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The identification of genes associated with human disorders is a 
major goal in computational biology. Although the rapid 
emergence of cellular network-based approaches has been 
successful in many instances, all of these methodologies are 
partially limited by the incompleteness of the interactome. 
Here, we propose a novel method that may overcome the inherent 
problem of these incomplete molecular networks and assist 
already established network techniques. Instead of using 
protein-protein interaction networks, we encode the local three-
dimensional structure of a protein into a series of letters, 
called the Structural Alphabet, and define a proteomic 
structural network in which each node represents a unit of the 
structural alphabet (USA) and each pair of USAs is linked based 
on their structural similarity. This novel structural network is 
the platform by which a diffusion-based algorithm determines the 
potential involvement of proteins in disease phenotypes. 
Computational experiments show that the combination of 
diffusion-based methods with the constructed structural alphabet 
network offers better predictive performance than the results 
obtained using interactome networks and provides a new avenue to 
assist in identifying disease-related proteins.  

Keywords: Local structure similarity network, random walk with 
restart, protein modularity, structural alphabet 
 
 

The identification of genes associated with human disorders is a major goal in computational biology, and it 

has direct medical, therapeutic and clinical implications. Various methodologies have been proposed to 

address this challenging problem, ranging from linkage mapping to genome-wide association (GWA) studies 

[1]. Recently, the rapid emergence of network-based methods has also expanded the technical tools 

available for predicting disease-associated genes [2, 3]. However, as recently highlighted by Menche, 

Sharma, Kitsak, Ghiassian, Vidal, Loscalzo and Barabasi [4], network-based approaches, although 

successful in  many  instances,  are partially  limited by  the  incompleteness  of the  interactome.  Here,  we 
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propose a novel method that may overcome the inherent problem of the largely incomplete protein 

interaction network. Instead of using interactome networks, we encode the local three-dimensional (3D) 

structure of a protein into a series of letters, called the Structural Alphabet (SA), and define a proteomic 

structural network in which each node represents a unit of the structural alphabet (USA) and each pair of 

USAs is linked based on their structural similarity. The USA and its similarity network are designed for local 

structure approximation to describe the significant core of protein and for investigating the structure-function 

relationship with a limited part of protein conformation. As shown below, this structural network-based 

framework combined with a diffusion-based algorithm improves predictions for detecting disease gene 

products compared with the results from interactome networks. 

Let us briefly put the research into a wider perspective. In linkage methods, the first-degree neighbors of 

disease proteins are considered to be potentially associated with the same disease phenotype [2, 5-8]. 

Methods based on structural building blocks, such as the identification of disease modules, have also led to 

the prediction of disease genes. In this approach, all molecules that define functional or disease modules 

(i.e., highly connected regions of the network) are assumed to have a high probability of being associated 

with the same disorder. By combining local information derived from pairwise linkage methods and the entire 

network clusters of disease genes using the disease module assumption in an effort to increase predictive 

power, diffusion-based algorithms have been proposed and applied to identify complete routes and 

molecules that are associated with known disease genes. In this framework, dynamic random walkers, 

starting from the protein products of known disease genes, jump sequentially to neighboring proteins, 

navigating the entire interactome. The most often visited proteins in the protein-protein interaction network 

exhibit the highest likelihood of being involved in the same disorder [9, 10]. The biological significance of this 

apparently random navigation is rooted in the idea that causal molecular pathways tend to overlap with the 

shortest molecular routes between known disease-associated molecules. This fact is also known as the 

network parsimony principle [2]. Because the diffusion-based algorithm effectively embeds local and global 

information simultaneously, it has shown promising results for a variety of diseases, from prostate cancer to 

Alzheimer’ s disease [9, 11], and it has the best predictive performance in comparative studies [9]. Other 
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studies have based their disease-protein correlation hypotheses on the interactions between protein 

sequences [12] and functional annotation [13] and use the known disease similarity and human protein 

interaction networks to perform disease gene prediction [14]. 

The rapid developments in prediction techniques that prioritize disease gene associations in molecular 

networks are, however, inevitably limited by the assembled interactome network in terms of data quality, 

completeness and the biological significance of the interactions among molecules. Here, we structurally 

scale down the entire interactome by using protein structural information and decomposing the proteins into 

smaller structural units. Several research programs have aimed at capturing the relationships between 

protein sequence and structure [15, 16]. Furthermore, these structural units can be encoded into a database, 

named the Unit of Structural Alphabet DataBase (USA-DB). This encoding can be performed using the 

protein structure database search tool 3D-BLAST [17-19]. Each USA will then become a node of the newly 

generated structural interactome network, and each pair of USAs is linked based on their structural similarity. 

Then, a random walk algorithm is used to prioritize candidate disease molecules, but instead of navigating a 

protein network as usual, it uses the structural alphabet similarity network in which the nodes are the 

elementary USAs. The process of walking through the new structural interactome is then used to prioritize 

the relationships between proteins and diseases, with the aim of identifying disease-causing proteins. The 

proposed methodology, which is the first to integrate structural protein information with diffusion-based 

disease gene prioritization algorithms, offers better predictive performance than the use of interactome 

networks. This finding suggests that the newly assembled structural interactome network containing 

information on protein structure represents a powerful tool that may aid our efforts to improve the current 

state of the art of methods for prioritizing candidate disease genes and may eventually elucidate the interplay 

of multiple molecular components that result in a disease phenotype. 

MATERIALS AND METHOD 

-Encoding Local Structure 

In previous research, we encoded the three-dimensional (3D) structure of a protein into a series of letters, 

called the SA [17, 18]. The principle is to map the 5-mer local structural segment into corresponding alphabet 
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characters. The kappa and alpha angles can be calculated for each local structure. The former is the angle 

of the two connections between the first and third Cα -atoms and between the third and fifth Cα -atoms, and 

it is used to describe the bending degree of the local structure; the latter is the dihedral angle between the 

surface formed from the second, third and fourth Cα -atoms and that formed from the third, fourth and fifth C

α -atoms. The alpha angle is used to distinguish the chirality of each structural fragment. Different kappa and 

alpha angles can be used to decide how the local structure can be abbreviated in the SA. 

This innovative approach eliminates the need to perform a search for the appropriate residues between 

Euclidean distances; instead, the SA sequence character by itself can determine the similarity of the protein 

structure. In addition, we have developed a novel BLOSUM-like substitution matrix, called the structural 

alphabet substitution matrix, which is used to rapidly search the SA database. The hits are evaluated with 

the expectation value (E-value) to provide the statistical significance of the protein similarity search. Previous 

research has shown that the encoding of the local structure based on SA can not only be successfully used 

in the examination of the structural homology of query proteins [17, 18] but also provide evidence regarding 

protein function and the classification of well-known protein families [20]. 

Building the USA Complex Network 

The research framework is shown in Figure 1. The steps, in order, are as follows. (1) The protein 

structures are converted into SA sequences, and the protein is divided into fragments containing USAs. The 

SA is 23 letters that represent the local structural fragment, which is five residues long and has specific 

kappa and alpha angles. Based on the SA, a 3D protein structure can be encoded as a 1D sequence [17, 

18]. (2) A complex network is assembled in which nodes represent USAs and links indicate structural 

similarity based on the results of all-against-all USA alignment. (3) The OMIM database is used to compile 

the associations between human disease phenotypes and proteins [21]. (4) Human disease phenotypes are 

mapped onto the USA network. (5) The USA complex network is used in the calculation of RWR. The 

resulting score for each node in the network is used to measure the associations between protein structures 

and diseases (see also Figures 2 and 3). 

3D-BLAST was used  to  define  the  characteristics  of  the 23  representative   letters  for   local  protein  
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segments, which are collectively known as the SA. Subsequent studies then proposed an extended SA 

fragment that could be applied in the field of network biology. This extended SA fragment was defined as the 

USA [19]. 

 

 

Figure 1.  Research framework. (a) Encoding the Local Structure based on the SA definition. The USA is defined as extending the SA in 

a broader range and including the flexibility and stability of the secondary structure, (b) Assembling the USA complex network, in which 

nodes represent USAs and links represent structural similarity based on the results of all-against-all USA alignment, (c) Compiling the 

associations between diseases and proteins from the OMIM database, (d) Mapping both protein-USA and disease-protein relations, (e) 

The figure illustrates only a fragment of the USA complex network and the scores resulting from the RWR computation. Each node in 

the graph represents a USA, and the entire network is composed of 1511 nodes (USAs) and 3091 links (structural similarity 

relationships). The red and blue nodes represent disease-causing and non-disease-causing USAs, respectively. The size of each node 

represents its RWR score. A connection between two nodes means that the USAs have good structural similarity, and the width of the 

connection is related to the E-value of the USAs’  structural similarity. 

 

Each USA protein structure consists of a sequence of secondary protein structures connected first to a 

loop structure with no fixed shape and then to the next secondary protein structure. As a result, each USA 

not only has the structural variability and flexibility of a loop structure but also the stability of a secondary 

protein structure, as shown in Figure 2.  
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The USA-DB contains 5525 protein units which are separated from 1603 proteins [19]. In this database, 

1603 human protein structures are collected from nr-PDB-50 [22, 23], which has a sequence homology of 

less than 50% of each proteins. After deriving local protein structure and translating into SA sequence, there 

is a total of 5525 USAs in this database. 

3D-BLAST can then be used to quickly conduct all-to-all structural comparisons for each USA structure 

and to screen the post-comparison results based on E-values. An E-value less than 10-5 indicates that the 

USA structures are similar and that the two USA nodes can be linked together. A complex local structural 

similarity network was established based on all the USA structural similarities [19], as shown in Figure 1(e). 

 

 

Figure 2.  A schematic view of a USA. (a) A protein structure containing multiple secondary structures, such as α -helices and β -

strands, (b) Two secondary structures (red) and a partially elastic structure in between (green) form a USA. A protein can contain 

multiple USAs, (c) As an example, the part of protein 2r0b_A is composed of 4 helices, 1 strand and loops. Based on the definition of a 

USA, there are 3 USAs in this protein structure. 

 

-Random Walk with Restart 

Random walks are a calculation method for determining the importance of each node based on the 

simulation of random walks throughout the entire network structure [24]. This method simulates the chances 

of any one node randomly walking to a directly connected node in a network and sorts the probability of each 

node finding a network node with a higher importance [2]. 

Other studies have noted that the consistency of protein networks and gene expression networks could 

reliably predict disease genes. Kohler, Bauer, Horn and Robinson [9], Navlakha and Kingsford [11], and Li 

and Patra [25] showed how to improve the random walk algorithm and developed the random walk with 
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restart (RWR) algorithm [26], a calculation network that can be applied to human genes for disease 

prediction. Their results identified previously unknown associations between genes and certain diseases. 

These studies noted that genes associated with the same or similar diseases are usually related to their 

directly connected neighbors within the molecular network. Thus, the current inferred or predicted genes 

associated with the illness are based on the interaction network and the integration of large amounts of 

genomic and gene expression data. 

In this study, the RWR algorithm was used, but the basis for disease prediction was switched from protein 

interactions to protein networks with structural similarity. The foundation of the study was based on the 

alphabet structure of similar protein structures and used the relationship between the protein and diseases to 

identify possible disease-related proteins. 

In the RWR algorithm, G = (V, E) represents a complex USA network, wherein V represents a node in the 

network, E represents a non-directional connection (structural similarity between USAs), and  is defined as 

the probability of a node walking to an adjacent node, as shown in Table 1.  

 

Items Description 

Algorithm  
Input Similar network G = (V,E), Starting node , Probability of random walk c, Return probability  

 Probability matrix for a random walk to a node 

 Relationship matrix of USAs and diseases 

 Column-normalized adjacency matrix of the graph 

 RWR operational termination conditions 

Output Return probability of each random walking node 

Table 1. RWR Definitions 

 

The RWR algorithm calculation steps are as follows: 

Step 1: Load , a complex network matrix established from similar USA structures, to calculate the 

probability of connecting to neighboring nodes. 

Step 2: Load , a relationship matrix of USAs and diseases, where 1 indicates a correlation between the 

node and the disease and 0 indicates no relevance to any disease. 
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Step 3: Return probability  representing the random walk process of each node in terms of its chances 

to return to the starting point. Different return probability settings would lead to different results. 

Step 4: In the initial calculation of the RWR algorithm, it substitutes  into  and then obtains . 

Step 5: The reiteration of the RWR algorithm, where substituting the i-th times of  into the equation will yield 

. As long as the difference of the two scores,  minus , is still greater than α ,  can be substituted 

into the calculation. 

Step 6: When  minus  is less than the termination condition α , the calculation is ended. According to our 

observations, in the late RWR computation process, the difference between RWR scores is changed only 

slightly. Additionally, the difference decreases become stable at approximately 0.01. Therefore, we 

tentatively set the termination condition α  to 0.01. 

At this point,  represents the probability of each node being passed through during a random walk in a 

complex network, and this probability can be regarded as a score that signifies the importance of the node. 

In our USA structural similarity and disease association networks, the  score represents the probability of 

each USA being associated with a disease. 

-Encoding Local Structure 

We used the recall-precision verification method to determine the disease-causing threshold λ . Precision is 

the fraction defined by the number of correctly predicted disease-related proteins versus the total number of 

predictions. Recall (also known as True Positive Rate) refers to the fraction between the number of correctly 

predicted disease-related proteins and all correct protein– disease associations. This metric indicates the 

ability of the classifier to identify all the positive proteins in the dataset. 

 

The formula for recall and precision are follows: 
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Where TP, FP, TN and FN represent true positive, false positive, true negative, and false negative, 

respectively. 

We further used F1-score to decide the disease-causing threshold λ . The F1-score were calculated 

using recall and precision with the following equation: 

 

In order to assess the optimal Restart Probability (RP) parameter c, we calculated the ROC curve to test 

which RP parameter c was suitable for predicting the protein– disease correlation. When we are performing 

ROC curve calculations, FPR and TPR are represented in X- and Y-axis, respectively. FPR is defined as the 

ratio of false positive and true negative. TPR is proportion of true positive and false negative. In the ROC 

curve, we expect these points will be closer to the upper left corner for Ideal results. The FPR and TPR is 

calculated as: 

 

 

In this study, we implemented the Leave One Out Cross Validation (LOOCV) method to were evaluated 

and verified our prediction performance. LOOCV is a kind of cross-validation which is only one of the 

samples is used as validating set at one time, while remain datasets are left as training set. This step 

continues until every single sample is used as a validation dataset, and finally the average model prediction 

performance is calculated. 

RESULTS AND DISCUSSION 

Assembling the USA complex network framework and its combination with RWR 

In this study, after using USA-DB to establish a complex, local structural similarity network, the Random 

Walk with Restart (RWR) algorithm is used to make predictions of disease-protein associations. The analysis 

used LOOCV to find the most appropriate Restart Probability c when calculating RWR and used the recall-

precision method to find the threshold λ  needed for predicting the likelihood of a protein being disease-

related. Finally, we discussed and analyzed the protein-disease association based on the predicted results. 
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The concept of establishing a significant association between the protein USAs and diseases is an 

innovative idea and the major conceptual contribution of this study. We needed to determine which USA-

encoded protein fragments were associated with diseases in the previously established USA-DB [19]. First, 

we entered the corresponding 1603 SA protein names of the USA-DB into the OMIM database of human 

diseases for gene searches using protein names to determine which USAs were associated with a known 

causative gene. And then, we established an association matrix between the USA and diseases through the 

USA-disease complex networks. Figure 2 illustrates the definition of a USA.  

 

 

Figure 3.  Illustration of the computation. First, protein Y is decomposed into three USAs. A local structural similarity is constructed 

using all USAs from all protein structures. Known diseases are mapped to USAs. RWR navigates the networks and generates a score 

for disease prediction for the given protein Y. Note that its score comes from the USAs 3, 15 and 18 that compose protein Y. 

 

Structural protein information and a network-based diffusion algorithm identify protein-disease associations 

After using USA-DB to construct a complex local structural similarity-based network, the RWR algorithm is 

used to prioritize the relationships between proteins and diseases to identify disease-related proteins. The 

RWR used in this study assumes that nodes are decomposed into USAs from a set of proteins. For example, 

let us consider a protein (protein Y) that contains three different USAs (nodes 3, 15 and 18 in Figure 3) and 

that is also associated with a known disease (disease A). We then use the RWR algorithm to iteratively 

calculate the most often visited USA on the network, which will exhibit the highest likelihood (or score) of 

being involved in the same disorder. Finally, each node in the complex network is assigned a score that 

represents the degree of association between each USA and the disease due to their structural similarity 
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(Figure 3). If the calculated probability of a node is higher than a certain threshold, then it can be assumed 

that the protein to which the USA belongs is likely to have relevance to the disease and may even be used to 

estimate the cause of the disease if it occurred in the position of an amino acid of the USA. 

To determine the optimal Restart Probability (RP) parameter c, we calculated the scores of nodes when 

the RP parameter c values ranged from 0.1 to 0.9 and used LOOCV results and the ROC curve to test which 

RP parameter c was best for predicting the protein– disease correlation. In terms of error value, when the c 

value was greater than 0.7, random walk results would not exhibit significant changes. Thus, we then used 

the ROC curve to determine the merits of c values between 0.7 and 0.9. Our results show that c values at 

0.7 constituted the largest area under the curve, indicating that the restart probability c equal to 0.7 had the 

best performance, as shown in Figure 4. 

 

 

Figure 4.  Optimal Parameter Analysis of the Restart Probability c. 

 

-Determination of the disease-causing threshold λ  

After determining the c value of the random walk, the threshold value λ  for protein and disease relevance 

could be determined. When the average RWR score of a protein was greater than the threshold value, it 

could be assumed that such a protein might cause a disease. A score below the threshold value indicates a 

lower likelihood of causing the disease. We used the recall-precision verification method to determine the 

threshold value λ . The optimal threshold value λ corresponded to the intersecting value of recall-precision, 

and this result was between 0.4 and 0.5. Then, we used the F1-score for further evaluation, and the results 

showed that forecasts made when the threshold λ was at 0.45 were the most accurate. The F1-score was 
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0.8874, which meant that using 0.45 as the threshold value for predictions would yield accuracy of nearly 

90%, as shown in Figure 5. 

Experiments on prediction accuracy outperform previous results based on protein interaction networks 

We obtained the interaction information for the 823 proteins used in our test data from the STRING protein 

interaction database [27, 28]. After constructing a protein interaction network, we also used the RWR 

algorithm to calculate and verify the prediction accuracy. As shown in Figure 5, the network established 

based on this protein interaction information had a lower accuracy after the RWR calculations, and the best 

F1-score was only 0.8474. This result showed that adding 3D protein structural information to the 

calculations for predicting the likelihood of disease-causing proteins provides predictions that are significantly 

more accurate than those using the traditional binary protein-protein interaction information. 

 

 

Figure 5.  Prediction results of the F1-score graph. Prediction made at a threshold value λ  of 0.45 were the most accurate, and the 

optimal F1-score was 0.8874. Networks constructed using traditional protein-protein interactions, after RWR verification, had an optimal 

F1-score of 0.8474, which was lower than that of our proposed method. 

 

-False Negative Predictions 

The complete prediction results obtained from the 1511 RWR scores used in this research are shown in 

Appendix section for table of results. Regarding known disease-related proteins that we predicted to be non 

-disease-related, we investigated these predictions further from a USA network perspective. Figure 6 shows 

that the incorrectly predicted proteins were all located at the boundary of the sub-network, with a degree of 

protein coupling of 1. In addition, the directly connected protein coupling in the sub-network was the highest, 
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and this phenomenon led to a reduced return probability, a low RWR score, and finally a prediction against 

the observed data. For example, node 837 (PDB ID: 2klz) in Figure 6(a) is located at the boundary of the 

network. Its degree is one, being connected only to a neighbor (node 1376) that is a high degree hub. 

Because of this topological reason, the return probability of node 837 is decreased when RWR navigates the 

entire USA network. In other words, node 837 has only one friend, which is very popular. Thus, node 837 will 

often feel excluded from the main group.  

 

 

Figure 6.  False negative predictions resulting from USA subnet maps. (a) A blue node with a purple border, 1376 is a hub node directly 

connected to USA number 837 (a red node with a yellow border), which is part of the protein 2klz, (b) The purple circle node 109 is a 

hub node directly connected to node 87 (PDB ID: 1g1s), (c) Node 265 belongs to the protein 1q1v and is connected to the hub node 

924. 

 

-False Positive Predictions (Case Study of PDB ID: 1qdd) 

Conversely, we also observed USA cases in which a non-disease-related protein was predicted to cause 

disease. A common feature for these cases is that the USA structure is similar to that of the entire protein. 

Figure 7 shows the protein 1qdd, which is directly connected to structurally similar proteins with disease-

causing likelihood. These proteins are 1ypo, 1uex, 1v7p and 1k9i, as shown in Figure 7. The structurally 

similar USA was located at the surface of each protein. For the structures of these USAs, whether they had 

α -helix similarity or an α -helix structure containing non-specific fragments, the bend and flip angles were 

very similar. Moreover, when we used the structural classification of proteins (SCOP) database [29, 30] to 

query each protein, we discovered that they were classified in the same domain (d.19.1.1), which suggests 

that our method could potentially be used to find protein blocks with similar structural functions. This finding 

indicates that the original non-disease-related protein known as protein 1qdd might in fact be a disease-
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related protein, as predicted using our methods. By comparing the structural similarity to the already well-

known disease-related proteins 1ypo, 1uex, 1v7p and 1k9i, we could assume that the key structure that 

makes protein 1qdd cause disease is that of the USA. 

 

 

Figure 7. False positive predictions of the USA structural similarity network, considering protein 1qdd as an example. (a) The yellow 

portion of protein 1qdd is defined as a USA, (b) and (c) For the protein 1uex, the red and blue parts represent the two defined USAs, (d) 

The orange portion of the protein 1ypo is also a USA, (e) The pink portion of the protein 1k9i is the defined USA, (f) The purple portion 

of the protein 1v7p is the defined USA. 

 

-False Positive Predictions (Case Study of PDB ID: 2fv7) 

The overall structure of the protein 2fv7 was not structurally similar to the structures of the directly connected 

possibly disease-related proteins 2dae, 1j47, 2pe4, 2bxg and 1kw2, but the structures of the USAs, by our 

definition, were very similar in terms of the rotation or flip angle of the α -helix fragment or α -helix loop 

structure. Because the defining USA structure of the protein was also located at the surface of the protein 

structure, that structure could be deduced from the USA definition and RWR calculations at the said USA, 

and the protein to which it belonged, 2fv7, may cause disease. 

In addition, we observed that the protein in the USA 2fv7 directly connected to a number of complex 

networks, including 613, 146, 902, 555, 187, 546, 188, 550, and 186, as shown in Table 2. The highest RWR 

scores of USA No. 555 were found through later screening points, and thus we might have inferred that the 

proteins 2fv7 and 2bxg were associated with similar diseases. Because our results indicate that the serum 

synthesis of protein 2bxg may cause damage that results in metabolic defects, the above reasoning, in 

addition to speculation that the protein 2fv7 may cause disease, appears to suggest that 2fv7 may lead to 

the same disease as that caused by the protein 2bxg. 
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The RWR score in this study indicates the level of correlation between the USA and the disease. If USAs 

have a significant relationship with one another, then they may have the same function. From this 

perspective, we could use the RWR scores to further infer what type of disease might be caused by a 

candidate disease-related protein. 

 

 
USA 

id 

PDB 

id 
Gene name 

 
RWR score 

Prediction 706 2fv7 RBKS  0.6779 

Neighbors 613 2dae TAB2  0.3869 

 146 1j47 SRY  0.6016 

 902 2pe4 HYAL1  0.9108 

 555 2bxg ALB  1.4451 

 187 1kw2 GC  0.8472 

 546 2bxg ALB  1.0064 

 188 1kw2 GC  0.9229 

 550 2bxg ALB  1.3051 

 186 1kw2 GC  0.7050 

Table 2. Predicting Disease Results of a USA (#706) 

 

CONCLUSION 

This work used the structurally similar USA network and a diffusion-based algorithm to predict whether 

proteins have disease-causing relationships. According our previous works, SA one dimension sequence 

derived from protein could be represented into a 3D structural shape. Therefore, it was used to develop the 

web service of structure database search [17, 18].  Moreover, we have established an automated server for 

identifying the protein domains and superfamilies of query structures [20]. Here, we expanded the application 

of SA to describe the local structure and elucidate the relationship between protein structure and disease 

from the point of view of network biology. The integration of both fields, network biology and structural 

biology, is therefore, one of the contributions of this work. 
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This study also provides a methodology for identifying proteins that, although classified as non-disease-

related, could have a disease association based on the scores predicted by our methodology. The 

assembled USA network offers a fresh view that may assist to overcome the limitations of the currently 

available interactome maps, for which more than 80% of pairwise interactions (links) are missing, and offers 

a new avenue for network-based disease gene prioritization studies by considering the tertiary structure in 

the assembled network. Our work should be considered as a complementary study to those already 

successful network-based methodologies and offers a new perspective to address network medicine 

challenges [2]. 

The proposed USA network-based methodology is the first to integrate structural protein information with 

diffusion-based disease gene prioritization algorithms. Therefore, our work addresses an important question 

regarding the nature of the structural networks used by diffusion algorithms in their navigation. The network 

nodes are, instead of proteins as typically used in the literature, structural fragments of proteins, representing 

a huge conceptual and technical difference that also leads to better performance. Indeed, the results show 

that this approach offers the best predictive performance compared with methods in which tertiary protein 

structure was not included. The nodes in this complex network do not represent the entire protein abstractly 

but instead represent specific structural fragments with requirements for the stability of the secondary 

structure. However, there is still room for improvement and further exploitation of the presented methodology 

in both theoretical and experimental areas. For example, we predicted various proteins as likely to cause 

disease, but they have not yet been classified as disease-related proteins. Therefore, some of our 

predictions require further experimental confirmation. In addition, although we can predict whether a protein 

is disease-related, the method cannot identify the cause and structural relevance of a given USA in the 

overall disease-causing effect. It also does not provide information about whether a specific USA is 

responsible for the disease-causing activity of the protein. The method also cannot predict the possible 

specific human disorder a protein might cause. To predict a specific disease for a protein, a procedure 

should be added to annotate the disease that is linked to a high-scoring USA node. By doing so for every 

node, we could obtain a weighted proportion of each disorder for a specific node and finally properly assess 

the human disorder. 
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From the connection degree of nodes in the network, connectivity is not always positively correlated to 

pathogenicity. A possible reason is that when a node has more connections in the network graph, the 

options to choose a connected path for the random walk is increased. Hence, the probability of the random 

walk is reduced. In previous studies, it was pointed out that when a join weighting-adjustment scheme and a 

set of nodes defined by the node to its neighbors and neighbors ’  neighbors are considered, the 

recalculated RWR scores would lead to positive effects and could be identify proteins associated to multiple 

human disorders [31]. 

It should be noted that a single protein or structurally similar proteins can be responsible for multiple 

related to multiple human disorders, rather than single disorders, in completely sporadic events. To properly 

evaluate these cases, additional analyses are encouraged and left as future work. 

In the future, we could expand this research to investigate the relevance among protein structures, 

disorders, drugs and side effects such that we could perform a comprehensive analysis based on the 

relationship between each major aspect that plays a role in the disease-therapy process [3] using the 

proposed networks of USA complexes. Such networks could certainly be helpful for practical clinical 

applications. For example, when a protein structure with an unknown function is considered, this method 

could not only predict what might cause a human disorder but also assist in estimating a suitable set of drugs 

for this particular disorder, along with its side effects. When researchers design a new drug molecule, our 

methodology could explore its associated molecular target and the possible side effects of the treatment. 
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