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How agents assess the (in-)tangible externalities that others might impose on them
can strongly influence strategic interaction. This study explores mechanism de-
sign for agents whose externality assessments and private payoffs, exclusive of ex-
ternalities, are all subject to asymmetric information; utility is quasi-linear and
transferable. An allocation rule will be called strongly Bayesian implementable
if it is Bayesian implementable for arbitrary type distributions. Under reason-
able assumptions, the following result is established: A Paretian allocation rule is
strongly Bayesian implementable through budget-balanced transfers if and only if
it maximizes the sum of private payoffs exclusive of externalities. The correspond-
ing mechanism is necessarily externality-robust in that it leaves agents’ externality
assessments strategically inoperative.

The result emphasizes the critical incentive-theoretical role of the welfare judg-
ment inherent to social choice. Strong Bayesian implementation of a welfare judg-
ment inconsistent with externality-ignoring utilitarianism violates budget balance
and thus entails incentive costs.
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1 Introduction

The theory of mechanism design is devoted to the question of how to render collective

action efficient if the agents involved hold private information—typically about their

valuations of tangible assets. In many economic environments, however, this challenge is

exacerbated by the fact that agents do also hold private information about their (rational

or ex post irrational) assessments of the externalities that others might impose on them.

These externalities can be tangible, for instance due to spillover effects between firms or

local economies, or intangible—if agents derive (dis-)utility directly from how tangible

assets are distributed among them.1

This study explores ex post Pareto-efficient (and, thus, ex post budget-balanced),

mechanism design for two agents whose externality assessments and private payoffs are

all subject to asymmetric information. Each agent’s utility is taken as a weighted sum

of her own payoff and her opponent’s payoff, while the real-valued weight on the latter

determines an agent’s externality assessment, her externality type. An agent’s payoff is

additively separable in a numeraire good (money) and a payoff component (subject to the

economic environment under investigation) which is taken affine in her real-valued payoff

type. An agent’s externality type and payoff type are exogenously given, not perfectly

correlated, and private information; types are independent across agents.—The central

question is to what extent collective action can, or must, condition on agents’ externality

assessments in order to be ex post Pareto-efficient and incentivize agents to reveal their

preferences truthfully.

With externalities taken tangible, the model captures bargaining between competing

nations about scarce resources, with each nation having its private expectations about

the benefit from that resource but also having its private expectations about the threat

of the resource when being in the other nation’s hands. Another example are neighbor-

ing municipalities negotiating harmonized public expenditure if there are spillovers from

locally provided public goods.2

With externalities taken intangible, the model captures other-regarding preferences in

the form of altruism, spite, or status. Altruism and spite are often deployed in the range of

family economics.3 The model captures bargaining problems like inheritance disputes and

divorce battles, given that family members are privately informed about their valuations

of the goods at stake (their payoff types) and about the extent to which they have come

1Agents might also derive (dis-)utility from—or change their preferences according to—the process
through which final allocations are realized; see, e.g., Bowles and Hwang (2008). This line of reasoning
is beyond the scope of the present study. Here, I take intangible externalities as outcome-dependent,
being determined by agents’ judgments about the final distribution of wealth.

2This scenario has been analyzed by Harstad (2007), under the assumption of commonly known
externalities though.

3E.g., Becker (1981).
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to despise each other (their externality types).4 On the other hand, empirical studies

have found that many, if not all, people care about their relative standing in society.5

The model applies, for instance, to bargaining situations the outcomes of which will affect

the income opportunities of bargainers, provided that the respective income expectations

(payoff types) as well as relative standing considerations (externality types) are private

information.

In order to implement ex post Pareto-efficient allocations, a mechanism provides

agents with incentives such that they truthfully reveal their preferences in equilibrium.—

What is the appropriate equilibrium concept if there is asymmetric information about

externality as well as payoff types?—This question is central not only to the design but

also to the applicability of mechanisms, since different equilibrium concepts differ in their

common knowledge assumptions about agents’ information, preferences, and rational-

ity. The aim to successively weaken common knowledge assumptions in game theory is

sometimes referred to as the ‘Wilson doctrine’:

“Game theory has a great advantage in explicitly analyzing the consequences of

trading rules that presumably are really common knowledge; it is deficient to the

extent it assumes other features to be common knowledge, such as one player’s

probability assessment about another’s preferences or information.

I foresee the progress of game theory as depending on successive reductions in

the base of common knowledge required to conduct useful analyses of practical

problems. Only by repeated weakening of common knowledge assumptions will the

theory approximate reality.” (Wilson, 1987)

The equilibrium concept with the weakest information requirement is that of dominant

strategy implementation in the manner of Vickrey (1961), Clarke (1971), and Groves

(1973). Unfortunately, with externalities, whether private information or common knowl-

edge, dominant strategy implementation is typically not feasible. A weaker notion is that

of ex post implementation, which requires that truthful revelation is each agent’s best

strategy in response to each and every realization of her opponents’ (truthfully revealed)

types. Under ex post implementation, knowledge of type distributions is not required.

However, even if externality types are common knowledge, the imposition of budget bal-

ance restricts its applicability immensely.6 The equilibrium concept I deploy is that of

Bayesian implementation, which requires that truthful revelation maximizes each agent’s

von Neumann-Morgenstern (interim) expected utility provided all other agents reveal

4With regard to cross-ownership as outlined above, one can also think of two rulers in the cameralist
era of European history who are related by marriage and negotiate the division of land.

5For empirical evidence on status considerations see, e.g., Clark, Frijters, and Shields (2008), Heffetz
and Frank (2008), Tran and Zeckhauser (2012), and the survey by Weiss and Fershtman (1998). For a
theoretical foundation of status preferences see, e.g., Bisin and Verdier (1998).

6Bergemann and Morris (2005) show that Bayesian implementable allocation rules can, in many cases,
no longer be ex post implemented when requiring budget balance.
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their types truthfully.7 As Bayesian implementation collides with the ‘Wilson doctrine’,

I will put emphasis on how the assumption of common knowledge about the distribution

of externality types can (and even must) be avoided.

In the environment under investigation, a mechanism specifies an allocation rule, spec-

ifying collective action based on the agents’ preferences, and a transfer scheme, incentiviz-

ing agents to reveal those preferences. The challenge involved with private information

about externality assessments is the following: Suppose the allocation rule conditions

on externality assessments. Then the transfer scheme must elicit payoff types as well

as externality types. However, through their externality assessments, agents internalize

the distributive effects of the transfer scheme itself. Hence, the mechanism itself might

deliver incentives to misrepresent preferences. Bayesian incentive compatibility demands

counterbalance of these adverse incentives. Requiring budget balance further restricts

the domain of adequate transfer schemes.

I show that the social welfare judgment inherent to an allocation rule is decisive

for whether and how that allocation rule can be Bayesian implemented with a budget-

balanced mechanism. Specifically, I obtain the following results.

By Proposition 2, the renowned ‘expected externality mechanism’ (AGV-mechanism),

due to Arrow (1979) and d’Aspremont and Gérard-Varet (1979), Bayesian implements in

a budget-balanced way the allocation rule that, for each realization of types, maximizes

the sum of private payoffs exclusive of externalities. These allocations are Pareto-efficient

if each agent’s marginal utility from her own payoff exceeds her marginal (dis-)utility

from her opponent’s payoff. The AGV-mechanism is externality-robust in the sense that

it requires neither agents nor the mechanism designer to have any knowledge of the

statistical distribution of externality types.

I then ask for conditions that an ex post Pareto-efficient allocation rule must satisfy in

order to be Bayesian implementable with a budget-balanced mechanism. For this purpose,

I introduce the notions of sensitive allocation rules and strong Bayesian implementability.

An allocation rule will be called sensitive if, in the respective economic environment,

it is the unique maximizer of a social welfare measure which satisfies the Pareto property.

Furthermore, a sensitive allocation rule is required to be non-constant in payoff types

and to be symmetric in the sense that the effect of an increase in one agent’s externality

or payoff type on the other agent’s private payoff is qualitatively similar for both agents.

Non-constancy reflects strong, or ‘sensitive’, social welfare judgments of the mechanism

designer, as it implies that she is not indifferent to even small changes in payoff types.8

7To be sure, the term type refers to the pair of an agent’s externality and payoff type. Notice that
a property which is possessed by the class of Bayesian implementable allocation rules is necessarily
possessed by allocation rules that are ex post implementable.

8Examples of sensitive social welfare measures are given by utilitarian welfare, either inclusive or
exclusive of externalities. When restricting the economic environment to linear utilities and non-negative
externalities, several classical social welfare measures qualify as sensitive; they are listed in Proposition 1.
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An allocation rule will be called strongly Bayesian implementable if, for any set of

(non-degenerate) type distributions, there exists a mechanism that Bayesian implements

it. That is, strongly Bayesian implementable allocation rules may not condition on the

specifics of type distributions. This requirement accounts for the ‘Wilson doctrine’ in so

far as it avoids making common knowledge assumptions from the outset. By Proposi-

tion 2, the allocation rule associated with externality-ignoring utilitarianism is sensitive

and strongly Bayesian implementable.

I show that the converse of Proposition 2 is also true if one asks for strong Bayesian

implementation of sensitive allocation rules, which yields the following equivalence (The-

orem 1): A sensitive allocation rule can be strongly Bayesian implemented with a budget-

balanced mechanism if and only if it maximizes the sum of private payoffs exclusive of

externalities; I call the social welfare judgment inherent to these allocations externality-

ignoring utilitarianism. The respective mechanism takes the form of the AGV-mechanism.

Loosely speaking, a sensitive allocation rule can be strongly Bayesian implemented in a

budget-balanced way if and only if it results from a form of utilitarianism that approves

individual achievements but ignores ‘help’ or ‘harm’ from others. Implementation of

a social welfare judgment inconsistent with externality-ignoring utilitarianism violates

budget balance and thus requires either an external source of money or that ‘money

is burned’. The associated costs can be interpreted as the incentive costs of the social

welfare judgment. Furthermore, costless implementation of a sensitive allocation rule

requires an externality-robust mechanism; all mechanisms having this property are of

AGV-type. That is, the requirement of externality robustness does not only serve the

purpose of satisfying the ‘Wilson doctrine’ but is even necessary from a welfarist point

of view.

Finally, I outline the antagonistic roles of social welfare judgments and budget balance.

Theorem 2 shows that, even with asymmetric information about externality assessments,

nearly any social welfare judgment can be Bayesian implemented if one waives the re-

quirement of budget balance. On the other hand, with privately observed payoff types

but common knowledge of externality types, nearly any allocation rule can be Bayesian

implementable in a budget-balanced way (Theorem 3). Hence, it is not externality as-

sessments per se that render social welfare judgments critical but rather the asymmetry

of information about them combined with the efficiency request of budget balance.

The paper proceeds as follows. Section 2 reviews the related literature. Section 3

outlines the basic model. Section 4 identifies conditions that are necessary and sufficient

for ex post Pareto-efficient Bayesian implementation; the central result on the allocative

implications of social welfare judgments is obtained. Section 5 interprets results for

strategic bargaining under incomplete information. Section 6 expands the central result

to social welfare measures that incorporate the redistributive effects of the transfer scheme

itself. Section 7 concludes.
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2 Related Literature

This study relates to three strands of literature: ‘robust’ implementation, implementation

in the presence of externalities, and (perhaps most importantly) the measurement of social

welfare.

In order to come by the criticism pointed at unrealistic common knowledge assump-

tions (Wilson, 1987), many studies have characterized conditions under which Bayesian

implementable allocation rules are ex post or even dominant strategy implementable.9

Jehiel et al. (2006) consider a model framework that entails the one presented here, with

the exception that agents do not internalize the distributive effects of transfers. They

show that only those allocation rules can be ex post implemented that appoint the very

same allocation for any realization of types. The implications of their result for the

questions addressed here are discussed in detail at the end of Section 4.

Several studies have explored ex post or Bayesian implementation under the assump-

tion that externalities are common knowledge.10 The present study considers Bayesian

implementation while relaxing this assumption.11 The studies closest to the present one

are those of Jehiel and Moldovanu (2001) and Bierbrauer and Netzer (2016).

Jehiel and Moldovanu (2001) investigate the feasibility of ‘efficient’ Bayesian imple-

mentation in the presence of (allocative or informative) externalities.12 In their model,

each agent i is privately informed about her private payoff, exclusive of externalities, and

about the externality she imposes on another agent j. Agent j’s externality type, in the

language of the present study, is assumed common knowledge. The present study expands

the work of Jehiel and Moldovanu (2001) to the extent that it takes the externality of i

on j as a composite of two pieces of private information, one held by i, the other one held

by j. However, in order to expose the critical role of social welfare judgments, attention

is restricted to more specific economic environments.

Bierbrauer and Netzer (2016) explore the design of mechanisms for agents who exhibit

intention-based social preferences in the manner of Rabin (1993). In a novel attempt,

they allow for private information about social types and identify sufficient conditions for

externality-robust Bayesian implementation.13 The present study, in a slightly different

9E.g., Mookherjee and Reichelstein (1992), Dasgupta and Maskin (2000), Bergemann and Morris
(2005, 2011), Chung and Ely (2007), Gershkov et al. (2013).

10E.g., Jehiel, Moldovanu, and Stacchetti (1996, 1999), Jehiel and Moldovanu (2001), Goeree et al.
(2005), Kucuksenel (2012), Lu (2012), and Tang and Sandholm (2012).

11Many of the studies on implementation in the presence of externalities are devoted to auction theory.
Notice that the here derived propositions have only limited relevance for auctions, since I am concerned
with budget balance while auction theory is typically concerned with revenue maximization. Moreover,
I deal with continuous allocation rules whereas, in auctions, allocation rules are typically discrete.

12They refer to an allocation as ‘efficient’ if it maximizes the sum of payoffs inclusive of externalities.
13Bierbrauer et al. (2017) provide empirical evidence for the relevance of ‘social-preference robust’

implementation in the range of bilateral trade as well as income taxation. Bartling and Netzer (2016)
follow a similar line for the design of auctions if bidders are privately informed about their spiteful
preferences.
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setting, supplements their work by asking for necessary and sufficient conditions for

budget-balanced Bayesian implementation.

This study bridges normative and positive theory based on incentive theoretical

grounds. With regard to ‘efficient’ implementation, the mechanism design literature

typically takes a utilitarian view. In the presence of externalities, the allocation rule is

typically taken to maximize the sum of private payoffs inclusive of externalities (e.g.,

Jehiel and Moldovanu, 2001). Theorem 1 provides a positive rationale for the utilitarian

view in mechanism design theory, however complemented with the somewhat surprising

qualification that, if externality assessments are private information, externalities must

be ignored in order to achieve both incentive compatibility and budget balance. Other

foundations of utilitarianism have been provided on axiomatic, or say normative, grounds

(e.g., Harsanyi, 1955, d’Aspremont and Gevers, 1977, and Maskin, 1978) and in the range

of decision-making under ignorance (e.g., Maskin, 1979).

Theorem 1 is bad news for the proponents of non-utilitarian measures of social wel-

fare.14 Examples for alternative concepts are the maximin principle of Rawls (1971), the

CES-welfare measures proposed by Arrow (1973), and welfare measures that explicitly

condition on indices of inequality (e.g., on the inequality index of Atkinson, 1970).15

When interpreting agents’ externality assessments as their individual, privately known

preferences for redistribution, Theorem 1 implies that incentive-compatible redistribu-

tive policies (beyond externality-ignoring utilitarianism) come at a price, embodied in

the violation of budget balance.16

More generally, Theorems 1 to 3 suggest that theories of ‘efficient’ implementation

depend critically on their underlying social welfare judgments, and their results might not

pertain when introducing asymmetric information about agents’ externality assessments.

This particularly involves theories of optimal taxation based on “social utility weights”.

From another angle, the result contributes to the growing field of behavioral mechanism

design:17 With regard to their externality assessments, agents might not be able to fully

process the information available (e.g., McFadden, 2009). Other agents might believe

that there are externalities even though there are objectively none. Likewise, agents

might be overly optimistic, or pessimistic, about how the well-being of others will affect

themselves.18 It seems plausible in all these cases that a social welfare measure should not

condition on such ‘behavioral’ externality assessments, and that mechanisms designed to

implement ‘efficient’ allocations should be externality-robust.

14For critical reflections of utilitarianism see, e.g., Posner (1979) and Sen (1973, 1979).
15For a discussion of the CES-welfare measures see also Sen (1974).
16Saez and Stantcheva (2016), for instance, characterize optimal taxation under non-utilitarian social

welfare measures—in the (somewhat unrealistic) absence of externalities.
17E.g., Glazer and Rubinstein (1998), Cabrales and Serrano (2011), de Clippel (2014), Bierbrauer and

Netzer (2016), and Bartling and Netzer (2016).
18In this respect, this study draws a mechanism design perspective on the ‘tunnel effect’ of Hirschman

and Rothschild (1973).

7



3 The Model

There is an interval K = [kmin, kmax] of social alternatives, with kmin < kmax, and there

are two agents, indexed by i ∈ {1, 2}. The agent other than i is denoted by −i. From

alternative k ∈ K and a monetary transfer ti ∈ R, agent i gains a payoff

(1) πi(k, ti | θi) = θivi(k) + hi(k) + ti,

where the functions vi : K → [0,∞) and hi : K → R are twice continuously differentiable

and satisfy ∂2πi(k, ti | θi)/∂k2 < 0 for all i, k, and θi; furthermore, either dvi/dk > 0 for

all k and i, or dvi/dk < 0 for all k and i. The functions vi, hi are common knowledge.

Agent i’s payoff type θi is drawn from an interval Θi = (θmin
i , θmax

i ), with 0 ≤ θmin
i < θmax

i .

Payoff types are private information and are distributed according to a continuous density

function fi > 0. From the allocation of payoffs, agent i gains utility

ui(k, ti, t−i, θ−i | θi, δi) = πi(k, ti | θi) + δi · π−i(k, t−i | θ−i),(2)

where i’s externality type δi is drawn from an interval ∆i = (δmin
i , δmax

i ) ⊂ [−1, 1], with

δmin
i < δmax

i . Externality types are private information and are distributed according to

a continuous density function gi( · | θi) > 0. That is, an agent’s externality type may

correlate with her payoff type, not perfectly though. Notice also that externality types

take absolute values smaller than one, such that each agent’s marginal utility from her

own payoff exceeds her marginal (dis-)utility from her opponent’s payoff.

Denote by Hi the joint c.d.f. of agent i’s type, (θi, δi). While types are private

information, type distributions Hi are common knowledge. Types are independent across

agents; that is, H1 and H2 are stochastically independent.

Denote by Θ and ∆, respectively, the Cartesian products Θ1 ×Θ2 and ∆1 ×∆2, and

let θ = (θ1, θ2) and δ = (δ1, δ2). For a random variable X : Θ × ∆ → R, denote by

Eθi,δi
[
X(θ, δ)

]
the expected value of X for given values of θ−i and δ−i:

19

Eθi,δi
[
X(θ, δ)

]
=

∫ θmax
i

θmin
i

(∫ δmax
i

δmin
i

X(θ, δ)gi(δi|θi) dδi

)
fi(θi) dθi.

A direct revelation mechanism involves the agents in a strategic game. In this game,

agents are asked to report their types truthfully.20 Based on their reports, a social

alternative will be implemented and transfers will be made. Specifically, the mechanism

is defined by an allocation rule k : Θ × ∆ → K and a transfer scheme T = (t1, t2) :

Θ×∆→ R2. In what follows, attention will be restricted to transfer schemes T that are

19Likewise, denote by Eθi
[
Y (θ)

]
the expected value of Y : Θ→ R for a given value of θ−i.

20By the revelation principle, which applies to the present setup (Myerson, 1979), there is no loss of
generality in identifying message sets, from which agents draw their reports, with agents’ type sets.
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continuous on the externality-type space ∆. An allocation rule k is said to be Bayesian

implementable, if there exists a transfer scheme (t1, t2) such that both

(θ1, δ1) ∈ arg max
θ̂1,δ̂1

Eθ2,δ2
[
u1

(
k(θ̂1, δ̂1, θ2, δ2), t1(θ̂1, δ̂1, θ2, δ2), t2(θ̂1, δ̂1, θ2, δ2), θ2

∣∣ θ1, δ1

)]
,

(θ2, δ2) ∈ arg max
θ̂2,δ̂2

Eθ1,δ1
[
u2

(
k(θ1, δ1, θ̂2, δ̂2), t1(θ1, δ1, θ̂2, δ̂2), t2(θ1, δ1, θ̂2, δ̂2), θ1

∣∣ θ2, δ2

)]
.

That is, truthful revelation maximizes each agent’s interim expected utility provided the

respective other agent reveals her type truthfully.

The mechanism is said to be ex post budget-balanced if the transfer scheme satisfies

t1 + t2 = 0 for any realization of types, such that agents neither have to have access to

an external source of money, nor that ‘money is burned’.

The following two definitions restrict the domain of allocation rules to be considered

in the next sections. For that purpose, define

πi(k | θi) = θivi(k) + hi(k), and

ui(k, θ−i | θi, δi) = πi(k | θi) + δiπ−i(k | θ−i),

and denote by sgn : R→ {−1, 0, 1} the sign function.21

Definition 1 (Sensitivity)

Let W : R4 → R be twice partially continuously differentiable, and let V : K → R,

V (k) = W
(
π1(k | θ1) , δ1π2(k | θ2) , π2(k | θ2) , δ2π1(k | θ1)

)
.22 W is said to be a sensitive

social welfare measure if it has the following properties.

(i) ∂W (π1, δ1π2, π2, δ2π1)/∂πi > 0 for each i ∈ {1, 2}.

(ii) Pareto property: If there exist k1, k2 ∈ K and i ∈ {1, 2} such that ui(k1, θ−i | θi, δi) >
ui(k2, θ−i | θi, δi) and u−i(k1, θi | θ−i, δ−i) ≥ u−i(k2, θi | θ−i, δ−i), then V (k1) > V (k2).

(iii) There exists a unique partially continuously differentiable allocation rule

k∗ : Θ×∆→ K such that k∗(θ, δ) = arg maxk∈K V (k),

1 = sgn

(
∂v1(k∗)

∂θ2

)
· sgn

(
∂v2(k∗)

∂θ1

)
, and(3)

0 = sgn

(
∂π1(k∗ | θ1)

∂δ2

)
− sgn

(
∂π2(k∗ | θ2)

∂δ1

)
.(4)

The allocation rule k∗ is said to be sensitive.

21For x ∈ R, the sign of x is defined as sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0, and sgn(0) = 0.
22This specification of a welfare measure with regard to the choice of k is without loss of generality as

it allows for taking private payoffs, πi, and externality types, δi, as independent variables. For instance,

V (k) = (1 + δ2
1)π2 + (1 + δ2

2)π1 can be written as V (k) = (π1) + (π2) + (δ2π1)
(π1) (δ2π1) + (δ1π2)

(π2) (δ1π2).
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Whether a function qualifies as a sensitive social welfare measure is context-dependent,

since the above conditions involve the functions vi and hi. A sensitive social wel-

fare measure V (k) accounts separately for private payoffs, πi(k | θi), and externalities,

δiπ−i(k | θ−i). This serves the purpose of clearly isolating the extent to which ‘efficient’

allocation rules may condition on externality assessments if they are to be Bayesian im-

plemented in a budget-balanced way.

By condition (i), a marginal increase in one agent’s private payoff contributes to social

welfare. Conditions (ii) and (iii), jointly, ensure that the allocation rule unambiguously

specifies some allocation on the ex post Pareto frontier. According to equations (1) and

(2), full ex post Pareto efficiency is realized if, in addition, transfers are budget-balanced.

Identities (3) and (4) are symmetry assumptions. Identity (3) requires that the effect

of an increase in agent i’s payoff type on agent −i’s payoff, exclusive of h−i(k
∗), is similar

for all agents. As the functions vi are assumed to be either strictly increasing or strictly

decreasing, and since ∂vi(k
∗)/∂θ−i = (dvi(k

∗)/dk)(∂k∗/∂θ−i), equation (3) requires in

particular that a sensitive allocation rule is either strictly increasing or strictly decreasing

in each agent’s payoff type. In this respect, it responds sensitively to changes in agents’

payoff characteristics.23 Finally, identity (4) requires that the effect of an increase in one

agent’s externality type on the other agent’s payoff is similar for all agents.

Several “classic” social welfare measures qualify as sensitive.24

Proposition 1 With notation as in Definition 1, each of the following social welfare

measures W : R4 → R is sensitive if the economic environment is such that W induces a

unique partially continuously differentiable function k∗(θ, δ) = arg maxk∈K V (k) satisfy-

ing ∂k∗/∂θi 6= 0 for all (θ, δ) ∈ Θ×∆ and all i ∈ {1, 2}.

(i) Externality-ignoring utilitarianism: W = π1(k | θ1) + π2(k | θ2).

(ii) Externality-sensitive utilitarianism: W = u1(k, θ2 | θ1, δ1) + u2(k, θ1 | θ2, δ2).

If the economic environment is restricted to hi ≡ 0 and ∆i ⊂ [0, 1) for all i ∈ {1, 2}, then

the following social welfare measures are sensitive.

(iii) “Social utility weights”, inclusive of externalities:

W = α1u1(k, θ2 | θ1, δ1) + α2u2(k, θ1 | θ2, δ2), with α1, α2 > 0.

23Notice also that condition (iii) of Definition 1 requires the economic environment as well as a sensitive
social welfare measure to allow for interior solutions to maxk∈K V (k). Hence, k∗ must satisfy the first-
order condition dV (k∗(θ, δ))/dk = 0 and the second-order condition d2V (k∗(θ, δ))/dk2 < 0 for each
(θ, δ) ∈ Θ×∆.

24Notice that condition (4) of Definition 1 precludes the dictatorial social welfare measure V (k) =
ui(k, θ−i | θi, δi) from being sensitive, since then ∂πi(k

∗ | θi)/∂δ−i = 0, whereas ∂π−i(k
∗ | θ−i)/∂δi 6= 0.

Notice further that externality-ignoring discriminatory utilitarianism of the form W = α1π1(k | θ1) +
α2π2(k | θ2), with α1, α2 > 0 and α1 6= α2, satisfies all the conditions of Definition 1 but might not have
the Pareto property.
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(iv) The Nash product, inclusive of externalities:

W = u1(k, θ2 | θ1, δ1) · u2(k, θ1 | θ2, δ2).

(v) CES-welfare, inclusive of externalities:

W =
[
(u1(k, θ2 | θ1, δ1))−ρ + (u2(k, θ1 | θ2, δ2))−ρ

]− 1
ρ , with ρ ∈ (−1,∞) \ {0}.

Proof. Externality-ignoring utilitarianism will be addressed separately in Proposition 2.

Proofs are straightforward for (ii) and (iii) and are thus omitted. See the Appendix for

(iv) and (v).

By means of the next definition, attention will be further restricted to those Bayesian

implementable allocation rules that do not condition on (moments of) type distributions.

Definition 2 (Strong Bayesian implementability)

An allocation rule k∗ : Θ×∆→ K is said to be strongly Bayesian implementable if it is

Bayesian implementable for any set of (non-degenerate) type distributions, {F1, G1, F2, G2}.

Strong Bayesian implementability is critical to the results obtained below.25 It does

not require the mechanism as a whole to be independent from type distributions. It

rather makes a qualitative distinction between ‘means’ (the transfer scheme) and ‘ends’

(the allocation rule). The social welfare judgment inherent to this concept is that ex post

allocations ought not depend on what agents’ types could have been but only on what

agents’ types are ex post.26

3.1 Altruism, Spite, and Status Considerations

Evidently, the model captures the linear conceptions of altruism and spite when inter-

preting externality types as the intensity of altruism or spite. It also captures linear con-

ceptions of preferences for status:27 Suppose the allocation of payoffs, π1 and π2, yields

agent i a utility level of ui = πi + σi(πi − π−i), with σi > 0 determining i’s preference for

status. Maximizing ui is then equivalent to maximizing ûi = ui/(1 + σi) = πi + δiπ−i,

with externality type δi = −σi/(1 + σi) ∈ (−1, 0).

4 The Incentive Costs of Welfare Judgments

This section proves the following theorem (employing Propositions 2 to 4) and discusses

it from various angles (through Theorems 2 and 3).

25Strong Bayesian implementability should not be confused with notions of ‘robust’ implementation
in the manner of Bergemann and Morris (2009, 2013).

26An example of a social welfare measure that does condition on type distributions is the generalized
Nash product of Harsanyi and Selten (1972).

27See, e.g., Boskin and Sheshinski (1978) and Bisin and Verdier (1998). By the same token, the model
captures linear versions of interdependent utilities in the manner of Hirschman and Rothschild (1973).
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Theorem 1 A sensitive allocation rule k∗ : Θ×∆→ K can be strongly Bayesian imple-

mented with an ex post budget-balanced mechanism if and only if it maximizes the sum of

private payoffs exclusive of externalities: k∗(θ, δ) = arg maxk∈K π1(k | θ1) + π2(k | θ2) for

all (θ, δ); in particular, k∗ is independent from externality types: k∗ = k∗|Θ.

Any mechanism that (ordinarily) Bayesian implements k∗(θ) = arg maxk∈K π1(k | θ1)+

π2(k | θ2) is of AGV-type: For reported types (θ̂, δ̂) ∈ Θ×∆, transfers are given by

t1(θ̂, δ̂) = Eθ2
[
π2(k∗(θ̂1, θ2) | θ2)

]
− Eθ1

[
π1(k∗(θ1, θ̂2) | θ1)

]
+ s(θ̂, δ̂),(5)

t2(θ̂, δ̂) = Eθ1
[
π1(k∗(θ1, θ̂2) | θ1)

]
− Eθ2

[
π2(k∗(θ̂1, θ2) | θ2)

]
− s(θ̂, δ̂),(6)

where s : Θ×∆→ R must be chosen such that Eθ−i,δ−i [s(θ, δ)] is constant on Θi×∆i for

each i ∈ {1, 2}.28

By Theorem 1, Bayesian implementation of a social welfare judgment inconsistent

with externality-ignoring utilitarianism violates budget balance and thus entails incentive

costs.

In the following, I refer to the mechanisms specified by Theorem 1 as AGV-type

mechanisms (after Arrow, 1979, and d’Aspremont and Gérard-Varet, 1979). Notice that,

ex interim, AGV-type mechanisms leave externality assessments strategically inoperative.

If the distribution of externality types is not common knowledge, one can let s = 0.

The sufficient conditions of Theorem 1 as well as the sensitivity of externality-ignoring

utilitarianism are to be addressed first.

Proposition 2 Suppose the allocation rule k∗ : Θ → K is partially continuously differ-

entiable and satisfies k∗(θ) = arg maxk∈K π1(k | θ1) + π2(k | θ2) and ∂k∗/∂θi 6= 0 for all

θ ∈ Θ. Then k∗ is sensitive and can be strongly Bayesian implemented with the ex post

budget-balanced AGV-type mechanisms.29

Proof. In order to prove the sensitivity of k∗, it suffices to show that k∗ does spec-

ify Pareto-efficient allocations. (Verification of the remaining properties of a sensitive

allocation rule follows the lines of the proof of Proposition 1(ii).)

Suppose there exists an allocation k′(θ, δ) that, for some types (θ, δ), Pareto-improves

upon k∗(θ). Since πi(k | θi) is concave, π1(k′(θ, δ) | θ1) + π2(k′(θ, δ) | θ2) < π1(k∗(θ) | θ1) +

π2(k∗(θ) | θ2). Suppose agent 1 suffers the (weakly) greater loss in private payoffs. Then

the differences di = πi(k
∗(θ) | θi)−πi(k′(θ, δ) | θi) satisfy d1 > 0 and d1 ≥ d2 > −d1. Since

δ1 ∈ ∆1 ⊂ (−1, 1),

u1(k′(θ, δ), θ2 | θ1, δ1)− u1(k∗(θ), θ2 | θ1, δ1) = −(d1 + δ1d2) < 0.

28Such functions s can be smooth and non-constant; for instance, s(θ, δ) = (θ1−Eθ1 [θ1])(θ2−Eθ2 [θ2])+
(δ1 − Eδ1 [δ1])(δ2 − Eδ2 [δ2]).

29That AGV-type mechanisms are Bayesian incentive-compatible for other-regarding, spiteful agents
has been shown earlier by Bartling and Netzer (2016).
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Hence, agent 1 is worse of under k′(θ, δ) than under k∗(θ); a contradiction.

Under AGV-type mechanisms in the manner of Theorem 1 (which, evidently, are ex

post budget-balanced), and under the assumption that agent 2 reveals her type (θ2, δ2)

truthfully, agent 1 chooses (θ̂1, δ̂1) so as to maximize her interim expected utility. Without

loss of generality, normalize s(θ̂, δ̂) = 0. By equations (5) and (6),

Eθ2,δ2
[
u1

(
k∗(θ̂1, θ2), t1(θ̂1, θ2, δ̂), t2(θ̂1, θ2, δ̂), θ2

∣∣ θ1, δ1

)]
= Eθ2

[[
π1(k∗(θ̂1, θ2) | θ1) + t1(θ̂1, θ2, δ̂)

]
+ δ1 ·

[
π2(k∗(θ̂1, θ2) | θ2) + t2(θ̂1, θ2, δ̂)

]]
= Eθ2

[
π1(k∗(θ̂1, θ2) | θ1) + π2(k∗(θ̂1, θ2) | θ2)

]
− (1− δ1)Eθ1,θ2

[
π1(k∗(θ1, θ2) | θ1)

]
,

where the second term in the last line is independent from θ̂1. Suppose truthfully reporting

θ1 is strictly inferior to some report θ̂1 6= θ1. Then there must exist some θ2 such that

π1(k∗(θ̂1, θ2) | θ1) + π2(k∗(θ̂1, θ2) | θ2) > π1(k∗(θ1, θ2) | θ1) + π2(k∗(θ1, θ2) | θ2),

which contradicts the definition of k∗. Hence, agent 1 has no incentive to misreport her

payoff type. Obviously, she has no incentive to misreport her externality type. By sym-

metry, agent 2 cannot do better than reporting (θ2, δ2). As the argument holds for any

set of type distributions, AGV-type mechanisms strongly Bayesian implement k∗.

As becomes clear from the proof of Proposition 2, the model assumption that each

agent’s marginal utility from her own payoff exceeds her marginal (dis-)utility from her

opponent’s payoff is indeed critical. For ‘excessive’ externalities, |δi| > 1, externality-

ignoring utilitarianism in the manner of Theorem 1 will not generally lead to ex post

Pareto-efficient allocations. However, I have presented several examples of economic

environments for which the assumption of ‘moderate’ externalities, |δi| < 1, is reasonable.

Evidently, Proposition 2 holds for more general (e.g., multi-dimensional) sets of payoff

types - a property of the AGV-mechanism which is well-known for environments without

externality assessments (see, e.g., Mas-Colell, Whinston, and Green, 1995, ch.23).

The following two propositions give proof of the necessary conditions of Theorem 1.

These propositions successively constrain the domain of sensitive allocation rules and

budget-balanced transfer schemes that allow for strong Bayesian implementation. They

stipulate externality robustness in the sense that externality assessments are left inoper-

ative from a strategic point of view. The following Lemma eases the exposition.

Lemma 1 Suppose the partially differentiable allocation rule k∗ : Θ×∆→ K is strongly

Bayesian implementable with an ex post budget-balanced mechanism. Then k∗ satisfies

(7) (1− δi)
∂vi(k

∗(θ, δ))

∂δi
=

[
dπi(k

∗(θ, δ) | θi)
dk

+
dπ−i(k

∗(θ, δ) | θ−i)
dk

]
∂k∗(θ, δ)

∂θi
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for all (θ, δ) ∈ Θ × ∆ and all i ∈ {1, 2}. If k∗ is independent from externality types,

k∗ = k∗|Θ, then k∗ is (ordinarily) Bayesian implementable in a budget-balanced way only

if the transfer to each agent i satisfies

(8) Eθ−i,δ−i
[
ti(θ, δ)

]
= αi + Eθ−i,δ−i

[
π−i(k

∗(θ, δ) | θ−i)
]

for all (θi, δi) ∈ Θi ×∆i and some constant αi ∈ R.

Proof. See the Appendix.

In light of the second part of Lemma 1, the following proposition implies that the

desired mechanism may not condition on externality types, such that externality assess-

ments are not directly strategically operative.

Proposition 3 A sensitive allocation rule k∗ : Θ × ∆ → K is strongly Bayesian im-

plementable with an ex post budget-balanced mechanism only if it is independent from

externality types: k∗ = k∗|Θ.

Proof. Let k∗ : Θ × ∆ → K be the sensitive allocation rule that corresponds to a

sensitive social welfare measure W : R4 → R. Ease notation by writing k∗ = k∗(θ, δ). It

has to be shown that ∂k∗/∂δi = 0 for all (θ, δ) ∈ Θ×∆ and all i ∈ {1, 2}.
For x ∈ R4 and j = {1, ..., 4}, write Wj(x) = ∂W (x)/∂xj, and define

(9) Wj = Wj

(
π1(k∗ | θ1), δ1π2(k∗ | θ2), π2(k∗ | θ2), δ2π1(k∗ | θ1)

)
.

Then the conditions of Definition 1 imply that k∗ satisfies the FOC

(10) 0 =
dV (k∗)

dk
= [W1 + δ2W4]

dπ1(k∗ | θ1)

dk
+ [W3 + δ1W2]

dπ2(k∗ | θ2)

dk
,

where W1 + δ2W4 = ∂W/∂π1 > 0 and W3 + δ1W2 = ∂W/∂π2 > 0 by Definition 1(i).

By Lemma 1, k∗ satisfies also

(1− δ1)
∂v1(k∗)

∂δ1

=

[
dπ1(k∗ | θ1)

dk
+
dπ2(k∗ | θ2)

dk

]
∂k∗

∂θ1

,(11)

(1− δ2)
∂v2(k∗)

∂δ2

=

[
dπ1(k∗ | θ1)

dk
+
dπ2(k∗ | θ2)

dk

]
∂k∗

∂θ2

.(12)

Substituting (10) into (11) and (12) yields

(1− δ1)
∂v1(k∗)

∂δ1

=

[
1− W1 + δ2W4

W3 + δ1W2

]
dπ1(k∗ | θ1)

dk

∂k∗

∂θ1

,(13)

(1− δ2)
∂v2(k∗)

∂δ2

=

[
1− W3 + δ1W2

W1 + δ2W4

]
dπ2(k∗ | θ2)

dk

∂k∗

∂θ2

.(14)
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On the other hand, as ∂k∗/∂θi 6= 0 by Definition 1(iii), identities (11) and (12) jointly

imply that

(15) (1− δ1)
∂v1(k∗)

∂δ1

∂k∗

∂θ2

= (1− δ2)
∂v2(k∗)

∂δ2

∂k∗

∂θ1

.

As δi < 1 and dvi/dk 6= 0 by assumption, identity (15) implies that ∂k∗/∂δ1 = 0 if and

only if ∂k∗/∂δ2 = 0.

Suppose ∂k∗(θ, δ)/∂δi 6= 0 for some (θ, δ) and all i. Then each of the factors on the

right-hand sides of (13) and (14) is non-zero. In this case, (13) and (14) imply that

(W3 + δ1W2)(1− δ1)∂v1(k∗)
∂δ1

dπ1(k∗ | θ1)
dk

∂k∗

∂θ1

= [(W3 + δ1W2)− (W1 + δ2W4)](16)

= − [(W1 + δ2W4)− (W3 + δ1W2)]

= −
(W1 + δ2W4)(1− δ2)∂v2(k∗)

∂δ2
dπ2(k∗ | θ2)

dk
∂k∗

∂θ2

.

Rearranging (16), while writing ∂vi(k
∗)

∂δi
= dvi(k

∗)
dk

∂k∗

∂δi
, yields the identity

(W3 + δ1W2)(1− δ1)
dv1(k∗)

dk

∂k∗

∂δ1

dπ2(k∗ | θ2)

dk

∂k∗

∂θ2

(17)

= − (W1 + δ2W4)(1− δ2)
dv2(k∗)

dk

∂k∗

∂δ2

dπ1(k∗ | θ1)

dk

∂k∗

∂θ1

.

Since the terms (W1 + δ2W4), (W3 + δ1W2), and (1− δi) are positive, application of the

sign function to each side of identity (17) yields

(18) sgn

(
dπ2(k∗ | θ2)

dk

∂k∗

∂δ1

dv1(k∗)

dk

∂k∗

∂θ2

)
= − sgn

(
dπ1(k∗ | θ1)

dk

∂k∗

∂δ2

dv2(k∗)

dk

∂k∗

∂θ1

)
.

By Definition 1(iii), sgn (∂v1(k∗)/θ2) · sgn (∂v2(k∗)/θ1) = 1, such that (18) can only hold

if

(19) sgn

(
∂π2(k∗ | θ2)

∂δ1

)
= − sgn

(
∂π1(k∗ | θ1)

∂δ2

)
.

Equation (19) contradicts identity (4) of Definition 1, unless ∂πi(k
∗ | θi)/∂δ−i = 0 for all

i. Suppose ∂π1(k∗ | θ1)/∂δ2 = 0; then multiplying (13) with ∂k∗(θ, δ)/∂δ2 implies that

(20) (1− δ1)
∂v1(k∗)

∂δ1

∂k∗(θ, δ)

∂δ2

= 0.

As δi < 1 and dvi/dk 6= 0 by assumption, (20) yields ∂k∗(θ,δ)
∂δ1

∂k∗(θ,δ)
∂δ2

= 0, such that
∂k∗(θ,δ)
∂δ1

= 0 = ∂k∗(θ,δ)
∂δ2

due to (15) and the reasoning thereafter. Hence, k∗ = k∗|Θ.
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Externality assessments might indirectly become strategically operative if the allo-

cation rule, even if independent from externality types, unfolds redistributive effects

(beyond Benthamite utilitarianism). The next proposition states that strong, budget-

balanced Bayesian implementation of a sensitive allocation rule is only feasible if the

underlying social welfare measure treats agents’ private payoffs as perfect substitutes.

Proposition 4 A sensitive allocation rule k∗ : Θ → K, which is independent from

externality types, is strongly Bayesian implementable with an ex post budget-balanced

mechanism only if k∗(θ) = arg maxk∈K π1(k | θ1)+π2(k | θ2) for all θ ∈ Θ; any mechanism

that (ordinarily) Bayesian implements this allocation rule is necessarily of AGV-type.

Proof. If k∗ is independent from externality types, identity (7) of Lemma 1 becomes

0 =

[
dπi(k

∗(θ) | θi)
dk

+
dπ−i(k

∗(θ) | θ−i)
dk

]
∂k∗(θ)

∂θi
.

By Definition 1(iii), either ∂k∗/∂θi > 0 for all θi, or ∂k∗/∂θi < 0 for all θi. Hence,

k∗(θ) = arg maxk∈K π1(k | θ1) + π2(k | θ2) for all θ ∈ Θ.

Suppose there exists a budget-balanced transfer scheme T ∗ = (t∗1, t
∗
2) : Θ × ∆ → R2

that Bayesian implements k∗(θ) = arg maxk∈K π1(k | θ1)+π2(k | θ2). Notice that one can

always write

t∗1(θ̂, δ̂) = Eθ2
[
π2(k∗(θ̂1, θ2) | θ2)

]
− Eθ1

[
π1(k∗(θ1, θ̂2) | θ1)

]
+ s1(θ̂, δ̂),(21)

t∗2(θ̂, δ̂) = Eθ1
[
π1(k∗(θ1, θ̂2) | θ1)

]
− Eθ2

[
π2(k∗(θ̂1, θ2) | θ2)

]
+ s2(θ̂, δ̂),(22)

for appropriate functions s1, s2 : Θ×∆→ R that satisfy s1 + s2 = 0 on Θ×∆. But then,

for each i ∈ {1, 2} and all (θi, δi) ∈ Θi ×∆i,

(23) Eθ−i,δ−i
[
t∗i (θ, δ)

]
= Eθ−i

[
π−i(k

∗(θ) | θ−i)
]
− Eθi,θ−i

[
πi(k

∗(θ) | θi)
]

+ Eθ−i,δ−i
[
si(θ, δ)

]
.

On the other hand, for k∗ : Θ→ K, Lemma 1 states that

(24) Eθ−i,δ−i
[
t∗i (θ, δ)

]
= αi + Eθ−i

[
π−i(k

∗(θ) | θ−i)
]

for all (θi, δi) ∈ Θi×∆i and some constant αi ∈ R. Jointly, identities (23) and (24) imply

that Eθ−i,δ−i
[
si(θ, δ)

]
= αi + Eθi,θ−i

[
πi(k

∗(θ) | θi)
]

for all (θi, δi), so that Eθ−i,δ−i
[
si(θ, δ)

]
must be constant on Θi ×∆i. Hence, the mechanism (k∗, T ∗) is of AGV-type.

Propositions 2 to 4 give proof of Theorem 1. The next result emphasizes the critical

role of budget balance when it comes to Bayesian implementation of social welfare judg-

ments in the presence of asymmetric information about agents’ externality assessments.
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Theorem 2 If one waives budget balance, any twice continuously differentiable allocation

rule k∗ : Θ×∆→ K satisfying minθi,δi
∂
∂θi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]
> 0 for all i can be strongly

Bayesian implemented. If k∗ = k∗|Θ, then ∂
∂θi

Eθ−i
[
vi(k

∗(θ, δ))
]
≥ 0 is sufficient.

Proof. The straight forward proof for allocation rules satisfying k∗ = k∗|Θ is put to the

Appendix. Let k∗ : Θ ×∆ → K, with k∗ 6= k∗|Θ, be a twice continuously differentiable

allocation rule satisfying βi > 0 for βi = minθi,δi
∂
∂θi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]
. For functions

pi : ∆i → R define the transfer scheme T ∗ = (t∗1, t
∗
2) : Θ×∆→ R2 by

t∗i (θ̂, δ̂) = pi(δ̂i)− δ̂i
∂pi(δ̂i)

∂δ̂i
+

∫ θ̂i

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ̂−i, δ̂i, δ̂−i))
]
ds(25)

+
∂p−i(δ̂−i)

∂δ̂−i
+

∂

∂δ̂−i

∫ θ̂−i

θmin
−i

Eθi,δi
[
v−i(k

∗(θ̂i, s, δ̂i, δ̂−i))
]
ds

− δ̂i
∂

∂δ̂i

∫ θ̂i

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ̂−i, δ̂i, δ̂−i))
]
ds

− Eθ−i,δ−i
[
πi(k

∗(θ̂, δ̂) | θ̂i)
]
− Eθi,δi

[
πi(k

∗(θ̂, δ̂) | θ̂i)
]
.

Then T ∗ strongly Bayesian implements k∗ if the functions pi are chosen such that the

following condition holds for all (θi, δi) and all i:

(26) [
∂
∂δi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]]2

∂
∂θi

Eθ−i,δ−i
[
vi(k∗(θ, δ))

] <
∂2

∂δ2
i

[
pi(δi) +

∫ θi

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ−i, δi, δ−i))
]
ds

]
.

For example, one can choose pi(δi) = 1
2
ciδ

2
i , with

(27) ci = γi − min
θi,δi

∂2

∂δ2
i

∫ θi

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ−i, δi, δ−i))
]
ds

for some constant γi satisfying βi · γi > maxθi,δi

[
∂
∂δi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]]2

.30 For an ex-

tensive proof of this claim as well as a derivation of T ∗, see the Appendix.

Notice that the assumption of minθi,δi
∂
∂θi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]
> 0 in Theorem 2 is

fairly weak; as implied by condition (54) in the proof of Lemma 1, any Bayesian imple-

mentable allocation rule k∗ necessarily satisfies ∂
∂θi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]
≥ 0.

The next and final result of this section sheds light on the critical role of information

about agents’ externality assessments.

30The latter maximum value exists as vi and k∗ are twice continuously differentiable and K is compact.
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Theorem 3 Suppose externality types are common knowledge. Then any differentiable

allocation rule k∗ : Θ×∆→ K satisfying ∂
∂θi

Eθ−i
[
vi(k

∗(θ, δ))
]
≥ 0 for all (θi, δ) ∈ Θi×∆

and all i ∈ {1, 2} can be strongly Bayesian implemented with an ex post budget-balanced

mechanism.

Proof. Let k∗ : Θ × ∆ → K be an allocation rule satisfying ∂
∂θi

Eθ−i
[
vi(k

∗(θ, δ))
]
≥ 0

for all (θi, δ) and all i. For agents i ∈ {1, 2} of commonly known externality types

δ = (δ1, δ2) ∈ ∆, define the function Si : Θ×∆→ R by

(28) Si(θ̂, δ) =

∫ θ̂i

θmin
i

vi(k
∗(s, θ̂−i, δ)) ds− πi(k∗(θ̂, δ) | θ̂i)− δiπ−i(k∗(θ̂, δ) | θ̂−i).

Then the budget-balanced transfer scheme T ∗ = (t∗1, t
∗
2) : Θ×∆→ R2 defined by

t∗1(θ̂, δ) =
1

1− δ1

[
S1(θ̂, δ)− Eθ1

[
S1(θ1, θ̂2, δ)

]]
(29)

+
1

1− δ2

[
−S2(θ̂, δ) + Eθ2

[
S2(θ̂1, θ2, δ)

]]
,

t∗2(θ̂, δ) =
1

1− δ1

[
−S1(θ̂, δ) + Eθ1

[
S1(θ1, θ̂2, δ)

]]
(30)

+
1

1− δ2

[
S2(θ̂, δ)− Eθ2

[
S2(θ̂1, θ2, δ)

]]
strongly Bayesian implements k∗. For an extensive proof of this claim as well as a deriva-

tion of T ∗, see the Appendix.

As implied by condition (54) in the proof of Lemma 1, the sufficient condition of

Theorem 3 is also necessary.

By Theorem 3, it is not externality assessments per se that constrain the imple-

mentability of allocation rules, but rather the asymmetry of information about them.

However, in light of the above quoted ‘Wilson doctrine’, Theorem 3 is merely of theoret-

ical relevance.

For the sake of completeness, I should briefly comment on the feasibility of budget-

balanced ex post implementation. Jehiel et al. (2006) have shown that only constant

allocation rules are ex post implementable, irrespective of budget balance. Their model

framework entails the one of the present study, the only exception being that, in their

model, agents do not internalize the distributive effects of transfers. By the following ar-

gument, their result applies nevertheless to the model framework of Section 3: Consider

a social choice rule (k∗, t1, t2), consisting of an allocation rule k∗ and transfers (t1, t2)

in the manner of Section 3. Expand their model framework by allowing for monetary

transfers (t′1, t
′
2) the distributive effects of which are not internalized by agents. By Jehiel

et al. (2006), the social choice rule (k∗, t1, t2) can be ex post implemented with some
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transfer scheme (t′1, t
′
2) only if (k∗, t1, t2) is constant, which requires k∗ to be constant.

This implication holds in particular for the case of (t′1, t
′
2) = (0, 0). As a sensitive allo-

cation rule k∗ is non-constant by definition, the (unfortunate) conclusion is that there

exists no sensitive allocation rule that could be ex post implemented. Hence, while

budget-balanced Bayesian implementation of sensitive allocation rules can (and must) be

externality-robust, the assumption that payoff-type distributions are common knowledge

remains critical.

5 Bargaining with Side-Payments

This section applies the results obtained above to the following question: How, by what

means and what ends, do two agents come to an agreement upon the division of a given

‘pie’ which is currently owned by neither of them? With ‘means’ I refer to the bargaining

process, with ‘ends’ to those allocations that are ‘feasible’ under that process. In par-

ticular, how is the feasibility of means and ends restricted when assuming that agents

are privately informed about how they value shares of ‘pie’ and how they assess the

externalities, tangible or intangible, that their opponent’s share might impose on them?

The bargaining literature can be broadly separated into two strands, one focusing

on means, the other one on ends. The ‘means’-strand, starting with Rubinstein (1982),

starts out from bargaining rules and takes ends as equilibrium outcomes of the respective

non-cooperative game.31 The ‘ends’-strand, starting earlier with Nash (1950), is often

referred to as ‘axiomatic bargaining’ and asks for reasonable, axiomatized properties that

an allocation rule, the bargaining solution, should possess.32 Naturally, these properties

are preference-contingent, which makes preference revelation a critical issue. Of course,

these strands of literature have not been disjoint. For instance, Myerson (1979) has shown

that, in a general setting which comprises private information about externality assess-

ments, there exists a unique bargaining solution that is Bayesian incentive-compatible:

it maximizes the generalized Nash product of Harsanyi and Selten (1972).33

31See Ausubel, Cramton, and Deneckere (2002) for a survey on non-cooperative bargaining under
incomplete information.

32See Thomson (1994) for a survey.
33Harsanyi and Selten (1972) propose maximization of the generalized Nash product as an axiomatic

solution to bargaining under incomplete information. Notice that the generalized Nash product takes type
distributions explicitly into account. The welfare judgment it entails thus depends on what bargainers’
types could have been and not merely on what agents’ types are ex post. Consequently, the result of
Myerson (1979) hinges on the assumption that type distributions are common knowledge—an assumption
in conflict with the ‘Wilson doctrine’. As will be shown below, bargaining procedures can at least be
externality-robust if one allows for side payments.
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In the following, I discuss strategic bargaining from a mechanism design perspective.

I ask which bargaining solutions are strongly Bayesian incentive-compatible if utility is

transferable by means of side payments between agents.34

Consider two agents, 1 and 2, who bargain over the division of a ‘pie’ of size 1. Modify

the model framework of Section 3 by assuming that, for all k ∈ [0, 1], v1(k) = v(k) and

v2(k) = v(1− k), where v : [0, 1]→ [0, 1] is twice continuously differentiable and satisfies

v(0) = 0, v(1) = 1, v′ > 0, and v′′ < 0. Let h1(k) = h2(k) = 0 for all k. From their shares

k and 1− k, respectively, and transfers t1 and t2, agents 1 and 2 draw ex post utilities

u1(k) =
[
θ1v(k) + t1

]
+ δ1 ·

[
θ2v(1− k) + t2

]
,

u2(k) =
[
θ2v(1− k) + t2

]
+ δ2 ·

[
θ1v(k) + t1

]
.

By Theorem 1, the only sensitive sharing rule, or bargaining solution, that can be

strongly Bayesian implemented through budget-balanced transfers is the one associated

with externality-ignoring utilitarianism: k∗(θ) = arg maxk∈[0,1] θ1v(k) + θ2v(1 − k). The

respective transfer scheme is necessarily of AGV-type: If agents 1 and 2 claim to be of

types (θ̂1, δ̂1) and (θ̂2, δ̂2), transfers are given by

t1(θ̂, δ̂) = Eθ2
[
θ2v(1− k∗(θ̂1, θ2))

]
− Eθ1

[
θ1v(k∗(θ1, θ̂2))

]
+ s(θ̂, δ̂),

t2(θ̂, δ̂) = Eθ1
[
θ1v(k∗(θ1, θ̂2))

]
− Eθ2

[
θ2v(1− k∗(θ̂1, θ2))

]
− s(θ̂, δ̂),

where s must be chosen such that Eθ−i,δ−i [s(θ, δ)] is constant on Θi ×∆i for each i, such

that externality assessments are left strategically inoperative. That is, negotiations must

focus on private payoffs, irrespective of externalities. When letting s = 0, as bargainers’

externality assessments might not be common knowledge, the transfer scheme indicates

that agents make mutual concessions which amount to the expected externalities they

impose on one another under the sharing rule k∗.

The necessity of externality robustness seems particularly plausible in the range of

conflict resolution. An arbitrator, seeking to resolve dispute between hostile parties,

should rather claim “Let’s focus on the issue!” than care about who likes or dislikes

whom how much (and is thus more or less altruistic or spiteful).

The results of Sections 3 and 4 preclude the most prominent solutions to axiomatic

bargaining from being strongly Bayesian implemented without incentive costs; if at all,

they are Bayesian implementable through budget-balanced transfers only for very specific

type distributions.

Proposition 5 The bargaining solutions of Nash (1950), Kalai (1977), and Kalai and

Smorodinsky (1975), all of these either externality-sensitive or externality-ignoring, can-

34The results are also informative for “pure” bargaining (i.e., if utility is not transferable), since side
payments can be zero if the bargaining solution is incentive-compatible on its own.
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not be strongly Bayesian implemented through budget-balanced transfers. The opposite

would hold if externality assessments were common knowledge.35

Proof. Notice first that condition (7) of Lemma 1 implies that a partially differentiable

bargaining solution k∗ : Θ×∆→ [0, 1] which does not maximize the sum of private payoffs

is strongly Bayesian implementable in a budget-balanced way only if the following holds

for all (θ, δ):36

(31) sgn

(
∂k∗

∂θ1

∂k∗

∂θ2

)
= − sgn

(
∂k∗

∂δ1

∂k∗

∂δ2

)
.

The externality-sensitive Nash solution is given by

(32) k∗(θ, δ) = arg max
k∈[0,1]

[
θ1v(k) + δ1θ2v(1− k)

]
·
[
θ2v(1− k) + δ2θ1v(k)

]
.

The externality-sensitive Kalai solution, in the manner of Rawls (1971), requires to max-

imize the minimum of agents’ ex post utilities. Consider its externality-sensitive egalitar-

ian version: k∗ = k∗(θ, δ) such that u1(k∗) = u2(k∗). This is equivalent to k∗ satisfying37

(33) 0 = (θ1 − δ1θ2)v(1− k∗)− (θ2 − δ2θ1)v(k∗) = F (k∗, θ, δ).

The externality-sensitive Kalai-Smorodinsky solution requires k∗ to equalize the ratio of

agents’ ex post utilities and the ratio of agents’ maximum potential gains: u1(k∗)
u2(k∗)

= u1(1)
u2(0)

.

This is equivalent to k∗ satisfying38

(34) 0 = θ2(θ1 − δ1θ2)v(1− k∗)− θ1(θ2 − δ2θ1)v(k∗) = G(k∗, θ, δ).

The respective externality-ignoring versions of (32) to (34) are obtained when letting

δ1 = δ2 = 0 in each of them. These externality-ignoring bargaining solutions violate

condition (31), since then ∂k∗

∂δi
= 0, whereas ∂k∗

∂θi
6= 0.

35The Proposition presumes ∆i ⊂ [0, 1] for Nash and ∆i ⊂ [−1,
θmin
i

θmax
−i

] for Kalai; in case of Kalai-

Smorodinsky, the first part of the Proposition presumes ∆i ⊂ [−1,
θmin
i

θmax
−i

], whereas the second part pre-

sumes ∆i ⊂ [0,
θmin
i

2θmax
−i

].
36Specifically, multiplying (7) for i = 1 with (7) for i = 2 and then applying the sign function to both

sides of the resulting identity yields the condition: sgn
(
∂k∗

∂θ1
∂k∗

∂θ2

)
= sgn

(
∂v1(k∗)
∂δ1

∂v2(k∗)
∂δ2

)
. In the present

context, this condition is equivalent to (31).
37Condition (33) is well-defined on Θ × ∆ if and only if δmax

i <
θmin
i

θmax
−i

for all i: Equation (33) has a

solution k∗ if and only if either (θ1 − δ1θ2), (θ2 − δ2θ1) > 0, or (θ1 − δ1θ2), (θ2 − δ2θ1) < 0; however, the
latter condition would imply that (1− δ1δ2)θi < 0, thereby contradicting the assumptions on Θ×∆.

38As before, condition (34) is well-defined on Θ×∆ if and only if δmax
i <

θmin
i

θmax
−i

for all i.
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Assuming non-negative externality types, the Nash solution is not strongly Bayesian

implementable through budget-balanced transfers, due to Proposition 1(iv) and Theo-

rem 1, whereas the second part of the Proposition is implied by Theorem 3.

It will be made clear in the Appendix that the bargaining solutions (33) and (34)

both satisfy the following conditions: sgn(∂k
∗

∂δ1
∂k∗

∂δ2
) = −1 = sgn(∂k

∗

∂θ1
∂k∗

∂θ2
) for all (θ, δ) with

δi <
θmin
i

θmax
−i

, which violates condition (31). Furthermore, ∂k∗

∂θ2
< 0 < ∂k∗

∂θ1
if ∆i ⊂ [−1,

θmin
i

θmax
−i

] in

case of (33) and ∆i ⊂ [0,
θmin
i

2θmax
−i

] in case of (34). The latter condition implies in particular

that ∂vi(k
∗)

∂θi
> 0 for all i, such that ∂

∂θi
Eθ−i

[
vi(k

∗(θ, δ))
]
> 0; hence, Theorem 3 gives proof

of the second part of the Proposition.

6 Holistic Social Welfare Measures

Up to this point, I have restricted attention to the social welfare judgment inherent to the

allocation rule. To which extent does the result of Theorem 1 expand to social welfare

judgments that are holistic in the sense that they incorporate the distributive effects of

a transfer scheme? With Theorem 1 at hand, it is easy to answer this question.

Consider a differentiable function W : R4 → R and define V : K × R2 → R by

V (k, t1, t2) = W
(
π1(k, t1 | θ1) , δ1π2(k, t2 | θ2) , π2(k, t2 | θ2) , δ2π1(k, t1 | θ1)

)
,

where πi(k, ti | θi) = θivi(k) + hi(k) + ti. Suppose W is an ex post social welfare measure

in that it is invariant to changes in type distributions. Assume also that W satisfies

(35)
∂W

∂π1

= [W1 + δ2W4] > 0 and
∂W

∂π2

= [W3 + δ1W2] > 0.

The social choice rule (k∗, t∗1, t
∗
2), with allocation rule k∗ : Θ×∆→ K and transfer scheme

(t∗1, t
∗
2) : Θ×∆→ R2, is budget-balanced and maximizes V if and only if t∗2 = −t∗1 and

(36) (k∗, t∗1) = arg max
(k,t1)∈K×R

V (k, t1,−t1).

Assuming W allows for interior solutions, (k∗, t∗1) satisfies the first-order conditions

0 =
∂V (k∗, t∗1,−t∗1)

∂k
= [W1 + δ2W4]

dπ1(k∗ | θ1)

dk
+ [W3 + δ1W2]

dπ2(k∗ | θ2)

dk
,(37)

0 =
∂V (k∗, t∗1,−t∗1)

∂t1
= [W1 + δ2W4]− [W3 + δ1W2],(38)

where πi(k
∗ | θi) = θivi(k) + hi(k). Conditions (35), (37), and (38) jointly imply that the

socially efficient allocation rule is necessarily consistent with externality-ignoring utilitar-

ianism: k∗(θ, δ) = arg maxk∈K π1(k | θ1) + π2(k | θ2). In other words, under holistic social
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welfare measures, social choice differs merely in the extent of redistributive taxation. The

problem thus reduces to the question: Which social welfare judgments yield redistributive

tax tariffs that are Bayesian incentive-compatible?

By Theorem 1, the optimal allocation rule k∗ can be Bayesian implemented in a

budget-balanced way if and only if transfers are of AGV-type. As AGV-type transfers

vary with changes in the distribution of types, the ex post social welfare measure W must

be invariant to changes in transfers. That is, agents’ private payoffs must be perfect

substitutes from a social planner’s point of view. This proves the following theorem.

Theorem 4 A budget-balanced social choice rule, (k∗, t∗,−t∗), that is interior solution to

the maximization of a differentiable ex post social welfare measure W satisfying condition

(35) is Bayesian incentive-compatible if and only if W is consistent with externality-

ignoring utilitarianism. The respective mechanism is of AGV-type.

Theorem 4 applies in particular to the welfare measures listed in Proposition 1.

A final remark can be made on Rawlsian justice (Rawls, 1971). While the non-

differentiable (and non-sensitive) Rawlsian maximin welfare function does not meet with

the presumptions of the above analyses, Theorem 1 still proves useful to obtain the

following result.

Proposition 6 A budget-balanced social choice rule, (k∗, t∗,−t∗), satisfying Rawls’ maxi-

min principle, inclusive or exclusive of externalities, is not Bayesian incentive-compatible.

Proof. Consider the maximin principle inclusive of externalities and let

(k∗, t∗) = arg max
(k,t)∈K×R

min{π1(k, t | θ1) + δ1π2(k,−t | θ2) ; π2(k,−t | θ2) + δ2π1(k, t | θ1)}.

As individual utility is affine in transfers, t∗ must equalize utilities:

π1(k∗ | θ1) + δ1π2(k∗ | θ2) + (1− δ1)t∗ = π2(k∗ | θ2) + δ2π1(k∗ | θ1)− (1− δ2)t∗,

where π1(k∗ | θ1) = θivi(k) + hi(k). Therefore, t∗ = 1−δ1
2−δ1−δ2π2(k∗ | θ2) − 1−δ2

2−δ1−δ2π1(k∗ | θ1)

and utilities are given by

u1 = u2 =
1− δ1δ2

2− δ1 − δ2

[π1(k∗ | θ1) + π2(k∗ | θ2)] .

Hence, k∗ = arg maxk∈K π1(k | θ1) + π2(k | θ2), since δi ∈ (−1, 1). By Theorem 1, trans-

fers must be of AGV-type so as to Bayesian implement k∗. As t∗ is not of AGV-type,

(k∗, t∗,−t∗) is not Bayesian incentive-compatible.

When letting δi = 0 in the above line of reasoning, the proof is obtained for the

maximin principle exclusive of externalities.
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7 Conclusion

How agents assess the (in-)tangible externalities that others might impose on them can

strongly influence strategic interaction. I have explored ex post Pareto-efficient Bayesian

implementation for agents whose externality assessments and private payoffs, exclusive of

externalities, are all subject to asymmetric information. Under reasonable assumptions,

ex post Pareto-efficient allocations are Bayesian implementable with a budget-balanced

mechanism if and only if the social welfare judgment underlying the choice of allocations

is that of externality-ignoring utilitarianism. This restriction is caused by the asymmetry

of information about agents’ externality assessments, as common knowledge of exter-

nality assessments allows for budget-balanced Bayesian implementation of (nearly) any

allocation rule.

The ex post Pareto-efficient, budget-balanced mechanism corresponding to externality-

ignoring utilitarianism necessarily takes the form of the renowned ‘expected externality

mechanism’ due to Arrow (1979) and d’Aspremont and Gérard-Varet (1979). This mech-

anism is externality-robust in that it leaves externality assessments strategically inoper-

ative. Externality robustness turns out to be not just a desirable property in order to

avoid unrealistic common knowledge assumptions, as urged by Wilson (1987): externality

robustness is rather necessary from an incentive compatibility point of view. Otherwise,

agents would internalize the distributive effects of the mechanism itself, and counterbal-

ancing the associated adverse incentives would come at costs, embodied in the violation

of budget balance. As they result from the welfare judgment inherent to an allocation

rule, I have called these the incentive costs of welfare judgments.

In the range of conflict resolution, the central result provides a rationale for the

common-sense approach most people would adopt when arbitrating between conflicting

parties: namely, to not condition the arbitration process or the final resolution on the

extent to which the opponents despise each other, but to rather “focus on the issue” and

to base arbitration merely on how it would affect the opponents’ material wealth: One

may think of how judges approach the resolution of divorce battles, how a mother tends

to resolve animosity between her children, or how third-party diplomats try to conciliate

rival tribes or nations. The central result implies in particular that, even when allowing

for side payments, the most prominent bargaining solutions, namely those of Nash (1950),

Kalai (1977), and Kalai and Smorodinsky (1975), are not Bayesian incentive-compatible.

From a more general perspective, the result suggests that public economic policies

dedicated to maximize a social welfare measure inconsistent with externality-ignoring

utilitarianism do either provide people with adverse incentives (e.g., to reduce their labor

supply beyond the efficient level) or are not budget-balanced, leading either to a waste

of money or an increase in public debt.
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Appendix

Proof of Proposition 1

Suppose in the following that hi ≡ 0 and ∆i ⊂ [0, 1) for all i. Hence, πi = θivi. Obviously,

the social welfare measures (iv) and (v) satisfy the Pareto-property as well as condition

(i) of Definition 1. In the following, it is shown that they also satisfy the identities (3)

and (4). For this purpose, ease notation by letting πi = πi(k
∗ | θi) and vi = vi(k

∗).

Proof of Proposition 1(iv)

Let V (k) = [π1(k | θ1)+δ1π2(k | θ2)]·[π2(k | θ2)+δ2π1(k | θ1)]. By assumption, k∗ : Θ×∆→
K satisfies the FOC

(39) 0 =
dV (k∗)

dk
=

(
dπ1

dk
+ δ1

dπ2

dk

)
(π2 + δ2π1) +

(
dπ2

dk
+ δ2

dπ1

dk

)
(π1 + δ1π2) .

Define x1 = π1 + δ1π2 and x2 = π2 + δ2π1. Notice that x1, x2 > 0. Then (39) can be

rewritten so as to obtain

(40) 0 = (x1 + δ1x2)
dπ2

dk
+ (x2 + δ2x1)

dπ1

dk
,

where x1 + δ1x2 > 0 and x2 + δ2x1 > 0, since δ1, δ2 ≥ 0. Implicit differentiation of (39)

with respect to θ1 yields ∂k∗/∂θ1 = −X1/[d
2V (k∗)/dk2], where

X1 = x2
dv1

dk
+ δ2v1

(
dπ1

dk
+ δ1

dπ2

dk

)
+ δ2x1

dv1

dk
+ v1

(
dπ2

dk
+ δ2

dπ1

dk

)
.

Since d2V (k∗)/dk2 < 0 by the SOC, sgn(∂k∗/∂θ1) = sgn(X1). Having assumed that

hi ≡ 0, one can make use of the identities v1
dπ1
dk

= π1
dv1
dk

and (40) to rewrite X1 as

X1 = (x2 + δ2x1)
dv1

dk
+ v1

[
2δ2

dπ1

dk
+ (1 + δ1δ2)

dπ2

dk

]
= (x2 + δ2x1)

dv1

dk
+ v1

dπ1

dk

[
2δ2 − (1 + δ1δ2)

(x2 + δ2x1)

(x1 + δ1x2)

]
=

dv1

dk

Y1

(x1 + δ1x2)
,

where Y1 = [(x1 + δ1x2)(x2 + δ2x1) + π1(1− δ1δ2)(δ2x1 − x2)]. As δ1, δ2 ∈ [0, 1) and

πi, xi > 0, letting δ1 = δ2 = 0 yields the lower bound Y1 > x1x2 + π1(−x2) = (x1 −
π1)x2 = δ1π2x2 ≥ 0. Hence, sgn(∂k∗/∂θ1) = sgn(X1) = sgn(dv1/dk), while, by assump-

tion, sgn(∂k∗/∂θi) 6= 0 and sgn(dvi/dk) 6= 0 for all i. Hence, 1 = sgn2(∂k∗/∂θ1) =
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sgn(dv1/dk) sgn(∂k∗/∂θi) = sgn(∂v1/∂θ1). By symmetry, 1 = sgn(∂v2/∂θ2). Hence,

1 = sgn(∂v1/∂θ1 · ∂v2/∂θ2) = sgn(∂v1/∂θ2) sgn(∂v2/∂θ1), as required.

On the other hand, implicit differentiation of the FOC (39) with respect to δ1 yields

∂k∗/∂δ1 = −Z1/[d
2V (k∗)/dk2], where

Z1 = x2
dπ2

dk
+ π2

(
dπ2

dk
+ δ2

dπ1

dk

)
.

Since d2V (k∗)/dk2 < 0 by the SOC, sgn(∂k∗/∂δ1) = sgn(Z1). By making use of (40), Z1

can be written as

Z1 =
dπ2

dk

[
x2 + π2 − δ2π2

(x1 + δ1x2)

(x2 + δ2x1)

]
= x2

dπ2

dk

[
1 + π2

(1− δ1δ2)

(x2 + δ2x1)

]
.

Hence, sgn(∂k∗/∂δ1) = sgn(Z1) = sgn(π2/dk), such that

sgn

(
∂π2

∂δ1

)
= sgn

(
dπ2

dk

)
sgn

(
dk∗

∂δ1

)
= sgn2

(
dπ2

dk

)
∈ {0, 1}.

By symmetry, sgn(∂π1/∂δ2) = sgn2(dπ1/dk) ∈ {0, 1}. As x1 +δ1x2 > 0 and x2 +δ2x1 > 0,

the FOC (39) implies that dπ1/dk = 0 if and only if dπ2/dk = 0. Hence, as required,

sgn(∂π1/∂δ2) = sgn(∂π2/∂δ1). Altogether, W is sensitive. �

Proof of Proposition 1(v)

Let V (k) = [[π1(k | θ1) + δ1π2(k | θ2)]−ρ + [π2(k | θ2) + δ2π1(k | θ1)]−ρ]
− 1
ρ , with ρ ∈ (−1,∞)\

{0}. By assumption, k∗ : Θ×∆→ K satisfies the FOC

0 =
dV (k∗)

dk
=

[
V (k∗)

]1+ρ

[
(π1 + δ1π2)−ρ−1

(
dπ1

dk
+ δ1

dπ2

dk

)
(41)

+ (π2 + δ2π1)−ρ−1

(
dπ2

dk
+ δ2

dπ1

dk

)]
.

Define x1 = π1 + δ1π2 and x2 = π2 + δ2π1. Notice that x1, x2 > 0. By (41),

(42) 0 =
(
x−ρ−1

1 + δ2x
−ρ−1
2

) dπ1

dk
+
(
x−ρ−1

2 + δ1x
−ρ−1
1

) dπ2

dk
,

where x−ρ−1
1 + δ2x

−ρ−1
2 > 0 and x−ρ−1

2 + δ1x
−ρ−1
1 > 0. Implicit differentiation of (41) with

respect to θ1 yields ∂k∗/∂θ1 = −X1[V (k∗)]1+ρ/[d2V (k∗)/dk2], where

X1 =
(
x−ρ−1

1 + δ2x
−ρ−1
2

) dv1

dk
− (1 + ρ)x−ρ−2

1 v1

(
dπ1

dk
+ δ1

dπ2

dk

)
−(1 + ρ)x−ρ−2

2 δ2v1

(
dπ2

dk
+ δ2

dπ1

dk

)
.
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Since d2V (k∗)/dk2 < 0 by the SOC, sgn(∂k∗/∂θ1) = sgn(X1). Having assumed that

hi ≡ 0, one can make use of the identities v1
dπ1
dk

= π1
dv1
dk

and (42) to rewrite X1 as

X1 =
dv1

dk

Y1

x−ρ−1
2 + δ1x

−ρ−1
1

, where

Y1 =
(
x−ρ−1

1 + δ2x
−ρ−1
2

) (
x−ρ−1

2 + δ1x
−ρ−1
1

)
+ (1 + ρ)(1− δ1δ2)x−ρ−2

1 x−ρ−2
2 (δ2x1 − x2)π1.

Hence, sgn(∂k∗/∂θ1) = sgn(dv1/dk) sgn(Y1). Similarly, when exchanging the roles of 1

and 2, one obtains sgn(∂k∗/∂θ2) = sgn(dv2/dk) sgn(Y2), where Y2 is defined as

Y2 =
(
x−ρ−1

1 + δ2x
−ρ−1
2

) (
x−ρ−1

2 + δ1x
−ρ−1
1

)
+ (1 + ρ)(1− δ1δ2)x−ρ−2

1 x−ρ−2
2 (δ1x2 − x1)π2.

Since (δ2x1 − x2)π1 = −(1 − δ1δ2)π1π2 = (δ1x2 − x1)π2, one observes that Y1 = Y2.39

Hence, as required,

1 = sgn2

(
∂k∗

∂θ1

)
sgn2

(
∂k∗

∂θ2

)
(43)

= sgn

(
∂k∗

∂θ1

)
sgn

(
dv1

dk

)
sgn (Y1) sgn

(
∂k∗

∂θ2

)
sgn

(
dv2

dk

)
sgn (Y2)

= sgn

(
∂v1

∂θ2

)
sgn

(
∂v2

∂θ1

)
,

where the first equality of (43) holds due to the assumption that ∂k∗/∂θi 6= 0 for all

i. On the other hand, implicit differentiation of the FOC (41) with respect to δ1 yields

∂k∗/∂δ1 = −Z1[V (k∗)]1+ρ/[d2V (k∗)/dk2], where

Z1 = x−ρ−2
1

[
x1
dπ2

dk
− π2(1 + ρ)

(
dπ1

dk
+ δ1

dπ2

dk

)]
.

Since d2V (k∗)/dk2 < 0 by the SOC, sgn(∂k∗/∂δ1) = sgn(Z1). By making use of (42), Z1

can be written as

Z1 = x−ρ−2
1

dπ2

dk

[
x1 − π2(1 + ρ)

(
δ1 −

x−ρ−1
2 + δ1x

−ρ−1
1

x−ρ−1
1 + δ2x

−ρ−1
2

)]
= x−ρ−2

1

dπ2

dk

[
x1 + π2(1 + ρ)(1− δ1δ2)

x−ρ−1
2

x−ρ−1
1 + δ2x

−ρ−1
2

]
.

39For δ1 = δ2 = 0, one observes that Yi = −ρ(π1π2)−ρ−1. Hence, sgn(∂k∗/∂θi) = − sgn(dvi/dk) for
ρ > 0. For this reason, I let Definition 1 require the weaker property of sgn(∂v1/∂θ2) sgn(∂v2/∂θ1) = 1,
instead of sgn(∂k∗/∂θi) sgn(dvi/dk) = 1 for all i.
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Hence, sgn(∂k∗/∂δ1) = sgn(Z1) = sgn(π2/dk), such that

sgn

(
∂π2

∂δ1

)
= sgn

(
dπ2

dk

)
sgn

(
dk∗

∂δ1

)
= sgn2

(
dπ2

dk

)
∈ {0, 1}.

By symmetry, sgn(∂π1/∂δ2) = sgn2(dπ1/dk) ∈ {0, 1}. Since x−ρ−1
1 + δ2x

−ρ−1
2 > 0 and

x−ρ−1
2 + δ1x

−ρ−1
1 > 0, identity (42) implies that dπ1/dk = 0 if and only if dπ2/dk = 0.

Hence, as required, sgn(∂π1/∂δ2) = sgn(∂π2/∂δ1). Altogether, W is sensitive. �

Proof of Lemma 1

Suppose the sensitive allocation rule k∗ : Θ ×∆ → R is strongly Bayesian implemented

by the ex post budget-balanced transfer scheme T = (t1, t2) : Θ×∆→ R2. Define

v̄i(θ̂i, δ̂i) = Eθ−i,δ−i
[
vi(k

∗(θ̂i, δ̂i, θ−i, δ−i))
]
,(44)

h̄i(θ̂i, δ̂i) = Eθ−i,δ−i
[
hi(k

∗(θ̂i, δ̂i, θ−i, δ−i))
]
,(45)

π̄−i(θ̂i, δ̂i) = Eθ−i,δ−i
[
π−i(k

∗(θ̂i, δ̂i, θ−i, δ−i) | θ−i)
]
,(46)

t̄i(θ̂i, δ̂i) = Eθ−i,δ−i
[
ti(θ̂i, δ̂i, θ−i, δ−i)

]
,(47)

t̄−i(θ̂i, δ̂i) = Eθ−i,δ−i
[
t−i(θ̂i, δ̂i, θ−i, δ−i)

]
,(48)

where πi(k | θi) = θivi(k) + hi(k). For i ∈ {1, 2}, denote by Ui(θ̂i, δ̂i | θi, δi) agent i’s

interim expected utility from reporting (θ̂i, δ̂i) if her true type is (θi, δi) and if agent −i
reports her type truthfully:

(49) Ui(θ̂i, δ̂i | θi, δi) = θiv̄i(θ̂i, δ̂i) + h̄i(θ̂i, δ̂i) + t̄i(θ̂i, δ̂i) + δiπ̄−i(θ̂i, δ̂i) + δit̄−i(θ̂i, δ̂i).

Ease notation by also defining Ui(θi, δi) = Ui(θi, δi | θi, δi). Then the following must hold

for all θi, θ̂i ∈ Θi and all δi, δ̂i ∈ ∆i:

Ui(θi, δi) ≥ Ui(θ̂i, δi | θi, δi)(50)

= Ui(θ̂i, δi) + (θi − θ̂i)v̄i(θ̂i, δi),

Ui(θ̂i, δi) ≥ Ui(θi, δi | θ̂i, δi)(51)

= Ui(θi, δi) + (θ̂i − θi)v̄i(θi, δi),

Ui(θi, δi) ≥ Ui(θi, δ̂i | θi, δi)(52)

= Ui(θi, δ̂i) + (δi − δ̂i)
[
π̄−i(θi, δ̂i) + t̄−i(θi, δ̂i)

]
,

Ui(θi, δ̂i) ≥ Ui(θi, δi | θi, δ̂i)(53)

= Ui(θi, δi) + (δ̂i − δi)
[
π̄−i(θi, δi) + t̄−i(θi, δi)

]
.
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Without loss of generality, suppose θ̂i > θi. Then (50) and (51) imply that

(54) v̄i(θ̂i, δi) ≥
Ui(θ̂i, δi)− Ui(θi, δi)

θ̂i − θi
≥ v̄i(θi, δi).

As v̄i is continuous on Θi, letting θ̂i ↓ θi implies that ∂Ui(θi, δi)/∂θi = v̄i(θi, δi). Integrat-

ing the latter with respect to θi yields the identity

(55) Ui(θi, δi) = pi(δi) +

∫ θi

θmin
i

v̄i(s, δi) ds,

with some function pi : ∆i → R. Similarly, suppose δ̂i > δi. Then (52) and (53) imply

that

(56) π̄−i(θi, δ̂i) + t̄−i(θi, δ̂i) ≥
Ui(θi, δ̂i)− Ui(θi, δi)

δ̂i − δi
≥ π̄−i(θi, δi) + t̄−i(θi, δi).

As π̄i and t̄−i are continuous on ∆i by assumption, letting δ̂i ↓ δi implies that

(57)
∂Ui(θi, δi)

∂δi
= π̄−i(θi, δi) + t̄−i(θi, δi).

Integrating with respect to δi in (57) yields the identity

(58) Ui(θi, δi) = qi(θi) +

∫ δi

δmin
i

π̄−i(θi, r) dr +

∫ δi

δmin
i

t̄−i(θi, r) dr,

with some function qi : Θi → R. Identity (58) and the assumptions on the functions vi

imply that Ui(θi, δi) and, thus, pi from (55) must be differentiable. Jointly, identities (55)

and (58) imply that

(59)

∫ δi

δmin
i

t̄−i(θi, r) dr = pi(δi)− qi(θi) +

∫ θi

θmin
i

v̄i(s, δi) ds−
∫ δi

δmin
i

π̄−i(θi, r) dr.

Differentiating (59) with respect to δi yields

(60) t̄−i(θi, δi) =
∂pi(δi)

∂δi
− π̄−i(θi, δi) +

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.
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Ex post budget balance requires in particular that t̄i(θi, δi) = −t̄−i(θi, δi) on Θi ×∆i, so

that truthful revelation of (θi, δi) is Bayesian incentive-compatible for agent i only if θi

satisfies the FOC

(61)

0 =
∂

∂θ̂i

[
θiv̄i(θ̂i, δi) + h̄i(θ̂i, δi) + δiπ̄−i(θ̂i, δi)− (1− δi)t̄−i(θ̂i, δi)

]∣∣∣∣∣
θ̂i=θi

= θi
v̄i(θi, δi)

∂θi
+
h̄i(θi, δi)

∂θi
+ δi

π̄−i(θi, δi)

∂θi
− (1− δi)

[
v̄i(θi, δi)

∂δi
− π̄−i(θi, δi)

∂θi

]
= θi

v̄i(θi, δi)

∂θi
+
h̄i(θi, δi)

∂θi
+
π̄−i(θi, δi)

∂θi
− (1− δi)

v̄i(θi, δi)

∂δi

= Eθ−i,δ−i
[
dπi(k

∗(θ, δ) | θi)
dk

∂k∗

∂θi
+
dπ−i(k

∗(θ, δ) | θ−i))
dk

∂k∗

∂θi
− (1− δi)

vi(k
∗(θ, δ))

∂δi

]
,

where the second equality is implied by identity (60), and where the Leibniz integral rule

has been used to obtain the second and the last equality.

In order to be Bayesian implementable with a budget-balanced mechanism, k∗ must

satisfy identity (61) irrespective of the specific form that the transfer scheme might take.

As k∗ is also assumed to be strongly Bayesian implementable (in the manner of Def-

inition 2), identity (61) must hold for any set of (non-degenerate) type distributions

{F−i, G−i}. However, due to the assumptions on the functions vi, hi, and k∗, the argu-

ment of Eθ−i,δ−i [·] in (61) is continuous in (θ−i, δ−i). Hence, k∗ must satisfy

0 =
dπi(k

∗(θ, δ) | θi)
dk

∂k∗

∂θi
+
dπ−i(k

∗(θ, δ) | θ−i))
dk

∂k∗

∂θi
− (1− δi)

vi(k
∗(θ, δ))

∂δi

for all (θ, δ) ∈ Θ × ∆. This proves the first part of Lemma 1. For the second part,

reconsider identities (55) and (60). Under truthful revelation, they jointly imply that

pi(δi) +

∫ θi

θmin
i

v̄i(s, δi) ds = Ui(θi, δi)(62)

= θiv̄i(θi, δi) + h̄i(θi, δi) + t̄i(θi, δi)

+ δiπ̄−i(θi, δi) + δit̄−i(θi, δi)

= θiv̄i(θi, δi) + h̄i(θi, δi) + δiπ̄−i(θi, δi) + t̄i(θi, δi)

+δi
∂pi(δi)

∂δi
− δiπ̄−i(θi, δi) + δi

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds

= θiv̄i(θi, δi) + h̄i(θi, δi) + t̄i(θi, δi)

+δi
∂pi(δi)

∂δi
+ δi

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.
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Now suppose k∗ is independent from externality types: k∗ = k∗|Θ. According to identities

(62) and (60), respectively, t̄i(θi, δi) and t̄−i(θi, δi) then satisfy

t̄i(θi, δi) = pi(δi)− δi
∂pi(δi)

∂δi
− θiv̄i(θi, δi)− h̄i(θi, δi) +

∫ θi

θmin
i

v̄i(s, δi) ds,(63)

t̄−i(θi, δi) =
∂pi(δi)

∂δi
− π̄−i(θi, δi),(64)

where, due to k∗ = k∗|Θ, only the terms containing pi effectively depend on δi. Due to

budget balance, identities (63) and (64) imply that pi solves the differential equation

(65) ai = pi(δi) + (1− δi)
∂pi(δi)

∂δi
,

where ai is some constant. Differentiating (65) with respect to δi yields ∂2pi(δi)

∂δ2i
= 0,

such that ∂pi(δi)
∂δi

= −αi for some constant αi. Hence, identity (64) reads t̄−i(θi, δi) =

−αi − π̄−i(θi, δi), implying that t̄i(θi, δi) = αi + π̄−i(θi, δi) due to budget balance. �

Proof of Theorem 2 Continued

With notation adopted from the proof of Lemma 1, T ∗ satisfies

t̄i(θ̂i, δ̂i) = ai + pi(δ̂i)− δ̂i
∂pi(δ̂i)

∂δ̂i
− π̄i(θ̂i, δ̂i)

+

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds− δ̂i
∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds,

t̄−i(θ̂i, δ̂i) = bi +
∂pi(δ̂i)

∂δ̂i
− π̄−i(θ̂i, δ̂i) +

∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds,

with appropriate constants ai, bi ∈ R. Suppose agent −i reports her type truthfully. From

reporting some type (θ̂i, δ̂i), agent i of true type (θi, δi) gains interim expected utility

Ui(θ̂i, δ̂i | θi, δi) = θiv̄i(θ̂i, δ̂i) + h̄i(θ̂i, δ̂i) + t̄i(θ̂i, δ̂i)

+ δiπ̄−i(θ̂i, δ̂i) + δit̄−i(θ̂i, δ̂i)

= θiv̄i(θ̂i, δ̂i) + ai + pi(δ̂i)− δ̂i
∂pi(δ̂i)

∂δ̂i
− θ̂iv̄i(θ̂i, δ̂i)

+

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds− δ̂i
∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds

+ δibi + δi
∂pi(δ̂i)

∂δ̂i
+ δi

∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds.
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Partial derivatives thus satisfy

∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)

∂

∂θ̂i
v̄i(θ̂i, δ̂i) + (δi − δ̂i)

∂

∂δ̂i
v̄i(θ̂i, δ̂i),(66)

∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)

∂

∂δ̂i
v̄i(θ̂i, δ̂i)(67)

+ (δi − δ̂i)
∂2

∂δ̂2
i

[
pi(δ̂i) +

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds

]
.

Ease notation by defining Ai = ∂

∂δ̂i
v̄i(θ̂i, δ̂i), Bi = ∂

∂θ̂i
v̄i(θ̂i, δ̂i), and

Ci =
∂2

∂δ̂2
i

[
pi(δ̂i) +

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds

]
.

Then the partial derivatives (66) and (67) read40

∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)Bi + (δi − δ̂i)Ai,(68)

∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)Ai + (δi − δ̂i)Ci.(69)

Suppose k∗ 6= k∗|Θ. Then, Bi > 0 by assumption. Choose pi(δi) = 1
2
ciδ

2
i , with ci as

defined in (27). Then Ci > 0, and condition (26) is satisfied:

(70) A2
i < BiCi.

Notice first that (θ̂i, δ̂i) = (θi, δi) is the unique stationary point of Ui(θ̂i, δ̂i | θi, δi), as
∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) = 0 = ∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) implies that (θi− θ̂i) = −(δi− δ̂i)AiBi and, thus,

0 = (δi − δ̂i) 1
Bi

(BiCi −A2
i ), where Bi > 0 and BiCi −A2

i > 0. Evaluating the Hessian Hi

of Ui(θ̂i, δ̂i | θi, δi) at (θ̂i, δ̂i) = (θi, δi) yields

(71) Hi =

(
−Bi −Ai
−Ai −Ci

)
.

The principal minors of (71), namely −Bi < 0 and det(Hi) = BiCi − A2
i > 0, are

alternating in sign, with the first-order principal minor being negative. Hence, (θi, δi) is

a local maximizer of Ui(θ̂i, δ̂i | θi, δi). It remains to show that truth-telling is indeed the

unique global expected utility maximizer for agent i. Given the above, it suffices to show

that no local maximizer of Ui(θ̂i, δ̂i | θi, δi) is located on the boundary of Θi ×∆i.

40Suppose k∗ = k∗|Θ, and assume Bi ≥ 0. Then, Ai = 0. When choosing pi = 0, then also Ci = 0.
By (68) and (69), truth-telling is then a global maximizer of each agent i’s expected utility under the
transfer scheme T ∗, which gives proof of the second part of Theorem 2.

32



Suppose a local maximizer is located on (θmin
i , θmax

i )×{δmin
i } or (θmin

i , θmax
i )×{δmax

i }.
As Ui(θ̂i, δ̂i | θi, δi) is twice partially continuously differentiable, this maximizer, (θ̂i, δ̂i),

must satisfy 0 = ∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) and, thus, (θi − θ̂i) = −(δi − δ̂i)AiBi . Substituting the

latter into (69) yields ∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) = (δi − δ̂i) 1

Bi
(BiCi −A2

i ). As 1
Bi

(BiCi −A2
i ) > 0,

the reporting of δ̂i ∈ {δmin
i , δmax

i } is not optimal, which contradicts the assumption. By a

similar argument one can show that no local maximizer is located on {θmin
i }× (δmin

i , δmax
i )

or {θmax
i }× (δmin

i , δmax
i ). Hence, only the “corners” of Θi×∆i qualify as potential further

local maximizers.

Suppose (θmax
i , δmax

i ) is a local maximizer. Then 0 ≤ ∂

∂θ̂i
Ui(θ

max
i , δmax

i | θi, δi) and

0 ≤ ∂

∂δ̂i
Ui(θ

max
i , δmax

i | θi, δi) must hold. As (θi − θmax
i ), (δi − δmax

i ) < 0, while Bi, Ci > 0,

this implies that Ai < 0. However, it also implies that (δi − δmax
i ) ≥ −(θi − θmax

i )Ai
Ci

and,

thus,

(72) 0 ≤ (θi − θmax
i )Bi + (δi − δmax

i )Ai ≤ (θi − θmax
i )

1

Ci
(BiCi − A2

i ) < 0.

Suppose (θmax
i , δmin

i ) is a local maximizer. Then 0 ≤ ∂

∂θ̂i
Ui(θ

max
i , δmin

i | θi, δi) and 0 ≥
∂

∂δ̂i
Ui(θ

max
i , δmin

i | θi, δi) must hold. As (θi − θmax
i ) < 0, while (δi − δmin

i ), Bi, Ci > 0, this

implies that Ai > 0. However, it also implies that (θi− θmax
i ) ≥ −(δi− δmin

i )Ai
Bi

and, thus,

(73) 0 ≥ (θi − θmax
i )Ai + (δi − δmin

i )Ci ≥ (δi − δmin
i )

1

Bi

(BiCi − A2
i ) > 0.

Suppose (θmin
i , δmin

i ) is a local maximizer. Then 0 ≥ ∂

∂θ̂i
Ui(θ

min
i , δmin

i | θi, δi) and 0 ≥
∂

∂δ̂i
Ui(θ

min
i , δmin

i | θi, δi) must hold. As (θi − θmin), (δi − δmin), Bi, Ci > 0, this implies that

Ai < 0. However, it also implies that (δi − δmin) ≤ −(θi − θmin)Ai
Ci

and, thus,

(74) 0 ≥ (θi − θmin
i )Bi + (δi − δmin

i )Ai ≥ (θi − θmin
i )

1

Ci
(BiCi − A2

i ) > 0.

Finally, suppose (θmin
i , δmax

i ) is a local maximizer. Then 0 ≥ ∂

∂θ̂i
Ui(θ

min
i , δmax

i | θi, δi)
and 0 ≤ ∂

∂δ̂i
Ui(θ

min
i , δmax

i | θi, δi) must hold. As (δi − δmax
i ) < 0 and (θi − θmin

i ), Bi, Ci > 0,

this implies that Ai > 0. However, it also implies that (θi − θmin
i ) ≤ −(δi − δmax

i )Ai
Bi

and,

thus,

(75) 0 ≤ (θi − θmin
i )Ai + (δi − δmax

i )Ci ≤ (δi − δmax
i )

1

Bi

(BiCi − A2
i ) < 0.

Altogether, (θi, δi) is the unique global maximizer of Ui(θ̂i, δ̂i | θi, δi). As the above

arguments hold for any set of type distributions, T ∗ strongly Bayesian implements k∗. �
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Derivation of the transfer scheme T ∗ in the proof of

Theorem 2

Suppose the transfer scheme T ∗ = (t∗1, t
∗
2) : Θ×∆→ R2 (strongly) Bayesian implements

the twice continuously differentiable allocation rule k∗ : Θ × ∆ → K. With notation

adopted from the proof of Lemma 1, condition (60) of that proof states that T ∗ must

satisfy the identity

(76) t̄−i(θi, δi) =
∂pi(δi)

∂δi
− π̄−i(θi, δi) +

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds,

where pi : ∆i → R is some differentiable function. Conditions (49), (55), and (76) imply

that

(77)

pi(δi) +

∫ θi

θmin
i

v̄i(s, δi) ds = Ui(θi, δi)

= π̄i(θi, δi) + t̄i(θi, δi) + δiπ̄−i(θi, δi) + δit̄−i(θi, δi)

= π̄i(θi, δi) + t̄i(θi, δi) + δi
∂pi(δi)

∂δi
+ δi

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.

Hence, T ∗ must also satisfy the identity

t̄i(θi, δi) = pi(δi)− δi
∂pi(δi)

∂δi
− π̄i(θi, δi)(78)

+

∫ θi

θmin
i

v̄i(s, δi) ds− δi
∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.

From identities (76) and (78), the transfer scheme T ∗ can be “guessed”. �

Proof of Theorem 3 Continued

Consider the functions Si defined by (28) and the transfer scheme T ∗ defined by (29) and

(30). Notice first that, for all (θ̂1, θ2) ∈ Θ and all δ ∈ ∆,

Eθ2
[
t∗1(θ̂1, θ2, δ) + δ1t

∗
2(θ̂1, θ2, δ)

]
= Eθ2

[
S1(θ̂1, θ2, δ)

]
(79)

−Eθ1,θ2 [S1(θ1, θ2, δ)] ,

Eθ2
[
S1(θ̂1, θ2, δ)

]
=

∫ θ̂1

θmin
1

Eθ2
[
v1(k∗(s, θ2, δ))

]
ds(80)

−Eθ2
[
π1(k∗(θ̂1, θ2, δ) | θ̂1)

]
−δ1 · Eθ2

[
π2(k∗(θ̂1, θ2, δ) | θ2

]
,
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where Fubini’s theorem has been used to obtain equation (80). Under the assumption

that agent 2 reveals her payoff type truthfully, agent 1 chooses θ̂1 so as to maximize her

interim expected utility. By making use of equations (79) and (80),

Eθ2
[
u1

(
k∗(θ̂1, θ2, δ), t

∗
1(θ̂1, θ2, δ), t

∗
2(θ̂1, θ2, δ), θ2

∣∣ θ1

)]
= Eθ2

[[
π1(k∗(θ̂1, θ2, δ) | θ1) + t∗1(θ̂1, θ2, δ)

]
+ δ1 ·

[
π2(k∗(θ̂1, θ2, δ) | θ2) + t∗2(θ̂1, θ2, δ)

]]
= Eθ2

[
π1(k∗(θ̂1, θ2, δ) | θ1)

]
+ δ1 · Eθ2

[
π2(k∗(θ̂1, θ2, δ) | θ2)

]
+Eθ2

[
S1(θ̂1, θ2, δ)

]
− Eθ1,θ2 [S1(θ1, θ2, δ)]

= Eθ2
[
π1(k∗(θ̂1, θ2, δ) | θ1)

]
− Eθ2

[
π1(k∗(θ̂1, θ2, δ) | θ̂1)

]
+

∫ θ̂1

θmin
1

Eθ2
[
v1(k∗(s, θ2, δ))

]
ds− Eθ1,θ2 [S1(θ1, θ2, δ)] .

Hence, by making use of the Leibniz integral rule,

∂

∂θ̂1

Eθ2
[
u1

(
k∗(θ̂1, θ2, δ), t

∗
1(θ̂1, θ2, δ), t

∗
2(θ̂1, θ2, δ), θ2

∣∣ θ1

)]
= Eθ2

[
∂

∂θ̂1

π1(k∗(θ̂1, θ2, δ) | θ1)

]
+ Eθ2

[
v1(k∗(θ̂1, θ2, δ))

]
− Eθ2

[
∂

∂θ̂1

π1(k∗(θ̂1, θ2, δ) | θ̂1)

]
= (θ1 − θ̂1) · ∂

∂θ̂1

Eθ2
[
v1(k∗(θ̂1, θ2, δ))

]
.

By assumption, the expected value in the last line is non-negative. Hence, truth-telling,

θ̂1 = θ1, maximizes agent 1’s interim expected utility. By symmetry, θ̂2 = θ2. As the

above arguments hold for any set of (non-degenerate) type distributions, T ∗ strongly

Bayesian implements k∗. �

Derivation of the transfer scheme T ∗ in the proof of

Theorem 3

Suppose externality types are common knowledge, and assume that the sensitive allo-

cation rule k∗ : Θ × ∆ → K is strongly Bayesian implemented by the ex post budget-

balanced transfer scheme T = (t1, t2) : Θ×∆→ R2. Define

v̄i(θ̂i, δ) = Eθ−i
[
vi(k

∗(θ̂i, θ−i, δ))
]
,

h̄i(θ̂i, δ) = Eθ−i
[
hi(k

∗(θ̂i, θ−i, δ)
]
,

π̄−i(θ̂i, δ) = Eθ−i
[
π−i(k

∗(θ̂i, θ−i, δ) | θ−i)
]
,

t̄i(θ̂i, δ) = Eθ−i
[
ti(θ̂i, θ−i, δ)

]
,

t̄−i(θ̂i, δ) = Eθ−i
[
t−i(θ̂i, θ−i, δ)

]
,
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where πi(k | θi) = θivi(k) + hi(k). For i ∈ {1, 2}, denote by Ui(θ̂i | θi, δ) agent i’s interim

expected utility from reporting θ̂i if her true payoff type is θi and if agent −i reports her

payoff type truthfully:

Ui(θ̂i | θi, δ) = θiv̄i(θ̂i, δ) + h̄i(θ̂i, δ) + t̄i(θ̂i, δ) + δiπ̄−i(θ̂i, δ) + δit̄−i(θ̂i, δ)(81)

By the same reasoning that has led to equation (55) in the proof Lemma 1, the following

must hold for all i and all (θi, δ):

(82) Ui(θi | θi, δ) = pi(δ) +

∫ θi

θmin
i

v̄i(s, δ) ds

for some function pi : ∆ → R. For ease of notation, write ti = ti(θ, δ) and πi =

πi(k
∗(θ, δ) | θi). Then, by (82), the transfer scheme T must satisfy the following identities:

Eθ2
[
t1
]

+ δ1Eθ2
[
t2
]

= p1(δ) +

∫ θ1

θmin
1

v̄1(s, δ) ds− Eθ2
[
π1

]
− δ1Eθ2

[
π2

]
,(83)

Eθ1
[
t2
]

+ δ2Eθ1
[
t1
]

= p2(δ) +

∫ θ2

θmin
2

v̄2(s, δ) ds− Eθ1
[
π2

]
− δ2Eθ1

[
π1

]
.(84)

Due to budget balance, identities (83) and (84) imply that the interim expected transfers

must satisfy

(1− δ1)Eθ2
[
t1
]

= p1(δ) +

∫ θ1

θmin
1

v̄1(s, δ) ds− Eθ2
[
π1

]
− δ1Eθ2

[
π2

]
,

−(1− δ2)Eθ1
[
t1
]

= p2(δ) +

∫ θ2

θmin
2

v̄2(s, δ) ds− Eθ1
[
π2

]
− δ2Eθ1

[
π1

]
,

and

−(1− δ1)Eθ2
[
t2
]

= p1(δ) +

∫ θ1

θmin
1

v̄1(s, δ) ds− Eθ2
[
π1

]
− δ1Eθ2

[
π2

]
,

(1− δ2)Eθ1
[
t2
]

= p2(δ) +

∫ θ2

θmin
2

v̄2(s, δ) ds− Eθ1
[
π2

]
− δ2Eθ1

[
π1

]
,

whereas ex post budget balance requires that also t1 + t2 = 0. From these conditions, the

transfer scheme T ∗ can be “guessed”. �

Proof of Proposition 5 Continued

Implicit differentiation of (33) yields: ∂k∗

∂δ1
= θ2v(1−k∗)

∂F/∂k∗
; ∂k

∗

∂δ2
= −θ1v(k∗)

∂F/∂k∗
; ∂k

∗

∂θ1
= −v(1−k∗)−δ2v(k∗)

∂F/∂k∗
;

and ∂k∗

∂θ2
= δ1v(1−k∗)+v(k∗)

∂F/∂k∗
.
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Notice that ∂F
∂k∗

= −(θ1− δ1θ2)v′(1− k∗)− (θ2− δ2θ1)v′(k∗) < 0, since (θi− δiθ−i) > 0

as δmax
i <

θmin
i

θmax
−i

. By substituting for (33), v(1 − k∗) + δ2v(k∗) = 1−δ1δ2
θ1−δ1θ2 θ2v(k∗) > 0 and

δ1v(1− k∗) + v(k∗) = 1−δ1δ2
θ1−δ1θ2 θ1v(k∗) > 0. Hence, ∂k∗

∂δ1
< 0 < ∂k∗

∂δ2
and ∂k∗

∂θ2
< 0 < ∂k∗

∂θ1
.

Implicit differentiation of (34) yields: ∂k∗

∂δ1
=

θ22v(1−k∗)

∂G/∂k∗
; ∂k∗

∂δ2
=
−θ21v(k∗)

∂G/∂k∗
;

∂k∗

∂θ1
= (θ2−2δ2θ1)v(k∗)−θ2v(1−k∗)

∂G/∂k∗
; and ∂k∗

∂θ2
= θ1v(k∗)−(θ1−2δ1θ2)v(1−k∗)

∂G/∂k∗
.

Notice that ∂G
∂k∗

= −θ2(θ1−δ1θ2)v′(1−k∗)−θ1(θ2−δ2θ1)v′(k∗) < 0, since (θi−δiθ−i) > 0

as δmax
i <

θmin
i

θmax
−i

. By substituting for (34),

(θ2 − 2δ2θ1)v(k∗)− θ2v(1− k∗)(85)

= −(δ1θ
2
2 − 2δ1δ2θ1θ2 + δ2θ

2
1)

v(k∗)

θ1 − 2δ1θ2

= −
[
(δ1θ2 − δ2θ1)2 + δ1(1− δ1)θ2

2 + δ2(1− δ2)θ2
1

] v(k∗)

θ1 − 2δ1θ2

= − [θ1v(k∗)− (θ1 − 2δ1θ2)v(1− k∗)] .

Hence, sgn(∂k
∗

∂θ1
∂k∗

∂θ2
) = −1 = sgn(∂k

∗

∂δ1
∂k∗

∂δ2
). When assuming ∆i ⊂ [0,

θmin
i

2θmax
−i

], the term in the

third line of (85) is negative. In this case, ∂k∗

∂θ2
< 0 < ∂k∗

∂θ1
. �
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