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Abstract: 

The original rationale for adopting daylight saving time (DST) was energy savings. 

Modern research studies, however, question the magnitude and even direction of 

the effect of DST on energy consumption. Representing the first meta-analysis in 

this literature, we collect 162 estimates from 44 studies and find that the mean 

reported estimate indicates modest energy savings: 0.34% during the days when DST 

applies. The literature is not affected by publication bias, but the results vary 

systematically depending on the exact data and methodology applied. Using 

Bayesian model averaging we identify the most important factors driving the 

heterogeneity of the reported effects: data frequency, estimation technique 

(simulation vs. regression), and, importantly, the latitude of the country considered. 

Energy savings are larger for countries farther away from the equator, while 

subtropical regions consume more energy because of DST. 
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1 Introduction

As of the year 2016, daylight saving time is used by 77 countries and regions with a combined

population in excess of 1.5 billion, making DST one of the most widespread policies in the

world. It is also one of the most controversial policies, with dozens of countries and regions

having abandoned it in recent decades. While DST has many other effects, in this paper we

focus on its impact on energy consumption, which was originally the primary argument advanced

in favor of the policy and for which abundant empirical evidence exists. Since the pioneering

Ebersole (1974) report, many studies have estimated the effect of DST on energy savings.

Figure 1: Estimates of the DST impact diverge over time
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Notes: The figure depicts estimates of the effect of DST on energy consumption
reported in individual studies (negative estimates translate to energy savings).
The horizontal axis represents the year in which each study was published.

The two major surveys of the literature, Reincke & van den Broek (1999) and Aries &

Newsham (2008), show that different researchers obtain substantially different results. One

can find empirical evidence in support of energy savings resulting from DST, just as one can

find evidence of increased energy demand associated with DST. For example, the most-cited

empirical study, Kotchen & Grant (2011), concludes that, contrary to the policy’s objective,

DST increases energy demand. (The result might be the reason that the study receives so many

citations, although it was also published in a prestigious journal, The Review of Economics

and Statistics.) The survey by Aries & Newsham (2008, p. 1864) concludes that “the existing
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knowledge about how DST affects energy use is limited, incomplete, or contradictory.” As

documented by Figure 1, the estimates diverge over time instead of converging to a consensus

number. In this paper we propose a systematic and quantitative synthesis of the literature that

would allow researchers and the public to take stock of the work on this topic produced over

the last four decades.

This study represents, to the best of our knowledge, the first meta-analysis that focuses on

the impact of DST on energy consumption. We collect 162 estimates from 44 studies, including

research articles, government papers, and energy company reports. The literature implies that,

on average, the savings from DST amount to 0.34% of total energy consumption during the

days when DST is applied. This mean estimate is consistent with the conclusions of previous

(narrative) surveys: Reincke & van den Broek (1999) and Aries & Newsham (2008) place their

best estimate of the effect at between 0% and 0.5%. The simple average reported effect is,

however, usually a biased estimate of the true effect in economics (Doucouliagos & Stanley,

2013): the distribution of the estimates is often truncated due to publication bias, and the size

of the effect is typically driven by study design.

When researchers or journal editors treat statistically significant estimates or estimates con-

sistent with the conventional view more favorably, the distribution of estimates in the literature

becomes biased. Random sampling errors occasionally cause estimates to have the “wrong”

sign, but suppressing these estimates on a global scale may seriously distort the mean reported

effect. For example, Stanley (2005) shows that the price elasticity of water demand is exagger-

ated fourfold due to publication selection. Nevertheless, unlike most other fields of empirical

economics, the DST literature does not exhibit this bias, as we show in the paper. Negative,

insignificant, and positive results are treated in a similar way by researchers, editors, and ref-

erees. We find, however, that the design of the study has important and systematic effects on

the results.

Belzer et al. (2008) illustrate how researchers can use different data sets and methods to

estimate the DST effect. We explore this influence of data, method, and even publication

characteristics on the estimated coefficients. Using Bayesian model averaging we address model

uncertainty and find that, among the 14 explanatory variables we codify, several are particularly

influential: the choice of the difference-in-differences approach to estimate savings (vs. simple
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regression, simulation, or extrapolation), the choice of data frequency, and the impact factor

of the journal in which the study was published, which we employ as a proxy for unobserved

quality aspects. Importantly, we also find that the estimated energy savings increase with higher

latitudes (which translates to more savings for countries farther away from the equator).

Our results suggest that the effect of latitude can not only offset the effect of various esti-

mation methods but can also easily outweigh the mean estimated savings and imply increased

energy consumption due to DST for countries closer to the equator. The DST policy makes

little sense when the amount of daylight does not vary substantially during the year, and in this

case the policy constitutes a shock that may well have unintended consequences for energy con-

sumption. In theory, the relationship between latitude and energy savings from DST should be

concave because DST also makes little sense near the poles where the difference between winter

and summer daylight hours is too large. The human population, however, is concentrated in the

subtropical and temperate climate zones, and the estimates in our sample reflect countries and

regions of the corresponding latitudes. The positive relationship between latitude and energy

savings can thus be regarded as a linear approximation of the underlying relationship.1

The remainder of the paper is organized as follows. Section 2 describes the data collection

process and the basic properties of the data set. Section 3 tests for publication selection bias

in the literature. Section 4 explores country and method heterogeneity in the estimated DST

effects and constructs best practice estimates for different countries. Section 5 concludes the

paper. An online appendix at meta-analysis.cz/dst provides the data and code that will

allow other researchers to replicate our analysis.

2 Data

Studies estimating the energy consumption effect of a change from standard time to daylight

saving time typically employ econometric analysis. In general, the authors estimate the following

model:

lnConsumptiont = α+ DST · Treatment effectt + Controlst + ε, (1)

1We experimented with adding the square root of latitude and of the number of daylight hours in the Bayesian
model averaging analysis, but these variables were not important in any specification.
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where Consumption is the average energy consumption during time t for a given hour, day,

and year. The variable Treatment effect is a dummy variable for a selected treatment group

and usually equals 1 for all hours when daylight saving time applies. Controls are explanatory

variables that reflect seasonality and holidays, weather (precipitation, humidity, temperature,

wind, and pressure), the intensity of sunlight, heterogeneity among consumption units, and

other specific effects such as economic activity or oil prices, possibly including interaction terms

and lags. The error term is denoted by ε.

From the studies reporting the DST effect we collect the treatment coefficient DST from

(1). This coefficient represents the effect of daylight saving time on energy consumption, or the

difference in electricity consumption for a particular time period between the treatment group

and the control group. These groups might be defined differently, for example as the period

before the start and end of DST versus the period after the start and end of DST, the period

when DST is not observed versus the period when DST is in place, the period when DST is

observed versus the period to which DST is extended, or the period of midday and midnight

hours versus the period of morning and evening hours. Multiple studies examine the pattern in

energy use before and after the spring and fall time change (for example Kandel & Metz, 2001).

Other studies, such as Mirza & Bergland (2011) and Kotchen & Grant (2011), examine the

differences in consumption for hours unaffected and affected by the DST policy. Belzer et al.

(2008) examines the impact of an extended DST policy.

Apart from econometric analysis, researchers can use simulation techniques to estimate the

effect of DST on energy consumption. Here the authors usually construct a model of energy

flows within different representative buildings and attempt to extrapolate this model to the

country level. Such an approach entails multiple assumptions and simplifications, and it is thus

more challenging to incorporate it into the meta-analysis framework. Despite the difficulty,

we include these estimates in our analysis following the approach of Havranek et al. (2015b),

who apply meta-analysis to simulation-based estimates of the social cost of carbon and show

substantial publication bias in the literature.

Some studies report estimates incomparable with the rest of the literature. Our criteria

for including studies in the meta-analysis are that 1) the study reports the effect of a change

from standard time to daylight saving time (the effect of a one-hour clock shift during summer
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Table 1: Studies used in the meta-analysis

Independent studies:

ADEME (2010) Hill et al. (2010) Krarti & Hajiah (2011)
Ahuja & SenGupta (2012) Hillman (1993) Mirza & Bergland (2011)
Ahuja et al. (2007) HMSO (1970) MCO (2001)
Belzer et al. (2008) IFPI (2001) Momani et al. (2009)
Bellere (1996) Kandel (2007) Nordic Council (1974)
Binder (1976) Kandel & Metz (2001) Ramos & Diaz (1999)
Bouillon (1983) Kandel & Sheridan (2007) Rock (1997)
Danish Government Report (1974) Karasu (2010) Shimoda et al. (2007)
Ebersbach & Schaefer (1980) Kellogg & Wolff (2007) Shore (1984)
Ebersole et al. (1975) Kellogg & Wolff (2008) Terna (2016)
Filliben et al. (1976) Kotchen & Grant (2011) Verdejo et al. (2016)
Fischer (2000) Kozuskova (2011) Wanko & Ingeborg (1983)

Independent estimates from Reincke & van den Broek (1999):

ADEME (1995) EnergieNed (1995) VDEW (1993)
ELTRA (1984) EVA (1978) Wiener Stadtwerke (1999)
ENEL (1999) SEP (1995)

months), 2) the study reports the estimate in a way that enables us to extract an estimate

in percent per day for each day the DST policy is implemented, and 3) the study focuses on

electricity consumption (there are few estimates for other energy sources). To avoid comparing

apples to oranges, we have to exclude several studies or individual estimates within studies. For

example, Littlefair (1990), Crowley et al. (2014), Fong et al. (2007), and Rock (1997) report

the effect of double DST; Kotchen & Grant (2011) report several estimates of the effect of a

change from DST to standard time. Some studies only report lighting energy savings, such as

Fong et al. (2007) or Rajaram & Rawal (2011); Pout (2006) does not include electricity use for

lighting in her analysis. Other studies (for example Innanen & Innanen, 1978; Basconi, 2007;

Sarwar et al., 2010; Pellen, 2014) report DST savings in such detail or manner that we were

unable to recalculate them to be comparable with the rest of the sample.

Our final data set comprises 162 estimates taken from 44 independent studies reported in

Table 1. We take advantage of the previous literature surveys on the energy savings from

DST by Reincke & van den Broek (1999) and Aries & Newsham (2008), which identify the

major studies on the DST effect published prior to 2008. Additionally, we search Google

Scholar for studies published thereafter; the search query is available in the online appendix at

meta-analysis.cz/dst. We identify 34 primary sources, i.e., studies directly estimating the

DST effect (either as a treatment coefficient DST from (1) in the regression framework or as
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Figure 2: Estimates of the DST savings effect vary across and within studies
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Notes: The figure shows a box plot of the estimates of the DST effect on energy savings reported in individual
studies. Negative estimates denote energy savings. Outliers are excluded from the figure but included in all
statistical tests.

a result of simulation or extrapolation) and one secondary source, Reincke & van den Broek

(1999), who report the results of 8 independent unpublished studies with DST estimates col-

lected from interviews with public or private energy companies. We also inspect the references

of all the studies in our sample published after 2008 to determine whether we missed papers.

We add the last study on April 30, 2016.

We collect all the estimates reported in the studies. Therefore, we have an unbalanced

panel data set, since different studies provide a different number of estimates. Some researchers

conducting meta-analysis prefer to collect only one representative estimate from each study, but
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Figure 3: Some countries may consume more energy because of DST
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Notes: The figure shows a box plot of the estimates of the DST effect on energy savings reported
for different countries. Negative estimates denote energy savings. Outliers are excluded from the
figure but included in all statistical tests.

we follow Stanley (2001, p. 135), who suggests that it is “better err on the side of inclusion.”

Figure 2 shows that there is substantial heterogeneity in the estimates between and within

studies, which might stem especially from the differences in methods and data. Moreover,

Figure 3 shows the heterogeneity of estimates between different countries. It follows that it is

important to control for the variations in the design of the study. Thus, we collect 16 aspects

of study design for all estimates (details can be found in Table 4 of Section 4). The final data

set is available online at meta-analysis.cz/dst.

Table 2 reports the mean of the DST savings’ estimates for different groups of study design

characteristics. On the left-hand side we report simple averages; on the right-hand side the

averages are weighted by the inverse of the number of observations reported per study. This

type of weighting does not allow large studies to dominate the mean. Assigning each study

the same weight yields an overall mean estimate of -0.34, which suggests energy savings of

0.34 percent of total electricity consumption during the days when the daylight saving policy

is applied. The 95% confidence interval of (−0.43,−0.26) indicates considerable uncertainty
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Table 2: DST effects vary across subsets of data, method, and publication characteristics

Unweighted Weighted

DST est. by group No. of observations Mean 95% conf. int. Mean 95% conf. int.

Data characteristics
Hourly data 139 -0.361 -0.428 -0.295 -0.335 -0.412 -0.258
Daily data 15 -0.687 -1.220 -0.155 -0.654 -1.099 -0.209
Main estimate 67 -0.250 -0.410 -0.091 -0.338 -0.475 -0.202
Europe 43 -0.474 -0.651 -0.297 -0.386 -0.527 -0.245
USA 94 -0.341 -0.441 -0.241 -0.307 -0.436 -0.178

Design of the analysis
Regression analysis 117 -0.395 -0.495 -0.295 -0.418 -0.544 -0.293
Simulation analysis 21 -0.241 -0.408 -0.073 -0.259 -0.395 -0.123
Other analysis 24 -0.120 -0.384 0.144 -0.320 -0.550 -0.091
Residential consumption 17 0.219 -0.132 0.570 -0.117 -0.417 0.184
Commercial consumption 145 -0.399 -0.480 -0.319 -0.382 -0.471 -0.293
Lighting consumption 7 -0.337 -0.621 -0.053 -0.304 -0.586 -0.021
Difference-in-differences 94 -0.407 -0.520 -0.294 -0.449 -0.619 -0.279

Publication characteristics
Journal publication 41 -0.026 -0.250 0.199 -0.121 -0.284 0.043
Unrefereed publication 121 -0.439 -0.517 -0.361 -0.446 -0.544 -0.348

Observations with SE 101 -0.402 -0.518 -0.286 -0.411 -0.577 -0.244
All observations 162 -0.334 -0.419 -0.250 -0.343 -0.429 -0.257

Notes: The table presents mean estimates of the DST effect on energy consumption (in %) for selected groups of data,
method, and publication characteristics (see details in Table 4). On the right-hand side of the table the DST estimates
are weighted by the inverse of the number of estimates reported per study. SE = standard error.

around the mean. This finding is consistent with existing surveys: Reincke & van den Broek

(1999) and Aries & Newsham (2008) place the mean estimate between 0% and 0.5%.

Table 2 documents that the means of DST energy savings effects vary substantially across

data and method choices. We observe that using hourly data instead of daily data in the analysis

tends to reduce the estimate of savings. We also observe that the simulated results tend to be

smaller than those obtained by regression or other means of analysis. When a study estimates

the savings effect in the residential sector alone, we observe that the upper confidence interval of

our estimate suggests energy penalties instead of energy savings. The difference-in-differences

approach seems to be associated with higher estimated savings.

Figure 4 depicts the distribution of the estimates of DST savings. The distribution is ap-

proximately symmetrical, and the mean estimate of −0.33 is very close to the median estimate

of −0.3, suggesting that there are not many outlying observations; thus, we do not need to ex-

clude any estimates from our analysis. From Table 2 we see that the estimates that the authors

prefer tend to be close to the average (when we assign each study the same weight). Neverthe-

less, studies in peer-reviewed journals appear to publish smaller estimates (see Table 2), which

might indicate that factors other than the methodological reasons we can directly observe are

responsible for the conservative estimates—it is an indication of potential publication selection.
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Figure 4: Journal publications report smaller savings from DST
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Notes: The figure depicts the Epanechnikov kernel density of the DST effect esti-
mates. The dashed curve denotes the normal distribution density, the solid vertical
line denotes sample mean of the DST estimate, and the dotted vertical line denotes
the mean of the DST estimates coming from journal publications.

3 Publication Bias

The preference of authors and editors for a certain magnitude or statistical significance of

an estimate is a common phenomenon in the economics literature (Doucouliagos & Stanley,

2013). The literature on the effects of DST on energy consumption is unique in the character

of publication outlets: many of the estimates come from the reports of government or energy

companies. These institutions may have different reasons to prefer higher or lower estimates;

there is, however, little reason for the authors from research institutes to succumb to such bias.

Statistically insignificant estimates, however, might be more easily overlooked, leading to the the

so called file-drawer problem. Some cases of publication bias have been previously documented

even in the field of energy economics (for example, Havranek et al., 2012; Reckova & Irsova,

2015; Havranek & Kokes, 2015; Havranek et al., 2015b).

The so-called funnel plot is one of the most common tools used to detect publication bias.

It is a scatter diagram with the estimate of the effect on the horizontal axis and the precision of

the estimate (the inverse of the standard error) on the vertical axis (see Stanley, 2005). For the

majority of the estimates we consider, the authors report t-statistics and, therefore, assume the
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Figure 5: Funnel plot suggests little publication bias
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Notes: The figure depicts a funnel plot of the estimates of the DST effect. In the
absence of publication bias, the funnel should be symmetrical around the most precise
estimates of the DST effect on energy savings. The dashed vertical line denotes the
mean of the estimates. Outliers are excluded from the figure but included in all
statistical tests.

estimated coefficient and its standard error to be independent of one another.2 This property

implies there should be no relationship between an estimate and its standard error. Thus,

regardless of the magnitude of the true effect, the estimates in the plot should vary randomly

and symmetrically around the true effect. With decreasing precision, the estimates become

more dispersed, thus creating an inverted funnel.

From Figure 5 we conclude that there is little evidence of publication bias in the literature

on DST energy savings: when selection process is related to the magnitude of the effect, the

funnel plot becomes asymmetrical; when the selection process favors statistical significance, the

funnel becomes hollow and wide. We observe that Figure 5 does not exhibit either of these

properties: the funnel is not hollow and is relatively symmetrical. Nevertheless, the funnel plot

is only a simple visual test, and the dispersion of the estimates might suggest the presence of

heterogeneity; therefore, we still need more rigorous tests to support our claim that there is no

bias present in the literature.

2Some estimates of DST savings result from simulations, and thus the ratio of the estimate to its standard error
does not follow the t-distribution. We use the approach of Havranek et al. (2015b) and account for the simulated
estimates and their standard errors (even for the estimates with asymmetric confidence intervals we compute
approximated standard errors, such as in Havranek, 2015). This approach yields 11 additional observations, but
it is worth noting that our results would hold even if these estimates were excluded.
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As we have noted, in the absence of publication bias the estimates of DST savings and their

standard errors should be uncorrelated (Stanley, 2005):

DSTij = DST0 + β · SE(DSTij) + uij , (2)

where DSTij and SE(DSTij) are the i-th estimates of the effect of DST on energy savings and

its standard error reported in the j-th study and uij is the error term. DST0 represents the

true effect beyond potential publication bias captured by β. If there were no publication bias

present in our sample, β would equal zero. In Table 3 we show that various versions of this test

corroborate our conclusion of insignificant publication bias in the DST literature.

Table 3: Funnel asymmetry tests show no publication bias

OLS FE BE Country ME IV

SE (publication bias) -0.410 -1.217 -0.410 -0.496 -0.449 0.226
(0.265) (0.790) (0.757) (0.805) (0.688) (1.088)

Constant (true effect) -0.293
∗∗∗

-0.222
∗∗∗

-0.294
∗∗∗

-0.278
∗∗∗

-0.291
∗∗∗

-0.445
∗

(0.000778) (0.0700) (0.00812) (0.0459) (0.00731) (0.243)

Observations 101 101 101 101 101 90

The table presents the results of a regression DSTij = DST0 + β · SE(DSTij) + uij , where DSTij and
SE(DSTij) are i-th estimate of the effect of DST on energy savings and its standard error reported in the
j-th study. The model is estimated by weighted least squares with the inverse of the reported estimate’s
standard error taken as the weight. OLS = ordinary least squares, FE = study-level fixed effects, BE =
study-level between effects, Country = country-level fixed effects, ME = study-level mixed effects, and IV =
instrumental variable estimation, where the instrument for the standard error is the number of observations
(if the study is based on regression analysis). Standard errors in parentheses are clustered at the study and
country level (two-way clustering follows Cameron et al., 2011).
∗
p < 0.10,

∗∗
p < 0.05,

∗∗∗
p < 0.01.

The first column of Table 3 presents the baseline model of the funnel asymmetry test from

(2). The coefficient β, estimated by OLS, is not statistically significant (p-value = 0.12), and

the constant DST0 places the true effect of daylight savings at approximately −0.29%. In

the second column we add study-level fixed effects to the baseline specification. Using within-

study variation for identification only marginally decreases the true effect, as does using within-

country variation in the fourth column. The estimated bias becomes even less significant in

other specifications: the model in the third column uses between-study variation and provides

nearly the same mean effect as our baseline model. The mixed effects model in the fifth column

is convenient for our unbalanced panel, since it employs restricted maximum likelihood and thus

essentially assigns each study the same weight; the results are again similar to the baseline case.

In the last column, we use the number of observations as an instrument for the standard error.
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The instrumental variable estimation is naturally less precise, but the result complies with the

rest of the analysis: there is no publication bias present in the literature on energy savings from

daylight saving time.

Figure 6: Galbraith plot suggests some publication selection or heterogeneity
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Notes: The horizontal black lines form the boundary of the (−1, 96; 1, 96) interval,
which should not be surpassed in more that 95% of cases if there is no publication bias
related to statistical significance and no heterogeneity. Outliers are excluded from the
figure but included in all statistical tests.

As a complementary robustness check we depict the Galbraith plot (Galbraith, 1988), which

specifically concentrates on the likelihood of reporting significant results. It is a funnel plot ro-

tated 90 degrees and adjusted to remove heteroskedasticity (Stanley, 2005). We follow Havranek

(2010) to define the adjusted t-statistics T (DSTij):

T (DSTij) =
DSTij −DST0

SE(DSTij)
, (3)

where DST0 represents the true effect estimated by the funnel asymmetry test and DSTij rep-

resents the i-th estimate of the daylight saving effect with SE(DSTij) as the corresponding

standard error reported in the j-th study. For DST0, we employ the baseline true effect from

the first column of Table 3, −0.293, and plot the final statistics in Figure 6. If there is no sys-

tematic relationship between the effect and the precision, the observations should be randomly

distributed around zero and the computed t-statistic should not be outside the interval (−1.96,
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1.96) in more than 5% of cases. Our results indicate that nearly 24% of the estimates would be

significant if the true effect were 0.293%. Such a result could create some formal grounds for

the presence of publication bias related to the significance of estimates. Nevertheless, Figure 6

merely shows the presence of excess variation since the extreme values of t-statistics, on aver-

age, offset one another (Stanley, 2005), and therefore the mean effect is not biased. Moreover,

the value of the true effect in Table 3 also needs to be challenged. There could be possible

dependencies in study design and country heterogeneity that affect our previous estimates, and

we will address these issues in the next section.

4 Heterogeneity

4.1 Variables and Estimation

We have seen from Figure 2 and Figure 3 that the estimates of the DST effect vary considerably,

but we have not been able to explain the variance by sampling error and selective reporting.

There is, however, another type of variation that might have a systematic influence on the

estimated effects of DST. Aries & Newsham (2008) note that different studies estimate the DST

effect using different data sets and methods. We will attempt to explain these variations using

meta-regression analysis (as in Havranek & Irsova, 2011, who show how broadly estimates of an

economic effect can vary across methods and countries). Since we do not observe publication bias

in our sample, we remove the standard error from (2) and replace it with explanatory variables

related to data and methodology. In so doing, we eliminate the apparent heteroskedasticity

affecting the equation and control for heterogeneity among the estimates.

Table 4: Description and summary statistics of regression variables

Variable Description Mean SD WM

Daylight savings The estimate of the impact of daylight saving time (DST) on
energy consumption in % per day of DST.

-0.334 0.547 -0.343

SE The estimated standard error of DST savings. 0.339 0.266 0.400

Data characteristics
Data period The number of years used in the estimation. 2.30 1.72 2.12
Main estimate = 1 if the estimate is preferred by the authors of the study. 0.41 0.49 0.79
Hourly data = 1 if the data are examined on hourly or higher than hourly

granularity.
0.09 0.29 0.14

Daily data = 1 if the data are examined on a daily basis. 0.09 0.29 0.14
Daylight hours Average time between sunrise and sunset on the longest day

for the country or region under examination (Source: U.S.
Naval Observatory Astronomical Applications Department).

15.19 1.26 15.57

Continued on next page
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Table 4: Description and summary statistics of regression variables (continued)

Variable Description Mean SD WM

Europe = 1 if European countries are examined. 0.27 0.44 0.52
USA = 1 if US data are examined. 0.58 0.50 0.23

Design of the analysis
Regression analysis = 1 if the primary study is based on regression analysis. 0.72 0.45 0.39
Simulation analysis = 1 if the study is based on simulation. 0.13 0.34 0.26
Difference-in-diff. = 1 if the difference-in-differences approach is employed. 0.58 0.50 0.21
Residential cons. = 1 if only residential consumption is examined. 0.10 0.31 0.15
Lighting cons. = 1 if total energy savings are reported as a result of lighting

reduction.
0.04 0.20 0.13

Publication characteristics
Publication year The publication year of the study (base = 1970). 34.8 9.5 27.1
Journal article = 1 if the study was published in a peer-reviewed journal. 0.25 0.44 0.32
Impact factor The recursive RePEc impact factor of the outlet. 0.07 0.26 0.05
Citations The logarithm of the total number of citations of the study

in Google Scholar.
1.91 0.94 1.60

Notes: SD = standard deviation. WM = mean weighted by the inverse of the number of observations reported per
study. All variables except for citations and the impact factor are collected from studies estimating the DST effect
(the search for studies was terminated on April 30, 2016). Citations are collected from Google Scholar and the
impact factor from RePEc. The data set is available at meta-analysis.cz/dst.

The explanatory variables capturing the variation in data and methodology are listed in

Table 4; the table provides the definition of these variables and their summary statistics. The

last column of the table presents the mean of the variables weighted by the inverse of the

number of observations extracted from a study. We divide the variables into three groups.

First, we collect information on data characteristics capturing the data set and geographical

specifics. Second, we collect information on the design of the analysis to capture methodological

differences. Third, we collect information on publication characteristics, such as the journal

impact factor. Our intention here is not to provide an exhaustive survey of the methods used in

the DST literature but to identify the main reasons for the heterogeneity affecting the estimates.

Data characteristics We consider the number of years examined in a study as a potentially

useful explanatory variable: it might show that savings become more apparent in the long run

when firms and households become better adapted to the policy. We also control for what

the authors find to be their own preferred estimate in a particular study, which might indicate

whether their own best-practice estimate is systematically different from the rest of the reported

results. Another source of heterogeneity could be the granularity of the data: the information

in daily data is less detailed than the information in hourly data, for which researchers directly

observe changes in consumption during the morning and evening hours. We capture the country-

specific differences by including the variable for the duration of sunlight. Specifically, we identify
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the average coordinates of the place, which relates either to the country or the city for which the

daylight savings effects were estimated. For this geographical centroid, we identify the longest

day of 2016 and its respective number of sunlight hours. We also include dummy variables for

the United States and European countries.

Design of the analysis DST estimates come either as a result of econometric analysis,

simulation, or another type of analysis such as extrapolation or comparison. Among the econo-

metric analyses, which generate more than 70% of our estimates, we observe frequent use of

the difference-in-differences technique. The difference-in-differences approach accounts for dif-

ferences between a control group (a time period that should not be affected by DST) and a

treatment group (a time period that should be affected by DST). The set of other moderator

variables included in the regression analysis also differs, as does the functional form. In most

cases, a log-level model is employed obtain the difference-in-differences estimate; nevertheless,

for example, Shore (1984), Basconi (2007), and Kandel & Sheridan (2007) employ a level-level

model directly examining the magnitudes of energy consumption only (the elasticity is then

computed using sample means). The level-level model is, however, scarce in our data set, and

therefore, we do not add a corresponding dummy since it would display very little variation.

Nearly 30% of our estimates come from a type of analysis other than regression. Typically,

these estimates are produced by simulation or by more or less sophisticated extrapolation.

The simulations vary in their specification; moreover, the specification is not always reported

in detail. Assumptions of the simulations are derived either from regression analysis, simple

historical data analysis, or survey findings. The control variables are then similar to those

specified in regression analysis with the exception that buildings and households are modeled in

much greater detail. Therefore, the obvious benefit of simulation is that it is able to investigate

the energy consumption patterns in greater depth; however, researchers must be more confident

in the correctness of the model specification. Extrapolation is usually based on shifts in the

daily load curves. In comparison with the previous approaches, extrapolation is somewhat less

sophisticated because this type of analysis makes it more difficult to control for other relevant

influencing factors.

We also control for the type of end-use and the type of end-user of the electricity considered

in an analysis. The largest share of electricity consumption goes to lighting, heating, cooling,
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and appliances. Our original intention was to collect the estimates on overall consumption

subsuming all these energy uses. Due to the small sample size for the individual categories,

however, we decided to only retain in our data set those observations for which the DST estimate

is defined as the effect of lighting electricity on overall electricity consumption, but we control

for this aspect of methodology to determine whether these estimates differ from more general

estimates of DST energy savings. Moreover, some researchers only estimate the DST effect

for residential areas, while the rest of the literature does not differentiate between residential

and business consumption. As the daily consumption cycle for households differs from that for

commercial or industrial buildings, we also control for the type of end-customer assumed in an

analysis.

Publication characteristics There might be methodological advances in the literature that

we are not able to capture directly by method variables (the number of studies and the number

of estimates is not large). We employ several publication characteristics as proxies for such

aspects. For example, advances in methodology should be captured by publication year. We

also use several variables that control for publication quality, which may also reflect unobserved

aspects of data and methods. We examine whether studies yield consistently different results

when they are published in a peer-reviewed journal and in a journal with a higher or lower

impact factor and whether the number of citations is correlated with the result.

In the end we have 14 aspects of study design. Ideally, we would like to regress all these

explanatory variables on the estimates of the DST effect we collected. Having a relatively large

number of variables, however, we face the problem that some of them might prove redundant—

in other words, there is substantial model uncertainty. Redundant variables inflate the variance

of all other parameters, and researchers usually attempt to eliminate the insignificant variables

one by one. Such a general-to-specific method is not statistically valid because t-tests are not

designed to be run conditionally on one another. Following Havranek et al. (2015a) and a

plethora of studies that address model uncertainty in economics, we employ Bayesian model

averaging instead.

Bayesian model averaging (BMA) estimates a number of models that use subsets of the

14 explanatory variables on the right-hand side. For the estimation we use the bma package
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in R (Feldkircher & Zeugner, 2009) and a Markov Chain Monte-Carlo sampler that only goes

through the most important part of the model mass (there are 214 possible models in total).

Each estimated coefficient (posterior mean) is the average coefficient of all the models weighted

by the posterior model probability, which is akin to adjusted R2 in frequentist econometrics.

Another important concept, posterior inclusion probability, is the sum of all posterior model

probabilities of the model in which a particular variable is included and reports how likely the

variable is to be included in the true model. The posterior standard deviation is analogous

to the standard error and follows the distribution of a coefficient from all estimated models.

Further details on BMA can be found, for example, in Eicher et al. (2011).

4.2 Results

The BMA results are depicted in Figure 7. Each row in the figure identifies a variable, and rows

are sorted in descending order according to the posterior inclusion probability. Each column

in the figure identifies a model, and columns are sorted from left to right in descending order

according to the posterior model probability. Each cell in the figure identifies a variable included

in a model: if the cell is red (lighter in grayscale), the sign of the variable is negative; if the cell

is blue (darker in grayscale), the sign of the variable is positive. A cell with no color identifies

variables excluded from the model. Five out of the 14 variables are included in the best model,

and their estimated signs are robust to the inclusion of the other variables in the model.

We report the numerical results of BMA in Table 5. The posterior inclusion probability is

at least substantial (which is, according to Kass & Raftery, 1995, above 0.9) for five variables:

Impact factor, Daylight hours, Difference-in-differences, Daily data, and Simulation analysis.

For the rest of the variables, the posterior inclusion probability is very weak (below 0.23),

which suggests that they are not particularly important in determining the magnitude of the

estimate of the DST effect. In addition, we run a frequentist check, reported on the right-

hand side of the table, as a simple OLS with standard errors clustered at both the study and

country level. The OLS results are consistent with our results from BMA: the highly significant

variables correspond to those with high posterior inclusion probability, and the coefficients in

both models are fairly similar in value and display the same signs. Additional diagnostics of

the BMA exercise are available in Table 7 and Figure 8 in Appendix A. Additional robustness
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Figure 7: Model inclusion in Bayesian model averaging

0 0.23 0.32 0.4 0.48 0.55 0.63 0.69 0.76 0.82 0.89 0.95 1

Impact factor

Daylight hours 

Difference-in-differences 

Daily data

Simulation analysis 

Journal publication 

Residential consumption 

Regression analysis 

Citations

Data period

USA

Lighting consumption 

Main estimate 

Publication year

Notes: Response variable: the estimate of the DST effect on energy savings. The columns denote individual models; the
variables are sorted by posterior inclusion probability in descending order. Blue color (darker in grayscale) = the variable
is included and the estimated sign is positive. Red color (lighter in grayscale) = the variable is included and the estimated
sign is negative. No color = the variable is not included in the model. The horizontal axis measures cumulative posterior
model probabilities. A detailed description of all variables is available in Table 4; numerical results of the BMA estimation
are reported in Table 5.

checks employing different variants of the BMA specification can be found in Appendix B, and

they corroborate our baseline results.

Data characteristics According to our findings, the more daylight hours there are on the

longest day in a year at a specific location, the higher are the energy savings from DST. The

variable Daylight hours is a proxy for the location’s latitude, which corresponds to the countries

and regions in our sample (when analyzing DST, it makes more sense to directly consider the

length of the day rather than latitude). The implementation of DST has little effect at very

high or very low latitudes: at higher latitudes (close to the poles), the length of the day and

night change significantly throughout the seasons, meaning that the standard working hours

are far from the sunrise and sunset in summer and winter; while at lower latitudes (close to

the equator), the daylight hours are nearly constant throughout the year. The time change

generates the greatest effect in the zone between the two extremes, where daylight increases
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Table 5: Explaining the differences in the estimates of the DST energy savings

Response variable: Bayesian model averaging Frequentist check (OLS)

Estimate of DST savings Post. mean Post. SD PIP Coef. Std. er. p-value

Data characteristics
Data period -0.003 0.013 0.111 -0.020 0.037 0.591
Main estimate 0.004 0.030 0.086 0.064 0.082 0.434
Daily data -0.444 0.152 0.964 -0.413 0.166 0.013
Daylight hours -0.118 0.031 0.990 -0.101 0.032 0.002
USA 0.008 0.049 0.102 0.185 0.117 0.113

Design of the analysis
Regression analysis -0.021 0.071 0.143 -0.116 0.190 0.541
Simulation -0.361 0.165 0.912 -0.530 0.150 0.000
Difference-in-differences -0.412 0.110 0.989 -0.438 0.066 0.000
Residential consumption 0.050 0.114 0.228 0.106 0.170 0.532
Lighting consumption 0.010 0.061 0.089 0.058 0.137 0.674

Publication characteristics
Publication year 0.000 0.001 0.082 0.002 0.007 0.738
Journal publication 0.040 0.092 0.229 0.219 0.239 0.359
Impact factor 0.958 0.167 1.000 0.746 0.165 0.000
Citations 0.007 0.025 0.133 0.021 0.044 0.641

Constant 1.698 NA 1.000 1.316 0.637 0.039
Studies 44 44
Countries 21 21
Observations 162 162

Notes: The response variable is the estimate of the DST effect on electricity consumption (in %). PIP =
posterior inclusion probability. SD = standard deviation. The standard errors in the frequentist check are
clustered at both the study and country level (two-way clustering follows Cameron et al., 2011). In this
specification, we employ a uniform model prior and use the unit information prior on Zellner’s g (Eicher et al.,
2011). Further details on the BMA estimation are available in Figure 7. A detailed description of all variables
is available in Table 4.

sufficiently during summer months to be relevant to working hours and leisure time in the

evenings.

One might suspect that the relationship between Daylight hours and DST savings is not

linear. We tested for the nonlinearity but found the quadratic term, Daylight hours squared, to

be insignificant. Therefore, we argue that the proportionality of Daylight hours and DST savings

is a linear approximation of their underlying relationship. Since few people live close to the

poles, our sample comprises regions in the subtropical and temperate zones. The results from

Table 5 suggest that the further we go from the equator, the higher the energy savings we observe

from DST, which is in line with intuition. Numerically, the −0.12 coefficient from the BMA

suggests that for each additional hour of sunlight on the longest day in an affected region, the

DST policy yields 0.12% more in energy savings (other things being equal). Weinhardt (2013)

examines the heterogeneity in the response of residential energy consumption across different

latitudes for the USA. Contrary to our findings, he observes lower savings in the norther part

of the US and higher savings in the southern part of the US.
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Sampling frequency represents another source of heterogeneity in the estimated coefficients

of DST savings. The usage of Daily data drives the saving estimates upwards; estimates with

higher frequency, mostly hourly data, are associated with smaller savings. The effect of daily

data is also economically significant, and the estimated coefficient amounts to −0.44. Time

aggregation thus introduces a substantial upward bias into the estimated DST savings. The

length of the sample period used in an analysis does not appear to be particularly important,

and it does not seem to be relevant whether the data come from the US. The estimates that

the authors of studies themselves prefer are close to the overall mean.

Design of the analysis Most estimates of DST savings represent the output of either sim-

ulation or regression analysis. Our results imply that the choice of methodology entails, on

average, systematically different estimates of DST savings. First, the coefficient estimated for

Simulation analysis indicates that the simulated estimates of DST savings are larger on average

by 0.36 than the rest of the data set, which is significant because the mean estimate of DST

is only 0.34. This result supports the previous literature: Kellogg & Wolff (2008), for exam-

ple, also report that their simulation failed to predict the morning increase in consumption

related to DST and overestimated the evening decrease. The use of regression analysis does not

seem to deliver results different from the baseline case (extrapolation) unless the Difference-in-

differences approach is used. We observe an even larger impact on DST savings than in the case

of simulations: other things being equal, the difference-in-differences specification is associated

with savings that are 0.41 greater than the baseline case.

Finally, Kotchen & Grant (2011) argue that residential consumers adjust their behavioral

patterns when the time change occurs and that the commercial and industrial electricity adjust-

ment in demand is not particularly important. Nevertheless, the insignificance of the residential

consumption variable instead suggests that the savings estimated for overall consumption do not

differ substantially from the savings estimated for residential consumption alone. We observe a

similar outcome for lighting consumption: the differences between end-customers and end-uses

of electricity are not a source of systematic differences among the estimates in our sample.

Publication characteristics While controlling for specific data and method choices, we

also include several publication characteristics. Among the proxies for quality, the number of
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citations and journal publication are found to be less important than the Impact factor of a

journal. The difference in implied DST savings between a study from a journal with a zero

impact factor and an impact factor of one is 0.96; better journals publish more pessimistic

estimates of DST savings. This suggests the presence of additional heterogeneity in methods

that we could not capture using the methodological variables codified for this study. The

coefficient for the year of publication has a low posterior inclusion probability, which suggests

that newer publications do not yield substantially different estimates.

The mean reported estimate of −0.34% does not fit all countries, as we observed above. To

provide the reader with an example of how the estimates of DST savings for individual countries

would be affected if we used the meta-regression results and filtered out the potential biases

stemming from small data sets and improper methodology, we estimate the “best practice”

DST savings for each country in our sample using the outcome of the BMA exercise. This

aspect of our analysis is the most subjective since it involves defining the preferred value for all

explanatory variables (except for the number of daylight hours, where the values are given by

the country’s location and are the most important factor in explaining the heterogeneity among

the estimates), and other researchers might have different opinions on what constitutes best

practice. We attempt to construct a synthetic study that assigns greater weight to estimates

based on broad data sets and reliable methodology and reported in highly cited studies and

prestigious journals.

We prefer the maximum number of years available for estimation in the primary study

and higher than daily data granularity since we wish to emphasize studies using the most

detailed information available (we plug in “9” for the Data period and “0” for Daily data).

We assign greater weight to the authors’ most preferred estimates. In terms of methods, we

prefer a study to use the difference-in-differences approach, the most commonly employed tool

that allows for better identification than simple regression (and we also find it cleaner than

simulation and extrapolation). We prefer general estimates of energy savings to partial estimates

based on residential consumption and avoid derivations from estimates based solely on lighting

consumption.

Next, we plug in the maximum value of publication year from our sample since we prefer

recent studies. Moreover, we emphasize publication quality: we place greater weight on studies
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published in refereed journals and those with the maximum number of citations. We prefer

journals with a high impact factor but also need to control for one outlier, (Kotchen & Grant,

2011); therefore, we choose the 95th percentile for the Impact factor variable (if we use the

sample maximum, we obtain negative energy savings). Finally, we set the dummy variable USA

to zero for other countries than the United States and control for country heterogeneity using

the variable Daylight hours, which varies from 13.2 (northern Chile) to 19.8 (southern Norway).

Table 6: DST effects on energy savings differ across countries

Mean 95% conf. int.

Australia 0.189 -0.600 0.978
Austria -0.059 -0.822 0.704
Chile 0.074 -0.701 0.848
Czech Republic -0.104 -0.865 0.656
Denmark -0.258 -1.016 0.501
France -0.037 -0.802 0.727
Germany -0.130 -0.889 0.630
India 0.248 -0.550 1.047
Israel 0.146 -0.637 0.929
Italy 0.012 -0.756 0.780
Japan 0.112 -0.666 0.891
Jordan 0.150 -0.634 0.933
Kuwait 0.168 -0.618 0.954
Mexico 0.223 -0.572 1.017
Netherlands -0.165 -0.924 0.593
New Zealand 0.038 -0.733 0.808
Norway -0.512 -1.286 0.262
Sweden -0.510 -1.283 0.264
Turkey 0.063 -0.710 0.836
United Kingdom -0.201 -0.959 0.557
USA 0.087 -0.543 0.716
Europe -0.083 -0.845 0.679
All countries -0.014 -0.760 0.732

Notes: The table presents mean estimates of the DST coefficient in % implied
by the Bayesian model averaging and our definition of best practice. The
confidence intervals are approximate and constructed using the standard errors
estimated by OLS.

Table 6 provides the best-practice DST estimates for all 21 countries examined by the studies

in our data set. These estimates are calculated as a linear combination using the coefficients

from the BMA meta-regression in Table 5 and values of the variables corresponding to our

definition of best practice. The resulting global estimate is −0.01%, quite distant from −0.34%,

the simple average effect reported in the literature. The 95% confidence interval of our best-

practice estimate is wide, (−0.76, 0.73). Nevertheless, plausible changes in the definition of

best practice would not typically lead to substantial changes in the result. For example, if we

were to prefer simulation analysis instead of the difference-in-differences approach, the change

in the result would only be 0.02. We conclude that energy savings from DST are, on average,
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negligible and unlikely to exceed 0.76% of total electricity consumption during the days when

the daylight saving policy is in place.

To put the numbers into perspective, based on the statistics of the 2015 US Dept. of Energy

and CIA Factbook 2016, for the US, 0.34% savings of total energy consumption during the days

when DST is applied suggest the savings of 8.4 TWh yearly (the yearly consumption of about

77 thousand American households). The same percentage amounts to 1.1 TWh yearly in case

of Germany (the yearly consumption of about 311 thousand German households). We show,

however, that the savings depend just as much on the country location as on other aspects

of study design. Although Aries & Newsham (2008) suggest the savings of 0.5% on yearly

consumption are worthy of pursuit on the national level, our best-practice estimates show

the number might be considerably lower. The best-practice estimate amounts to the yearly

savings of 2.1 TWh in the US which would save the yearly electricity consumption of about 19

thousand American households. Germany would have a loss of 0.4 TWh yearly, meaning the

yearly consumption of about 12 thousand German households would go to waste due to DST.

5 Conclusion

The main reason for implementing the daylight saving time scheme was to reduce energy con-

sumption. Some students of DST, however, question the real effect and find the present evidence

on this topic limited and often contradictory (Aries & Newsham, 2008). To shed greater light

on this issue, we conduct a meta-analysis of energy savings from DST; using 162 estimates

taken from 44 studies, we estimate the underlying effect. We find that the mean estimate,

0.34% savings, is exaggerated if we take into account the impact of data, method, and publi-

cation characteristics. When we place greater weight on the estimates that we consider more

reliable (that is, studies published in prestigious journals using high data frequencies and the

difference-in-differences method), we obtain a mean effect close to zero. In contrast, we find no

exaggeration attributable to publication selection, the usual culprit of bias in applied economics

(Doucouliagos & Stanley, 2013).

Our meta-analysis suggests that the cross-country heterogeneity in DST savings can be

explained by a country’s location. To the best of our knowledge, this is the first empirical

analysis of the relationship between the effects of DST and cross-country geography, and the
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analysis is enabled by our rich meta-data set based on the works of previous researchers. The

largest energy savings from DST are enjoyed by countries with the longest daylight summer

hours; the closer to the equator we go, the smaller the savings we observe. Our results also

indicate that the method choices systematically influence the estimated savings: the use of

simulation analysis or the difference-in-differences approach both result in larger estimated

savings compared with simple regression or extrapolation. Moreover, higher data frequencies

tend to be associated with smaller estimated savings, and studies published in journals with

high impact factors also tend to be more pessimistic about the effects of DST.

In any case, the effects of daylight saving time on energy consumption are too small to justify

the biannual time-shifting. Other aspects of DST will probably prove more important, but they

are often difficult to estimate. The DST policy may affect traffic safety (Ferguson et al., 1995),

crime rates (Doleac & Sanders, 2015), business and commercial activities (Kamstra et al., 2000;

Muller et al., 2009), and usable leisure time and can even induce physiological (Lahti et al.,

2010; Toro et al., 2015) and psychological effects (Shapiro et al., 1990; Olders, 2003; Kuehnle &

Wunder, 2014). The topic calls for a cost-benefit analysis, but to conduct such analysis we would

need estimates of the aforementioned effects. On the cost side, one could use the estimates of

the number of traffic casualties attributable to DST, which in the US amounts to 366 per year

according to Coate & Markowitz (2004). Multiplying this by the mean value of a statistical

life, $2.74 million, reported by Doucouliagos et al. (2012) and corrected for publication bias,

we obtain $1 billion in yearly losses for the US alone (in 2000 dollars). An implication of our

study is that it is time for the research literature to reorient itself to examine the more subtle

and covert effects of DST.
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A Diagnostics of BMA

Table 7: Summary of BMA estimation: UIP

Mean no. regressors Draws Burn-ins Time No. models visited
6.0646 2 · 106 1 · 106 5.024066 mins 560,236
Modelspace Visited Topmodels Corr PMP No. obs.
16,384 34% 100% 1 162
Model prior g-prior Shrinkage-stats
Uniform UIP Av = 0.9939

Notes: In this specification, we employ the priors suggested by Eicher et al. (2011), who recom-
mend using the uniform model prior (each model has the same prior probability) and the unit
information prior (the prior provides the same amount of information as one observation of the
data).

Figure 8: Model size and convergence, BMA with priors according to Eicher et al. (2011)
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B Robustness Checks (For Online Publication)

Table 8: Explaining the differences in DST estimates: robustness checks

Response variable: Bayesian model averaging: BRIC Bayesian model averaging: hyper-g

Estimate of DST savings Post. mean Post. SD PIP Post. mean Post. SD PIP

Data characteristics
Data period -0.004 0.016 0.105 -0.008 0.021 0.405
Main estimate 0.003 0.028 0.067 0.016 0.063 0.361
Daily data -0.415 0.179 0.910 -0.401 0.148 0.973
Daylight hours -0.114 0.035 0.971 -0.105 0.034 0.987
USA 0.005 0.043 0.076 0.057 0.112 0.440

Design of the analysis
Regression analysis -0.016 0.064 0.110 -0.051 0.102 0.432
Simulation -0.310 0.193 0.800 -0.406 0.151 0.969
Difference-in-differences -0.390 0.128 0.965 -0.394 0.113 0.993
Residential consumption 0.037 0.100 0.167 0.082 0.134 0.497
Lighting consumption 0.007 0.053 0.066 0.026 0.112 0.356

Publication characteristics
Publication year 0.000 0.001 0.061 0.001 0.003 0.359
Journal publication 0.030 0.082 0.173 0.104 0.139 0.557
Impact factor 0.977 0.162 1.000 0.797 0.190 1.000
Citations 0.005 0.021 0.097 0.016 0.040 0.413

Constant 1.627 NA 1.000 1.454 NA 1.000
Studies 44 44
Countries 21 21
Observations 162 162

Notes: The response variable is the estimate of the DST effect on electricity consumption (in %). PIP = posterior
inclusion probability. In the left hand-side specification, we employ a random model prior, which refers to the
beta-binomial prior advocated by Ley & Steel (2009): the prior model probabilities are identical for all possible
model sizes. In this specification, we set Zellner’s g prior following Fernandez et al. (2001). In the right hand-side
specification, we employ a random model prior and use the data-dependent hyper-g prior suggested by Feldkircher
& Zeugner (2012), which should be less sensitive to noise in the data. Further details on both BMA estimations are
available in Figure 11 and Figure 12. A detailed description of all variables is available in Table 4.
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Table 9: Summary of BMA estimation: BRIC

Mean no. regressors Draws Burn-ins Time No. models visited
5.5698 2 · 106 1 · 106 4.995537 mins 489,541
Modelspace Visited Topmodels Corr PMP No. obs.
16,384 29.88% 100% 1 162
Model prior g-prior Shrinkage-stats
Random BRIC Av = 0.9949

Notes: The “random” model prior refers to the beta-binomial prior advocated by Ley & Steel
(2009); Zellner’s g prior is set according to Fernandez et al. (2001).

Figure 9: Model size and convergence, BMA with priors according to Fernandez et al. (2001)
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Table 10: Summary of BMA estimation: hyper-g

Mean no. regressors Draws Burn-ins Time No. models visited
8.7791 2 · 106 1 · 106 8.367627 mins 1,285,508
Modelspace Visited Topmodels Corr PMP No. obs.
16,384 78.46% 100% 0.9995 162
Model prior g-prior Shrinkage-stats
Random hyper (a=2.0102) Av = 0.9949, Stdev=0.042

Notes: This specification of the “random” model uses the hyper-g prior suggested by Feldkircher
& Zeugner (2012).

Figure 10: Model size and convergence, BMA with priors according to Feldkircher & Zeugner
(2012)
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Figure 11: Model Inclusion in BMA with priors according to Fernandez et al. (2001)
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Notes: Response variable: estimate of the DST effect in energy savings. Columns denote individual models; variables are
sorted by posterior inclusion probability in descending order. Blue color (darker in grayscale) = the variable is included
and the estimated sign is positive. Red color (lighter in grayscale) = the variable is included and the estimated sign is
negative. No color = the variable is not included in the model. The horizontal axis measures cumulative posterior model
probabilities. A detailed description of all variables is available in Table 4; numerical results of the BMA estimation are
reported in Table 8.
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Figure 12: Model Inclusion in BMA with priors according to Feldkircher & Zeugner (2012)
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Notes: Response variable: estimate of the DST effect in energy savings. Columns denote individual models; variables are
sorted by posterior inclusion probability in descending order. Blue color (darker in grayscale) = the variable is included
and the estimated sign is positive. Red color (lighter in grayscale) = the variable is included and the estimated sign is
negative. No color = the variable is not included in the model. The horizontal axis measures cumulative posterior model
probabilities. A detailed description of all variables is available in Table 4; numerical results of the BMA estimation are
reported in Table 8.
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