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Abstract 
 
In standard models of spatial harvesting, the resource is distributed over the complete domain 
and the agent is able to control the harvesting activity everywhere all the time. In some cases 
though, it is more realistic to assume that the resource is located at a single point in space and 
that the agent is required to travel there in order to be able to harvest. In this case, the agent 
faces a combined travelling–and–harvesting problem. We scrutinize this type of a two-stage 
optimal control problem, and illuminate the interdependencies between the solution of travelling 
and that of the harvesting sub-problem. Since the model is parsimoniously parameterised, we are 
able to analytically characterise the optimal policy of the complete travelling–and–harvesting 
problem. In an appendix we show how bounds on either control, i. e. on acceleration and on the 
harvesting capacity, as well as a positive discount rate affect the solution of the travelling–and–
harvesting problem. 
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1. Introduction

In the management of renewable natural resources the spatial dimension has at-

tracted substantial attention in the last years. The focus of this literature is on

the movement of the resource, such as fish or game, and on the optimal allocation

of the harvesting effort over the domain (distributed control). In this paper, we

reverse this view: we consider an agent required to move within the space in order

to be able to harvest an immobile resource. Since travelling is a pre-requisite of

harvesting, there is a mutual interaction between the travelling and the harvesting

policy—and it is this spatio-temporal interaction of both policies that this paper

focuses on.

The management of renewable natural resources is a central issue in economics

since Gordon (1954) and Smith (1968) have advanced this topic. In this respect,

optimal control theory has proven to be a suitable technique to design optimal

harvesting strategies. Notably, in their monographs Conrad and Clark (1987),

Conrad (2010) and Clark (2010) nicely demonstrate how optimal control theory

may constructively contribute to the management of fisheries. Subsequently, these

textbook models have been extended and generalised in various respects. For

example, Fan and Wang (1998) generalise the optimal harvesting policy of an au-

tonomous harvesting problem with logistic growth (see, for example, Clark, 2010)

to a non-autonomous case with periodic coefficients; Liski et al. (2001) accounting

for costly changes of the harvesting rate, explore the effects of increasing returns

to scale for a standard fishery management model;1 and Ainseba et al. (2003), Fe-

ichtinger et al. (2003), Hritonenko and Yatsenko (2006), Tahvonen (2008, 2009a,b),

Li and Yakubu (2012), Skonhoft et al. (2012), Quaas et al. (2013), Tahvonen et al.

(2013) and Belyakov and Veliov (2014) investigate harvesting of age-structured

populations.2

While that work takes into account the temporal and the bioeconomic dimen-

sion, the spatial dimension—though already present in the literature of theoretical

biology and applied mathematics—has entered the focus of economists relatively

late: only in 1999 Sanchirico and Wilen brought the spatial dimension to the atten-

tion of resource economists. In their seminal paper, Sanchirico and Wilen (1999)

1In this way, these authors demonstrate a link between stable limit cycle policies and increasing

returns in harvesting; notably, they show that for moderate adjustment costs the harvest rate

and thus the stock of fish may oscillate persistently.
2Notably, Ainseba et al. (2003), investigating the optimal harvesting problem for a non-linear

age-dependent and spatially structured population dynamics model, prove the existence and

uniqueness of a solution along with the existence of an optimal control, and provide necessary

optimality conditions.
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generalize the fundamental open-access models of Gordon (1954) and Smith (1968)

in the spatial direction: they set up a bioeconomic model with a finite number of

resource patches with migration of the biomass and reallocation of effort between

these patches. In this way the authors integrate within- and between-patch biolog-

ical and economic forces, and demonstrate how these effects determine the process

of bioeconomic convergence over space and time.3

Following Sanchirico and Wilen (1999), the early models in spatial resource

economics feature discrete patches, where the resource the stock evolves according

to an ordinary differential equation (ODE) at each location; migration of the

biomass is then modelled as entry and exit of the biomass from one location to the

other. The contemporary literature however, models the migration and the spread

of the biomass as diffusion described by partial differential equations.4 Notable

contributions are Cañada et al. (1998), Montero (2000, 2001), Neubert (2003), Bai

and Wang (2005), Brock and Xepapadeas (2008, 2010), Ding and Lenhart (2009),

Joshi et al. (2009), Bressan et al. (2013), Uecker and Upmann (2016) and others.

In both strands of the literature it is the biomass which is mobile while the

agent harvesting the resource is immobile: the agent is waiting for the resource

approaching, catching it when passing by. In many instances this is a reasonable

approach suitably describing the situation (e. g. coastal fishery or shooting game),

but in other cases it is not. For example, in fruit harvesting, forestry, extensive

agriculture etc. it is the agent who is moving in order to access the resource that

is located at some fixed known patch. In this paper, we build on that observation

and analyse the optimal behaviour of an agent who is required to travel in order

to be able to harvest a remote resource. Thus, when compared with the standard

approach in spatial resource economics with a mobile resource, we complement

that literature by reversing the abilities of movement. This reversal enhances

the realism in modelling natural resource extraction when the resource is rather

immobile and is located at some distant or hardly accessible place, or when the

spatial domain is relatively large compared with the region which can be harvested

at a single instant of time.

In order to move from their initial location to the location of the resource and

then to harvest, the agent first has to control the navigation process and then,

upon arrival at the resource, the harvesting process. Consequently, any admissible

3In a subsequent paper Sanchirico and Wilen (2005) utilize the model of their 1999 paper

to characterise the spatially differentiated landings and effort taxes suitable to implement a

first-best allocation.
4A presentation of the basic population models with diffusion can be found, for example, in

Aniţa (2000, sec. 1.2), Okubo and Levin (2001), Murray (2003) and the references therein.



3

policy consists of a sequence of a travelling and a harvesting interval—and we are

interested in the interdependency of the travelling and the harvesting decision. By

considering this sequence of time periods required for travelling and harvesting,

we complement the contemporary literature on spatial resources economics.

Few papers consider a travelling–and–harvesting problem of the agent in a

spatial domain. Notable examples are Robinson et al. (2008), Behringer and Up-

mann (2014) and Belyakov et al. (2015) who consider an immobile resource located

at known patches. Behringer and Upmann and Belyakov et al. analyse an immo-

bile resource that is continously distributed on the periphery of a circle and an

agent who leaves for a round trip, returning home after each turn. In both models,

the agent is able to do en passant harvesting, so that the agent needs not reduce

speed or stop (at each location) in order to extract the resource; rather, the agent

is able to extract the resource in passing by. As a consequence, the harvesting

activity does not cost any time, over and above the time of travelling, but can

be done during travelling. In this way, the travelling and the harvesting activity

go in parallel and may even be identified with each other. This is opposite to

our approach here, where travelling and harvesting are mutually exclusive, rival

activities (with different cost functions): the more time is spent on travelling, the

less time is left for harvesting, and vice versa.

Robinson et al. (2008) provide a timber gathering model which has parallels

with our paper. Their model also treats discrete resource patches and assumes

that travelling and harvesting are exclusive as we do in this paper. While we

focus on the harvesting and the travelling process themselves, each governed by

an independent control for which we derive analytical solutions, in Robinson et al.

(2008) the decision about travelling speed and the amount harvested are connected

via a gathering-specific cost function; those authors formalize the idea that the cost

of (additional) travelling time is increasing in the amount already harvested, as

this yield has to be carried back to a nearby market.5

Since in our approach travelling and harvesting are two distinct activities

which take place at different locations at different times, we are confronted with

two interdependent optimal control problems: the problem of travelling, where

speed has to be chosen to travel to the location of the resource; and the harvesting

problem, where the harvesting rate has to be determined to maximise the yield.

In order to solve this combined profit-maximising problem, we draw upon the

literature of two-stage optimal control problems with finite time horizon: notably,

5Such a market where the resource is eventually traded in a continuous setting is the focus of

Aniţa et al. (2017).
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Amit (1986), Tomiyama (1985), Tomiyama and Rossana (1989) provide optimality

conditions for two-phase, finite time dynamic optimization problems similar to the

one considered here.6

We solve this two-stage optimal control problem and derive the optimal

travelling–and–harvesting policy, including the optimal point in time at which the

agent arrives at the location of the resource and begins harvesting. In particular,

we demonstrate the interdependency between the travelling and the harvesting

problem, a feature which has, to our knowledge, been left unnoticed and unex-

plored in the literature. To scrutinize the robustness of our finding, we consider

two different specifications of the growth process of the resource: exponential

growth and logistic growth. For both types of processes we derive the optimal

harvesting policies, and show that both feature similar characteristics. Finally, we

briefly investigate the sensitivity of our results with respect to the rate at which fu-

ture revenues and costs are discounted and with respect to the presence of bounds

on the control of movement.

The rest of the paper is structured as follows: In Section 2 we set up the

model. In Section 3 we decompose the travelling–and–harvesting problem into

the two sub-problems. We begin our analysis with the harvesting problem in

Section 4; and then consider the travelling–and–harvesting problem for a fixed

travelling period in Section 5, before we analyse the full problem with a variable

travelling period in Section 6. We conclude in Section 7. The robustness of our

results are explored in Appendix A.

2. The Model

We consider a renewable natural resource located at some fixed location. The agent

can harvest the resource at their current location only, and is thus required to travel

in order to get access to, and to be able to extract the resource. Consequently,

the agent may begin to harvest upon arival at the location of the resource, at the

earliest. Since the process of harvesting takes time, the stock diminishes gradually

while harvesting takes place. The agent’s problem is thus a combined travelling–

and–harvesting problem where the speed of travelling, and hence the arrival time,

and the harvesting rate have to be determined jointly in order to maximise the total

profit composed of the revenue from harvesting net of harvesting and travelling

cost.

6An extension to infinite horizon can be found in Makris (2001); and applications of this

theory to two-stage optimal control problems, in Grass et al. (2012), Bar-Ilan and Strange

(1998), Tahvonen and Withagen (1996) and Boucekkine et al. (2004), for example.
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We consider a finite time horizon T with a planning period T ≡ [0, T ]. During

this planning period, the economic agent has the exclusive right to harvest the

renewable natural resource, which is located at some fixed and known position

x1 > 0. At time t ∈ T the location of the economic agent is x(t) ∈ X ≡ [0, x̄],

with x1 ≤ x̄; with the initial location given by x(0) = 0. Since the resource is

remotely located, at a distance of x1 units of length from the agent, the agent is

unable to begin with harvesting until they arrive at location x(t) = x1. Harvesting

thus requires the agent to travel from 0 to x1, to stop there, and to begin with

harvesting.

In order to move from one location to the next, the agent has to adjust the

velocity of travelling v(t), which we assume to be non-negative, i. e. v(t) ∈ V =

R+.
7 Since speed cannot be chosen directly, but is physically controlled by means

of acceleration a(t) ∈ A of the vehicle of movement or the harvesting machine we

have8

ẋ(t) = v(t) and v̇(t) = a(t) ∀t ∈ T . (1)

There may be lower and upper bounds on acceleration; in Appendix A, we shall

assume that acceleration is bounded so that a ∈ A ≡ [
¯
a, ā] with

¯
a < 0 and ā > 0.9

Since harvesting, as well as travelling, takes time and the time horizon is finite,

more time is left for harvesting the earlier the agent arrives at location x1. More

precisely, let t1 ≡ mint{t|x(t) = x1} denote the arrival time of the agent at the

location of the resource x1, that is x(t) < x1 for all t < t1 ≤ T and x(t1) = x1; if the

agent does not arrive at x1 by time T , such that x(T ) < x1, then we set t1 = +∞.

Thus, we have t1 ∈ T+∞ ≡ T ∪ {+∞}. Consequently, Λ ≡ [0, t1 ∧ T ] denotes the
agent’s travelling period;10 and ∆ ≡ (t1 ∧ T, T ], the resulting harvesting period.

The total time available is then either spent on travelling or on harvesting, so that

Λ ∪ ∆ = T represents the travelling–and–harvesting period ; this is illustrated in

Figure 1.

The stock of the resource (i. e. the biomass) at time t ∈ T is denoted by

s(t) ≥ 0. We assume that the renewable resource is growing at rate g, and allow

for the growth rate of the stock to depend on the size of the stock: g(s) with

7The assumption of non-negative speed rules out that the agent moves backwards. Since mov-

ing backwards is economically unreasonable, this assumption can be made without restrictions.
8Taking into account acceleration avoids an unrealistic speed profile where the agent may

instantaneously switch speed in a discontinuous way.
9The minimum acceleration

¯
a is necessarily negative to allow for a slowdown of speed, as the

agent would otherwise be unable to stop—and start harvesting.
10We assume that the travelling period is convex. That is, once the agent has reached location

x1, they will never start travelling again, and thus completes the planning period at x1.



6

✲ t
0 t1

︸ ︷︷ ︸

Λ

T

︸ ︷︷ ︸

∆
︸ ︷︷ ︸

T

Figure 1. Travelling–and–harvesting period

g(0) = 0. Furthermore, the stock is reduced as a result of the harvesting activity.

The harvest depends on the abundance of the resource, i. e. on the stock s, and

on the harvesting effort h. Suppose that effort is less productive the lower the

stock, and that a given stock yields less harvest the lower the effort. Accordingly,

we assume that harvest at time t amounts to H(t) = h(t)s(t) provided that the

agent’s location is x1, and H(t) = 0 otherwise. Thus, the resulting growth of the

stock is governed by the differential equation

ṡ(t) = g(s(t))− h(t)s(t)1{x(t)=x1}(t), ∀t ∈ T , (2)

where the indicator function 1{x(t)=x1} accounts for the fact that harvesting can

only be effective if the agent’s location at time t equals x1, i. e., if x(t) = x1. In

other words, upon arrival at location x1, the agent starts the path of the harvesting

activity {h(t)}t∈∆.
The process of harvesting gradually diminishes the stock, and the agent may

decide to continue harvesting until the stock is depleted: with s(t) = 0 it imme-

diately follows that H(t) = 0 for any harvesting activity h(t) ≥ 0. Also, once the

stock is depleted, we have ṡ(t) = 0 due to our assumption g(0) = 0. Hence, s = 0

represents an absorbing barrier or an equilibrium of the stock dynamics. (Subse-

quently, we will consider the cases of exponential and logistic growth, both of which

satisfy these assumptions.) Owing to the immediate, negative effect of harvesting

on growth, intensive harvesting leaves the stock with less beneficial conditions for

future growth, and thus impairs the possibilities for future harvesting.

Travelling and harvesting are both costly. We assume that harvesting cost

C(H) is increasing and (weakly) convex, i. e. C ′ > 0 and C ′′ ≥ 0 for all H ∈ R+,

with C(0) = 0. Also, travelling is associated with some cost, which generically

depends on both speed and acceleration: K : V × A → R : (v, a) 7→ K(v, a).

Naturally, pausing is costless, K(0, 0) = 0; and we assume that travelling cost

increases with both speed and acceleration, and that acceleration is more costly

the higher the speed, that is, the partial derivatives of K satisfy Kv ≥ 0, Ka ≥ 0

and Kva ≥ 0.

Let ρ ≥ 0 denote the discount rate of the agent, and normalize the price of

one unit of the harvested resource to unity. The problem of the agent is then
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to maximize the discounted profit flow consisting of instantaneous revenue net of

harvesting cost and net of travelling cost for the planning period T . Presupposing

that the agent reasonably chooses h(t) = 0, ∀t ∈ Λ,11 we obtain the travelling cost

J1(a, t1) ≡
∫ t1

0

e−ρtK(v(t), a(t)) dt (3)

and the profit from harvesting

J2(h, t1) ≡
∫ T

t1

e−ρt (h(t)s(t)− C(h(t)s(t))) dt (4)

where the arrival time t1 depends on the acceleration path {a}t∈Λ. Putting pieces

together, the agent’s optimisation problem then reads as

max
{a,h}

J(a, h, t1) ≡ −J1(a, t1) + J2(h, t1) (5)

subject to the dynamics of movement (1), the stock dynamics of the resource (2),

and their associated constraints v(t) ∈ V (t), a(t) ∈ A (t), h(t) ∈ H (t) ∀t ∈ T ,

as well as to the initial conditions s(0) = s0, x(0) = 0 and v(0) = 0, the “arrival

conditions” t1 ∈ T+∞ free, x(t1) = x1 and v(t1) = 0 if t1 ∈ T , and the terminal

condition s(T ) ≥ 0 free, x(T ) ∈ X free. Note that the constraints x(t) = x1, ∀t ∈
∆ and v(t) = 0, ∀t ∈ ∆ are already implied by (2) and thus need not be added.12

3. Decomposition of the problem

In order to solve problem (5), we decompose the intertemporal optimal travelling–

and–harvesting problem into a travelling and a harvesting sub-problem. In order

to render the problem meaningful, we subsequently assume that the costs of trav-

elling are not too high, so that an arrival before time T is desirable. In addition,

because maximum acceleration is finite, the arrival time must be strictly positive.

Therefore, the corner solutions t1 = 0 and t1 = T (as well as t1 = +∞) can be

ruled out, so that neither the travelling period nor the harvesting period vanishes,

i. e. Λ,∆ 6= ∅. For those reasons, we subsequently presume t1 ∈ (0, T ).

11In principle, we allow the agent to choose h(t) > 0 for times t < t1, but since this harvesting

activity is sure to yield no return at any time t ∈ Λ, the choice of h(t) > 0 is a futile action in

this case.
12Also, v(T ) = 0 is automatically fulfilled for any optimal policy.
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In the travelling problem we choose an acceleration path {a(t)}t∈Λ and thus

the arrival time t1 so as to move from location 0 to location x1 at minimal cost:

min
{a,t1}

J1(a, t1) ≡
∫ t1

0

e−ρtK(v(t), a(t)) dt (6)

s. t. ẋ(t) = v(t), ∀t ∈ [0, t1]

v̇(t) = a(t), ∀t ∈ [0, t1]

a(t) ∈ A (t), ∀t ∈ [0, t1]

v(t) ∈ V (t), ∀t ∈ [0, t1]

ṡ(t) = g(s(t)), ∀t ∈ [0, t1]

x(0) = x0, x(t1) = x1,

v(0) = 0, v(t1) = 0,

Since the travelling time t1 can be chosen, we face a free-terminal-time problem.

Then, t1 represents the starting time of the harvesting period, and in the resulting

harvesting problem we choose a path of the harvesting activity (effort) {h(t)}t∈∆
to maximise profit from this activity (4):

max
{h}

J2(h, t1) ≡
∫ T

t1

e−ρt [h(t)s(t)− C(h(t)s(t))] dt (7)

s. t. ṡ(t) = g(s(t))− h(t)s(t) ∀t ∈ [t1, T ]

h(t) ∈ H (t), ∀t ∈ [t1, T ]

s(t1) = s1, s(T ) ≥ 0, free.

During the travelling time the resource remains unimpaired and thus grows (at

least) until the agent arrives at the location of the resource, x1. Consequently,

the stock of the resource at the time of arrival, s(t1), represents the solution of

the growth process ṡ(t) = g(s(t)) with s(0) = s0. In this way, the travelling

decision determines s(t1) and thus the initial value of the stock of the harvesting

problem. The fact that the travelling time of the agent also represents the growth

time of the resource is the crucial link between the travelling problem (6) and the

harvesting problem (7). As a consequence, the agent has to take into account that

a longer travelling time will reduce the time left for harvesting, and thus ceteris

paribus the resulting yield; while, in contrast, a lower speed of travelling makes

travelling less expensive and gives the resource more time to grow thus providing

the opportunity for a more abundant harvest at later times. The travelling–and–

harvesting problem (5) takes into account these interdependencies between sub-

problems (6) and (7).
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To solve problem (5), we derive necessary conditions for an optimal control

pair (a∗, h∗, t∗1), by means of decomposing the original problem into two standard

problems. We first consider the harvesting problem of the second stage (7), and

then the travelling problem of the first stage (6), acknowledging the dependence

of the solution of the second stage on the decision of the first stage. The interde-

pendency comes about because the optimal control h∗ of the harvesting problem

depends on the choice of the starting value s1 = s(t1) and the starting time t1

determined by the solution of the travelling problem. Formally we proceed as fol-

lows: Assuming the existence of the optimal switching time t1 in the interior of the

time interval T , we solve the second stage problem and calculate the maximised

objective function J∗
2 as a function of the initial state s1 and the switching time

t1. Then, we derive the optimal control a∗ and the optimal switching time t1 by

solving the travelling problem of the first stage.13

Second stage. Given the control time interval [t1, T ] and the initial condition

s(t1) = s1, we solve problem (7) for an admissible optimal control h∗. This prob-

lem is of a standard form and can be solved using the well-known Pontryagin

maximum principle (see, for example, Kamien and Schwartz, 1991.) Using the

solution of the second-stage problem, h∗, λ∗2 and s
∗, which depends on the starting

values s1 and t1, we calculate J
∗
2 (s1, t1) ≡ J2(h

∗(s1, t1), t1). Then, with the help of

J∗
2 , the original problem (5) reduces to the first–stage problem:

First stage. Given the constraints in (6), we look for an admissible optimal control

a∗ defined on [0, t∗1] and an optimal arrival time t∗1 ∈ (0, T ) such that

max
{a,t1}

V1(a, t1) ≡ −J1(a, t1) + J∗
2 (s(t1), t1). (8)

Since by assumption t∗1 ∈ (0, T ), the constraint t1 ∈ (0, T ) is irrelevant, and this

problem reduces to a standard problem with ‘scrap’ value J∗
2 , free terminal time

t1 and end point s(t1). (See, for example, Léonard and Long, 1992, sec. 7.2 and

7.6.)

The optimality conditions for this type of a two-phase dynamic optimization

problem are available from the literature. Details can be found in Tomiyama

(1985) and Amit (1986) who provide necessary conditions for a two-stage, finite-

horizon switching problem with endogenous switching time; while Makris (2001)

13Tomiyama and Rossana (1989) and Grass et al. (2008, sec. 8.1.1) generalise the results of

Tomiyama (1985) and Amit (1986) for a finite and an infinite time horizon, respectively, when

the switching point appears as an argument of the integrands in each integral of the objective

function.
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provides corresponding results for a two-stage switching problem with an infinite

time horizon. We here apply the results of Tomiyama (1985) and Amit (1986).

4. Second Stage: Harvesting

We now solve the travelling–and–harvesting problem in the suggested way, i. e. we

solve the harvesting problem in this section, and then solve the problem of the

second stage in Section 6. We consider two standard specifications of the growth

process of the resource: exponential growth in sub-section 4.1, and logistic growth

in sub-section 4.3. For both processes we derive the value function of the opti-

mal harvesting policy. (Similar models can be found in Conrad and Clark, 1987;

Hocking, 1991; Clark, 2010.) To be specific, we subsequently speak of fish and

catch, though the analysis is fully applicable to other remote natural renewable

resources.

4.1. Exponential growth. Suppose that the stock of a given species of fish,

when left unimpaired, increases at a constant rate: g(s(t)) = s(t) for all t ∈ ∆ ≡
[t1, T ]. Since the stock is reduced by the catch H(t) ≡ s(t)h(t), the stock evolves

according to the differential equation

ṡ(t) = s(t)− h(t)s(t), s(t1) = s1, ∀t ∈ ∆, ∀h(t) ∈ H . (9)

We follow the familiar Schaefer model (see Schaefer, 1954), and specify the revenue

from fishing as a bi-linear function of effort and the stock H(t) = qs(t)e(t), where

q is the catchability coefficient, defined as the fraction of the population fished

by means of a unit of effort; for convenience we set q = 1. Also, concordantly

with the literature, we presuppose a constant price of the resource so that revenue

amounts to pH(t). To complete our definition of the profit function, we follow the

specification of the effort cost function chosen by, for example, Puchkova et al.

(2014) and Moberg et al. (2015) and assume that harvesting costs are linear in

total catch, C(H(t)) = cH(t) = c h(t)s(t), with 0 ≤ c < p.14 Then, instantaneous

14The Schaefer model is commonly used in the literature, and many authors add either linear

or quadratic effort cost. For example, Clark (2010, Sec. 1.4), Puchkova et al. (2014) and Moberg

et al. (2015) assume linear cost yielding an instantaneous profit equal to pqs(t)e(t)− ce(t); while

He et al. (1994), Leung (1995), Cañada et al. (2001), Montero (2001), Fister and Lenhart (2004,

2006) and Chang and Wei (2012) presume a quadratic effort cost function, and Ding and Lenhart

(2009) presume a linear-quadratic effort cost function. One exception to the prevalence of linear

and quadratic cost functions is Liski et al. (2001) who suppose a concave-convex harvest cost.

An alternative specification of the objective function is to disregard effort cost altogether and to

maximise the sustainable yield; this approach is followed by, for example, Fan and Wang (1998),

Neubert (2003), Bai and Wang (2005) and Kelly et al. (2016).—All of these authors assume a

fixed price of the (harvested) resource.
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profit amounts to (p − c)h(t)s(t). Finally, we normalize the per unit profit p − c

to unity, so that the objective function becomes

max
{h}

J2(h, t1) =

∫ T

t1

h(t)s(t) dt s. t. (9). (10)

Following a substantial part of the literature, we abstract from discounting for the

moment, and set ρ = 0. (For example, the majority of the references provided in

fn. 14 abstracts from discounting.) This allows us to simplify the analysis, and

we show in Appendix A, how our results are affected by the presence of a positive

discount rate.

The Hamiltonian of this problem is given by

H = h(t)s(t) + π(t)s(t) (1− h(t)) , (11)

and the maximum principle yields

0 = (1− π(t))s(t), (12)

π̇(t) = h(t)π(t)− h(t)− π(t), (13)

along with eq. (9). Apparently, the optimal strategy depends on whether π is less

or greater than one. The maximum of H is thus achieved by

h(t) =







0 if π(t) > 1

h̄ if π(t) < 1.
(14)

Since s(T ) is free, the transversality condition requires π(T ) = 0. This, together

with h(t) = h̄ for π(t) < 1, implies that we cannot end the period ∆ with h = 0,

i. e. we must have h(T ) = h̄. Moreover, the solution of eq. (13) must satisfy

π(t) =







A0e
−t if h(t) = 0

h̄

h̄− 1
+ A1e

t(h̄−1) if h(t) = h̄.
(15)

Neither solution achieves the critical value π = 1 more than once. Consequently,

there is a unique switching point τ ,15 implying that we either have (i) h(t) = h̄ for

all t ∈ ∆, or (ii) h(t) = 0 for all t1 ≤ t < τ and h(t) = h̄ for all τ ≤ t ≤ T . Then,

along any path with h = h̄, the costate variable must satisfy

π(t) =
h̄

h̄− 1

(

1− e(1−h̄)(T−t)
)

(16)

15Alternatively, this observation follows from eq. (13), which implies that evaluated at a

switching point τ we have π̇(τ) = −1 since π(τ) = 1 by definition.
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✲ t
0 τA

︸ ︷︷ ︸

δA

t1 τB

︸ ︷︷ ︸

δB

T

Figure 2. Cases A and B

where we determined A1 = h̄eT (1−h̄)/(1 − h̄) so as to satisfy the transversality

condition π(T ) = 0. Now, the switching time τ has to be chosen according to the

condition π(τ) = 1. Hence, we obtain from eq. (16)

τ = T − δ, with δ ≡ log
(
h̄
)

h̄− 1
. (17)

Since δ is a positive, decreasing and convex function for all values of h̄ 6= 1, we

define δ = 1 for h̄ = 1 so as to make δ a continuous function of h̄.16 Consequently,

the larger h̄, the longer the agent can wait and let the resource grow unimpaired,

allowing for more intensive harvesting later. Depending on the sign of τ−t1, either
of two cases may occur.

4.1.1. Case A: T < δ + t1. In this case the maximal harvesting intensity h̄ is

relatively low requiring a rather long period of extraction: T − t1 < δ ⇔ τ < t1.

This implies that there is no switch in policy and for all t ∈ ∆, and thus we have:

Lemma 1. Let T < δ + t1 and h̄ 6= 1. Then the optimal fishing policy is given by

h(t) = h̄, (18)

s(t) = s1e
(1−h̄)(t−t1), (19)

π(t) =
h̄

h̄− 1

(

1− e(1−h̄)(T−t)
)

, (20)

for all t ∈ ∆. The resulting maximised profit amounts to

J∗
2A(s1, t1) ≡ s1

h̄

h̄− 1

(

1− e(1−h̄)(T−t1)
)

. (21)

4.1.2. Case B: T > δ+ t1. In this case the maximal harvesting intensity h̄ is rela-

tively high so that the agent may afford not to begin with harvesting immediately

at time t1 but at some point in time: T − t1 > δ ⇔ τ > t1. Here the agent begins

with h = 0 and then, at time τ , switches to h = h̄. During the period [t1, τ) the

stock is left unimpaired and is thus given by s(t) = s1e
t−t1 , so that at time τ the

16To see that δ = 1 for h̄ = 1, apply l’Hôpital’s rule.
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Figure 3. Optimal fishing in Case B, T > δ + t1, with t1 = 0: h̄ > 1

(left) and h̄ < 1 (right).

stock amounts to s(τ) = s1e
τ−t1 , which is the starting value for the harvesting

period [τ, T ], so that for times t ∈ [τ, T ] the stock equals

s(t) = A2e
(1−h̄)t = s(τ)e(1−h̄)(t−τ) = s1e

h̄(τ−t)+t−t1 .

Hence, for all h̄ 6= 1 the optimal policy is thus given by:

Lemma 2. Let T > δ + t1 and h̄ 6= 1. Then the optimal fishing policy is given by

h(t) =







0 for t1 ≤ t < τ

h̄ for τ ≤ t ≤ T

s(t) =







s1e
t−t1 for t1 ≤ t < τ

s1e
h̄(τ−t)+t−t1 for τ ≤ t ≤ T

π(t) =







eτ−t for t1 ≤ t < τ

h̄
h̄−1

(

1− e(1−h̄)(T−t)
)

for τ ≤ t ≤ T,

for all t ∈ ∆, and the maximised profit amounts to

J∗
2B(s1, t1) ≡

h̄

h̄− 1
s1e

τ−t1
(

1− e(1−h̄)(T−τ)
)

= s1 h̄
1/(1−h̄) eT−t1 . (22)

4.1.3. The case of h̄ = 1. Finally, the optimal policy for the case h̄ = 1 is obtained

by taking the limits of Case A and Case B:

Remark 1. If h̄ = 1, the optimal profit amounts to

J∗
2 |h̄=1(s1, t1) =







s1(T − t1) if T ≤ δ + t1

s1e
T−t1−1 if T > δ + t1.

(23)
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Figure 4. Maximised profit function for h̄ = 3/4 < 1, i. e. δ =

4 log
(
4
3

)
= 1.15073 (left); and for h̄ = 3/2 > 1, i. e. δ = 2 log

(
3
2

)
=

0.81093 (right).

4.2. Discussion. In the optimal solution, the length of the fishing period equals

δ = T − τ = log(h̄)/(h̄− 1). If there is plenty of time in the sense that T > δ+ t1,

there will be no fishing during the initial period of length T − t1 − δ, while fishing

will take place at the maximum rate h̄ during the final period. If, however, there

is not enough time available, that is if T ≤ δ + t1, the agent fishes all the time

at the maximum rate h̄. Whether the stock increases or decreases during fishing,

depends on whether the harvesting capacity h̄ exceeds or falls short of the growth

rate of the stock, which is assumed to be equal to 1 here. The situation when h̄ is

smaller than 1 is depicted in the left diagram of Figure 3; and the situation with

h̄ > 1, in the right diagram (both for t1 = 0).

It is important to note that the optimal length of the fishing period, δ, depends

on h̄ but is independent of T . However, the maximised profit in Case A and B,

given by eq. (21) and (22) respectively, depends on T . While J∗
2B is increasing and

convex in T , J∗
2A is convex only if h̄ < 1, and is concave if h̄ > 1. Moreover, for

any given values of t1 and s1 we have J∗
2B ≥ J∗

2A. This is depicted in Figure 4 for

the case t1 = 0. Therein, the vertical line represents the critical time T = δ + t1
for a given value of h̄, and the red curve depicts the profit function for varying

values of T . If time is scarce in the sense that T − t1 < δ, Case A applies and the

blue curve represents the resulting maximised profit (covered by the red curve for

values T < δ). If there is plenty of time, in the sense that T > δ + t1, Case B

applies and the green curve represents the resulting maximised profit (similarly

covered by the red curve for values T > δ + t1). Note, however, that in Case A,

the Case B profit function is not attainable, so that the dashed green curve is

merely hypothetical and cannot be reached for values of T lower than δ.
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4.3. Logistic growth. In this section we modify the growth process of the re-

source and now assume that the stock obeys a logistic growth process:

f(s(t)) = 2s(t)

(

1− s(t)

2

)

. (24)

With this specification, the net-growth of the stock, i. e. after deduction of the

harvest, is governed by the differential equation

ṡ(t) = f(s(t))− h(t)s(t) = s(t) (2− s(t)− h(t)) (25)

If left unimpaired, the fish stock equilibrates at the level s∗ = 2. Let us assume

that the initial stock equals that level, i. e. s(t1) = 2.—The remaining model is

adopted from Section 4.1.

The Hamiltonian of the problem is given by

H = h(t)s(t) + π(t)s(t) (2− s(t)− h(t)) ,

and the maximum principle yields

0 = (1− π(t))s(t), (26)

π̇(t) = −h(t)− π(t) (2− 2s(t)− h(t)) , (27)

along with eq. (25); and since s(T ) is free, the transversality condition requires

π(T ) = 0.

Lemma 3. π(t1) < 1.

Proof. Assume, on the contrary, that π(t1) > 1. Since s(t1) = 2, it follows from

eq. (27) that π̇(t1) = −h(t1) + π(t1) (2 + h(t1)) > 0. Since h(t) = 0 as long as

π(t) > 1, the stock remains at its starting value s(t1) = 2. Given this, there is

no turning point in the evolution of π and thus π continues to grow, i. e. we have

π̇(t) > 0 for all t. Yet, this contradicts transversality condition π(T ) = 0, and thus

proves our claim π(t1) < 1, and thus h(t1) = h̄. �

It follows from Lemma 3 that the optimal policy rule coincides with the rule

obtained for exponential growth of the resource (14):

Lemma 4. The maximum of the Hamiltonian H is achieved by

h(t) =







0 if π(t) > 1

h̄ if π(t) < 1.
(28)
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Figure 5. Left: Trajectories for h = h̄ = 0.8 (solid curves) and h = 0

(thin curves). Right: Trajectories for h = h̄ = 1.5 (solid curves) and

h = 0 (thin curves), with the critical trajectory (red).

Since π(t1) < 1 by Lemma 3, it follows from eq. (28) that the optimal path

begins with h(t1) = h̄. Intuitively, since the initial stock equals its maximum level,

s(t1) = 2, there is no reason to begin with h = 0, and thus we begin with h(t1) = h̄.

If time is relatively scarce, relative to the harvesting capacity, we continue with

h(t) = h̄ for all t ∈ T ; while if there is plenty of time, it is optimal to reduce

harvesting in the meantime because else we had completed harvesting to early,

and the terminal condition π(T ) = 0 will not be met. More precisely, the optimal

harvesting policy is as follows.

Lemma 5. The optimal harvesting policy is given by

h(t) = h̄ if h̄ ≤ h̄c (29)

h(t) =







h̄ t1 ≤ t < t2,

1 t2 ≤ t < t3,

h̄ t3 ≤ t < T.

if h̄ > h̄c, (30)

with some critical harvesting capacity h̄c > 1 (depending on T ).

Proof. See Appendix B or Hocking (1991). �

Figure 5 displays two types of trajectories: one for a small (left diagram)

and one for a high (right diagram) harvesting capacity. The trajectories starting

from s(t1) = 2 reach the horizontal axis at time T , as the transversality condition

requires π(T ) = 0. If h̄ is small, the trajectory does not reach the π = 1 line

(see Figure 5, left); while if h̄ is sufficiently large, it does. In fact, the proof of

Lemma 5 shows that there exists a critical trajectory that touches the π = 1 line,
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and that this trajectory must feature h̄ > 1. For this reason, the critical harvesting

capacity must exceed unity, i. e. h̄c > 1. Moreover, the critical harvesting capacity

h̄c depends inversely on the time horizon T .

Lemma 6. Let ψ : (1, 2] → R+ be defined by

h̄ 7→ ψ(h̄) ≡ t1 +
1

2− h̄
log

(
h̄

2(h̄− 1)2

)

. (31)

Then, given time T , the critical harvesting capacity h̄c is defined as the solution

of T = ψ(h̄), i. e. h̄c ≡ ψ−1(T ). Equivalently, given some harvesting capacity h̄,

the critical length of the harvesting period is defined by Tc ≡ ψ(h̄).

The intuition for the optimal strategy given in Lemma 5 and the critical

harvesting period given in Lemma 6 is as follows. (The proof of Lemma 6 is

postponed until the end of the proof of the next lemma, see page 18.) In the case

T > Tc, there is too much time for harvesting, implying that if the agent followed

the critical path (the red path in the right diagram of Figure 5), they would have

reached the π = 0–line too early. Thus, one might consider following a trajectory

lying above the critical one, reaching the π = 1–line at some value s > 1. But then

one has to switch to h = 0 following an upward-sloping trajectory (a thin path

in the right diagram of Figure 5), implying that both the stock and the costate

variable increase—and satisfying the terminal condition π(T ) = 0 is impossible.

For that reason the optimal policy is as follows: pursue the critical path up to

(s, π) = 1, which is reached at time t2; then, upon arrival at (s, π) = 1 reduce

harvesting to h = 1, which, in view of eqs (25) and (27), renders both s and π to

be constant, for 1 is the natural growth rate of the resource; finally, to complete

the optimal path, resume maximal harvesting so as to arrive at π = 0 at time T .

4.3.1. Case A: either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc. In this case, the maximal

fishing effort is relatively low, h̄ < h̄c = ψ−1(T ), so that h(t) = h̄ can be maintained

throughout. Then, the optimal fishing strategy is given by:

Lemma 7. Let either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc. Then the optimal fishing

policy is given by

h(t) = h̄, (32)

s(t) =
2
(
h̄− 2

)

h̄e(h̄−2)(t−t1) − 2
, (33)

π(t) =
h̄(s(T )− s(t))

2s(t)− s(t)2 − h̄s(t)
, (34)
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Figure 6. The critical value of Tc as function of h̄.

for all t ∈ ∆. The resulting maximised profit amounts to

J∗
2A(t1) = h̄

∫ T

t1

s(t) dt = h̄ log

(

2e(2−h̄)(T−t1) − h̄

2− h̄

)

. (35)

Proof. We know from the proof of Lemma 5 that for all sub-critical cases T < Tc
(or h̄ < h̄c) defined in eq. (31), we have h(t) = h̄ for all t ∈ ∆. Substituting this,

jointly with initial condition s(t1) = 2 and the terminal condition π(T ) = 0, into

eqs (25)–(27) we obtain eqs (32)–(35). �

Proof of Lemma 6. From eqs (33) and (34) we can calculate the critical time

horizon Tc for which at some point in time tc the trajectory goes through the

point (s(tc), π(tc)) = (1, 1). Using that information and evaluating eq. (34) at Tc

yields tc = t1 +
1

2−h̄
log
(

h̄
2(h̄−1)

)

and thus eq. (31). �

Remark 2. For the limiting case when h̄ → 1, the resulting profit amounts to

J∗
2A|h̄=1(t1) = log

(
2eT−t1 − 1

)
.

The critical time horizon Tc is illustrated in Figure 6 (for t1 = 0), and for

T = Tc we have:

Remark 3. In the critical case, i. e. when T = Tc, the optimal profit amounts to

Jc2A(t1) = 2h̄ log

(
h̄

h̄− 1

)

. (36)
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4.3.2. Case B: 1 < h̄ < 2 and T > Tc. In this case, the time available for

harvesting T − t1 is too long such that, given the maximal harvesting capacity h̄,

it is not optimal to harvest at the maximal rate all the time, as this would imply

that π = 0 is reached before time T . Thus, harvesting cannot be maintained at

rate h̄ throughout, but must be reduced during some interval—and the optimal

fishing strategy is as follows:

Lemma 8. Let 1 < h̄ < 2 and T > Tc. Then the optimal fishing policy is given by

h(t) =







h̄ t1 ≤ t < t2,

1 t2 ≤ t < t3,

h̄ t3 ≤ t < T,

(37)

with switching times

t2 = t1 +
log
(

h̄
2(h̄−1)

)

2− h̄
and t3 = T −

log
(

1
h̄−1

)

2− h̄
.

The resulting profit is given by

J∗
2B(t1) = T − t1 + 2h̄ log

(
h̄

h̄− 1

)

− 1

2− h̄
log

(
h̄

2(h̄− 1)2

)

, (38)

Proof. That equation (37) is indeed the optimal fishing policy can be seen by

noting that π = 1 is a singular level. Since we already know that π(t1) < 1, it

follows that π̇ ≥ 0 at the time the singular level π = 1 is reached. If we have π = 1

for some time interval with positive length, then π̇ = 0 and hence we must have

s = 1 ⇒ ṡ = 0 ⇒ h = 1 from eq. (25).

After completing the singular path we cannot have a path with h = 0. This

can be seen as follows: h = 0 implies ṡ > 0, which in turn implies that, because

s = 1 on the singular arc, s > 1 right after the singular arc. Jointly with h = 0

this in turn implies that π̇ > 0. Hence, we enter a path where both s and π are

growing so that the transversality condition π(T ) = 0 cannot be satisfied. We thus

conclude that the optimal policy must proceed with h = h̄ after completing the

singular path—and thus the policy in eq. (37) is optimal.

The total length of the fishing sub-periods [t1, t2) and [t3, T ] amounts to Tc−t1
and is thus given by eq. (31). Therefore fishing during these sub-periods brings

about the same profit as in Case A, i. e. Jc2A given by eq. (36); while during the

time interval [t2, t3) the resulting profit equals h = 1 times the length of the fishing

period: t3 − t2 = T − Tc. So, we obtain

J∗
2B = Jc2A +

∫ t3

t2

1 dt = Jc2A + T − Tc.
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Figure 7. Profit in Case A and B for T = 2 (left), 5 (middle), 20 (right)

with varying values of h̄.

Finally, substituting the definition of Tc, eq. (31), yields eq. (38). �

In the limiting case where T = Tc, we have t2 = t3 and the central interval

vanishes. More generally, since ∂t2/∂h̄ < 0 and ∂t3/∂h̄ > 0, the central interval

increases with h̄. The reason for this is that a higher harvesting capacity allows the

agent to harvest more intensively in the beginning and at the end of the harvesting

period, so that harvesting must be reduced in the central time interval. Yet, since

h(t) = 1 is fixed for all t ∈ [t2, t3), the only way to accomplish a lower catch in the

central time interval is to extend this interval.

Remark 4. For the limiting case when h̄→ 1, the resulting profit equals J∗
2B|h̄=1 =

T − t1+log(2); while for the case h̄→ 2, the profit amounts to J∗
2B|h̄=2 = T − t1−

3
2
+ log(16). Finally, when the fishing capacity becomes unbounded, i. e. h̄ → ∞,

we obtain J∗
2B = T − t1 + 2. Hence, we have J∗

2B|h̄=1 < J∗
2B|h̄=2 < J∗

2B|h̄=∞, as

expected.

As Remark 4 suggests, the maximised profit function J∗
2 is increasing in the

capacity h̄; this is depicted in Figure 7 for T = 2, 5 and 20. Therein, the vertical

line represents the critical capacity h̄c = ψ−1(T ). For values of h̄ < ψ−1(T ) Case A

applies; for values of h̄ > ψ−1(T ), Case B. The critical values h̄c = ψ−1(T ) can be

gathered from eq. (31) viz. from Figure 6.

5. First Stage: Fixed travelling period

Having solved the harvesting problem, we now go back in time and solve the

travelling problem. We begin our analysis with the simple, in our framework hy-

pothetical, case of a fixed travelling period (sub-section 5), and then continue with

acknowledging the subsequent harvesting period and endogenising the arrival time

t1 in sub-section 6. In this way, we are able to show which additional effects and

which corresponding optimality conditions have to be added to the solution of the
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former problem to obtain the solution of the latter. We proceed in this successive

manner for this allows us to spotlight the differences between the solution of the

isolated travelling problem (6) and the solution of the travelling–and–harvesting

problem (8).

Assume that the cost of travelling depends linearly on speed v and quadrati-

cally on acceleration a:

K(v, a) = cv + a2. (39)

Assuming ρ = 0 and c = 1/10, the resulting aggregated travelling cost amounts to
∫ t1

0

e−tρ
(
cv(t) + a(t)2

)
dt =

∫ t1

0

(
v(t)

10
+ a(t)2

)

dt (40)

Acknowledging the constraints

ẋ(t) = v(t), v̇(t) = a(t), ṡ(t) = g(s(t)),

we obtain the Hamiltonian

H1 = −v(t)
10

− a(t)2 + π2(t)a(t) + π1(t)v(t).

For ease of tractability, we assume that there are no bounds on the control

a—yet, we will drop this assumption in Appendix A. The familiar maximum

principle then yields

x(t) =
t2

120
(30K1 − 10K2t+ t) , v(t) =

t

40
(20K1 − 10K2t+ t) ,

π1(t) =K2, π2(t) =K1 +
t

10
(1− 10K2) ,

with K1 and K2 constants. Together with the boundary conditions x(0) = v(0) =

v(t1) = 0 and x(t1) = 1, we obtain:

Proposition 1. Given arrival time t1, the optimal travelling policy is given by

x(t) =
t2(3t1 − 2t)

t31
, v(t) =

6t(t1 − t)

t31
, a(t) =

6(t1 − 2t)

t31
,

π1(t) =
24

t31
+

1

10
, π2(t) =

12(t1 − 2t)

t31
,

and the minimised objective function equals

J∗
1 (t1) =

∫ t1

0

(

a(t)2 +
v(t)

10

)

dt =
12

t31
+

1

10
. (41)

Since J∗
1 enters the objective function negatively, the value of the maximised

Hamiltonian equals H∗
1 = −dJ∗

1/dt1 =
36
t4
1

. The acceleration of the vehicle and its

resulting speed are depicted in Figure 8 for t1 = 1, . . . , 5.
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Figure 8. Speed and acceleration of the vehicle for t1 = 1, . . . , 5.

6. First Stage: Optimal travelling–and–harvesting policy

In Section 5 we assumed that t1 is fixed. However, the agent may choose the length

of the travelling period, and in this way the beginning of the harvesting period to

maximise the profit. In order to determine the optimal policy for the travelling–

and–harvesting problem, two different effects must be taken into account, and the

associated conditions have to be added to those of the pure travelling decision.

First, the growth process of the resource during the travelling period must be

acknowledged, and the corresponding necessary optimality condition need to be

added to the canonical system:

ṡ(t) = g(s(t)) =







2s(t)− s2(t) logistic growth

s(t) exponential growth,
(42)

π̇(t) = − ∂H1

∂s(t)
= −π(t)g′(s(t)) =







−2π(t)(1− s(t)) logistic growth

−π(t) exponential growth.
(43)

Next, the terminal time t1 and the endpoint s1 of the travelling problem are

free and may be chosen in an optimal way. While the arrival time t1 determines

the length of the harvesting period ∆, the endpoint s1 determines the initial value

of the growth process in the harvesting problem. Together, both effects determine

the maximal value J∗
2 (s1, t1) of the harvesting period, which in turn represents

the scrap value of the compound problem (8). However, the endpoint s1 = s(t1)

is fully determined by the arrival time, as the stock of the resource cannot be

controlled before time t1. For this reason, we do not have two, but only one

transversality condition representing both effects: the direct effect of the arrival

time on the length of the harvesting period ∆, and the effect of t1 on the stock at

the beginning of that period s(t1).
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Hence, to derive a necessary condition for the optimal choice of the arrival time

t1, we first have to substitute the transversality condition (44), i. e. s1 = s(t1) =

s0e
t1 , into J∗

2 . Then, this value function, which may be viewed as a scrap value

function of the travelling problem, can be written, with slight abuse of notation,

as J∗
2 (t1) ≡ J∗

2 (s(t1), t1). Using this, the associated necessary condition for the free

terminal time of the travelling problem t1 reads as17

H1(s(t
∗
1), a(t

∗
1), π(t

∗
1), t

∗
1) +

dJ∗
2 (t

∗
1)

dt1
= 0. (44)

With the help of condition (44) we are now able to calculate the optimal travelling–

and–harvesting policy. We do this for both growth functions specified above.

6.1. Optimal Travelling–and–harvesting policy for exponential growth.

Acknowledging the transversality conditions, the following conditions have to be

added

s(t) = s0e
t, π(t) =

(
1

h̄

) 1

h̄−1

eT−t. (45)

We next show that t1 must not be smaller than the switching time τ , so that har-

vesting begins immediately upon arrival. Intuitively, this is because a premature

arrival is costly without yielding any additional profit, as we initially have h(t) = 0

in Case B. So Case A applies, and the maximised value function of the harvesting

problem J∗
2A(s1, t1) is given by eq. (21).

Proposition 2. In the optimal travelling–and–harvesting policy, the optimal ar-

rival time t∗1 succeeds time τ , i. e. Case A applies. Hence, the optimal harvesting

policy is characterised in Lemma 1, and the resulting profit from travelling–and–

harvesting policy is given by

V ∗ ≡ J2A(t
∗
1)− J1(t

∗
1) = s0e

t∗
1

h̄

h̄− 1

(

1− e(h̄−1)(t∗1−T )
)

−
(

12

(t∗1)
3
+

1

10

)

, (46)

where t∗1 is a function of h̄ and T , implicitly defined as the solution of

36

t41
− s0e

t1
h̄

h̄− 1

(

h̄e(h̄−1)(t1−T ) − 1
)

= 0. (47)

Before we prove Proposition 2, we derive a lemma characterising J∗
2A.

Lemma 9. The derivative of the maximised value of the harvesting problem is

determined by the switching point τ :

dJ∗
2A(t1)

dt1
T 0 ⇔ T − t1 T δ ≡ log(h̄)

h̄− 1
⇔ τ T δ ≡ t1.

17Condition (44) represents a modification of the usual necessary condition for the free termi-

nal time, as provided, for example, by Léonard and Long (1992, Theorem 7.6.1).
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Figure 9. Exponential growth: value function J∗
2A (black), cost func-

tion J∗
1 (red), and profit function −J∗

1 + J∗
2A (green), for s0 = 1, T = 5

and h̄ = 3/4, yielding the optimal arrival time t∗1 = 3.8539 and the net

profit J2A(t
∗
1)− J1(t

∗
1) = 46.6488.

Proof. After substitution of s(t1) = s0e
t1 , we obtain the derivative of the value

function J∗
2A(t1) ≡ J∗

2A(s(t1), t1):

dJ∗
2A(t1)

dt1
= −s0et1

h̄

h̄− 1

(

h̄e(h̄−1)(t1−T ) − 1
)

.

It is then straightforward to show that the sign of this derivative depends on

whether the switching point τ is before or after the arrival time t1. �

Since δ is a decreasing function of h̄, the derivative of dJ∗
2A is positive for large,

and negative for small values of h̄. If the harvesting capacity, when compared with

the length of the harvesting period ∆ ≡ T−t1, is large, a later arrival time increases

the yield from the harvesting period because it gives the resource more time to

grow; at the same time, the harvesting capacity is large enough so as to harvest

high volumes in a shorter time interval. Consequently, in this case the agent

may wish to postpone the arrival time. However, when the harvesting capacity

is relatively low, postponing the start of the harvesting activity is unattractive,

as the agent will be unable to benefit from the higher stock due to the constraint

on the harvesting capacity. Hence, in the absence of travelling costs the optimal

arrival time will be equal to t∗1 = τ ≡ T−δ. This arrival time balances the benefits

from an earlier and a later arrival.18

Proof of Proposition 2. Using the maximised Hamiltonian of sub-section 5, H∗
1 =

36/t41, the transversality condition (44) gives eq. (47). Since H∗
1 is positive, the

18Indeed, Case A and Case B coincide for τ = t1.
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derivative dJ∗
2A(t1)/dt1 must be negative in order for (47) to have a solution t∗1. By

Lemma 9, dJ∗
2A(t1)/dt1 is negative if, and only if, the switching point τ is before

the arrival time: t∗1 > T − δ ≡ τ implying that Case A applies. �

Hence, the optimal arrival time t∗1 is chosen so that the harvesting activity

begins immediately upon arrival. In other words, Case A applies, i. e. T − t1 < δ,

and the agent begins with harvesting at the maximum rate immediately at time

t1. This is because an early arrival is associated with higher travelling cost, so

that this should be avoided. (The functions J2A(t1) and J∗
1 (t1) are depicted in

Figure 9.)

It also follows from condition (47) that in the optimal travelling–and–

harvesting policy, the length of the harvesting period ∆ ≡ T − t1 is smaller than

the harvesting period the agent would have chosen in the absence of the need for

travelling (assuming T > δ). Consequently, in the presence of travelling cost the

optimal arrival is postponed, and the harvesting process begins at some later time,

compared with the case of the absence of the need to travel.

6.2. Optimal travelling–and–harvesting policy for logistic growth. By

assumption s(t1) is fixed at s1 = 2, so that we can choose only t1 without affect-

ing s1. With logistic growth we have to consider both Case A and Case B.

6.2.1. Case A: either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc. In this case, the optimal

harvesting policy is characterised by Lemma 7), and the functions J∗
1 (t1) and

J∗
2A(t1) are given by eqs (41) and (35) respectively. Moreover, the time derivative

of J∗
2A(t1) equals

dJ∗
2A(t1)

dt1
= − 2

(
h̄− 2

)
h̄

h̄e(h̄−2)(T−t1) − 2
.

This derivative is negative since, due to h̄ < 2, the numerator and the denominator

are both negative. Then, the optimal arrival time is determined, again, by eq. (44).

Hence, the optimal travelling–and–harvesting policy is characterised as follows:

Proposition 3. Let either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc. Then, the optimal

harvesting policy is h(t) = h̄ for all t ∈ ∆, and the resulting profit from travelling–

and–harvesting policy is given by

V ∗(T ) ≡ J2A(t
∗
1)− J1(t

∗
1) = h̄ log

(

2e(2−h̄)(T−t1) − h̄

2− h̄

)

−
(

12

(t∗1)
3
+

1

10

)

, (48)

where t∗1 is a function of h̄ and T , implicitly defined as the solution of

36

t41
− 2

(
h̄− 2

)
h̄

h̄e(h̄−2)(T−t1) − 2
= 0. (49)
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Figure 10. Logistic growth: value function J∗
2 (black), cost function

J∗
1 (red), and profit function −J∗

1 + J∗
2 (green), for T = 5. Case A (left):

h̄ = 3/4, optimal arrival time t∗1 ≈ 2.4793. Case B (right): h̄ = 3/2,

optimal arrival time t∗1 =
√
6 ≈ 2.4495 with critical arrival time tc =

5− 2 log(3) ≈ 2.8028 (blue).

The functions J∗
1 (t1) and J∗

2A(t1) are depicted in Figure 10 for a low (left

diagram) and a high (right diagram) harvesting capacity. Setting h̄ = 3/4, the

optimal arrival time equals t∗1 ≈ 2.4793 yielding a net profit equal to J2A(t
∗
1) −

J1(t
∗
1) ≈ 1.8161. Carefully observe that Case A actually materialises (for T = 5),

compare the second diagram in Figure 7

6.2.2. Case B: 1 < h̄ < 2 and T > Tc. In this case, the harvesting capacity

h̄ exceeds the critical value h̄c, and the resulting optimal harvesting policy is

characterised in Lemma 8. Hence, the optimal travelling–and–harvesting policy is

characterised as follows:

Proposition 4. Let 1 < h̄ < 2 and T > Tc. Then, the optimal harvesting policy

is characterised by Lemma 8, and the associated profit is given by eq. (38). The

resulting profit from the optimal travelling–and–harvesting policy is given by

V ∗(T ) ≡ J2B(t
∗
1)− J1(t

∗
1)

= T − t∗1 + 2h̄ log

(
h̄

h̄−1

)

− 1

2−h̄ log

(
h̄

2(h̄−1)2

)

−
(

12

(t∗1)
3
+

1

10

)

, (50)

where t∗1 implicitly defined as the solution of 36/t41 = 1, the single positive and real

root of which is t∗1 =
√
6.

Apparently, J∗
2B(t1) is linear in the arrival time, so that dJ∗

2B(t1)/dt1 = −1.

This scenario is depicted for h̄ = 3/2 and (T = 5) in the right part of Figure 10,

where the value function J∗
2B(t1) is linear for all arrival times t1 < tc. (Recall

that for these parameter values, Case B results, which is illustrated in the second
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diagram in Figure 7). With these parameters, the optimal solution is given by

t∗1 ≈ 2.4495 yielding a net profit of J2B(t
∗
1)− J1(t

∗
1) ≈ 2.7326.19

7. Conclusion

In this paper we contribute to the theory of spatial resource economics. We ex-

plicitly take into account the fact that in many real-world situations the agent has

to travel to the location of the resource before being able to begin with harvesting.

Although some papers in the literature acknowledge the requirement of an agent

to travel to the resource (e. g. Behringer and Upmann, 2014; Belyakov et al., 2015),

the approach of this paper is different in that the resource cannot be harvested in

an en passant manner, but the agent has to stop at the location of the resource

in order to harvest. As a consequence, the travelling problem and the subsequent

harvesting problem are linked by the choice of the speed of travelling and, thus,

by the resulting arrival time, as the latter determines both, the start of the har-

vesting period and the initial value of the size of the stock. The crucial effect

is that while a longer travelling period delays the harvesting activity, which is in

principle an unwelcome effect, a later arrival also gives the resource more time to

grow unimpaired. In this way, the travelling decision determines both the length

of the harvesting period and the initial conditions for the harvesting activity. The

two sub-problems are therefore linked by the spatiotemporal dimension, rendering

the arrival time a crucial decision of the optimal harvesting policy.

We are able to fully characterize the control programme for the composed

travelling–and–harvesting problem, employing recent tools for two-phase dynamic

optimization problems. In particular, we derive the optimal value functions

for both the travelling and the harvesting sub-problem, and then provide the

additional conditions required to acknowledge the link between both problems.

This procedure allows us to thoroughly characterise the optimal travelling–and–

harvesting policy and the resulting optimal yield for the management of a remote

resource.

We derive this optimal policy for two different stipulated growth processes

of the stock of the resource: exponential and logistic growth. Since both growth

functions bring about qualitatively similar results, we conclude that the effects we

identified are quite robust in this regard. In order to investigate the robustness

of our results further, we consider the case of a positive discount rate and bounds

19Had we chosen some later starting time t1 > tc ≡ T −Tc = 5− 2 log(3) ≈ 2.8028, then Case

A became relevant as the fisher had less than the required minimal time for fishing in Case B,

Tc = 2 log(3) ≈ 2.1972.
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on acceleration in the Appendix A, where we show that a positive discount rate

induces a shift of acceleration and hence speed costs towards the future, whereas

bounds on acceleration hamper that effect. Again, the crucial link between the

travelling and the harvesting problem persists.

Overall, we have demonstrated that acknowledging the spatial dimension in

the classical problem of managing a renewable resource can lead to interesting and

economically relevant, yet still analytically tractable, changes that even allow for

the introduction of more realistic features, such as periods of travelling and har-

vesting and their associated economic costs. This extension, besides contributing

to the call of introducing a spatial dimension and thus to enhance the realism of

the model, allows for an even more precise extension of the theory into a realm

where space implies that the agent also faces a transportation problem that is

temporarily and spatially linked to the resource extraction problem.

Appendix A. Robustness analysis: a positive discount rate and

bounds on the acceleration

We here explore the robustness of the optimal travelling policy. Maintaining our

specification of the travelling cost (39) used in section 5, we assume that K de-

pends linearly on speed v and quadratically on acceleration a with c = 1/10. For

illustrative purposes, we now set ρ = 1/20 and t1 = 40. Also, we assume that

acceleration is bounded to A = [a, a] = [−1,+1].

With this specification the objective function is given by

J1(a, 40) =

∫ 40

0

e−t/20
(
v(t)

10
+ a(t)2

)

dt.

Acknowledging the system of differential equations (1) governing the move-

ment of the agent

ẋ(t) = v(t) and v̇(t) = a(t) ∀t ∈ T ,

the Hamiltonian is given by

H1 = −K(v(t), a(t))+ψ1(t)v(t)+ψ2(t)a(t) = −v(t)
10

−a(t)2+ψ1(t)v(t)+ψ2(t)a(t),

and the Lagrangean reflecting the restriction u ≤ u ≤ u by

L = −v(t)
10

− a(t)2 + π1(t)v(t) + π2(t)a(t) + λ1(t)(a(t) + 1) + λ2(t)(1− a(t)).

Subsequently, the Hamiltonian and the costate variables are defined in current

values, so that the necessary conditions are modified accordingly:

−2a(t) + π2(t) + λ1(t)− λ2(t) = 0 ⇔ a(t) =
1

2
(π2(t) + λ1(t)− λ2(t)) . (A.1)
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In addition, we have the necessary conditions

π̇1(t) = − ∂L
∂x(t)

+ ρπ1(t) =
π1(t)

20
, (A.2)

π̇2(t) = − ∂L
∂v(t)

+ ρπ2(t) = −π1(t) +
π2(t)

20
+

1

10
. (A.3)

A.1. Analysis of the unbounded solution. In this case we have λ1(t) = 0 =

λ2(t), and equations (1) and (A.1) simplify to

ẋ(t) = v(t), v̇(t) =
π2(t)

2
(A.4)

jointly with equations (A.2) and (A.3). Using the, yet unspecified, initial values

π1(0) = m1 and π2(0) = c1, we obtain

π1(t) = m1e
t/20, π2(t) = et/20(c1 −m1t+ 2)− 2. (A.5)

Substituting eq. (A.5) into (A.1) yields the system

ẋ(t) = v(t), v̇(t) =
1

2

(
et/20(c1 −m1t+ 2)− 2

)
, x(0) = 0, v(0) = 0.

Using the initial values and solving the resulting initial value problem, we obtain

x(t) =
1

2

(
20c1

(
−t + 20et/20 − 20

)
− 400m1t

−400et/20(m1(t− 40)− 2)− 16000m1 − t2 − 40t− 800
)
,

v(t) = 10c1
(
et/20 − 1

)
− 10et/20(m1(t− 20)− 2)− 200m1 − t− 20.

π1(t) = m1e
t/20,

π2(t) = et/20(c1 −m1t+ 2)− 2.

Finally, using the terminal conditions x(t1) = 300 and v(t1) = 0 to determine the

constants, we obtain

c1 =
−25 + 35e2 − 4e4

2 (1− 6e2 + e4)
, m1 =

13 + 3e2

40 (1− 6e2 + e4)
.

Thus, the optimal control and maximised objective function are given by

a(t) =
e

t
20

+2(220− 3t)− et/20(13t+ 420)− 80e4 + 480e2 − 80

80 (1− 6e2 + e4)
,

J∗
1 =

80− 1725e2 + 925e4 − 80e6

4 (e2 − 6e4 + e6)
≈ 16.7095,

respectively.



30

A.2. Analysis of the bounded solution. Now, assume that there are bounds

on the control: a(t) ∈ [a, a] ≡ [−1, 1]. As we can see from Figure 11, the un-

bounded solution (blue case) hits the lower bound, at time t ≈ 34.2818. Since

the upper bound a = 1 is not binding, it suffices to consider the former only: We

must have a(t) = a = −1 for all t in the final interval (ξ, t1]. Apparently, we must

choose some ξ < 34.2818, for if ξ = 34.2818 the remaining time would only suffice

to guarantee the terminal condition v(t1) = 0, if we were able to set a < a. Thus,

during the final time interval (ξ, t1], the solution must satisfy

ẋ(t) = v(t), v̇(t) = −1, x(40) = 300, v(40) = 0,

the solution of which is

x(t) =
1

2

(
−t2 + 80t− 1000

)
, v(t) = 40− t, a(t) = −1.

We now have to calculate the optimal switching point ξ, which must be de-

termined so that the following boundary conditions (for the first interval) are met:

x(0) = 0, v(0) = 0, x(ξ) =
1

2

(
−ξ2 + 80ξ − 1000

)
, v(ξ) = 40− ξ.

Together with the optimality conditions for the unbounded problem, eqs (A.2),

(A.3) and (A.4), this yields the system

ẋ(t) = v(t), v̇(t) =
π2(t)

2
, (A.6)

π̇1(t) =
π1(t)

20
, π̇2(t) = −π1(t) +

π2(t)

20
+

1

10
, (A.7)

x(0) = 0, v(0) = 0, (A.8)

x(ξ) =
1

2

(
−ξ2 + 80ξ − 1000

)
, v(ξ) = 40− ξ, (A.9)

the solution of which gives the optimal travelling policy in the interval [0, ξ]:

a(t) =
1

−eξ/20 (ξ2 + 800) + 400eξ/10 + 400
×

(

e
t+ξ
20 (t(65− 2ξ) + ξ(2ξ − 105) + 2100)− 5et/20(13t+ 420)

+eξ/20
(
ξ2 + 800

)
− 400eξ/10 − 400

)
,

which reaches the lower bound a = −1 at time ξ ≈ 29.5984. Using this value and

composing both parts, we obtain the optimal control:

a(t) =







1
2

(
et/20(3.09497− 0.104565t)− 2

)
0 ≤ t ≤ ξ

−1 ξ < t ≤ t1
,
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Figure 11. Optimal acceleration, speed and position with (red) and

without (blue) bounds on acceleration.

and the resulting value of the minimal travelling cost amounts to J
∗

1 ≈ 18.4648.

The optimal solution is illustrated by the red trajectories in Figure 11. Compared

to J∗
1 ≈ 16.7095 for the case of an unbounded control, the presence of the bound

on acceleration results in an increase in the minimal travelling cost.

We may also compare our result with the case of a zero discount rate, explored

in Section 6. Applying the specification t1 = 40, x(t1) = 300 and ρ = 0, we

obtain J∗
1 |ρ=0 = 375/8 = 46.875. Apparently, with discounting parts of the cost

vanish, so that the present value of the cost without discounting exceed those with

discounting. Also, as can be seen from Figure 11, discounting makes the agent

initially move more slowly and speed up later so that part of the travelling cost is

shifted to the future. In case of bounds on the control, such cost shifting becomes

limited so that some part of the travelling cost must be incurred earlier.

We have thus demonstrated that our qualitative results for the optimal

travelling–and–harvesting policy need to be modified—in an intuitive way—in re-

sponse to the introduction of either bounds on acceleration or a positive discount

rate. In particular, the introduction of a positive discount rate makes the agent

postpone part of the costly travelling activity to the future: Whereas the origi-

nal path is decreasing linearly leading to a symmetric and concave velocity curve,

the optimal acceleration under discounting is concave, increasing first and then

decreasing. This reflects the fact that present acceleration and velocity become

more costly compared to future ones. As a consequence, travelling costs are shifted

towards the future. In case that acceleration is bounded from below, slowing down

at the end of the travelling period is constrained, implying a higher (and therefore

costlier) acceleration at the start and subsequently a sooner reduction of acceler-

ation, since otherwise the destination could not be reached with zero speed. The

velocity curves and the optimal position curves reflect these optimal acceleration

patterns accordingly.
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Appendix B. Proof of Lemma 5

Proof. Since the Hamiltonian is autonomous, it is constant along the optimal tra-

jectory.20 We can therefore characterise the trajectories in the (s, π) plane for

h = 0 and for h = h̄. Let K denote the level of the Hamiltonian, then the optimal

trajectories are characterised by the equations

π(t) =
K

2s(t)− s2(t)
and π(t) =

K − s(t)h̄

2s(t)− s2(t)− s(t)h̄
(B.10)

for the cases h = 0 and h = h̄, respectively. The h = 0–trajectories have their

minima at s = 1, and the trajectories with h = h̄ attain their maxima along the

curve

π(t) =
−h̄

2− 2s(t)− h̄
for s > 1− 1

2
h̄. (B.11)

Both types of trajectories are depicted in Figure 5 for a low (left diagram) and a

high (right diagram) harvesting capacity. The trajectories starting from s(t1) = 2

reach the horizontal axis at time T , i. e. π(T ) = 0. Those trajectories with h̄ < 1

cross the horizontal axis at a point to the right of 2 − h̄, that is s(T ) > 2 − h̄. If

h̄ is sufficiently small, the trajectory does not reach the π = 1 line (see Figure 5,

left). Since the locus of maxima crosses the point (1, 1), see eq. (B.10), the critical

trajectory is that one which achieves its maximum at this point (see Figure 5,

right). Because the trajectories do not cross the horizontal axis to the left of

2 − h̄, the critical trajectory must feature h̄ > 1. It thus follows that the critical

harvesting capacity exceeds unity, h̄c > 1. �
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