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Abstract

We comprehensively analyze the predictive power of several option implied variables

for monthly S&P 500 excess returns and realized variance. The correlation risk

premium (CRP ) emerges as a strong predictor of both excess returns and realized

variance. This is true both in– and out–of–sample. A timing strategy based on the

CRP leads to utility gains of more than 4.63 % per annum. In contrast, the variance

risk premium (V RP ), which strongly predicts excess returns, does not lead to economic

gains.
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I. Introduction

A growing literature, e.g. Jiang & Tian (2005), Bollerslev et al. (2009) and Driessen

et al. (2013), documents the predictive power of option implied variables for equity excess

returns and realized variance. The growing number of option implied predictors raises several

questions: Which variables really forecast the market excess returns? Do the variables that

predict the market excess returns also forecast realized variance? Does the predictability

lead to economic gains? These are some of the questions we want to study.

The main contribution of this paper is to provide a comprehensive analysis of the

forecasting ability of variables separately proposed in recent literature on the option implied

predictors. Importantly, we do not only analyze return predictability, but consider the

predictability of variance at the same time. This is important from a portfolio choice

perspective, since both quantities are needed for a portfolio decision. As such, we do not

only consider statistical predictability but also analyze the economic significance of return

and variance predictability. We find that several variables, including the correlation risk

premium (CRP ) and the variance risk premium (V RP ) predict the monthly excess return

of the S&P 500. This is the case, both in– and out–of–sample. Furthermore, we show that

the CRP predicts not only the market excess returns but also its realized variance. We note

also that most of the variables we study have strong predictive power for realized variance

but not for the market excess return.

When studying the economic effects of the documented predictability in the context

of portfolio choice, we find that relative to the agent who assumes that the mean and

variance of the market return are unpredictable, a mean–variance agent with a risk–aversion
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coefficient of 3 who uses the information content of CRP would realize utility gains of 4.63 %.

Relatedly, we find that a return timing strategy based on the V RP leads to lower utility

than that afforded by the strategy based on the recursive mean, indicating that the statistical

predictability of excess returns by the V RP does not always translate to economic gains. We

conjecture that this result is likely due to the sign–switching behavior of the V RP around

economically important periods.

A variable is considered to have predictive power if it passes two tests. First, it has to

generate statistically significant forecasts. In this case the variable contains key information

about the variation in the market risk premium. Bollerslev et al. (2009) and Drechsler &

Yaron (2011) argue that time–varying economic uncertainty is captured by the variance risk

premium, and thus, affects the variation in the market risk premium. Driessen et al. (2009,

2013) state that the time–varying correlation risk is linked to economic uncertainty, and thus,

also relates to the market price of risk. Second, the variable needs to add economic value.

Since the predictability, measured by R2, is, in general, small in magnitude, the question

arises whether it is economically meaningful. Brooks & Persand (2003) show that the choice

of the loss function for performance evaluation might be decisive. Does an investor obtain an

increase in portfolio return by taking the variable into account? This aspect is often ignored

in the existing literature. Our results show that CRP emerges as the only predictor that

passes both tests.

In addition, we analyze the predictability of different specifications of the V RP as

robustness. We follow Andersen & Bondarenko (2010), Andersen et al. (2015) and Feunou

et al. (2015) and decompose the total variance risk premium into the downside and upside

components. The results show that the upside and downside variance risk premium also
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pass both tests by providing evidence for significantly predicting excess returns and variance

in–sample, and in adding economic value in a timing strategy.

Our work relates to the literature on the predictability of the market excess return

and/or its associated realized variance using option implied quantities. Bollerslev et al.

(2009) document the predictive power of the variance risk premium for the S&P 500

excess returns, and Bollerslev et al. (2014) document similar results for a broad range

of international equity indices. Pyun (2016) provides evidence of a weak out–of-sample

performance of the variance risk premium for S&P 500 excess returns. Driessen et al. (2009,

2013) show that the correlation risk premium predicts S&P 500 excess returns, whereas

Cosemans (2011) points out that the correlation risk premium and the systematic part of

individual variance risk premia are the drivers of the predictive power of the variance risk

premium for market excess returns. Zhou (2013) documents the predictive power of the S&P

500 implied correlation index for S&P 500 index returns. Xing et al. (2010) find that the

option implied smirk contains information about the cross–section of equity returns. Cremers

& Weinbaum (2010) document that deviations from the put–call parity, measured as the

difference in implied volatility between pairs of call and put options of U.S. stocks, contain

information about the cross-section of stock returns and have predictive power for these.

Rehman & Vilkov (2012) and Stilger et al. (2016) show that implied skewness of individual

U.S. stocks has predictive power for future returns. Jiang & Tian (2005) and Kourtis

et al. (2016) establish the forecasting power of the S&P 500 option implied variance for

realized variance. The above mentioned studies use different sample periods and statistical

techniques to document their results, thus, making the interpretation and comparison of the

findings somewhat difficult. We use a common sample period and recent developments in
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the literature on predictability to thoroughly analyze all these variables.

Our study also relates to the literature on the economic value of predictability. Typically,

the literature analyzes the implications of return predictability for a return timing strategy

(e.g., Campbell & Thompson, 2008; Çakmaklı & van Dijk, 2016). Similarly, studies on

realized variance forecasting only explore the implication for a volatility timing strategy

(Fleming et al., 2001). Unlike these studies, we jointly study the impact of return and

volatility timing. This is important because in a mean–variance framework, the optimal

portfolio weight invested in the risky asset depends on both the expected returns and the

expected realized variance. If a forecasting variable predicts both the market excess returns

and the realized variance, it might be potentially important to account for these two effects

when computing the optimal weight.

The remainder of this paper proceeds as follows. Section II. introduces the data and

explains the construction of the main variables. Section III. presents the main empirical

results. Section IV. discusses some further results. Section V. provides additional results.

Finally, Section VI. concludes.

II. Data and Methodology

II.A Data

We obtain our data from three distinct sources. First, we retrieve the monthly time–

series of the S&P 500 total return index as well as the corresponding dividend payments from

the Center for Research in Security Prices (CRSP) database. Second, we obtain the S&P
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500 index option data from OptionMetrics. The OptionMetrics dataset contains information

about option contracts available in the market as well as standardized options, both of which

are useful for our analysis (see Section II.B). Third, we use intraday data on the S&P 500

index sampled at the 5–minute frequency from Thomson Reuters Tick History (TRTH). In

sampling the intraday data, we focus on the normal trading hours, i.e. from 09:30 AM to

04:00 PM (EDT). Our sample period extends from January 1996 to December 2014. It is

worth pointing out that although the CRSP database covers a period starting before 1996,

this is not the case for the OptionMetrics and TRTH data. Starting our sample in January

1996 allows us to guarantee the availability of data from all 3 databases.

II.B Variables

Armed with the dataset introduced above, we are now able to construct our main

variables.

Market Excess Return We compute the excess return on the S&P 500 index by

subtracting the riskless rate for the corresponding period from the total return on the equity

index:

ERt+1 = 12× log

(
Pt+1

Pt

)
− rf t (1)

where ERt+1 is the (annualized) monthly excess return on the S&P 500 index at the end of

month t+ 1. Pt+1 and Pt denote the total return price index at the end of months t+ 1 and

t, respectively. rf t refers to the (annualized) riskless rate observed at the end of month t.1

1Throughout this paper, we use the convention that the riskless rate is given the subscript for the time
when it is observed. Thus, the riskless rate is observed at time t even though it is realized at time t+ 1.
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Following Goyal & Welch (2008), we use the 1–month T–bill rate to proxy for the riskless

rate.

Realized Variance In order to estimate the realized variance of the stock market, we

exploit developments in the literature on high–frequency financial econometrics. Andersen

et al. (2003) show that by sampling data at the intraday level, one can improve the accurate

measurement of realized variance. Building on this insight, we use intraday prices sampled

at the 5–minute frequency to compute the realized variance of the asset:

RV t+1 =
360

N
×

 N∑
i=1

m−1∑
j=1

log

(
St+ i

N
,j+1

St+ i
N
,j

)2
+ log

(
St+ i

N
,1

St+ i−1
N
,m

)2
 (2)

where RV t+1 is the realized variance at the end of month t + 1. The first term to the

right of the equality sign simply annualizes the variance estimate, where N is the number of

days between the end of month t and that of month t + 1. Each day contains m intraday

observations. St+ i
N
,j+1 and St+ i

N
,j are the spot prices observed on day t+ i

N
at times j + 1

and j, respectively. The last term to the right of the equality sign simply reflects the effect

of overnight returns. In particular, it captures the impact of the return from the end of the

previous day to the opening of the following day.

Option Implied Moments Recent studies document the information content of option

implied moments, e.g. Jiang & Tian (2005), Prokopczuk & Wese Simen (2014) and Kourtis

et al. (2016), for realized variance. We exploit the theoretical results of Bakshi et al. (2003) to

construct the risk–neutral variance (V ARBKM), skewness (SKEWBKM) and excess kurtosis
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(EXKURTBKM):

V ARBKM =
erτV − µ2

τ
(3)

SKEWBKM =
erτW − 3µerτV + 2µ3

[erτV − µ2]3/2
(4)

EXKURTBKM =
erτX − 4µerτW + 6erτµ2V − 3µ4

[erτV − µ2]2
− 3 (5)

where r denotes the continuously compounded (annualized) interest rate for the period from

t to t+τ . We use the Ivy curve from OptionMetrics to proxy for the interest rate. Essentially,

this curve is based on London Interbank Offered Rate (LIBOR) and Eurodollar futures.2 τ

indicates the time to expiration of each option, expressed as a fraction of a year. Note that

all variables are contemporaneously observed. In the expressions above V , W , X and µ are

defined as follows:

V =

∫ S

K=0

2(1 + log[ SK ])

K2 P (K)dK +

∫ ∞
K=S

2(1− log[KS ])

K2 C(K)dK (6)

W =

∫ ∞
K=S

6 log[KS ]− 3(log[KS ])2

K2 C(K)dK −
∫ S

K=0

6 log[ SK ] + 3(log[ SK ])2

K2 P (K)dK (7)

X =

∫ ∞
K=S

12(log[KS ])2 + 4(log[KS ])3

K2 C(K)dK +

∫ S

K=0

12(log[ SK ])2 + 4(log[ SK ])3

K2 P (K)dK (8)

µ = erτ − 1− erτ

2
V − erτ

6
W − erτ

24
X (9)

where K and S are the strike and spot prices, respectively. C(K) and P (K) denote the call

and put prices of strike K, respectively. All other variables are as previously defined.

2We use this interest rate curve to be consistent with the empirical literature on option prices (e.g., Bali
& Hovakimian, 2009; McGee & McGroarty, 2017). Obviously, one may wonder if our main results hold if
we substitute the OptionMetrics curve with the term–structure of Treasury rates. The effect on our main
findings is negligible. The intuition behind this result is that most of our analysis focuses on options of short
time to maturity. Because the interest rate is always multiplied by the time to maturity, we find that the
interest rate proxy has very little impact on our results.
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At the end of each calendar month, we use the OptionMetrics database to extract the

standardized options data of 1–month maturity, the contemporaneous spot price and the

interest rate of corresponding maturity. We retain only out–of–the–money option prices. It

is worth pointing out that the integrals in the formulas above implicitly assume the existence

of a wide range of strike prices. Alas, this is not perfectly true in the market. Thus, we follow

Chang et al. (2012) by computing a fine grid of 1,000 equidistant interpolated moneyness

levels, i.e. K/S, ranging from 0.3 % to 300 %. For each moneyness level on that grid, we

interpolate the implied volatility using a spline interpolation method. For moneyness levels

outside of the moneyness range observed in the market, we simply use a nearest neighborhood

algorithm to extrapolate the implied volatilities (Jiang & Tian, 2005). In practice, this means

that if a moneyness level is lower (higher) than the lowest (highest) moneyness level available

in the market, we simply use the implied volatility corresponding to the lowest (highest) level

of moneyness available in the market. Next, we plug the implied volatilities into the Black &

Scholes (1973) option pricing model to obtain the corresponding out–of–the–money option

prices. Finally, we follow Bali et al. (2014) by using a trapezoidal rule to approximate the

integrals that appear in the formulas above and obtain the risk–neutral moments of 1–month

maturity.

Variance Risk Premium The variance risk premium is defined as the difference between

the risk–neutral and physical expectations of variance:

V RP t = EQ
t (σ2

t+1)− EP
t (σ2

t+1) (10)
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where Et(·) is the expectation operator conditional on the information available at time t.

The superscripts Q and P indicate that the expectation is computed under the risk–neutral

and physical measures, respectively. In order to proxy for the risk–neutral expectation of

variance, we use V ARBKM . This choice is motivated by Du & Kapadia (2012) who show

that the risk–neutral variance of Bakshi et al. (2003) is robust to jumps.

While the expression above clearly defines the variance risk premium, it is of very little

practical use. The reason for this is that it involves the physical expectation of future

variance, which is not directly observable. Therefore, we follow the lead of Bollerslev et al.

(2009) and Driessen et al. (2013) in positing a simple random walk model for the future

variance under the physical measure. That is, we assume that the expectation of the future

variance under the physical measure equals its most recent realization. Thus, we can compute

the V RP as follows:

V RP t = V ARBKM
t −RV t (11)

Note that all variables are annualized and observed at the end of each calendar month.

Correlation Risk Premium Driessen et al. (2013) establish the predictive power of the

correlation risk premium for future aggregate stock returns. The authors observe that the

equity index is a portfolio of individual equities (Driessen et al., 2009). An upshot of this

is that the variance of the market index return is equal to the weighted average variance

of individual stocks and covariance terms. Assuming further that the pairwise correlation

between different stocks is the same for all stocks, they are able to derive the following
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formula:

ICt =
EQ
t [
∫ t+τ
t

σ2
I,s ds]−

∑N
i=1 ω

2
i E

Q
t [
∫ t+τ
t

σ2
i,s ds]∑N

i=1

∑
j 6=i ωiωj E

Q
t [
∫ t+τ
t

σ2
i,s ds] E

Q
t [
∫ t+τ
t

σ2
i,s ds]

(12)

where ICt is the implied correlation at t. EQ
t [
∫ t+τ
t

σ2
I,s ds] and EQ

t [
∫ t+τ
t

σ2
i,s ds] are the

risk–neutral expected variance of the index (I) and of the individual stock (i), respectively.

As before, we proxy these expectations with the risk–neutral variance of Bakshi et al. (2003).

wi and wj are the weights of stocks i and j in the market index I, respectively.

The intuition developed above also holds under the physical measure, thus yielding the

following formula for the realized correlation at time t:

RCt =
EP
t [
∫ t+τ
t

σ2
I,s ds]−

∑N
i=1 ω

2
i E

P
t [
∫ t+τ
t

σ2
i,s ds]∑N

i=1

∑
j 6=i ωiωj E

P
t [
∫ t+τ
t

σ2
i,s ds] E

P
t [
∫ t+τ
t

σ2
i,s ds]

(13)

where RCt is the realized correlation at t. All other variables are as previously defined. As

before, we use the historical variance computed over the most recent period to proxy for the

physical expectation of the future variance.

The CRP at time t is then defined as the difference between the risk–neutral and

physical expectations of future correlation, yielding the following result:

CRP t = ICt −RCt (14)

To obtain this variable, we use standardized options (of time to maturity of one month)

on the S&P 500 index as well as options data on all constituents of the index. All options

are observed at the end of each calendar month.
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Implied Volatility Smirk Measure Xing et al. (2010) document the predictive power

of the implied volatility smirk. Our construction of this variable broadly mirrors theirs. At

the end of each calendar month, we retain all S&P 500 index options with positive open

interest and a time to maturity between 10 and 60 days. We discard all option prices with a

midquote price below $0.125. We also purge all options with implied volatility outside of the

interval [3 %; 200 %]. We define the out–of–the–money put options as the put options with

a moneyness level between 0.8 and 0.95. Note that by moneyness level, we understand the

ratio of the strike price over the stock price, i.e. K/S. Relatedly, we define at–the–money

call options as call options with a moneyness level between 0.95 and 1.05. The smirk measure

is simply computed as follows:

SMIRKt = V OLOTMP
t − V OLATMC

t (15)

where SMIRKt is the smirk measure at time t. V OLOTMP
t denotes the implied volatility

of out–of–the–money puts. To be more precise, this is the volume–weighted average of the

implied volatility of all out–of–the–money put options. V OLATMC
t refers to the volume–

weighted average of all implied volatility of at–the–money calls at time t.

III. Main Results

Before discussing our main findings, it is instructive to look at the summary statistics

reported in Table I. We can observe a positive market risk premium of around 6 % per annum.

The risk premium exhibits a volatility of around 16 % per annum. We also notice that the
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sample moments of the V RP and the CRP are consistent with those reported in previous

works (Driessen et al., 2009, 2013). In particular, we can see that although positive on

average, the V RP is negatively skewed and prone to extreme movements as indicated by its

high kurtosis, suggesting a sign–switching behavior. This observation could carry important

implications for the predictive ability of this variable. We shall return to this point later.

The table also reports the AR(1) coefficient of each variable. We notice that the

autoregressive coefficient of these variables is typically lower than that of the valuation ratios

such as the (log) dividend to price ratio routinely analyzed in empirical works, e.g. Goyal &

Welch (2003). This suggests that our analysis does not suffer from the statistical issues that

affect these earlier works. We can also see that the AR(1) coefficient of the realized variance

is much higher than that of the market risk premium, likely indicating that there might be

a stronger evidence of predictability in the realized variance series than in the market excess

returns.

Table II presents the sample correlation coefficients among all the predictive variables.

While most variables are only weakly correlated, there is a high correlation between

SKEWBKM and EXKURTBKM (−0.92). This suggests that these variables contain very

similar information.

III.A Return Predictability

In–Sample Analysis We start by assessing the in–sample predictability of the equity risk

premium. To do so, we estimate the standard regression model of the month–ahead excess
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return on a constant and the predictive variable(s):

ERt+1 = β0 + β1Xt + εt+1 (16)

where ERt+1 is the excess return on the market realized at the end of month t + 1. β0

and β1 are the intercept and slope parameters, respectively. Xt represents the forecasting

variable(s) observed at the end of month t. Finally, εt+1 is the regression error term at t+ 1.

Table III summarizes the results for each predictive variable. The regression model

enables us to ascertain whether the equity risk premium is time–varying or constant. Under

the null hypothesis that the future excess return cannot be predicted using Xt, we would

expect that β1 = 0. As a result, the expected market excess return would simply be constant.

One implication of this is that the best estimate of the future excess return is simply its

recursive mean. If there is evidence of predictability, we would expect to see that the slope

loading is statistically significant. To avoid a small–sample bias (Stambaugh, 1999) and

serial correlation in the error terms (Richardson & Stock, 1989), we base all our statistical

inferences on the bootstrapped distribution obtained by implementing the framework of

Rapach & Wohar (2006).3

We can see that the CRP , SMIRK and V RP are statistically significant in the

univariate regressions. This is illustrated by their t−statistics of 2.76, −2.06 and 4.26.

The positive and significant slope estimate related to the V RP confirms and updates, using

3We estimate our process under the null hypothesis of no predictability via OLS, i.e. ERt = a0 + ε1,t
and Xt = b0 + b1 Xt−1 + ε2,t, where a0, b0 and b1 are the regression coefficients and ε1,t and ε2,t are the error
terms, respectively. Then, we form a series of error terms and set up our pseudo sample. For the pseudo
sample, we calculate the in–sample and out–of–sample statistics. Finally, we repeat this procedure 1,000
times.
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a more recent sample period, the result of Bollerslev et al. (2009). It is also consistent with

the authors’ intuition that the V RP encodes information about time–variations in economic

uncertainty. Note also that, if as argued by Driessen et al. (2013), CRP accounts for most

of the V RP , then one would expect that CRP predicts future excess returns with a positive

sign as we find in the data, since it has been documented that the V RP predicts the market

excess return (Bollerslev et al., 2009).

The finding that SMIRK predicts future returns with a negative sign extends the results

of Xing et al. (2010) to the time–series of the market excess return. The intuition behind this

result is simple. An increase in SMIRK implies a stronger demand for out–of–the–money

put options. This increased demand signals that investors are actively purchasing insurance

against expected declines in the stock index. The negative slope estimate of SMIRK is

consistent with this intuition.

It is also worth comparing the predictive power of individual variables. A cursory look

at the in–sample R2 reveals that V RP has the highest predictive power for the future excess

returns (R2 = 7.47 %). The second most powerful predictor is the CRP , with an R2 of

3.28 %. While the slope estimate on the V RP is similar to that documented by Bollerslev

et al. (2009), it is worth noticing that the predictive power we document at the monthly

horizon is much higher, indicating that, if anything, the predictive ability of the V RP is

much larger in the more recent sample period.

To analyze the joint predictive ability of different variables, we perform two multiple

regressions. Due to the high correlation between SKEWBKM and EXKURTBKM , we run

the regressions once without the first and once without the second variable. In both cases we

find that only SMIRK and V RP retain their statistical significance. Overall, the adjusted
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R2 increases to 7.91 % and 8.13 % in the first and second cases, respectively.

Out–of–Sample Results We now turn our focus to the out–of–sample evidence of return

predictability. We use an initial training window of 5 years to first estimate the forecasting

model presented in Equation (16). Equipped with the parameter estimates and the most

recent observation of the forecasting variable in the training window, we are able to generate

the first excess return forecast. The following month, we expand the training window by

one observation month and re–estimate the forecasting model. With the new parameter

estimates, we forecast the market excess return for the next month. We proceed analogously

for all months except the last month of our sample period.

In order to assess the out–of–sample performance of different models, we follow Campbell

& Thompson (2008) and define the out–of–sample R2 (R2
oos) as follows:

R2
oos = 1− MSEu

MSEr

(17)

where MSEu and MSEr are the mean squared errors of the unrestricted and restricted

models, respectively. The unrestricted model is based on Equation (16). The restricted

model imposes the null hypothesis that returns are unpredictable, i.e. β1 = 0. Thus the R2
oos

sheds light on the question: how large an improvement in forecast accuracy can one achieve

by accounting for the predictive power of variable Xt? The higher the R2
oos the better. A

variable has notable predictive power if it exhibits a positive and significant R2
oos, indicating

an overall outperformance of the predictive variable.

In order to gauge whether the potential improvement is statistically significant, we
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compute the MSE − F statistic of McCracken (2007):

MSE − F = N ×
(
MSEr −MSEu

MSEu

)
(18)

where N denotes the number of out–of–sample forecasts. All other variables are as previously

defined. Briefly, the null hypothesis is that the restricted model performs at least as well

as the unrestricted model, i.e. MSEr ≤ MSEu. The alternative is that the unrestricted

model provides smaller forecast errors than the restricted model. As can be seen from the

last set of results in Table III, CRP and V RP yield statistically significant improvements in

out–of–sample performance relative to the simple recursive mean. This result is noteworthy

given that Goyal & Welch (2003) argue that the recursive mean is a tough benchmark to

beat. Overall, these results suggest that CRP and V RP contain important information

about next–month’s market excess returns both in– and out–of–sample. In contrast, both

multiple regressions do not increase the predictive power out–of–sample.

III.B Variance Predictability

We now turn our attention to the predictability of the realized variance. In particular,

we ask the question: can any of the forecasting variables be used to predict next–month’s

realized variance?

In–Sample Using all the sample information, we estimate the following regression model:

RV t+1 = γ0 + γ1Xt + εt+1 (19)
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where γ0 and γ1 are the intercept and slope parameters, respectively. All other variables are

as previously defined.

Table IV summarizes the results of the in–sample analysis. We notice that all variables

have predictive power for future realized variance, as evidenced by their statistically

significant t−statistics. The R2 associated with these forecasting variables ranges from

3.19 % to 38.83 %. These results are interesting for several reasons. First, they indicate that

the predictability of variance is much stronger than that of excess returns. Second, they

reveal that CRP , SMIRK and V RP are able to predict (in–sample) not only next–month’s

market excess returns (see Table III) but also realized variance. Third, some variables that

do not predict future excess returns matter for realized variance forecasting. For instance,

EXKURTBKM predicts next–month’s realized variance with a predictive power equal to

9.24 %. An implication of this result is that when assessing the information content of a

predictive variable, it is advisable to investigate whether it predicts not only excess returns

but also realized variance.

While we analyze the joint predictive ability of different variables by performing two

multiple regressions once without SKEWBKM and once without EXKURTBKM again, in

both cases we find that all variables retain their statistical significance, except SKEWBKM

and EXKURTBKM . Overall, the adjusted R2 increases to 45.47 % and 45.53 %, respectively.

Out–of–Sample We conduct our analysis out–of–sample in a similar way as before.

Specifically, we use the first 5 years of observations to initially estimate the model parameters

(see Equation (19)). Having done this, we then make a forecast for the following month. We

expand the training window by one observation month and repeat all steps. This procedure
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mirrors that used for the return predictability analysis with the only difference that we

forecast realized variance rather than the market excess returns. The last row of Table

IV shows the R2
oos. Generally, the variables that predict realized variance in–sample are

also predictors out–of–sample. This is true for all variables with the exception of V RP ,

which does not yield an improvement relative to the recursive mean. Further, in case

of the two multiple regressions, there is an increase of the adjusted R2
oos to 12.21 % and

12.20 %, respectively. However, the predictive power where using V ARBKM individually is

not achieved.

III.C Portfolio Choice Implications

We now study the portfolio choice implications of the predictability results reported

earlier. To do this, we consider an investor with mean–variance preferences. The agent

allocates a fraction ω of her wealth to the risky portfolio and the remainder, i.e. 1 − ω, to

the risk–free asset. The agent’s objective function is:

max
wt

EP
t

(
Rp,t+1 −

γ

2
σ2
p,t+1

)
(20)

where EP
t (·) is the physical expectation operator. σ2

p,t+1 is the conditional variance of the

portfolio at time t+1. γ is the coefficient of relative risk aversion. Rp,t+1 is the next–period’s

(simple) return on the investor’s portfolio. This return is the weighted average of the (simple)

return on the risky stock and on the risk–free asset. Because our earlier analysis focuses on

log–returns rather than simple returns, we use a second–order Taylor expansion to express
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the simple return as a function of the log–return and realized variance.4 Thus, we can express

the objective function as follows:

max
wt

Et

(
wtERt+1 + rf t +

1

2
wtRV t+1 −

γ

2
w2
tRV

2
t+1

)
(21)

where all variables are as previously defined.

Using the first–order condition, it is straightforward to derive the optimal weight

invested in the risky asset (Jordan et al., 2014):

ωt =
Et(ERt+1 + 1

2
RV t+1)

γEt(RV t+1)

=
Et(ERt+1)

γEt(RV t+1)
+

1

2γ
(22)

The expression above shows that the optimal allocation to the risky asset depends on the

expected excess returns, the risk–aversion parameter and the expected realized variance. One

implication of this expression is that, holding everything else constant, the allocation to the

risky stock rises with expected returns. In other words, if realized variance is unpredictable

and a forecasting variable Xt positively (negatively) predicts excess returns, then the agent

would invest more (less) in the risky stock as Xt increases. In contrast, if a variable Xt

positively predicts future variance (and not returns), then the share of wealth invested in

the risky stock decreases with the variable Xt.

Note that the preceding discussion focuses only on the predictability of either returns

4More precisely, the approximation yields the following relationship:

rt ≈ Rt −
1

2
RV t

where rt, Rt and RV t are the log–return, simple return and realized variance at time t, respectively.
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or variance and does not explore the case where both moments are predictable by the same

variable. The share of the position in the stock will be determined by two (potentially

offsetting) forces, one that increases with the expected excess returns and the other that

decreases with the expected realized variance.

In light of the preceding discussion, we find it interesting to distinguish between three

cases. The first one, deals with the case where only excess returns might be predictable. The

second case allows for the predictability of realized variance alone. The third case deals with

the possibility that both excess returns and realized variance are predictable by the same

variable Xt.

For a given case i and each calendar month of our out–of–sample window, we compute

the weight ωt and also the realized return of the portfolio. We impose the restriction that

whenever the forecast of the market excess return or of the realized variance (or of both) in

Equation (22) equals zero, we set the portfolio weight equal to 1/(2γ). Further, following

Campbell & Thompson (2008) and Jordan et al. (2017), we impose the restriction that ωt

is bounded from below by 0 and from above by 1.5. Economically, the lower bound implies

that the agent does not short–sell the risky asset. The upper bound prevents the agent from

taking on excessive leverage. At the end of the sample period, we compute the certainty

equivalent return as follows:

CER(i) = R̄p −
γ

2
σ2
p (23)

where CER(i) is the certainty equivalent return associated with strategy i. This number is

expressed in percent per annum. R̄p is the average (annualized) return on the portfolio. σ2
p
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is the variance of the portfolio returns.

Our approach consists in computing the utility gain (∆CER(i)), the difference between

CER(i) and the certainty equivalent return of the naive strategy that assumes that the first

two moments are unpredictable and thus relies on simple historical averages. We do this for

each of the three scenarios in turn.

We also compute the Sharpe Ratio (SR) of each strategy i:

SR(i) =
R̄p − R̄f

σ2
p

(24)

Similar to the certainty equivalent return analysis, we compute the improvement in SR by

taking the difference between SR(i) and the SR linked to the naive strategy that assumes

that the market excess returns and realized variance are unpredictable. We follow Jobson

& Korkie (1981) and take into account the correction suggested by Memmel (2003) to test

whether the improvement is statistically significant.

Table V reports our results for different values of risk aversion. We can see that statistical

evidence of excess return predictability does not necessarily imply important economic gains.

For instance, while the V RP predicts excess returns, an investor relying on this variable

would have underperformed the naive strategy. One possible explanation for this result is

the following. Shortly before the crisis period, the variance risk premium is high (since the

historical variance is low). Because V RP predicts future returns with a positive sign, this

result implies that an agent should hold more (rather than less) stocks. As a result of this

increased position, the strategy incurs more severe losses as the economy slides into recession.

Similarly, as the economy recovers, the variance risk premium is low, implying that the agent
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should hold a small position in the stock. Because of this, the agent misses out on the rally

in the market.

In contrast, one can see that relative to an agent with risk aversion γ = 3, who assumes

that the market excess returns and the realized variance are unpredictable, the agent who

exploits the information content of CRP would improve her utility by 4.63 %.

Table A1 in the online appendix shows the portfolio choice implications taking turnover

and transaction costs into account. Following DeMiguel et al. (2009), we define the turnover

for strategy i as the average sum of the absolute values of the trades, i.e.:

Turnover =
1

T −M

T−M∑
t=1

(
|ω(i)
t+1 − ω

(i)

t
+ |
)

(25)

where T −M is the training window over which the moments are estimated and ω
(i)

t
+ is the

portfolio weight before rebalancing at t + 1. All other variables are as previously defined.

For the benchmark strategy, we observe an absolute value of the turnover (Turnoverabs) of

0.0448 which can be interpreted as the average percentage of wealth traded in each out–of–

sample period. For our three strategies, we report the turnover (Turnover
(i)
rel) relative to the

benchmark case. We notice that all strategies exhibit higher turnovers than the benchmark,

indicated by values large than one.

To achieve a practical point of view, we follow Balduzzi & Lynch (1999) and include

transaction costs of 50 basis points per transaction proportional to the asset’s traded size

|ω(i)
t+1−ω

(i)

t
+ |. Table A1 reports the corresponding utility gains and Sharpe Ratios. We observe

that transaction costs have an systematic impact on the results. Although the patterns are

qualitatively similar, we notice a noteworthy reduction in the utility gains and Sharpe Ratios.
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E.g., CRP yields a utility gain of 1.78 %, assuming both that excess returns and variance

are predictable by that variable. The improvement in the Sharpe Ratio amounts to 0.15.

IV. Further Analyses

IV.A Sign Restriction

Campbell & Thompson (2008) propose to impose economically–motivated restrictions

when studying the question of predictability. The authors suggest to set the slope estimate in

the out–of–sample analysis equal to zero whenever its sign differs from that of the in–sample

analysis.

Panel A of Table VI shows that the main results hold: the CRP and V RP are the

two main option implied predictors of the market excess returns. It is worth noticing that

imposing this restriction has very little effect on the R2
oos related to the forecasting variable

(see Table III for comparison). This suggests that the sign of the relationship between the

forecasting variables CRP and V RP and future excess returns is relatively stable out–of–

sample.

We also impose a similar restriction on the slope of the realized variance forecasting

regression. In other words, we set the slope estimate equal to zero if the sign of the recursively

estimated parameter is different from that obtained in–sample. Overall, we can see from

Panel B of Table VI that this restriction has very little impact on our main results.

Pursuing our analysis, we impose the restriction that we set the forecast equal to zero,

whenever its negative. The second set of results in Table VI reports these findings. Finally,
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the last entries of each panel of Table VI show the results when we jointly impose the

restrictions (on the sign of the slope and the sign of the return/variance forecast).

We also repeat our economic value analysis using these economically–motivated

constraints. Before discussing the findings, it is worth emphasizing that the timing strategies

are not implementable in real–time. This is because the implementation would require the

agent to know about the sign of the in–sample slope parameter, i.e. to have information about

future data, thus introducing a look–ahead bias. Tables VII–IX document that imposing the

restriction(s) does not affect our main conclusions on the economic value of the predictive

power of both CRP and V RP .

IV.B Forecast Combination

Rapach et al. (2010) suggest the use of forecast combinations. The pooled forecast

is the weighted average of all N individual forecasts, i.e. ÊR
pool

t+1 =
∑N

i=1 xi,tÊRi,t+1 and

R̂V
pool

t+1 =
∑N

i=1 xi,tR̂V i,t+1, based on Equation (16) and (19), respectively. xi,t is the weight

of the individual forecast in the pooled one.

Following the literature, we use three approaches. Table X shows the out–of–sample R2s

of (i) the mean forecast combination, where the weight is simply 1/N for i = 1, ..., N , (ii) the

median forecast combination, where the pooled forecast is just the median of all individual

forecasts, and (iii) the trimmed mean forecast combination, where xi,t = 0 in case of the

individual forecasts with the smallest and largest value, respectively, and xi,t = 1/(N − 2)

for the remaining forecasts.

The mean forecast combination exhibits superior performance in both cases, the return
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(R2
oos = 3.11 %) as well as variance predictability (R2

oos = 16.01 %).

Table XI reports the economic value for different values of risk aversion. Compared to

the previous findings, the median forecast combination now exhibits superior performance.

For γ = 3, an annualized utility gain of 3.98 % (relative to the naive strategy) may be

achieved, assuming both return and variance can be predicted by the forecasting variables.

Note, according to our understanding a variable has predictive power if it satisfies two

tests, i.e. a variable has predictive power if and only if it exhibits statistical as well as

economic significance at once. Therefore, in contrast to the literature, we focus our analysis

on both aspects. In our case, only the CRP fulfills both conditions.

V. Additional Analysis

To use more information in estimating the RV , we follow Corsi (2009) and Sévi (2014)

and use the heterogeneous auto–regressive (HAR) model. The HAR–RV model provides a

conditional estimate for RV that accounts for different trading horizons. Second, in the

previous analysis, we examine the total variance risk premium. However, Andersen &

Bondarenko (2010), Andersen et al. (2015) and Feunou et al. (2015) show how to decompose

the V RP into downside and upside components. In the following section, we analyze the

predictability of both components separately.

We follow Andersen & Bondarenko (2010) and Andersen et al. (2015) and use the

downside and upside model–free implied variance. Following the arguments of Feunou et al.

(2015), investors dislike increases in the volatility of the underlying, which is associated

with an increase in the probability of severe losses. Investors hedge against these downward
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movements, thus, we expect that the downside variance risk premium is the main driver of

the V RP . Further, to get a better estimate for the physical expectation of variance, we

analogously use the downside and upside RV .

V.A Variables

Variance Risk Premium based on HAR–RV Model We define the variance

risk premium based on the HAR–RV model (V RPHAR) as the difference between the

risk–neutral variance (V ARBKM) and the RV estimated on the basis of the HAR model

(RV HAR):

V RPHAR
t = V ARBKM

t −RV HAR
t (26)

where V ARBKM
t is as previously defined. Analogously to Section II.B and using Equation

(2), we follow Christoffersen (2012) and define

RVD,t+ i
N
≡ RVt+ i

N
(27)

RVW,t+ i
N
≡ RV(t+ i

N
)−4,t+ i

N

=
[
RV(t+ i

N
)−4 +RV(t+ i

N
)−3 +RV(t+ i

N
)−2 +RV(t+ i

N
)−1 +RVt+ i

N

]
/ 5

(28)

RVM,t+ i
N
≡ RV(t+ i

N
)−20,t+ i

N
=
[
RV(t+ i

N
)−20 +RV(t+ i

N
)−19 + ...+RVt+ i

N

]
/ 21 (29)

as the daily, weakly, and monthly RV on day t + i
N

, respectively.5 Further,

5We follow the common approach and define one month as 21 trading days.
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RV(t+ i
N
)+1,(t+ i

N
)+20 is the RV over the next 21 days, i.e.:

RV(t+ i
N
)+1,(t+ i

N
)+20 =

[
RV(t+ i

N
)+1 +RV(t+ i

N
)+2 + ...+RV(t+ i

N
)+20

]
/ 21 (30)

Finally, to compute RV HAR
t , we run the following regression:

RV(t+ i
N
)+1,(t+ i

N
)+20 = φ0 + φDRVD,t+ i

N
+ φWRVW,t+ i

N

+ φMRVM,t+ i
N

+ ε(t+ i
N
)+1,(t+ i

N
)+20

(31)

where φ0, φD, φW and φM are the regression coefficients, and ε(t+ i
N
)+1,(t+ i

N
)+20 is the error

term over the next 21 days. The fitted values are the forecast RV and represent RV HAR
t .

Downside and Upside Variance Risk Premium We define the downside and upside

variance risk premium (V RPDOWN and V RPUP ) as the difference between the downside

and upside model–free implied variance ((σQ−
t )2 and (σQ+

t )2) and the downside and upside

RV (RV DOWN and RV UP ), respectively:

V RPDOWN
t =

(
σQ−
t

)2
−RV DOWN

t (32)

V RPUP
t =

(
σQ+
t

)2
−RV UP

t (33)

To obtain (σQ−
t )2 and (σQ+

t )2, we follow Andersen & Bondarenko (2010) and Andersen et al.

(2015) and use their corridor implied volatility method to decompose the model–free implied
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variance into different parts, and define the model–free implied variance ((σQ
t )2) as:

(
σQ
t

)2
= 2

∫ ∞
0

M(K)

K2 dK = (σQ−
t )2 + (σQ+

t )2 (34)

where M(K) = min (P (K), C(K)) is the minimum price of the put and call with maturity

of 1 month and strike K. Consistently, we also compute the grid of 1,000 equidistant

interpolated moneyness levels of out–of–the money option prices, as described above. Finally,

to compute (σQ−
t )2 and (σQ+

t )2, we assume the threshold Seθ with θ = 0:

(
σQ−
t

)2
= 2

∫ Se
θ

0

M(K)

K2 dK (35)(
σQ+
t

)2
= 2

∫ ∞
Se
θ

M(K)

K2 dK (36)

We then use the trapezoidal rule to approximate the integral, as outlined above.

Following Barndorff-Nielsen et al. (2010), we decompose the RV into the upside and

downside realized variance for a given threshold κ. Imposing κ = 0, we compute RV DOWN
t

(RV UP
t ) on the basis of equation 2, however, using only log returns that are at most (least)

equal to κ.

Downside and Upside Variance Risk Premium based on HAR–RV Model We

define the downside and upside variance risk premium based on the HAR–RV model

(V RPDOWN,HAR and V RPUP,HAR) as the difference between the downside and upside

model–free implied variance ((σQ−
t )2 and (σQ+

t )2) and the downside and upside RV estimated
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on the basis of the HAR model (RV DOWN,HAR and RV UP,HAR), respectively:

V RPDOWN,HAR
t =

(
σQ−
t

)2
−RV DOWN,HAR

t (37)

V RPUP,HAR
t =

(
σQ+
t

)2
−RV UP,HAR

t (38)

where (σQ−
t )2 and (σQ+

t )2 are as previously defined. To compute RV DOWN,HAR
t (RV UP,HAR

t ),

we follow the steps described above, however, using RV DOWN (RV UP ) instead of RV .

V.B Results

Table A2 in the online appendix shows the regressions results for the different

specifications predicting the next month’s excess return and RV , respectively. In Panel A,

we observe that all specifications exhibit an inferior performance in predicting excess returns

compared to the V RP as proposed by Bollerslev et al. (2009). However, we notice that

V RPUP , V RPDOWN and V RPUP,HAR have still (in–sample) significant predictive power,

indicated by t−statistics between 2.47 and 2.17, and in–sample R2s from 2.65 % to 2.05 %.

In contrast, Panel B of Table A2 demonstrates that all specifications outperform

the V RP in predicting RV in–sample. We observe significant R2s (t−statistics) ranging

between 39.16 % (−12.04) for V RPUP and 12.46 % (5.66) for V RPUP,HAR. Further, we

observe noteworthy significant out–of–sample predictability for V RPHAR (R2
oos = 34.24 %),

V RPDOWN,HAR (R2
oos = 24.79 %) and V RPUP,HAR (R2

oos = 10.45 %).

We now turn our attention to the portfolio choice implications. Table A3 in the online

appendix reports the results of the economic value. For an agent with risk aversion of γ = 3,

we observe that V RPUP (V RPDOWN) provides substantial improvements in the utility gain
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of 6.25 % (5.26 %) and in the Sharpe Ratio of 0.55 (0.44).

Overall, the results confirm our previous findings in providing evidence for a stronger

variance than return predictability. Further, we observe that V RPDOWN , V RPUP and

V RPUP,HAR predict in–sample both returns and variance. In addition, we notice that

V RPHAR, V RPDOWN,HAR and V RPUP,HAR strongly predict RV out–of–sample. Finally,

the results reveal that V RPUP and V RPDOWN provide evidence for generating statistically

significant (in–sample) forecasts and in adding economic value.

VI. Conclusion

This paper comprehensively studies the predictive power of option implied variables for

future excess returns and realized variance. A variable is considered to have predictive power

if it exhibits statistically significant forecasting power and also adds economic value. We find

that the correlation risk premium emerges as a strong predictor of both the market excess

returns and the realized variance. This is true both in– and out–of–sample. Relatedly, we

show that the variance risk premium predicts the market excess returns in– and out–of–

sample. However, its predictive power for realized variance is only evident in–sample and

does not extend out–of–sample.

We then investigate the economic value of the documented predictability. Our results

highlight an important contrast between the two variables. Relative to a naive strategy

that assumes that excess returns and realized variance are unpredictable, the agent who

relies on the correlation risk premium as a timing signal realizes utility gains of 4.63 %.

In contrast, the timing strategy that uses the variance risk premium as timing signal yields
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lower certainty equivalent returns than a naive strategy that assumes constant excess returns

and realized variance. Thus, our analysis shows that statistical evidence of predictability

does not necessarily translate to economic value.

We further decompose the total variance risk premium into the downside and upside

components, and analyze the predictability of different versions of the variance risk premium.

We show that the upside and downside variance risk premium have noteworthy (in–sample)

predictive power for excess returns and variance. Further, a timing strategy provides a utility

gain of 6.25 % and 5.26 %, respectively.
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Table I: Summary Statistics

This table summarizes key statistics about several variables. CRP denotes the correlation risk

premium. ER refers to the (annualized) excess return on the stock index. EXKURTBKM is the

risk–neutral kurtosis of Bakshi et al. (2003). RV is the (annualized) realized variance computed

using intraday data sampled at the 5–min frequency. SKEWBKM is the risk–neutral skewness

of Bakshi et al. (2003). SMIRK is the option smirk. V ARBKM is the (annualized) risk–neutral

variance of Bakshi et al. (2003). Finally, V RP is the (annualized) variance risk premium computed

as the difference between the most recent observation of the realized variance and the risk–neutral

variance of Bakshi et al. (2003). “Mean”, “Std Dev”, “Skew” and “Kurt” denote the mean,

standard deviation, skewness and kurtosis, respectively. The last two columns show the AR(1)

coefficient and the number of observations, respectively. All data are sampled at the monthly

frequency and relate to the S&P 500 index.

Mean Std Dev Skew Kurt AR(1) Nobs

CRP 0.09 0.10 0.14 3.30 0.25 228
ER 0.06 0.16 -0.83 4.43 0.09 228

EXKURTBKM 0.76 0.28 0.49 3.04 0.72 228
RV 0.03 0.05 7.31 75.23 0.63 228

SKEWBKM -0.87 0.20 0.26 3.03 0.65 228
SMIRK 0.13 0.25 0.16 3.48 0.33 228

V ARBKM 0.05 0.04 3.31 18.05 0.79 228
V RP 0.02 0.03 -5.06 61.75 0.13 228
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Table II: Correlation Matrix
This table reports the correlation among all predictive variables. CRP denotes the correlation risk

premium. EXKURTBKM is the risk–neutral kurtosis of Bakshi et al. (2003). SKEWBKM is

the risk–neutral skewness of Bakshi et al. (2003). SMIRK is the option smirk. V ARBKM is the

risk–neutral variance of Bakshi et al. (2003). Finally, V RP is the variance risk premium computed

as the difference between the most recent observation of the realized variance and the risk–neutral

variance of Bakshi et al. (2003). All data are sampled at the monthly frequency and relate to the

S&P 500 index.

CRP EXKURTBKM SKEWBKM SMIRK V ARBKM V RP

CRP

EXKURTBKM 0.20

SKEWBKM -0.22 -0.92
SMIRK -0.06 -0.02 -0.10

V ARBKM -0.04 -0.38 0.17 0.35
V RP 0.40 -0.03 0.02 -0.14 -0.02
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Table V: Economic Value
This table reports utility gains and Sharpe Ratios for each of the three scenarios. Scenario 1

assumes that the realized variance is unpredictable and that the forecasting variable [name in row]

only predicts the excess returns. Scenario 2 assumes that the excess returns are unpredictable but

that the variable [name in row] predicts the realized variance. Scenario 3 implicitly assumes that the

excess returns and the realized variance can be predicted by the forecasting variable [name in row].

∆CER(1), ∆CER(2) and ∆CER(3) are the annualized utility gains relative to a naive strategy

that assumes unpredictable excess returns and realized variance, achieved by following strategy 1,

2 and 3, respectively. Similarly, ∆SR(1), ∆SR(2) and ∆SR(3) are the annualized improvements

in Sharpe Ratios achieved by following strategy 1, 2 and 3, respectively. ∗, ∗∗, ∗ ∗ ∗ indicate the

significance at the 10 %, 5 % and 1 % significance levels, respectively. All data are sampled at the

monthly frequency and relate to the S&P 500 index.

Panel A: γ = 3

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 5.46 1.63 4.63 0.46** 0.11 0.40*

EXKURTBKM 5.39 3.69 6.24 0.51*** 0.34*** 0.58***

SKEWBKM 1.86 1.78 3.28 0.16 0.13** 0.29
SMIRK 2.96 1.47 2.91 0.30 0.14 0.30

V ARBKM -7.28 7.19 -1.65 -0.42*** 0.50*** -0.09
V RP -6.10 -1.57 -5.43 -0.41* -0.13 -0.41*

Panel B: γ = 6

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 3.05 1.50 2.86 0.45** 0.14* 0.43*

EXKURTBKM 3.92 3.05 4.83 0.63*** 0.40*** 0.70***

SKEWBKM 1.20 1.30 2.36 0.22 0.14** 0.37**
SMIRK 2.07 1.10 2.13 0.38* 0.14 0.37*

V ARBKM -10.70 5.67 -0.45 -0.60*** 0.71*** 0.02
V RP -8.49 -0.98 -6.14 -0.60*** -0.12 -0.53**

Panel C: γ = 9

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.71 1.04 1.56 0.40* 0.12* 0.38

EXKURTBKM 2.82 2.27 3.74 0.67*** 0.40*** 0.74***

SKEWBKM 0.58 0.88 1.76 0.20 0.13** 0.41**
SMIRK 1.40 0.75 1.47 0.38* 0.14 0.38*

V ARBKM -10.28 3.94 -0.18 -0.63*** 0.73*** 0.05
V RP -8.15 -0.65 -6.22 -0.63*** -0.10 -0.58**

Panel D: γ = 12

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.25 0.78 0.87 0.40* 0.10* 0.36

EXKURTBKM 2.11 1.80 2.93 0.67*** 0.40*** 0.74***

SKEWBKM 0.44 0.66 1.35 0.20 0.13** 0.42**
SMIRK 1.05 0.57 1.10 0.38* 0.14 0.38*

V ARBKM -8.37 2.95 -0.15 -0.63*** 0.73*** 0.05
V RP -6.18 -0.49 -5.82 -0.63*** -0.10 -0.59**
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Table VI: Out–of–Sample Analysis: Restriction

This table reports the results of the out–of–sample analysis after imposing economically motivated

restrictions. We report the MSE–F statistics in parenthesis. CRP denotes the correlation risk

premium. EXKURTBKM is the risk–neutral kurtosis of Bakshi et al. (2003). SKEWBKM is

the risk–neutral skewness of Bakshi et al. (2003). SMIRK is the option smirk. V ARBKM is the

risk–neutral variance of Bakshi et al. (2003). Finally, V RP is the variance risk premium computed

as the difference between the most recent observation of the realized variance and the risk–neutral

variance of Bakshi et al. (2003). ”(I)” denotes the imposition of the first restriction where we set

the slope estimate in the out–of–sample analysis equal to zero whenever its sign differs from that

of the in–sample analysis. ”(II)” denotes the imposition of the second restriction where we set

the forecast equal to zero whenever it is negative. ”(I+II)” denotes the joint imposition of both

restrictions. R2
oos is the out–of–sample R2. ∗, ∗∗ and ∗ ∗ ∗ indicate statistical significance at the

10 %, 5 % and 1 % significance levels, respectively. All data are sampled at the monthly frequency

and relate to the S&P 500 index.

Panel A: Return Predictability

C
R
P

E
X
K
U
R
T

B
K

M

S
K
E
W

B
K

M

S
M
I
R
K

V
A
R

B
K

M

V
R
P

(I) R2
oos 2.81*** -1.22 -0.53 0.07 -3.84 5.50***

(4.83) (-2.02) (-0.87) (0.12) (-6.18) (9.73)

(II) R2
oos 2.69** 0.37 0.56 0.93 -3.39 4.43***

(4.61) (0.62) (0.95) (1.57) (-5.48) (7.74)

(I+II) R2
oos 2.69** 0.37 0.56 0.93 -2.95 4.43***

(4.61) (0.62) (0.95) (1.57) (-4.79) (7.74)

Panel B: Variance Predictability

C
R
P

E
X
K
U
R
T

B
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M

S
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E
W
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M
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R
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V
A
R

B
K

M

V
R
P

(I) R2
oos 1.88*** 8.04*** 2.65*** 8.61*** 34.65*** -1.81

(3.20) (14.60) (4.54) (15.73) (88.54) (-2.97)

(II) R2
oos 1.93*** 8.77*** 2.65*** 8.61*** 34.65*** -2.68

(3.29) (16.06) (4.54) (15.73) (88.54) (-4.35)

(I+II) R2
oos 1.93*** 8.77*** 2.65*** 8.61*** 34.65*** -1.57

(3.29) (16.06) (4.54) (15.73) (88.54) (-2.58)
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Table VII: Economic Value: Restriction I
This table reports utility gains and Sharpe Ratios for each of the three scenarios. Scenario 1

assumes that the realized variance is unpredictable and that the forecasting variable [name in row]

only predicts the excess returns. Scenario 2 assumes that the excess returns are unpredictable

but that the variable [name in row] predicts the variance of market returns. Scenario 3 implicitly

assumes that the excess returns and the realized variance can be predicted by the forecasting variable

[name in row]. ∆CER(1), ∆CER(2) and ∆CER(3) are the annualized utility gains relative to a

strategy that assumes unpredictable excess returns and realized variance, achieved by following

strategy 1, 2 and 3, respectively. Similarly, ∆SR(1), ∆SR(2) and ∆SR(3) are the annualized

improvements in Sharpe Ratios achieved by following strategy 1, 2 and 3, respectively. ∗, ∗∗, ∗ ∗ ∗
indicate the significance at the 10 %, 5 % and 1 % significance levels, respectively. All data are

sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: γ = 3

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 5.46 1.63 4.63 0.46** 0.11 0.40*

EXKURTBKM 5.39 3.69 6.24 0.51*** 0.34*** 0.58***

SKEWBKM 1.86 1.78 3.28 0.16 0.13** 0.29
SMIRK 2.96 1.47 2.91 0.30 0.14 0.30

V ARBKM -8.81 7.19 -1.66 -0.48*** 0.50*** -0.09
V RP -6.10 -1.58 -5.93 -0.41* -0.12 -0.42*

Panel B: γ = 6

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 3.05 1.50 2.86 0.45** 0.14* 0.43*

EXKURTBKM 3.92 3.05 4.83 0.63*** 0.40*** 0.70***

SKEWBKM 1.20 1.30 2.36 0.22 0.14** 0.37**
SMIRK 2.07 1.10 2.13 0.38* 0.14 0.37*

V ARBKM -11.50 5.67 -0.45 -0.63*** 0.70*** 0.02
V RP -8.49 -0.95 -7.20 -0.60*** -0.10 -0.58***

Panel C: γ = 9

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.71 1.04 1.56 0.40* 0.12* 0.38

EXKURTBKM 2.82 2.27 3.74 0.67*** 0.40*** 0.74***

SKEWBKM 0.58 0.88 1.76 0.20 0.13** 0.41**
SMIRK 1.40 0.75 1.47 0.38* 0.14 0.38*

V ARBKM -10.81 3.94 -0.19 -0.66*** 0.73*** 0.05
V RP -8.15 -0.64 -7.53 -0.63*** -0.09 -0.62***

Panel D: γ = 12

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.25 0.78 0.87 0.40* 0.10* 0.36

EXKURTBKM 2.11 1.80 2.93 0.67*** 0.40*** 0.74***

SKEWBKM 0.44 0.66 1.35 0.20 0.13** 0.42**
SMIRK 1.05 0.57 1.10 0.38* 0.14 0.38*

V ARBKM -8.77 2.95 -0.15 -0.66*** 0.73*** 0.05
V RP -6.18 -0.48 -6.84 -0.63*** -0.09 -0.63***
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Table VIII: Economic Value: Restriction II
This table reports utility gains and Sharpe Ratios for each of the three scenarios. Scenario 1

assumes that the realized variance is unpredictable and that the forecasting variable [name in row]

only predicts the excess returns. Scenario 2 assumes that the excess returns are unpredictable

but that the variable [name in row] predicts the variance of market returns. Scenario 3 implicitly

assumes that the excess returns and the realized variance can be predicted by the forecasting variable

[name in row]. ∆CER(1), ∆CER(2) and ∆CER(3) are the annualized utility gains relative to a

strategy that assumes unpredictable excess returns and realized variance, achieved by following

strategy 1, 2 and 3, respectively. Similarly, ∆SR(1), ∆SR(2) and ∆SR(3) are the annualized

improvements in Sharpe Ratios achieved by following strategy 1, 2 and 3, respectively. ∗, ∗∗, ∗ ∗ ∗
indicate the significance at the 10 %, 5 % and 1 % significance levels, respectively. All data are

sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: γ = 3

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 5.46 1.63 4.63 0.46** 0.11 0.40*

EXKURTBKM 5.39 3.69 6.24 0.51*** 0.34*** 0.58***

SKEWBKM 1.86 1.78 3.28 0.16 0.13** 0.29
SMIRK 2.96 1.47 2.91 0.30 0.14 0.30

V ARBKM -7.28 7.19 -1.65 -0.42*** 0.50*** -0.09
V RP -6.10 -1.57 -5.43 -0.41* -0.13 -0.41*

Panel B: γ = 6

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 3.05 1.50 2.86 0.45** 0.14* 0.43*

EXKURTBKM 3.92 3.05 4.83 0.63*** 0.40*** 0.70***

SKEWBKM 1.20 1.30 2.36 0.22 0.14** 0.37**
SMIRK 2.07 1.10 2.13 0.38* 0.14 0.37*

V ARBKM -10.70 5.67 -0.45 -0.60*** 0.71*** 0.02
V RP -8.49 -0.98 -6.14 -0.60*** -0.12 -0.53**

Panel C: γ = 9

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.71 1.04 1.56 0.40* 0.12* 0.38

EXKURTBKM 2.82 2.27 3.74 0.67*** 0.40*** 0.74***

SKEWBKM 0.58 0.88 1.76 0.20 0.13** 0.41**
SMIRK 1.40 0.75 1.47 0.38* 0.14 0.38*

V ARBKM -10.28 3.94 -0.18 -0.63*** 0.73*** 0.05
V RP -8.15 -0.65 -6.22 -0.63*** -0.10 -0.58**

Panel D: γ = 12

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.25 0.78 0.87 0.40* 0.10* 0.36

EXKURTBKM 2.11 1.80 2.93 0.67*** 0.40*** 0.74***

SKEWBKM 0.44 0.66 1.35 0.20 0.13** 0.42**
SMIRK 1.05 0.57 1.10 0.38* 0.14 0.38*

V ARBKM -8.37 2.95 -0.15 -0.63*** 0.73*** 0.05
V RP -6.18 -0.49 -5.82 -0.63*** -0.10 -0.59**
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Table IX: Economic Value: Restrictions I and II
This table reports utility gains and Sharpe Ratios for each of the three scenarios. Scenario 1

assumes that the realized variance is unpredictable and that the forecasting variable [name in row]

only predicts the excess returns. Scenario 2 assumes that the excess returns are unpredictable

but that the variable [name in row] predicts the variance of market returns. Scenario 3 implicitly

assumes that the excess returns and the realized variance can be predicted by the forecasting variable

[name in row]. ∆CER(1), ∆CER(2) and ∆CER(3) are the annualized utility gains relative to a

strategy that assumes unpredictable excess returns and realized variance, achieved by following

strategy 1, 2 and 3, respectively. Similarly, ∆SR(1), ∆SR(2) and ∆SR(3) are the annualized

improvements in Sharpe Ratios achieved by following strategy 1, 2 and 3, respectively. ∗, ∗∗, ∗ ∗ ∗
indicate the significance at the 10 %, 5 % and 1 % significance levels, respectively. All data are

sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: γ = 3

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 5.46 1.63 4.63 0.46** 0.11 0.40*

EXKURTBKM 5.39 3.69 6.24 0.51*** 0.34*** 0.58***

SKEWBKM 1.86 1.78 3.28 0.16 0.13** 0.29
SMIRK 2.96 1.47 2.91 0.30 0.14 0.30

V ARBKM -8.81 7.19 -1.66 -0.48*** 0.50*** -0.09
V RP -6.10 -1.58 -5.93 -0.41* -0.12 -0.42*

Panel B: γ = 6

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 3.05 1.50 2.86 0.45** 0.14* 0.43*

EXKURTBKM 3.92 3.05 4.83 0.63*** 0.40*** 0.70***

SKEWBKM 1.20 1.30 2.36 0.22 0.14** 0.37**
SMIRK 2.07 1.10 2.13 0.38* 0.14 0.37*

V ARBKM -11.50 5.67 -0.45 -0.63*** 0.70*** 0.02
V RP -8.49 -0.95 -7.20 -0.60*** -0.10 -0.58***

Panel C: γ = 9

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.71 1.04 1.56 0.40* 0.12* 0.38

EXKURTBKM 2.82 2.27 3.74 0.67*** 0.40*** 0.74***

SKEWBKM 0.58 0.88 1.76 0.20 0.13** 0.41**
SMIRK 1.40 0.75 1.47 0.38* 0.14 0.38*

V ARBKM -10.81 3.94 -0.19 -0.66*** 0.73*** 0.05
V RP -8.15 -0.64 -7.53 -0.63*** -0.09 -0.62***

Panel D: γ = 12

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

CRP 1.25 0.78 0.87 0.40* 0.10* 0.36

EXKURTBKM 2.11 1.80 2.93 0.67*** 0.40*** 0.74***

SKEWBKM 0.44 0.66 1.35 0.20 0.13** 0.42**
SMIRK 1.05 0.57 1.10 0.38* 0.14 0.38*

V ARBKM -8.77 2.95 -0.15 -0.66*** 0.73*** 0.05
V RP -6.18 -0.48 -6.84 -0.63*** -0.09 -0.63***
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Table X: Out–of–Sample Analysis: Forecast Combinations

This table reports the results of the out–of–sample analysis after the use of forecast combinations.

The mean forecast combination [MeanFC], the median forecast combination [MedianFC] and the

trimmed mean forecast combination [TrMeanFC] are used as alternative specifications. We report

the MSE–F statistics in parenthesis. 6 forecasting variables are used. CRP denotes the correlation

risk premium. EXKURTBKM is the risk–neutral kurtosis of Bakshi et al. (2003). SKEWBKM is

the risk–neutral skewness of Bakshi et al. (2003). SMIRK is the option smirk. V ARBKM is the

risk–neutral variance of Bakshi et al. (2003). Finally, V RP is the variance risk premium computed

as the difference between the most recent observation of the realized variance and the risk–neutral

variance of Bakshi et al. (2003). R2
oos is the out–of–sample R2. ∗, ∗∗ and ∗ ∗ ∗ indicate statistical

significance at the 10 %, 5 % and 1 % significance levels, respectively. All data are sampled at the

monthly frequency and relate to the S&P 500 index.

Panel A: Return Predictability

M
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M
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n
F
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R2
oos 3.11*** 1.72*** 2.36***

(5.37) (2.91) (4.03)

Panel B: Variance Predictability

M
ea
n
F
C

M
ed
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n
F
C

T
rM

ea
n
F
C

R2
oos 16.01*** 10.16*** 7.44***

(31.84) (18.89) (13.42)
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Table XI: Economic Value: Forecast Combinations
This table reports utility gains and Sharpe Ratios for each of the three scenarios based on forecast

combinations. Scenario 1 assumes that realized variance is unpredictable and that the forecast

combination only predicts excess returns. Scenario 2 assumes that excess returns are unpredictable

but that the forecast combination predicts the variance of market returns. Scenario 3 implicitly

assumes that excess returns and variance can be predicted by the forecast combination. ∆CER(1),

∆CER(2) and ∆CER(3) are the annualized utility gains relative to a strategy that assumes

unpredictable excess returns and realized variance, achieved by following strategy 1, 2 and 3,

respectively. Similarly, ∆SR(1), ∆SR(2) and ∆SR(3) are the annualized improvements in Sharpe

Ratios achieved by following strategy 1, 2 and 3, respectively. ∗, ∗∗, ∗ ∗ ∗ indicate the significance

at the 10 %, 5 % and 1 % significance levels, respectively. All data are sampled at the monthly

frequency and relate to the S&P 500 index.

Panel A: Mean Forecast Combination

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

γ = 3 1.08 2.84 3.05 0.09 0.28*** 0.30
γ = 6 0.96 1.77 2.03 0.14 0.30*** 0.36*
γ = 9 0.65 1.20 1.37 0.14 0.30*** 0.36*
γ = 12 0.49 0.91 1.03 0.14 0.30*** 0.36*

Panel B: Median Forecast Combination

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

γ = 3 2.85 2.32 3.98 0.28* 0.26** 0.43***
γ = 6 1.21 1.54 2.44 0.19 0.29** 0.47***
γ = 9 0.82 1.04 1.64 0.19 0.29** 0.47***
γ = 12 0.62 0.79 1.24 0.19 0.29** 0.47***

Panel C: Trimmed Mean Forecast Combination

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

γ = 3 1.59 2.52 3.16 0.14 0.26*** 0.32*
γ = 6 0.96 1.61 2.00 0.15 0.29** 0.36**
γ = 9 0.65 1.09 1.35 0.15 0.29** 0.36**
γ = 12 0.49 0.82 1.02 0.15 0.29** 0.36**

48



Predicting the Equity Market with Option Implied

Variables

Online Appendix

JEL classification: G10, G11, G17

Keywords: Equity Premium, Option Implied Information, Portfolio Choice, Predictabil-

ity, Timing Strategies



Table A1: Economic Value with Turnover and Transaction Costs
This table reports the turnover, the utility gains and the Sharpe Ratios for each of the three

scenarios. Scenario 1 assumes that the realized variance is unpredictable and that the forecasting

variable [name in column] only predicts the excess returns. Scenario 2 assumes that the excess

returns are unpredictable but that the variable [name in column] predicts the realized variance.

Scenario 3 implicitly assumes that the excess returns and the realized variance can be predicted

by the forecasting variable [name in column]. Turnoverabs is the is monthly absolute value of the

turnover for the naive strategy. Turnover
(i)
rel represents the monthly relative turnover of strategy

i related to the benchmark. ∆CER(1), ∆CER(2) and ∆CER(3) are the annualized utility gains

relative to a strategy that assumes unpredictable excess returns and realized variance, achieved

by following strategy 1, 2 and 3, respectively. Similarly, ∆SR(1), ∆SR(2) and ∆SR(3) are the

annualized improvements in Sharpe Ratios achieved by following strategy 1, 2 and 3, respectively.

∗, ∗∗, ∗ ∗ ∗ indicate the significance at the 10 %, 5 % and 1 % significance levels, respectively. All

data are sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: γ = 3

CRP EXKURTBKM SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0448 0.0448 0.0448 0.0448 0.0448 0.0448

Turnover
(1)
rel 12.1906 5.4513 5.5545 8.9341 2.2193 9.6821

Turnover
(2)
rel 4.5800 5.0967 2.1663 2.1896 3.3301 2.6606

Turnover
(3)
rel 11.6951 8.0804 6.3212 8.8524 3.4276 8.8747

∆CER(1) 2.48 4.19 0.64 0.85 -7.62 -8.46

∆CER(2) 0.69 2.61 1.47 1.15 6.57 -2.04

∆CER(3) 1.78 4.34 1.86 0.82 -2.30 -7.58

∆SR(1) 0.21 0.39** 0.06 0.05 -0.43*** -0.57***

∆SR(2) 0.03 0.23** 0.10 0.10 0.46*** -0.16

∆SR(3) 0.15 0.40* 0.16 0.05 -0.13 -0.56**

Panel B: γ = 6

CRP EXKURTBKM SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247

Turnover
(1)
rel 15.9051 7.0084 7.0350 9.3238 4.2300 12.5610

Turnover
(2)
rel 5.5783 7.9003 2.1338 1.9366 5.5947 2.7470

Turnover
(3)
rel 16.6921 13.2556 9.1192 9.8982 4.7116 10.7379

∆CER(1) 0.88 3.03 0.30 0.85 -11.25 -10.32

∆CER(2) 0.86 2.04 1.14 0.97 5.01 -1.26

∆CER(3) 0.60 3.03 1.15 0.83 -0.98 -7.70

∆SR(1) 0.18 0.49*** 0.10 0.10 -0.61*** -0.73***

∆SR(2) 0.07 0.26** 0.12* 0.11 0.63*** -0.13

∆SR(3) 0.16 0.46* 0.20 0.11 -0.04 -0.66***
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Table A1: Economic Value with Turnover and Transaction Costs (continued)

Panel C: γ = 9

CRP EXKURTBKM SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0151 0.0151 0.0151 0.0151 0.0151 0.0151

Turnover
(1)
rel 18.4886 8.8266 9.2375 10.2124 5.7328 15.0938

Turnover
(2)
rel 6.2895 11.1201 2.3148 2.1032 6.6482 2.9964

Turnover
(3)
rel 22.6290 18.7570 11.4928 10.9996 5.6936 13.6412

∆CER(1) 0.15 2.11 -0.18 0.57 -10.81 -9.58

∆CER(2) 0.59 1.38 0.77 0.66 3.46 -0.85

∆CER(3) -0.34 2.16 0.82 0.58 -0.59 -7.54

∆SR(1) 0.13 0.50*** 0.07 0.10 -0.65*** -0.74***

∆SR(2) 0.06 0.25** 0.11* 0.11 0.65*** -0.11

∆SR(3) 0.10 0.48* 0.22 0.11 -0.02 -0.69***

Panel D: γ = 12

CRP EXKURTBKM SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0108 0.0108 0.0108 0.0108 0.0108 0.0108

Turnover
(1)
rel 19.5157 9.1852 10.0488 10.6805 6.4946 15.8094

Turnover
(2)
rel 6.5802 13.6314 2.4100 2.1901 6.9049 3.1283

Turnover
(3)
rel 27.5858 22.9493 12.4248 11.4994 5.9533 15.4444

∆CER(1) 0.07 1.58 -0.17 0.43 -8.86 -7.25

∆CER(2) 0.44 1.03 0.58 0.50 2.59 -0.64

∆CER(3) -0.80 1.54 0.62 0.43 -0.46 -6.96

∆SR(1) 0.12 0.50*** 0.07 0.10 -0.65*** -0.75***

∆SR(2) 0.05 0.25* 0.11* 0.11 0.65*** -0.10

∆SR(3) 0.07 0.47* 0.22 0.11 -0.02 -0.69***
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Table A2: Return and Variance Predictability of VRP Specifications

Panel A of this table reports the regression results of monthly excess returns on a constant, which we

denote by β0, and the lagged predictive variable. Panel B reports the regression results of monthly

realized variance on a constant, which we denote by γ0, and the lagged predictive variable. Statistical

inferences are based on a bootstrapped distribution. V RPHAR denotes the variance risk premium

based on the HAR-RV model. V RPDOWN is the downside variance risk premium. V RPUP is

the upside variance risk premium. V RPDOWN,HAR is the downside variance risk premium based

on the HAR-RV model. Finally, V RPUP,HAR is the upside variance risk premium based on the

HAR-RV model. R2 and R2
oos are the in–sample and out–of–sample R2, respectively. We report

the t–statistics in parentheses. ∗, ∗∗ and ∗ ∗ ∗ indicate the significance at the 10 %, 5 % and 1 %

significance levels, respectively. The sample period extends from January 1996 to December 2014.

All data are sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: Return Predictability

V
R
P

H
A
R

V
R
P

D
O
W

N

V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
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R2 0.00 2.23** 2.65** 0.38 2.05**

R2
oos -5.37 -1.13 -2.38 -4.10 -1.25

t− stat (0.10) (2.26) (2.47) (0.93) (2.17)

Panel B: Variance Predictability
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R2 38.24*** 38.73*** 39.16*** 26.82*** 12.46***

R2
oos 34.24*** -8.93 -11.63 24.79*** 10.45***

t− stat (11.80) (-11.93) (-12.04) (9.08) (5.66)
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Table A3: Economic Value of VRP Specifications

This table reports utility gains and Sharpe Ratios for each of the three scenarios. Scenario

1 assumes that the realized variance is unpredictable and that the forecasting variable [name

in column] only predicts the excess returns. Scenario 2 assumes that the excess returns are

unpredictable but that the variable [name in column] predicts the realized variance. Scenario

3 implicitly assumes that the excess returns and the realized variance can be predicted by the

forecasting variable [name in column]. ∆CER(1), ∆CER(2) and ∆CER(3) are the annualized

utility gains relative to a strategy that assumes unpredictable excess returns and realized variance,

achieved by following strategy 1, 2 and 3, respectively. Similarly, ∆SR(1), ∆SR(2) and ∆SR(3)

are the annualized improvements in Sharpe Ratios achieved by following strategy 1, 2 and 3,

respectively. ∗, ∗∗, ∗ ∗ ∗ indicate the significance at the 10 %, 5 % and 1 % significance levels,

respectively. All data are sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: γ = 3
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∆CER(1) -7.41 0.24 2.25 -9.33 -9.25

∆CER(2) 7.13 5.70 3.97 5.64 4.99

∆CER(3) -1.78 5.26 6.25 -5.11 -7.18

∆SR(1) -0.43*** 0.04 0.19** -0.55*** -0.58***

∆SR(2) 0.50*** 0.44*** 0.33*** 0.41*** 0.41***

∆SR(3) -0.10 0.44*** 0.55*** -0.37** -0.59***

Panel B: γ = 6
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A
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∆CER(1) -10.71 -1.91 0.96 -11.09 -10.73

∆CER(2) 5.62 3.24 2.33 3.47 3.11

∆CER(3) -0.60 3.36 3.64 -3.33 -4.92

∆SR(1) -0.60*** -0.12 0.17* -0.64*** -0.69***

∆SR(2) 0.70*** 0.47*** 0.35*** 0.43*** 0.39***

∆SR(3) 0.00 0.54*** 0.61*** -0.38** -0.58***
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Table A3: Economic Value of VRP Specifications (continued)

Panel C: γ = 9
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R

V
R
P

U
P
,H

A
R

∆CER(1) -10.65 -2.43 0.63 -10.89 -9.83

∆CER(2) 3.91 2.17 1.57 2.32 2.10

∆CER(3) -0.31 2.24 2.43 -2.24 -3.31

∆SR(1) -0.62*** -0.21 0.17* -0.65*** -0.73***

∆SR(2) 0.73*** 0.47*** 0.35*** 0.43*** 0.39***

∆SR(3) 0.03 0.54*** 0.61*** -0.38** -0.58***

Panel D: γ = 12

V
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V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
R

∆CER(1) -8.65 -2.20 0.47 -10.35 -7.82

∆CER(2) 2.93 1.63 1.18 1.74 1.57

∆CER(3) -0.24 1.68 1.82 -1.69 -2.49

∆SR(1) -0.63*** -0.23* 0.17* -0.62*** -0.72***

∆SR(2) 0.73*** 0.47*** 0.35*** 0.43*** 0.39***

∆SR(3) 0.03 0.54*** 0.61*** -0.38** -0.58***
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