by comparing it to the results of the parameter estimates obtained

with the different models on our artificial data set. This strategy is essentially a controlled

experiment for assessing the different estimators that does not require any parameter esti-

mates for generating the data set. Since the data set is a purely theoretical construct kept

distinct from the empirical part of assessing the performance of the different estimators,

nothing – except for additional complexity – would be gained by using more sophisticated

growth models with endogenous saving rates (as, for example, Ramsey, 1928; Cass, 1965;

Koopmans, 1965; Diamond, 1965) or endogenous technological progress (as, for example,

Romer, 1990; Jones, 1995; Segerström, 1998; Howitt, 1999) as baseline frameworks.

We introduce unobserved heterogeneity, µi, by assigning model-driven fixed effects though
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a random parametrization for each country based on the theoretical model equations. After

initialization for the desired number of countries (the cross-country dimension, N), we gen-

erate the time series of the trajectories of per capita output (the time dimension, T ). Finally,

we introduce idiosyncratic distortions by means of stochastic shocks to account for the fact

that there are deviations from the output series in the short run that are not explained by

the underlying theoretical framework.

The mathematical implementation of the data-generating process is as follows. Suppose

that time t = 1, 2 . . . , T evolves discretely and that we are observing i = 1, 2, . . . N different

economies. Aggregate output of each economy is described by a Cobb-Douglas production

function of the form

Yi,t = Kα
i,t(AtLi,t)

1−α,

where Yi,t is aggregate output of country i at time t (which, by the national accounts identity,

is equal to aggregate income), At refers to labor-augmenting technology that grows at the

constant long-run rate g, Ki,t is the physical capital stock (machines, production facilities,

office buildings, etc.), Li,t is the amount of aggregate labor input, and α is the elasticity of

aggregate output with respect to physical capital input. Households save a constant fraction

si of their income Yi,t in each year, which implies that physical capital accumulation is given

by the dynamic equation

Ki,t+1 = siYi,t + (1− δ)Ki,t,

where δ is the rate of depreciation. Note that this parameter is the same for all the countries,

which is a standard assumption in the theoretical literature. Furthermore, country-specific

differences in the rate of depreciation would anyway be perfectly captured by the fixed effects

in the empirical analysis because δ does not vary over time. We denote per worker variables

with lowercase letters such that per worker capital is given by ki,t = Ki,t/Li,t and per worker
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output pins down to

yi,t = Yi,t/Li,t = A1−α
i kαi,t. (1)

Altogether, we can derive the following approximation of the fundamental equation of the

Solow (1956) model in terms of the evolution of capital per unit of effective labor k̂i,t =

Ki,t/(Ai,tLi,t):

k̂i,t+1 ≈ sik̂
α
i,t + (1− δ − g − ni)k̂i,t, (2)

where ni is the growth rate of the workforce. Since we abstract from unemployment, child-

hood, and retirement, per worker variables and per capita variables coincide, such that ni

is equivalent to the population growth rate. Note that, in continuous time, the differential

equation counterpart to Equation (2) holds with equality. The approximation in case of

discrete time becomes better the lower are the population growth rate and the rate of tech-

nological progress and the smaller is the time step between t and t+ 1. In our case, where t

is measured in yearly terms, this is a reasonable approximation. It would be more difficult

to defend this approximation in an overlapping generations framework in which a time step

refers to one generation and therefore lasts for around 25 years.

The steady-state capital stock can be determined by setting k̂i,t+1 = k̂i,t in Equation (2)

and is given by

k̂∗i =

(
si

ni + δ + g

) 1
1−α

. (3)

Steady-state output per unit of effective labor is then ŷ = k̂α such that output per capita is

given by

y∗i = Ai · (k̂∗i )α = Ai

(
si

ni + δ + g

) α
1−α

. (4)

The true speed of convergence, λtrue,i, can then easily be derived for each country as (see

Romer, 2006, pp. 25-26):

λtrue,i = (1− α)(ni + δ + g). (5)
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The average values of λtrue,i over all countries are compared to the estimated speed of

convergence from the different dynamic panel data estimators in Section 4. The variable

that is crucial for generating convergence is the initial level of capital per unit of effective

labor, k̂i,0. In case that we set k̂i,0 to a small value, we generate a poor country i that has a

strong catch-up potential and will grow fast initially. By contrast, if we set k̂i,0 close to the

steady-state value, we generate a rich country with a low catch-up potential that will grow

sluggishly. To rule out the situation of convergence to the steady state from above (i.e.,

with negative growth rates)6, we initialize the simulation by setting k̂i,0 to a level below the

steady-state according to

k̂i,0 = Dik̂
∗
i , (6)

where Di ∈ (0, 0.3] is the distance to the steady state as drawn from a truncated normal

distribution7 (see Tables 2 and 3 for an overview of the parameter values used in the different

simulation scenarios). We set the upper bound of the relative position of the initial capital

stock at 30% to ensure catch-up growth over a considerable time period. Equation (6)

introduces model-driven heterogeneity in the growth rates between different countries and

this is exactly the source of variation that we need to identify the parameter estimate for

the convergence rate. Note, in this context, that we must not control for the differences in

the capital stock between different countries because this would eliminate the source of the

convergence process.

Instead of generating the data set for different countries by relying on estimated fixed

6It is often argued that the negative growth rates in the former countries of the Soviet Union in the 1990s

can be attributed to a shrinking capital stock. While the Soviet Union had a very high forced investment

rate that could not be sustained after the communist system collapsed, in our simulations the question would

arise how a country could have built up a capital stock that is larger than its steady-state capital stock in

the first place.

7Drawing from truncated normal distribution is based on the functions from Trautmann et al. (2014).
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effects from empirical specifications as in Hauk and Wacziarg (2009, p. 116), we create

theory driven fixed-effects by generating different artificial countries, where the unobserved

heterogeneity in the dataset, µi, follows from the different values of the deep parameters

used for each single country. Although it is not required to use plausible parameter values

— because we could generate any data set we want and use it as our data-generating process

as long as we can compute the true underlying speed of convergence — we think it is more

digestible to use parameter values that are familiar from growth theory and/or that are

empirically plausible. Most of the parameters of the Solow model are bounded in some

way, for example, si ∈ (0, 1), k0 > 0, α ∈ (0, 1), and δ > 0 cannot attain negative values

and some cannot exceed 1. This provides theoretical restrictions that we impose on the

parameter space by truncating the corresponding simulated distributions (see Robert, 1995;

Robert and Casella, 2005). Second, we use mean values of the parameters that are reasonably

close to the data observed in reality. We assume that α and δ are fixed and equal across

countries, where we set α = 0.35, which is broadly in line with the literature (cf. Acemoglu,

2009; Jones, 1995), and δ = 0.06, which is in line with the findings of Fraumeni (1997).

We introduce country-specific heterogeneity via the savings rate si and the population

growth rate ni. It is very important to note that this unobserved heterogeneity is taken into

account in the empirical part by those estimators that include country-specific fixed effects

or that base the estimations on the first differences of the data. Consequently, even if we

do not control for ni and si directly, we are estimating a Solow (1956) model without the

omitted variable bias. In determining the values of si and ni we rely on World Bank (2016)

data for 214 countries over the years 1966 to 2014, which suggests a mean gross savings rate

of 27.97% and a mean population growth rate of 1.83%.8 While we could easily introduce

additional country-specific heterogeneity in the parameters g, α, and δ, this would merely

8Countries with negative average values for s and n over this time period were left out of the consider-

ation.
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complicate the analysis without leading to additional insights.9

We simulate four scenarios, two deterministic and two stochastic ones, for 150 countries

and 55 time steps, out of which we create our sample for the estimation. In contrast to

the deterministic scenarios, which result in smooth and concave trajectories of output as

it converges toward its steady-state level, the stochastic scenarios feature additional shocks

over time on output, denoted by εy, on the savings rate, denoted by εs, and on the population

growth rate, denoted by εn. Doing so introduces time-varying savings rates and population

growth rates si,t and ni,t (see Table 3, Scenario 4) without altering the underlying speed of

convergence in a systematic way. The stochastic shocks εy, εs, and εn are simulated from

a normal distribution such that these shocks can be considered as stochastic perturbations

similar to unsystematic measurement errors or transient exogenous shocks. We leave out the

first 5 time steps from the resulting series because the convergence effects are very strong

for countries with a low value of Di. Out of the resulting time series variables, we generate

five-year averages to mimic the estimation strategy that is often employed to get rid of

business-cycle effects in real-world data (cf. Islam, 1995; Crespo-Cuaresma et al., 2014). As

a consequence, we have an artificial data set for 150 countries and 10 time periods (as five

year averages) such that the dimensions of our panel data set are given by N = 150 and

T = 10. These values are very common for panel data growth regressions.

The first scenario that we simulate involves a limited randomization relying on a trun-

cated normal distribution only for Di and si, whereas in the second scenario we also ran-

domize the population growth rate ni. In the third scenario we introduce stochastic shocks

to Equation (1) for the dynamics of output, while the fourth scenario also features stochastic

9Altogether, the distributions from which we draw the underlying parameters for the simulation are

independent from each other. It is possible to build in collinearity between the variables and to analyze the

extent to which different estimators can cope with multicollinearity. While this is outside of the scope of

our paper, it is surely a promising avenue for further research.

12



shocks on the savings rates and on the population growth rates such that si,t and ni,t enter

Equation (2) and the model dynamics in a time-varying manner.

Table 2: Fixed parameter values and distributions from which the remaining parameters are drawn for the
deterministic scenarios

Scenario 1 2

Distance to the D ∼ N(0.1, 0.152) D ∼ N(0.1, 0.152)

steady state D ∈ [0.001, 0.3] D ∈ [0.001, 0.3]

s s ∼ N(0.2797, 0.09192) s ∼ N(0.2797, 0.09192)

s ∈ [0.0266, 0.6109] s ∈ [0.0266, 0.6109]

n 0.0183 n ∼ N(0.0183, 0.01172)

n ∈ [0, 0.0837]

g 0.01 0.01

α 0.35 0.35

δ 0.05 0.05

λtrue 0.0509 0.0521

Table 3: Fixed parameter values and distributions from which the remaining parameters are drawn for the
stochastic scenarios

Scenario 3 4

Distance to the D ∼ N(0.1, 0.152) D ∼ N(0.1, 0.152)

steady state D ∈ [0.001, 0.3] D ∈ [0.001, 0.3]

s s ∼ N(0.2797, 0.09192) s ∼ N(0.2797, 0.09192)

s ∈ [0.0266, 0.6109] s ∈ [0.0266, 0.6109]

n n ∼ N(0.0183, 0.01172) n ∼ N(0.0183, 0.01172)

n ∈ [0, 0.0837] n ∈ [0, 0.0837]

g 0.01 0.01

α 0.35 0.35

δ 0.05 0.05

εy εy ∼ N(0, 0.032) εy ∼ N(0, 0.032)

εs - εs ∼ N(0, 0.00082); s.t. s > 0

εn - εn ∼ N(0, 0.000082); s.t. n > 0

λtrue 0.0513 0.0513
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Figure 1: Convergence paths for 150 countries from the different simulated scenarios of the Solow (1956)
model over 55 years (we excluded the first 5 years from the sample in the estimation part (see Section 3
for details). Scenario 1 considers deterministic paths, where Di and si are allowed to differ between the
different countries. In Scenario 2 also the population growth rate ni is country-specific. Scenario 3 introduces
a stochastic shock εy on the per capita output series. Scenario 4 allows for stochastic shocks also on the
savings rate (εs) and on the population growth rate (εn).
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4. Estimation and comparative assessment of the estimators

In this section we estimate the speed of convergence that is implied by the different pa-

rameter estimates of the AR(1) term in the dynamic panel data growth regressions (λimplied).

We compare the resulting value to the true value (λtrue) that we know for each scenario from

the simulations. Based on these values, we measure the error of each estimated value as

captured by the relative distance of the implied estimated speed of convergence from the

corresponding true speed of convergence. This allows us to compare the extent of the biases

of the different estimators. Furthermore, we provide the confidence intervals for the different

estimates of the AR(1) term and assess whether or not its true value is captured by them.

Finally, we assess the efficiency of the different estimators by comparing the size of their

confidence intervals. The equations that we estimate are standard and described in detail

by, for example, Bond et al. (2001, p. 15) and Islam (1995, p. 1136):

yi,t̄ = γyi,t̄−1 + φt̄ + µi + υi,t̄, (7)

γ = e−λimplied·τ , (8)

λimplied = − log(γ)

τ
, (9)

where yi,t̄ is average per capita output of country i between time t and t − 4 (because we

take the average over five years), yi,t̄−1 refers to the corresponding lagged variable, φt̄ is

a vector of time-specific fixed effects, µi is a vector of country-specific fixed effects, υi,t̄ is

an idiosyncratic error term, γ refers to the auto-regressive coefficient, λimplied is the im-

plied speed of convergence obtained via the estimate for γ, and τ is the number of periods

captured by each time step, which is 5 in our case. Note that, in general, we control for

country-specific fixed effects. Doing so implies that the corresponding estimators fully cap-

ture the differences between countries that are due to the time-independent construction of

the unobserved heterogeneity via n, s, and D in Scenarios 1-3. Consequently, there is no
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omitted variable bias left: in case of estimators that control for unobserved heterogeneity,

we are indeed estimating a model of conditional convergence and not of absolute conver-

gence. Furthermore, note that we control for time-specific fixed effects in all specifications

by including dummy variables for the 5-year periods. This captures the common influence

of the long-run technological growth rate g on income convergence among all countries.

The POLS, FE, RE, and BE estimators are applied without the implementation of ad-

ditional corrections/options. In case of LSDVC, DIFFGMM, and SYSGMM10, we had to

make further decisions. For both, DIFFGMM and SYSGMM, standard errors have been

estimated with the small-sample correction proposed by Windmeijer (2005). In DIFFGMM

and SYSGMM, the 5-year period dummies were used as variables and as instruments. In ad-

dition, for SYSGMM, we implemented two versions, one with the full matrix of instruments

and one with the collapsed matrix of instruments, which reduces the number of instruments

from 64 to 20. In this context, instrument proliferation (or “too many instruments”) can

lead to various problems as described in detail by Roodman (2009). Both versions of the

estimates are presented here. The ones obtained with the collapsed matrix on instruments

are marked by ‘col’. In the initialization of the LSDVC estimator we use the SYSGMM

estimator with the full matrix of instruments. Furthermore, we implement bias correction

up to the third order as proposed by Bruno (2005a) and we report bootstrapped standard

errors for this estimator based on 50 replications.

Before displaying the values of λimplied as obtained from our estimates, we first plot the

AR(1) coefficients with the corresponding confidence intervals in Figure 2. Since we know

λtrue, we can derive the true AR(1) coefficient, which is indicated by the green dotted line

for each scenario. Even if the estimated AR(1) coefficient is close to the true value, the

confidence intervals can be very large such that even the cases of no convergence [with the

10For estimating LSDVC, we used the STATA functions of Bruno (2005b). For estimating DIFFGMM

and SYSGMM, we used the STATA functions of Roodman (2003).
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AR(1) coefficient being equal to 1] and immediate convergence [with the AR(1) coefficient

being equal to zero] might be inside the confidence interval. As can be seen in Figure 2, this

is the case for SYSGMM col in the first two scenarios.
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Figure 2: Estimated values of the AR(1) coefficient, γ. Note: The dotted green lines refer to the true value
(γtrue) as calculated from the known speed of convergence (λtrue). The different estimators are denoted
by the following list of letters A = POLS, B = FE, C = RE, D = BE, E = LSDVC, F = DIFFGMM,
G = SYSGMM col, and H = SYSGMM. The circles indicate the point estimates for the corresponding
parameters, while the whiskers refer to the 95% confidence intervals.

Our expectations regarding the different forms of biases and their direction (see Table

1) are met in case of the POLS, FE, RE, and BE estimators. The first three underestimate

the true value of the AR(1) coefficient, whereas the latter overestimates it. Note that the

BE estimator, while perfoming comparatively well to the first three estomtors, also performs
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poorly in the sense that its confidence interval does not include the true value. This stands

in contrast to the findings of Hauk and Wacziarg (2009), where the BE estimator performs

reasonably well because they use the estimator to estimate 4 parameters (3 of which are

steady-state determinants). However, the poor performance of the BE estimator in our

study is consistent with the explanations by Ditzen and Gundlach (2016) and Hauk (2017)

who show that the BE estimator performs poorly when used to estimate only the convergence

coefficient.

In general, the RE estimator performs slightly better than POLS and FE in Scenarios 1,

2, 3, and in Scenario 4 its performance is close to the one of the BE estimator (see Figure

3). Whereas in Scenario 1 only Di and si are randomized, in Scenario 2, ni is randomized

as well and we have additional random shocks in Scenarios 3 and 4. By the design of our

simulations, the variables that are responsible for the country-specific heterogeneity (Di, si,

and ni) were sampled from truncated normal distributions with the mean being different

from zero. At first glance it might seem that this construction provides an advantage for the

RE estimator. Since the key assumption of the RE estimator is that E(µi|xi) = E(µi) = 0

(Wooldridge, 2002, p. 257), i.e., that the country-specific effects are orthogonal to the

explanatory variables, this is, however, not the case in our generated data set. This is

shown in Table 4, which summarizes three results from diagnostic tests that are common

for all of our scenarios: i) the country-specific effects correlate with the regressors; ii) the

F test rejects the null of µi = 0; and iii) the Hausman test indicates that the parameter

estimates of the RE specification differ from the ones of the FE specification. For Scenarios

1-4 in Table 4, the Hausman test is conducted for the basic model with time dummies.

The Hausman test indicates that the parameter estimates of the RE specification differ

from the ones of the FE specification. The result of the Hausman test is not problematic

in our case because we know that the FE estimator itself is biased in the given setting.

Altogether, while the results of the RE estimator are close to the target comparing to POLS
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and FE, all of them underestimate the true AR(1) coefficient. Therefore, POLS, FE and

RE cannot be recommended.

Table 4: A closer look at the fixed effects

Fixed effects inference corr(µi, Xβ) F test, H0: µi = 0 Hausman FE vs. RE

(p-values) (p-values)

Scenario 1 0.3426 0.0000 0.0000

Scenario 2 0.3230 0.0000 0.0000

Scenario 3 0.3094 0.0000 0.0000

Scenario 4 0.3257 0.0000 0.0000

The GMM methods tend to yield estimates for the AR(1) coefficient that are quite far

off the mark, except for SYSGMM with the full matrix of instruments. DIFFGMM and

SYSGMM with the collapsed matrix of instruments underestimate the true value, whereas

SYSGMM with the full matrix of instruments slightly overestimates it. As we observe in

Figure 4, these discrepancies have the reverse effects on the implied speed of convergence,

λimplied: DIFFGMM yields a higher speed of convergence than the true value, whereas

SYSGMM with the full matrix of instruments yields a lower one. The confidence intervals

of the AR (1) coefficient estimated by SYSGMM with the full instrument matrix cover the

true value of the given coefficient in Scenarios 1 and 3. However, the point estimate of the

coefficient itself is considerably higher than the true value. The LSDVC estimator initialized

by the SYSGMM with the full matrix of instruments is the only estimator that comes close

to identifying the true AR(1) coefficient in case of all scenarios. Moreover, for all scenarios,

the true AR (1) coefficient lies within the estimated confidence intervals of the LSDVC

estimator. In general, therefore, the LSDVC estimator outperforms the other estimators.

This can also be observed in Figure 3 that plots the squared persent error of all estimators

for all scenarios.

For the deterministic Scenarios 1 and 2, the worst performers in terms of the squared

percent error are the FE, POLS, DIFFGMM, and the RE estimators. The best performers
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are the LSDVC and the SYSGMM with the full matrix of instruments. It follows that the

performance of the SYSGMM estimator is heavily exposed to the choice of instruments. In

our case, collapsing the matrix of instruments makes SYSGMM perform worse.
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Figure 3: Squared Percent Error of the different estimators. Note: The estimators are referred to by the
following letters; A = POLS; B = FE; C = RE; D = BE; E = LSDVC; F = DIFFGMM; G = SYSGMM,
col; H = SYSGMM.

The stochastic Scenarios 3 and 4 offer interesting information on the performance of the

estimators after the introduction of stochastic shocks. In Scenario 3 only the time series for

output is perturbed, while, in Scenario 4, s and n are also affected by shocks (see Table 3).

For these scenarios, the POLS, FE, and DIFFGMM estimators perform as poorly as in the

deterministic scenarios. The performance of the RE estimator improves slightly. DIFFGMM

and the SYSGMM with the collapsed matrix of instruments still underestimate the true co-

efficient, whereas the SYSGMM estimator with the full matrix of instruments overestimates

20



it. Yet, SYSGMM with the full matrix of instruments performs slightly better than with

the collapsed matrix of instruments (see Figure 3). The worst performers remain the FE,

the DIFFGMM, POLS, and RE estimators. For Scenario 3, LSDVC and SYSGMM with

the full matrix of instruments yield the best results. Collapsing the matrix of instruments

reduces the accuracy of the SYSGMM estimator similar to the cases of the deterministic

scenarios. For Scenario 4 the situation is similar: LSDVC initialized by SYSGMM with the

full matrix of instruments takes the lead (see Table 5 and Figure 3).

Finally, Table 6 provides the numerical values obtained by the different estimators for the

implied speed of convergence and the true speed of convergence for comparison, while Figure

4 illustrates the discrepancies graphically. We observe that the implied speed of convergence

ranges from barely above zero in case of the BE estimator to almost 17% in case of the

POLS, FE, RE, and DIFFGMM estimators. Consequently, depending on the estimator that

is used, the half life (the time it takes until half of the gap between current per capita GDP

and steady-state per capita GDP is closed), ranges from around 4 years in case of the FE or

DIFFGMM estimators to several hundred years in case of the BE estimator. This compares

to the 14 years that are the true value according to our simulation design.

Altogether, our results suggest that a non-negligible part of the discrepancies found in

the speed of convergence between different empirical studies might be due to the inherent

biases of the different estimation methods that were employed. However, some estimators

performed substantially better: SYSGMM with the full matrix of instruments and the LS-

DVC, initialized by the SYSGMM estimator with the full matrix of instruments. In fact,

LSDVC is the only estimator which captures the true AR coefficient in all simulations,

whereas the SYSGMM with the full matrix of instruments slightly overestimates the true

value. It follows that using the LSDVC estimator based on SYSGMM estimator with a full

matrix of instruments may be the most appropriate empirical strategy to estimate the im-

plied speed of convergence. One has to note that using other estimators for the initialization
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of the LSDVC estimator did improve its performance.

The central conclusion of our paper follows immediate. Researchers should not rely on a

single dynamic panel data estimator, even if the given estimator is deemed to be suitable for

the different sources of biases involved in the empirical specification and in the corresponding

data set. A better strategy is to compare the outcomes of different estimators and to keep

their biases and inefficiencies from Monte Carlo studies in mind when drawing conclusions

based on them.

Table 5: Squared percent error (Fig. 3)

Estimator Scenario 1 Scenario 2 Scenario 3 Scenario 4
PA 0.008573 0.01178 0.01369 0.01155
FE 0.008650 0.01207 0.01447 0.01224
RE 0.006080 0.00682 0.00418 0.00252
BE 0.002311 0.00245 0.00235 0.00233
LSDVC 0.000004 0.00001 0.00016 0.00003
DIFFGMM 0.006569 0.01130 0.01458 0.01165
SYSGMM, col 0.004375 0.00451 0.00146 0.00217
SYSGMM 0.000110 0.00170 0.00029 0.00051

Table 6: Estimates of the implied speed of convergence (Fig. 4)

Estimator Scenario 1 Scenario 2 Scenario 3 Scenario 4
POLS 0.14349 0.16059 0.16833 0.15881
FE 0.14390 0.16194 0.17160 0.16194
RE 0.12887 0.13467 0.11596 0.10150
BE 0.00282 0.00262 0.00282 0.00302
LSDVC 0.04892 0.05515 0.06404 0.05700
DIFFGMM 0.13194 0.15837 0.17208 0.15926
SYSGMM, col 0.11704 0.11920 0.08957 0.09788
SYSGMM 0.04042 0.01089 0.03440 0.02877
True lambda 0.05090 0.05208 0.05132 0.05132
Simple average over all estimators 0.09468 0.10043 0.10235 0.09602
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5. Conclusions

We generated an artificial data set from the simulated growth trajectories of a Solow

(1956) model for 150 countries over a time span of 55 years to construct a panel data set

with the dimensions N = 150 and T = 10 (with the data being averaged over 5 years).

This is a typical sample size of panel data growth regressions used to assess the speed of

convergence. The resulting trajectories exhibit a rate of convergence that can be calculated

and used as the true underlying rate of convergence in a controlled experiment to assess

the biases and inefficiencies of different dynamic panel data methods. In the simulation

exercise, we considered two deterministic scenarios, where the first assumes differences in

initial capital stocks and savings rates between the different countries, the second allows for

different population growth rates, the third introduces stochastic shocks on the per capita

output series, and the forth allows for stochastic shocks on savings rates and population

growth rates. We use a battery of standard dynamic panel data estimators to estimate the

speed of converge and find that the estimated speed of convergence is typically far off the

true speed of convergence. With the true rate being around 5% throughout the 4 scenarios,

the estimated rate of convergence ranges from barely above 0% to almost 17%. This means

that, while the true half life is around 14 years, the estimated half life ranges from 4 years

to several hundred years.

Our analysis sheds some light on the performance of different estimators. This is crucial,

given that the results of different econometric techniques regarding the analysis of panel

data vary widely. For the sake of clarity, we did not include additional complications such as

autocorrelated disturbances, multicollinearity, problems with small samples, and systematic

measurement errors. These would have required a more elaborate simulation design with

some additional arbitrary choices involved, which is outside the scope of the present paper.

We think that analyzing these issues is a promising area for further research.

The immediate conclusion from our results is that it might not be a good strategy to rely
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on a single estimator in empirical studies. Using the simulated scenarios, we have shown that

the estimated speed of convergence is highly dependent on the choice of the estimator: POLS,

FE, RE, DIFFGMM, and SYSGMM with the collapsed matrix of instruments overestimate

the true value substantially, whereas the BE estimator underestimates the true speed of

convergence. SYSGMM with the full matrix of instruments exhibits a comparatively good

performance, although it slightly underestimates the true speed of convergence and the

estimator is inefficient in terms of the size of its confidence interval. Across all scenarios, the

LSDVC estimator initialized by the SYSGMM estimator with the full matrix of instruments

yields the most accurate estimates.
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